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1 Introduction

Starting from the seminal papers by Vickers (1985), Fershtman and Judd (1987) and
Sklivas (1987), the well-established literature on delegation of control to managers,
still taking the viewpoint of owners being profit-maximizers, indicates that this goal
can be achieved in a strategic environment by appropriately tweaking managers’
objective functions. In this regard, Vickers (1985), page 144, writes:

But even if it were true that the only survivors of the economic struggle were the
firms that made the greatest profits, it would not follow that they were profit-
maximisers in the sense of having profit-maximisation as their objective, or
behaving as such. [...] In short, if strategic interactions imply that the direct pur-
suit of profit does not lead to maximum profits, then forces of natural selection
might see the demise of the profit-maximiser rather than his ultimate survival.

When control is delegated to managers, firms’ decisions take place in two stages
(see Vickers 1985): at the first stage, an owner hires a manager and sets an objective
function; at the second stage, the manager decides a strategic variable (e.g. quanti-
ties, prices, quality etc.) to optimize the objective. Usually, the manager’s payoff is
expressed in terms of an absolute measure of the firm’s performance (e.g. a linear
combination of profits and revenues; see Sklivas (1987), Fershtman and Judd (1987))
or a relative one (e.g. the firm’s market share; see Miller and Pazgal (2002), Jansen
et al. (2007)). The main message here is that the owner, by distorting his own objec-
tive function (profit), could gain at the expense of rivals. Thus, hiring a manager
ensures that the owner’s commitment to a different objective is credible. The specific
incentive contract serves as a commitment device to that purpose. In the duopoly
case under Cournot or Bertrand competition, Sklivas (1987) shows that when own-
ers strategically choose the contract to offer to their managers, both competitors end
up delegating control to managers. Typically, under quantity competition, delegation
entails output expansion by putting more weight on revenues than profits. As a result,
all firms are worse off than in the usual Cournot-Nash equilibrium, i.e. a typical pris-
oner’s dilemma outcome arises; dual results occur with price competition. When the
number of firms is large, Sklivas (1987) concludes that the optimal contract to man-
agers tends to reward only profits instead of a combination of profits and revenues,
i.e. perfect competition is retrieved. In any case, these clear-cut results rely heavily
on the assumption of firms’ complete information.

In a dynamic context, the validity of the ‘profit-maximization’ paradigm has been
studied by means of evolutionary game-theoretic models. As a matter of fact, the pos-
sibility that evolving objectives do not tend towards profit maximization is referred to
as the “Vickers’ conjecture” in Rhode and Stegeman (2001). One of the first contri-
butions in this area is Schaffer (1989), who shows that, whenever firms have market
power, profit-maximizers are not necessarily the best survivors.1 Similarly, Heifetz
et al. (2007) argue that payoff maximization cannot be justified from an evolution-
ary standpoint in almost every decision involving strategic interaction. In fact, they

1However, see also Possajennikov (2003) and Dixon et al. (2002).
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show that, under any payoff-monotone selection dynamics, the population of agents
will not converge to payoff maximizing behavior because of the strategic effects of
distorting players’ actual payoffs. Rhode and Stegeman (2001) study a differentiated
duopoly where the weight on sales in firms’ objective functions follows a Darwinian
process; in addition, they argue that it is perfectly reasonable to assume weights on
sales that are not strategically chosen by owners because of the difficulty of assess-
ing them. They show that the long run outcome is not a Nash equilibrium and the
evolution of objectives distorts behavior towards revenue maximization.

In this paper, we analyze several versions of an evolutionary oligopoly with control
delegation, where we progressively lower the amount of information as to the manner
in which managers are compensated. When the assumption of complete information
is relaxed and a one-shot delegation game is repeated over time, in fact, several addi-
tional issues must be taken into account. First, owners might offer an incentive to
managers that is based on profits, as under quantity competition, owners are better off
when in the industry the managers’ contracts are proportional to profits only; second,
without knowing the rivals’ incentive contracts, designing an ‘optimal’ contract for
managers is not an obvious task, as shown in Rhode and Stegeman (2001); in addi-
tion, a reward scheme that is optimal for the owner could be rejected by the manager
if not sufficiently appealing (see remarks in Footnote 2). Within this framework, we
will address the following main research questions:

– Can behavioral heterogeneity arise endogenously as a consequence of repetition
of the delegation game between ex-ante identical players?

– What is the most likely long-run distribution of incentive contracts in the
industry? Under which conditions is the “Vickers’ conjecture” confirmed?

– What are the factors that mainly influence the long–run distribution of different
incentive schemes?

– What happens when managers do not have information about the types of agents
they play against? What is the effect of a misperception of the underlying
probability on the long–run distribution of the incentive contracts?

To answer the questions above, we take a standard setup and consider an oligopoly
where N quantity-setting firms decide, independently and simultaneously, whether
the incentive to offer to managers is based on profits only (“P-firms”) or on a lin-
ear combination of profits and revenues (“R-firms”). For R-firms, the weight put on
revenues in the manager’s objective function is assumed to be exogenously given.2

After this choice is made, managers fix production quantities of the goods, which
are horizontally differentiated, following (Häckner 2000). In this setup, all firms are
homogeneous, having the same cost structure and sharing the same information set.

With respect to information available, we develop separately the cases in which
managers can perfectly observe the incentive contracts of their opponents (informed
managers) and the case of imperfect information, where the opponents’ types are

2This weight can be thought of as an average incentive for managers in a specific industrial sector and
depends on a bargaining process between owners and managers, as discussed in Van Witteloostuijn et al.
(2007).
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not observable (uninformed managers). In both cases, owners only have informa-
tion about the distribution of types and never more. We formulate the model in
terms of Darwinian dynamics: at each time period, N firms are randomly extracted
from a large population and matched to play the one-shot oligopoly game previously
described. When deciding compensation for the manager, each owner evaluates cur-
rent profits accrued by the different schemes (P and R). The more successful scheme
is more likely to be adopted by firms in the future. Evolutionary selection based on
realized profits in the market stage describes how the fractions of P-firms and R-
firms evolve over time.3 In our setup, evolutionary selection operates on the first
stage of the game and models owners’ behaviors; second stage decisions are made
by managers on the basis of the (Cournot-)Nash quantities prescribed by their incen-
tive contracts (P or R), which are decided by owners in the first stage. Under perfect
information (or perfect ‘observability’) on the types, managers set the quantity as
a function of the types they are called to play against; under imperfect information
(or imperfect ‘observability’), managers set the one quantity that maximizes their
expected utility given their belief as to the distribution of types. It is worth stressing
that, although R-firms act to maximize an index of (absolute) market performance,
the evolutionary fitness of playing R is based on realized profits only. This is in accor-
dance with Vickers’ remark (see above) and coherent with the indirect evolutionary
approach, postulating that individual behavior is driven by subjective utility max-
imization, whereas evolutionary success depends on objective accrued payoff (see
Alger and Weibull, (2013), for details).4

With informed managers and substitute goods we find that, depending on the rela-
tionship between costs, demand and incentive contract of R–firms, the game is either
dominance solvable, with all firms deciding to be of type P or of type R, or of an
anti-coordination type. In the latter case, there exists a mixed equilibrium state in
which both strategies P and R are always played by firms with positive probability,
i.e. behavioral heterogeneity arises endogenously among firms. Stated differently,

3A similar modeling structure has been employed in evolutionary oligopolies to investigate the effect of
competition among players with different information or with different objective functions. In Droste et al.
(2002), at each (discrete) time period a large population is matched in pairs to play a Cournot game. For
the simple duopoly setting with two behavioral rules on current period’s quantity – a best reply rule and
a (costly, since sophisticated) Nash rule – the authors show that complicated and endogenous fluctuations
may arise. More recently, Hommes et al. (2011) studied an evolutionary model with N Cournot competitors
where, based on past performance, firms switch between different expectation rules concerning aggregate
output of their rivals. They find that the result in Theocharis (1960) about the instability of the Nash
equilibrium for more than three firms is qualitatively confirmed under evolutionary competition between
heterogeneous (costly and costless) expectation heuristics. Along the same line of research, evolutionary
models of oligopoly competition where firms can employ different behavioral rules have been studied in
Bischi et al. (2015) and Cerboni Baiardi et al. (2015). In Kopel et al. (2014), a mixed evolutionary duopoly
is considered with competition between standard profit maximizers and corporate social responsible firms.
In particular, conditions for coexistence in the industry of both types of firms are provided, assuming that
firms are Nash players or best reply players.
4As remarked in Ok and Vega-Redondo (2001), this kind of dynamics can be thought of as a combination
of fast-slow dynamics: fast dynamics lead agents to play a (Bayesian-)Nash equilibrium, given the pop-
ulation composition; slow dynamics take place through evolutionary selection and increase the share of
more successful strategies.
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the industry evolves either towards a monomorphic state of firms or towards a
polymorphic state where both types of firms coexist.

With uninformed managers (and substitute goods), things are pretty different. In
fact, when managers observe the true probability distribution and act consequently,
then only profit maximizers survive in the long-run. This result is not surprising and
is fully in accordance with the general analysis provided in Ok and Vega-Redondo
(2001). However, it could well be that managers do not observe the true probability.
We model this probability distortion by borrowing a useful weighting function pro-
posed within the Prospect Theory framework in Abdellaoui et al. (2010) to model
pessimistic and optimistic behavior. We show that such a distortion, and in particular
a systematic underestimation of the true frequency of P-firms, can lead to different
long-run states of the system, as, for instance, the coexistence of P and R-firms. In
other words, if imperfect information is likely to lead to the survival of P-firms only,
managers’ behaviors might indeed steer the system towards the coexistence of both
types of firms in the industry. The results in this setup are quite strong. Perhaps sur-
prisingly, our results are unaffected by the way the weight on revenues is chosen,
but crucially depend on managers beliefs and, consequently, on manager behavior.
That is, while strategic delegation is usually seen as a device used by shareholders to
behave more aggressively, the gains from delegation do not depend on the weight put
on revenues, but only on the behavior of managers.

From a mathematical point of view, the study of stochastic stability is carried
out through a deterministic approximation of the system (see, in particular, Dawid
(2007) on this point). Given the multi-stage structure of each repetition of the game,
it is natural to model it in discrete time by means of a ‘monotone selection’ map
for the fraction of firms of the two types. By the properties of this map, when the
game is dominance solvable, the population of firms evolves towards a monomorphic
state where all agents select a pure strategy Nash equilibrium, regardless of firms’
behavioral parameters, such as the intensity of choice. It is well known that when
the game is Hawk-Dove (i.e. anti-coordination), the equilibrium of the evolutionary
model is stable only if firms’ propensity to switch strategies is sufficiently small (see
Hommes et al. (2011) and, in particular, Dawid (2007) for this point). In general,
such an equilibrium may lose stability because of overshooting for sufficiently high
intensity of choice and even lead to complex dynamics (see Kopel et al. (2014)).
Given the focus of the paper, we leave a more detailed discussion on the dynamics of
the model to future research.

The paper is structured as follows. Section 2 introduces the general model and the
evolutionary setup. The cases of perfect and imperfect information are detailed in
Sections 3 and 4, respectively. Section 5 concludes and provides some directions for
future research on the topic.

2 The model

This section describes the general framework underlying our analysis. The choice
of the incentive delegation contract is modeled as a population game, with a suf-
ficiently large number of ex-ante identical firms. Each firm consists of one owner



1094 D. De Giovanni, F. Lamantia

and one manager. Two types of firms are present in the population: one type com-
pensates managers on the basis of accrued profits only (P-firms), while the other
type compensates on the basis of a linear combination of profits and revenues
(R-firms).

At each time t = 0, 1, 2, ..., exactly N firms are randomly drawn from the pop-
ulation to play a one-shot Cournot game. Given the different types of firms, at each
random drawing, a P-firm can be matched up with either 0, 1 up to N−1 P-firms with
the remaining firms deciding to compensate managers according to a combination of
profits and revenues. Then firms’ managers decide quantities to produce, which, in
turn, determine average profits to the various owners. The magnitude of these profits
can be observed by owners, who can switch for future playing of the game from a
strategy to the other (from P to R and vice-versa) according to a revision protocol if
they assess that the alternative strategy improves their profit. After each round of the
game, which for each firm consists of a sequential choice of manager’s compensa-
tion scheme and quantities to produce, a new sampling of firms is extracted from the
population and the whole random matching procedure continues.

2.1 The underlying game

We borrow the underlying setup from the classical literature on control delegation.
The market consists of N firms each delegating its output decision to a manager. Let
K (0 ≤ K ≤ N) be the number of P–firms. Consequently, N − K is the number
of R–firms. The products offered by oligopolists are horizontally differentiated. For
sake of simplicity, we assume a symmetric degree of differentiation among goods, as
described in Häckner (2000). Thus, the inverse demand for P-firm i and R-firm j are
given, respectively, by

pP,i(xP,i) = A − xP,i − γ (XP,i + XR)

pR,j (xR,j ) = A − xR,j − γ (XR,j + XP ) (1)

where XP = ∑K
i=1 xP,i (total quantity produced by all P-firms), XP,i = XP − xP,i

(total quantity produced by all P-firms but i), XR = ∑N−K
j=1 xR,j (total quantity

produced by all R-firms) and XR,j = XR − xR,j (total quantity produced by all
R-firms but j ).

The parameter A > 0 is the choke price, which is equal for all firms (no vertical
product differentiation); the parameter γ ∈ [−1, 1] measures the degree of (symmet-
ric) horizontal products differentiation. When γ = 0, all firms act as monopolistic
in their own markets. The case of homogeneous goods can be recovered by setting
γ = 1. Obviously, γ ∈ (0, 1] (γ ∈ [−1, 0)) means that goods are substitutes (com-
plements). Finally, each firm faces the same (constant) marginal cost of production
c, with 0 < c < A.

The simplicity of this market structure is chosen purposely. The setup described
above is well known, and over time has become the benchmark structure in the liter-
ature. This allows us to highlight directly the role of information and beliefs, which
is the primary objective of the paper.



Control delegation, information and beliefs in evolutionary... 1095

The game consists of two stages. In the first stage, owners choose simultaneously
the type of salary of their managers. P–firm i compensates its manager based only on
accrued profits

�P (xP,i) = xP,i(pP,i(xP,i) − c), (2)
while R–firm j pays its managers with a linear combination of profits and revenues:

WR(xR,j )=αxR,j (pR,j (xR,j )−c)+(1−α)xR,jpR,j (xR,j ) = xR,j (pR,j (xR,j )−αc)

(3)
where 1 − α, with α ∈ [0, 1), measures the weight put on revenues in the managers’
incentive contract.5,6

Although a manager in R-firm j wants to maximize the linear combination of prof-
its and revenues WR(xR,j ) in Eq. 3, R-firm’s j owner is still only interested in market
profits, that is he wants to maximize his profit �R(xR,j ) = xR,j (pR,j (xR,j ) − c).
Differently, an owner and a manager of a P-firm have the same objective function,
which is given by accrued profits (2).7

However, owners do not observe the type of their opponents but only assess
expected profits, upon which they base their decisions. More precisely, let r be the
probability that a firm is of type P, and let πh(K) be the profit of a type h firm (h =
P,R) when the number of P–firms is K , obtained at the second stage of the game.
Then, owners evaluate expected profits of being of type P, or R, which are given,
respectively, by

E [πP (r)] =
N−1∑

j=0

(
N − 1

j

)

rj (1 − r)N−1−j πP (j + 1) (4)

E [πR(r)] =
N−1∑

j=0

(
N − 1

j

)

rN−1−j (1 − r)j πR(N − 1 − j) (5)

To complete the description of the decision problem, we need to define the
information structure available to managers, who then play a Cournot game with hor-
izontal differentiation. The key ingredient in our setup is indeed the varying degree
of information. We will analyze two distinct cases, based on the information struc-
ture available to managers at the second stage. Here, and throughout the rest of the
paper, we will call informed the manager who knows the exact number of P–firms
playing the game. In this case, managers are Nash players who observe the market

5The weight α put on revenues in the delegation contract is itself a strategic variable. However, an endoge-
nous choice of this weight would imply a level of rationality and information by owners that is higher than
what is assumed in the paper. Also this would imply an additional stage in the underlying evolutionary
game. For these reasons, as well as the reasons discussed in the introduction, we do not address this point
in this paper and treat α as a parameter of the model.
6As highlighted in Fershtman and Judd (1987), α could also be negative. However, as remarked in
Manasakis et al. (2010), empirical evidence suggests that compensation is positively correlated with profits
and revenues. Thus, we focused only on positive values of α.
7Implicit in the model is that managers are risk-neutral and their contracts have a fixed and a variable
component, the latter being proportional to Eqs. 2 or 3 for a P-manager or a R-manager respectively. In
any case, the reservation wage for managers is zero and the fixed component is adjusted such that the
salary of the managers is at least equal to the reservation wage.
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conditions and choose quantities in order to maximize their salary. Thus, manager’s
payoff does depend on K , and the equilibrium they select is Nash. The uninformed
manager, instead, does not know the exact K , but makes predictions on the fraction
of P–firms that he faces as opponent. In this case, his objective function is actually
an expected utility based on the prediction he makes, and the equilibrium he selects
is Bayes-Nash.

2.2 The revision protocol

If the game is repeated a sufficiently high number of times, then average profits are
well approximated by expected profits Eqs. 4 and 5. Here r denotes the (current)
fraction of P-firms in the population. It is useful to define the “switching” function
as the difference in expected profits Eqs. 4 and 5:

G(r) = E [πP (r)] − E [πR(r)] . (6)

A root of the equation G(r∗) = 0 gives a particular probability value r∗ such that
the expected profits by playing the two strategies are equal; if the system is in this
state, owners do not have an interest to switch to the alternative strategy since the two
strategies yield the same expected payoff. On the other hand, if G(r) > 0 [< 0], then
for the given probability value r , strategy P [R] outperforms strategy R [P]; therefore,
it is reasonable to assume that some firms currently playing R [P] will switch to P
[R] in the next period. This, in turns, increases [decreases] the overall probability r

in the next period according to the paradigm of evolutionary game theory.
From a mathematical point of view, the evolutionary pressure in discrete time

determined by payoffs differences of the two incentive schemes can be modeled
through monotone selection dynamics (see Cressman (2003) for details) for details,
which take the form of a unidimensional map

r(t + 1) = f (r(t)) = r(t) + r(t)F (r(t), G (r (t))) (7)

where r(t) is the probability extracting a P-firm from the population at time t .8 The
interval [0, 1] is assumed forward invariant for f , i.e. f ([0, 1]) ⊂ [0, 1] for all t > 0.
With respect to F(r,G (r)), which specifies the growth rate of strategy P, we assume
that it satisfies the following assumptions:

1. F(.) is continuously differentiable with ∂F
∂G

> 0 [monotone selection]9

2. F(0, G(0)) = F(1, G(1)) = 0 [invariance of pure strategy states];
3. G(r∗) = 0 at r∗ ∈ (0, 1) if and only if F(r∗, 0) = 0 [coincidence between

isoprofit points and fixed points of Eq. 7];

8The choice of evolutionary selection in discrete rather than continuous time appears more coherent with
the setup of an underlying two-stage game. In any case, similar considerations can be provided with
continuous time evolution.
9Notice that the assumption introduced here is stronger than the usual monotonicity assumption (see
Cressman 2003).
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4. at r∗ ∈ (0, 1) such that G(r∗) = 0, it is
∂F(r∗,0)

∂r
= 0 [inheritance by dF

dr
of the

sign of G′(.) at any inner equilibrium].

Assumption 1. is common to most evolutionary models in discrete time. Assump-
tions 2. and 3. are introduced for convenience, so that the map (7) encompasses many
evolutionary models in discrete time, such as exponential replicator (see Hofbauer
and Weibull 1996), evolutionary selection with inertia (see Dawid 1999), imitation
through word of mouth (see Bischi et al. 2003), etc. In particular, Assumption 2.
ensures that the “corner” points r0 = 0 and r1 = 1, characterized by all firms playing
a pure strategy (R or P), are fixed points of Eq. 7, i.e. absent behaviors remain absent.
Although mutations are not introduced in Eq. 7, their influence can be indirectly
taken care of by addressing the dynamic stability of equilibria (see Weibull 1995, for
a discussion on this point). Assumption 3. is introduced so that points where both
strategies yield the same profits to owners are rest points of the dynamical adjustment
of r . Assumption 4. is a technical requirement that guarantees, together with Assump-
tion 1., that an equilibrium with G′(r∗) > 0 can not be stable, whereas G′(r∗) < 0
is a necessary condition for the stability of r∗. The details of this statement are the
object of the following lemma.

Lemma 1 Consider map (7) with switching function G(r) defined in Eq. 6. Let r∗ ∈
(0, 1) be an inner fixed point of Eq. 7 and � = − 2

r∗ ∂F(r∗,0)
∂G

– r∗ is locally asymptotically stable for

dG(r∗)
dr

∈ (�, 0) (8)

– r∗ is unstable for dG(r∗)
dr

∈ (−∞, �) ∪ (0, +∞).

Proof See Appendix A.

3 The delegation game with informed managers

This section analyzes the basic delegation game with partial information. Here, we
assume that owners correctly assess current expected profits of P and R-firms and
that managers observe their opponents’ types and play Cournot-Nash quantities. In
the next Section, we address a variant of the model in which managers form their
beliefs on the probability distribution of P-firms.

As usual, the game is analyzed by backward induction. In the second stage, after
observing the number of P-firms and R-firms, managers play the corresponding
Cournot-Nash equilibrium. In the first stage, owners decide the incentive scheme by
comparing the profits realized through the different delegation schemes (P or R).
An evolutionary mechanism driven by accrued profits regulates how owners switch
between the different incentive schemes.



1098 D. De Giovanni, F. Lamantia

Let us begin by analyzing the second stage, where managers choose the quantity
to produce to maximize their own incentive. The next Proposition contains the details
on Nash equilibrium quantities in the semi-symmetric setting.10

Proposition 2 In the considered N-firm oligopoly where K owners compensate their
managers according to profits (2) and N − K owners compensate their managers
according to the linear combination of profits and revenues (3), the (semi-)symmetric
Nash equilibrium quantities are given by

x̂P (K) = A(2 − γ ) + cγ (1 + (α − 1)(N − K)) − 2c

(2 − γ )(2 + γ (N − 1))

x̂R(K) = A(2 − γ ) + c(Kγ − α(2 − γ + Kγ ))

(2 − γ ) [2 + γ (N − 1)]
(9)

Proof The proof easily follows from managers’ first order conditions (FOCs), which
are also sufficient in this game to maximize managers’ compensations Eqs. 2 and 3,
by employing the assumption of symmetry among firms of the same type, namely
that in Eq. 1 it is XP,i = (K − 1)xP,i and XR,j = (N − K − 1)xR,j . QED

Notice that x̂R(K) > x̂P (K).11 This relationship has an immediate interpretation
in the delegation model by recalling that managers in R-firms expand production to
increase revenues, which, in turn, raise their compensation.

When goods are substitutes, quantities (9) are positive when

c < c̄ = A(2 − γ )

2 − γ + γ (N − K)(1 − α)
(10)

In particular, quantities of P-firms are positive when c < c̄, while quantities of R-
firms are always positive. Conversely, with complement goods, quantities (9) are
positive when N > 3 and γ > − 2

N−1 .
In the following, we denote by πP (K) the profit of a P-firm when in the market

K other P-firms are present and quantities are chosen according to Eq. 9; similarly,
πR(K) is the profit of a R-firm with K other P-firms with quantities at the corresponding

10In this paper, the analysis focuses only on semi-symmetric equilibria where all players of the same type
behave identically.
11It is also interesting to observe that, when goods are substitutes but not perfectly homogeneous (0 <

γ < 1), Eq. 1 implies that, at a semi-symmetric equilibrium such as Eqs. 9 or 17, the type producing the
highest quantity also sells at the lowest price.
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Nash equilibrium. Through πP (K) and πR(K) we define the switching function
G(r) in Eq. 6. In the particular case under analysis, G(r) is linear in r , with slope:12

dG

dr
= − c2(N − 1)2(1 − α)2γ 3

(γ − 2)2(2 + (N − 1)γ )2
(11)

Thus, at most one fixed point r∗ ∈ (0, 1) for Eq. 7 exists, which is obtained by
solving the equation G(r∗) = 0:

r∗ = 1
c(N−1)2(α−1)γ 3

[
A(N − 1)(2 − γ )γ 2 − c(2 + (N − 2)γ )2

+αc
(
4 + 4γ (N − 2) + (

6 − 6N + N2
)
γ 2 + (N − 1)γ 3

)] (12)

If stable under evolutionary selection (7), this inner fixed point guarantees the
coexistence of both types of agents. Depending on firms’ marginal cost, either a pure
strategy equilibrium is a dominating strategy (P or R), so that all firms will play that
equilibrium in the long run, or a mixed-state exists where both strategies are played
with positive probability (when goods are substitutes). The strategy profile in which
P is played with probability r∗ (and R with probability 1 − r∗) corresponds to a
mixed-strategies Nash equilibrium for the N-person game. In particular for this game,
we consider as equilibrium concept the Evolutionary Stable Strategy (ESS), which is
the most common Nash equilibrium refinement in evolutionary games (see Weibull
(1995)). The details are contained in the following proposition.

Proposition 3 Consider the Monotone Selection Dynamics (7) with G(r) in Eq. 6

and dG
dr

in (11). There exist real numbers c1 = A(N−1)(2−γ )γ 2

h1
and c2 = c1h1

h2
such

that:13

– When goods are substitutes, i.e. when 0 < γ ≤ 1,

– if c2 < c < A then strategy P dominates strategy R. Map (7) admits
two fixed points: r0 = 0, which is unstable, and r1 = 1, which is locally
asymptotically stable. P is the only ESS of the game;

– if 0 < c < c1 then strategy R dominates strategy P. Map (7) admits two
fixed points: r0 = 0, which is locally asymptotically stable, and r1 = 1,
which is unstable. R is the only ESS of the game;

– if c1 < c < c2, then neither P dominates R nor R dominates P. Map
(7) admits three fixed points: r0 = 0 and r1 = 1, which are unstable,
and r∗ ∈ (0, 1) in Eq. 12, which is the only possible locally asymptoti-
cally stable fixed point when condition (8) is verified and loses stability

12The switching function is thus G(r) = r dG
dr

+ z where:

z = c(α−1)
(−A(N−1)(γ−2)γ 2+c

(−(2+(N−2)γ )2+α
(
4+γ

(−8+4N+6γ+(N−6)Nγ+(N−1)γ 2))))
.

(γ−2)2(2+(N−1)γ )2

13where: h1 = (2 + (N − 2)γ )2 − α
(
4 + 4(N − 2)γ + (

6 − 6N + N2
)
γ 2 + (N − 1)γ 3

)
and

h2 =4+4(N−2)γ+(N−2)2γ 2−(N−1)2γ 3+α
(
−4−4(N−2)γ −

(
6−6N+N2

)
γ 2+

(
2−3N+N2

)
γ 3

)
.
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through a flip bifurcation at dG(r∗)
dr

= �. Playing P with probability r∗
and R with probability (1 − r∗) is the only possible ESS of the game;

– at c = c1 a transcritical bifurcation occurs, at which fixed points r∗ and
r0 = 0 coincide and exchange their stability properties; analogously, at
c = c2 a transcritical bifurcation occurs, at which fixed points r∗ and
r1 = 1 coincide and exchange their stability properties.

– When goods are complements, i.e. when −1 ≤ γ < 0,

– if c1 < c < A then strategy P dominates strategy R. Map (7) admits
two fixed points: r0 = 0, which is unstable, and r1 = 1, which is locally
asymptotically stable. P is the only ESS of the game;

– if 0 < c < c2 then strategy R dominates strategy P. Map (7) admits two
fixed points: r0 = 0, which is locally asymptotically stable, and r1 = 1,
which is unstable. R is the only ESS of the game;

– if c2 < c < c1, then P dominates R for any r ∈ (r∗, 1
]
and R dominates

P for any r ∈ [
0, r∗). Map (7) admits three fixed points: r0 = 0 and

r1 = 1, which are both locally asymptotically stable, and r∗ ∈ (0, 1)

in Eq. 12, which is unstable and delimits the basin of attraction of the
other two stable fixed points. Playing P and playing R are both ESSs of
the game;

– at c = c2 a transcritical bifurcation occurs, at which fixed points r∗ and
r1 = 1 coincide and exchange their stability properties; analogously, at
c = c1 a transcritical bifurcation occurs, at which fixed points r∗ and
r0 = 0 coincide and exchange their stability properties.

Proof The proposition follows from Lemma 1, by considering that with substitute
goods it is dG

dr
< 0 whereas with complement goods, it is dG

dr
> 0 (see Eq. 11).

QED

Remark The relationship between a switching function such as Eq. 6 and an ESS
of the underlying game is analyzed in Broom and Rychtář (2013).

According to Proposition 3, any locally asymptotically stable fixed point of the
monotone selection dynamics (7) is also a Nash equilibrium of the underlying game.
Moreover, when goods are substitutes and r∗ ∈ (0, 1), then playing P with probability
r∗ always constitutes a Nash equilibrium of the delegation game in mixed strategies,
although the dynamics (7) might fail to converge to r∗ because of overshooting.

The bifurcation diagram of Fig. 1 visually summarizes the previous proposition:
r0 = 0 and r1 = 1 are always fixed points of the model, but their stability properties
change with the value of the marginal cost c. When c is sufficiently close to maximum
selling price A, then strategy P dominates strategy R so that r1 = 1 is stable (solid
line) and r0 = 0 is unstable (dashed line); by contrast, when c is sufficiently close
to zero, then R dominates P so that r0 = 0 is stable (solid line) and r1 = 1 is
unstable (dashed line). The inner fixed point r∗ always exists for intermediate levels
of marginal costs. Notice that this holds both when goods are substitutes and when
they are complements. However, the sign of the product differentiation parameter
plays a key role for the stability of the inner fixed point r∗ and the resulting dynamic
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Fig. 1 Bifurcation diagram representing stable (solid) and unstable (dashed) fixed points of r according
to Proposition 3 for c ranging in the interval (0, A) and parameters A = 1; N = 10; α = 0.5. Left panel:
typical asymptotic dynamics with substitute goods (γ = 1). Right panel: typical asymptotic dynamics
with complement goods (γ = −1)

properties of the model: when products are substitutes (0 < γ ≤ 1), r∗, when it
exists, is stable and the two boundary fixed points (r0 = 0 and r1 = 1) are unstable
(see Fig. 1, left panel); by contrast, when products are complements (−1 ≤ γ < 0),
r∗, when it exists, is unstable and the two boundary fixed points (r0 = 0 and r1 = 1)
are stable (see Fig. 1, right panel). Thus, when marginal costs are intermediate, with
substitute goods we expect coexistence of both types of firms in the long-run (see
solid curve r∗ of Fig. 1, left panel), whereas when products are complements, we
expect only one strategy to prevail in the long-run, be it P or R, and the prevalence
of one strategy over the other depends on the initial distribution of the share r (see
dashed curve r∗ of Fig. 1, right panel). The arrows in Fig. 1 show qualitatively the
direction of the motion of the share of P-firms r for different values of the parameter
c, according to Proposition 3.

The economic intuition that explains how the level of marginal costs favors one
strategy over the other can be easily provided. In fact, when c = 0, strategies R and P
coincide, since profits are equal to revenues. Moreover, for any level of 0 ≤ α < 1, it
is always ∂G

∂c |c=0 < 0, so that when marginal costs are small, their increments reduce
more the profits of P-firms than the profits of R-firms. On the other hand, when
c → A, then it is G(r) > 0.14 Thus in general, low marginal costs favor strategy R
against P, whereas the opposite occurs as marginal costs approach the choke price.
For intermediate levels of marginal costs, the inner fixed point r∗ in Eq. 12 belongs
to the interval (0, 1). Moreover, from

∂r∗

∂c
= −∂G/∂c|r=r∗

∂G/∂r|r=r∗
= A(2 − γ )

c2(N − 1)(1 − α)γ
, (13)

it follows that r∗ increases (decreases) in c when goods are substitute (complements)
(see Fig. 1, left panel; for complements, see Fig. 1, right panel). This can be explained
by noticing that, in Eq. 13, the sign of ∂G/∂r is the opposite of the sign of γ (see

14When 0 < γ ≤ 1 this last inequality holds for any 0 < r < 1. When −1 ≤ γ < 0, it can be shown that
it holds for any r̄ < r < 1, with an opportune r̄ ≥ 0 that depends on N .
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Proposition 3) and ∂G
∂c |r=r∗ > 0: higher marginal costs increase the likelihood that

R-firms have profits lower than P-firms as their managers set productions as if costs
were indeed lower (see Eq. 3). Also, the influence of the weight α on r∗ only depends
on the sign of γ , the parameter of product differentiation. From

∂r∗

∂α
= −∂G/∂α|r=r∗

∂G/∂r|r=r∗
= − (A − c)(2 − γ )

c(N − 1)(1 − α)2γ
, (14)

r∗ decreases (increases) in α when products are substitutes (complements). In terms
of manager’s compensation, higher α puts more weight on profits than revenues
for R-firms and increase the possibility of lower profits for P-firms. Notice that, in
Eq. 14, it is ∂G

∂α |r=r∗ < 0 and, again, the sign of ∂G
∂r

is the opposite of the sign of γ ,

thus explaining the change in sign of ∂r∗
∂α

with the sign of γ . Finally, it is also inter-

esting to observe that both ∂c1
∂α

> 0 and ∂c2
∂α

> 0, that is, by putting more weight on
profits than revenues in R-firms’ incentive contracts, both the thresholds in marginal
costs separating the different cases of Proposition 3 increase.

From the point of view of the dynamics, most properties of the evolutionary model
do not depend on the particular form of the monotone selection dynamics considered
but only on the underlying oligopoly model. For instance, take a map that satisfies the
assumptions stated above for Eq. 7 such as the exponential replicator dynamics with
inertia, which can be written as follows (see Hofbauer and Weibull (1996), Kopel
et al. (2014))

r (t + 1) = r(t) + r(t)
(1 − δ) (1 − r(t))

[
1 − exp (−θG(r(t)))

]

r(t) + (1 − r(t)) exp (−θG(r(t)))
(15)

The parameter θ ≥ 0 models agents’ intensity of choice, i.e. the propensity to
switch to the more rewarding behavior as a consequence of payoffs differences; the
parameter δ ∈ [0, 1] represents the fraction of agents per unit of time who stick to
their current strategy (see Hommes (2009) for details on the point).15 By applying
Proposition 3, we have that, when it exists, with substitute goods the inner steady
state r∗ is stable for θ < θ∗ and loses stability through a flip bifurcation at θ = θ∗,
where

θ∗ = −2

(1 − r∗)r∗(1 − δ)G′(r∗)
= 2(γ − 2)2 [2 + γ (N − 1)]2

c2(N − 1)2(1 − r∗)r∗(1 − α)2γ 3(1 − δ)
> 0

(16)
Some further comments on the proposition are in order. Clearly, when no inner

fixed point of Eq. 7 exists, the game is dominance solvable. On the other hand, when
an inner fixed point exists, one has to distinguish between the cases of substitute
and complement goods. In fact, with substitute goods, the long run evolution of the
system leads towards the mixed state (anti-coordination game). In this case, starting

15The case δ = 0 corresponds to the case in which all agents reconsider their strategies (syn-
chronous updating) similarly to Brock and Hommes (1997), whereas with δ = 1 the model reduces a
nonevolutionary setting.
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from an initial condition with not all firms of the same type (P or R), e.g. because of
a mutation in firms’ behaviors, evolutionary selection will push the system towards
the point in which the probability of extracting a P-firm is the r∗ in Eq. 12. How-
ever, convergence to the inner fixed point (12) is achieved as long as firms are not too

“impatient” to switch to the more profitable strategy, as measured by
∂F(r∗,0)

∂G
. For

instance, for the exponential replicator dynamics, this means that firms’ intensity of
choice is below the threshold level (16). Otherwise, when too many of them switch
to the (currently outperforming) strategy at each unit of time, the system oscillates
around the fixed point r∗ without converging to it. The flip bifurcation occurring at
dG
dr

= � in Eq. 8 or at θ = θ∗ in Eq. 16 for the exponential replicator dynamics
with inertia, represents a typical example of overshooting (or overreaction) in the
evolutionary switching process, which is common in these models with an inner equi-
librium where the slope of the switching function is negative as it is in Eq. 11 (see
Kopel et al. (2014) for similar examples).

On the other hand, when goods are complements, the inner steady state always
repels nearby trajectories so that, in the long run, only P-firms or R-firms operate
according to the initial share of P-firm (coordination game). In this case, the conver-
gence to a fixed point where all firms adopt the dominant strategy is monotonic and
a higher intensity of choice only accelerates the process of convergence to a bound-
ary fixed point, be it with all P or all R firms. Thus, when the game admits two stable
steady states both on the border, the inner fixed point behaves as the basin boundary
of the two steady states: all firms will eventually belong to a given type provided that
the initial share of firms of that particular type is sufficiently high.

Figure 2 shows the various cases considered in Proposition 3 applied to the par-
ticular evolutionary model (15) (exponential replicator). Notice that the dynamic
behaviors in the first column as well as those in the last column of Fig. 2 are qual-
itatively equivalent, as trajectories converge to the same (boundary) steady states,
although the sign of the product differentiation parameter γ is different. However,
the cases in the central column of Fig. 2 are qualitatively different: with substitute
goods (first row, second column of Fig. 2) r∗ is locally asymptotically stable (if, as
in this example, θ = 1 < θ∗ ≈ 7.706, see Eq. 16) whereas with complement goods
(second row, second column of Fig. 2) r∗ is always unstable.

With respect to the condition (10) ensuring the non-negativity of Cournot equi-
librium quantities, for a large region in the parameter space it is c > c2 so that
the previous proposition holds and second stage quantities are well defined. More-
over, with homogeneous goods (γ = 1) and pure-revenue maximization (α = 0),
an inner fixed point r∗ with coexistence of P-firms and R-firms occurs whenever

c ∈
(

A(N−1)

N2 ,
A(N−1)
2N−1

)
, which is the behavioral heterogeneity condition specified in

Chirco et al. (2013), Proposition 1. In that paper, this interval is obtained by analyzing
the deviation-proof equilibria in the static context of cartel stability.

In the next paragraph, we describe how the model changes when managers are
uninformed on their opponents’ types and form beliefs on the distribution of types in
the population.
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Fig. 2 Map (15) in the various cases of Proposition 3, with parameters A = 10; α = 0.5; N = 10; δ = 0;
θ = 1 and two initial conditions r1(0) = 0.2 (blue) and r2(0) = 0.8 (red). First row depicts a typical
case with substitute goods (γ = 1): 0 < c = 1.2 < c1 (left), where all inner trajectories converge to
r0 = 0; c1 < c = 2.5 < c2 (center), where all inner trajectories converge to r∗; c2 < c = 6 < A (right),
where all inner trajectories converge to r1 = 1; second row depicts a typical case with complement goods
(γ = −1): 0 < c = 1 < c2 (left), where all inner trajectories converge to r0 = 0; c2 < c = 5 < c1
(center), where trajectories starting below (above) r∗ converge to r0 (r1); c1 < c = 8.5 < A (right), where
all inner trajectories converge to r1 = 1. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of the article)

4 The delegation game with uninformed managers

As pointed out in Fershtman and Kalai (1997), page 763, “in most situations, how-
ever, the delegation contract, or even its existence, is unobservable”. As a matter
of fact, specific corporate codes must be and have been imposed in real organiza-
tions (see Aguilera and Cuervo-Cazurra, 2004) to disclose managerial compensation.
These codes of ‘good’ governance are employed to prevent managers’ opportunistic
behavior and protect shareholders’ interests.16

In this Section, we address a variant of the previous model in which neither man-
agers nor owners observe the opponents’ types, i.e. we reformulate the model without
disclosure clauses. Since the results when goods are complements are analogous to
those with substitute goods, in this part of the paper we restrict our attention to the
case of substitute goods for expositional purposes.

Evolutionary games with incomplete information have been studied, for instance,
in Ok and Vega-Redondo (2001) and Dekel et al. (2007), where players use their

16However, aligning the interests of managers and shareholders can be harmful to consumers, see Van
Witteloostuijn et al. (2007) on the point.
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(limited) knowledge about the true distribution of the population when making their
choices. Here, managers are assumed to form a belief as to the probability distribution
of each type and set quantities to maximize their expected utility, given their incentive
contract. Owners offer incentive contracts to managers according to realized profits
accrued by each strategy (P or R), exactly as in the previous case. The aim of this
Section is to study how managers’ beliefs change the long-run composition of the
population.

This assumption is motivated by the large theoretical and experimental literature
originated by Kahneman and Tversky (1979). Since managers do not know exactly
the type of their opponent, the way they perceive the risk involved in playing the
game induces them to distort the true probability. Alternatively, one may think of this
assumption as follows. Managers do not observe the state of the population r , but do
observe a noisy signal. Being unable to process the signal perfectly, managers form
a belief based on their best forecast given the signal and use it to make their choice
(see, for instance, Samuelson and Swinkels (2006)).

At a given time, managers have belief w ∈ [0, 1] that a P-firm is extracted from
the population. For the reasons explained below, it is useful to distinguish w from r ,
which is the underlying distribution of P-firms. The expected managers’ payoffs of
the two types are (see Appendix B for details)17

uP (w, xP,i) = −x2
P,i + xP,i

[
A − c − γ (N − 1)

(
wxP,i + (1 − w) xR

)]

uR(w, xR,j ) = −x2
R,j + xR,j

[
A − αc − γ (N − 1)

(
wxP + (1 − w) xR,j

)]

From managers’ FOCs on expected payoffs and by symmetry, the following
quantities in the market stage are played by a P and a R-firm, respectively:

xP (w) = 2 (A − c) − cγ (1 − w)(N − 1)(1 − α)

4 + 2γ (N − 1)

xR(w) = 2 (A − αc) + cγw(N − 1)(1 − α)

4 + 2γ (N − 1)
(17)

which depend (linearly) on managers’ belief w about the fraction of P-firms in the
population. Notice that, similar to the case of informed managers, xP (w) < xR(w)

for all parameters values.
Quantities by P-firms are positive when c < ¯̄c, with

¯̄c = 2A

(2 − γ ) + γ (N + w(α − 1)(N − 1) − α(N − 1))

and also quantities by R-firms are positive in this case.18

Now consider a large number of sampling delegation games from the population
of firms, so that realized profits are well approximated by expected profits. Thus, on
the one hand, quantities (17) are decided by managers given their beliefs w as to the
distribution of P-firms; on the other hand, expected profits are determined through

17Overlined variables denote expected quantities produced by managers. See Appendix B for precise
definition.
18Note that with γ > 0, it is ¯̄c < A for all values of N , all 0 ≤ α < 1 and all 0 ≤ w < 1.
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the true probability distribution r . Therefore, expected profits for the two strategies
depend on the current frequency of P-firms r and on the current managers’ beliefs
w. Similar to the previous Section, firms’ expected profits can be written as

E [π̂P (w, r)] = −xP (w)2 + xP (w) [A − c − γ (N − 1) (rxP (w) + (1 − r) xR(w))]

E [π̂R(w, r)] = −xR(w)2 + xR(w) [A − c − γ (N − 1) (rxP (w) + (1 − r) xR(w))]

An important quantity is again the difference in expected profits of a P-firm and a
R-firm (the ”switching” function, see Eq. 6), which assumes the simple form

G (w, r) = E [π̂P (w, r)] − E [π̂R(w, r)]

= 1

4
c2(1 − α)2 [1 + γ (N − 1)(w − r)] (18)

We can immediately observe that, when managers’ beliefs are correct (w = r),
it holds that G (r, r) > 0. This means that expected profits for P-firms are always
above those for R-firms. Thus, any evolutionary dynamics that select undominated
strategies make it so that only P-firms survive in the long run. In other words, P is the
only ESS of the game. The economic intuition for this stems from the fact that incen-
tive contracts are not observable and so players can not condition their strategy on
them. In the case of one-sided delegation, the problem is studied in Koçkesen and Ok
(2004). This is also in accordance to Ok and Vega-Redondo (2001), where it is shown
that, under incomplete information, individualistic preferences (profit maximization)
dominate non-individualistic ones in cases such as the one proposed here, where the
size of groups in the matching process is small with respect to the population size.

In the following, we are interested in assessing how a distortion in the managers’
belief systems can change such a clear-cut outcome. In particular, managers could
be unable to observe the correct frequency of P-firms (lack of observability). Simple
inspection of Eq. 18 reveals the following:

Proposition 4 Consider the Monotone Selection Dynamics (7) with G(r) given in
Eq. 18 where w ∈ [0, 1] is a (given) constant and suppose γ > 0. If γ (N − 1) < 1,
then strategy P always dominates strategy R.

Proposition 4 can be read as a necessary condition (i.e., γ (N − 1) ≥ 1) for the
existence of mixed equilibria of Eq. 7 in terms of degree of product differentiation
and number of agents. We may interpret the number γ (N − 1) as a measure of mar-
ket competition, opportunely corrected by the product differentiation factor. Under
incomplete information, there is room for survival of R-firms only if the market is
sufficiently competitive. For instance, while strategy P always dominates strategy R
in duopolies with imperfect substitutes goods, managers’ beliefs about the true prob-
abilities start to play a crucial role as soon as market conditions change (to some
extent consumers change their views about the goods, from slightly imperfect substi-
tutes to homogenous). Notice finally that Proposition 4 does not apply when products
are perfect substitutes (γ = 1).

Consider now the probability deformation. Following the methodology developed
within Prospect Theory, we assume that the true underlying probability r is subjected
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to a nonlinear transformation and study how the long-run behavior of the model is
changed when:

– managers systematically overestimate or underestimate the true probability r;
– managers overweight small probabilities of playing with a given type and

underweight high probabilities of playing with that type.

We again assume that evolutionary selection of strategies P and R is modeled
through Monotone Selection dynamics of the form (7) [or Eq. 15 for a specific exam-
ple], where the “switching” function is now defined in Eq. 18. As before, r(t) is the
probability at time t to extract a P-firm from the population. Managers’ beliefs w(t)

are connected to the true probability distribution r(t) through the following probabil-
ity weighting function, which has been recently proposed in Abdellaoui et al. (2010)
to model optimistic, neutral, pessimistic and mixed probability attitudes:

w(r) =
{

δ1−νrν for 0 ≤ r ≤ δ

1 − (1 − δ)1−ν(1 − r)ν for δ < r ≤ 1
(19)

with parameters δ ∈ [0, 1] and ν ∈ [0, +∞). The usefulness of this transforma-
tion can be understood by noticing that, by varying the two parameters δ and ν, the
following cases arise:

– underestimation. For δ = 0 and ν ∈ (0, 1) [or equivalently for δ = 1 and
ν ∈ (1, +∞)], managers systematically underestimate the fraction of P-firms;

– overestimation. For δ = 0 and ν ∈ (1, +∞) [or equivalently for δ = 1 and
ν ∈ (0, 1)], managers systematically overestimate the fraction of P-firms;

– first-over-then-underestimation. For δ ∈ (0, 1) and ν ∈ (0, 1), managers overes-
timate the fraction of P-firms when this is low (i.e. less than δ) and underestimate
it otherwise;

– first-under-then-overestimation. For δ ∈ (0, 1) and ν ∈ (1, +∞), managers
underestimate the fraction of P-firms if this is low (i.e. less than δ) and
overestimate it otherwise;

– correct estimation. For ν = 1, managers observe the true distribution, i.e. w(r) =
r .

In the case ν = 1, in which probabilities and beliefs coincide, we already have seen
that P is a dominant strategy. Recall from Proposition 3 that when P dominates R, map
(7) admits only two fixed points: r0 = 0 (unstable) and r1 = 1 (locally asymptotically
stable). The next proposition characterizes the long-run dynamics of the map (7)
when managers’ belief distortions occur through the probability transformation (19).

Proposition 5 Consider the Monotone Selection Dynamics (7) where G(r) =
G(w(r), r) is given in Eq. 18 and w = w(r) in Eq. 19. Suppose also that γ > 0,
ν �= 1 and γ (N − 1) ≥ 1. The following cases occur:

1. (Overestimation) If managers overestimate the true probability, that is, if either
δ = 0 and ν > 1 or δ = 1 and 0 < ν < 1, then strategy P always dominates
strategy R.
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2. (Underestimation or first-under-then-overestimation) Suppose ν > 1 and 0 <

δ ≤ 1. Let r̄2 = ν
1

1−ν δ, and consider the function l(ν, δ) = ν
ν

1−ν δ − δν
1

1−ν :

(a) If l(ν, δ) > − 1
γ (N−1)

, then strategy P dominates strategy R.

(b) At l(ν, δ) = − 1
γ (N−1)

a fold bifurcation occurs: a new fixed point arises
at r = r̄2. The slope of the switching function is negative for r < r̄2 and
positive for r > r̄2. When r �= r̄2, strategy P strictly dominates R.

(c) If l(ν, δ) < − 1
γ (N−1)

, then there exist two distinct fixed points r∗
1 and r∗

2 of
Eq. 7 with coexistence of P and R-firms, with 0 < r∗

1 < r̄2 < r∗
2 < δ; the

smallest one is the only possible locally asymptotically stable equilibrium
for (7), provided that condition (8) applies, whereas the largest one is always
asymptotically unstable.

3. (Underestimation or first-over-then-underestimation) Suppose 0 < ν < 1 and

0 ≤ δ < 1. Let r̄3 = 1 − ν
1

1−ν (1 − δ), and consider the function h(ν, δ) =
(1 − δ)ν

1
1−ν − (1 − δ)ν

ν
1−ν :

(a) If h(ν, δ) > − 1
γ (N−1)

, then strategy P dominates strategy R.

(b) At h(ν, δ) = − 1
γ (N−1)

a fold bifurcation occurs: a new fixed point is created
at r = r̄3. The slope of the switching function is negative for r < r̄3 and
positive for r > r̄3. When r �= r̄3, strategy P strictly dominates R.

(c) If h(ν, δ) < − 1
γ (N−1)

, then there exist two distinct fixed points r∗
3 and r∗

4
of (7) with coexistence of P and R-firms, with δ < r∗

3 < r̄3 < r∗
4 < 1; the

smallest one is the only possible locally asymptotically stable equilibrium
for (7), provided that condition (8) holds, whereas the largest one is always
unstable.

Proof See Appendix A.

Corollary 6 (Underestimation) If γ (N − 1) > 1 and managers underestimate the
true probability (in Eq. 19 either δ = 0 and 0 < ν < 1 or δ = 1 and ν > 1) then
there always exists a locally asymptotically stable fixed point r with coexistence of
P and R firms provided that the probability deformation is sufficiently high (either
ν ∈ (0, ν̄) with ν̄ < 1 when δ = 0 or ν ∈ (ν̄,+∞) with ν̄ > 1 when δ = 1).

Proof The proof easily follows by applying Proposition 5, case 2 with δ = 1 or
case 3 with δ = 0. Condition γ (N − 1) > 1 guarantees that the minimum value
of the function g(r), defined in the proof of Proposition 5, is negative. Therefore,
two roots of equation g(r) = 0 are in the (0, 1) interval, as g(0)=g(1)=1 and g(.) is
continuous.

The rationale of Proposition 5 can be explained as follows. Provided that param-
eters are not in the region studied in Proposition 4, then manager beliefs play a
crucial role in the long–run outcome. Suppose, for instance, ν > 1, so that managers
underestimate r when r ≤ δ and overestimate r in the complementary region (first-
under-then-overestimation). Then, the gain function (18) can have 0,1, or 2 roots in
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Fig. 3 Region of dominance of Profit maximization in the belief space (ν, δ) when N = 5 and γ = 0.9 is
depicted in blue. Pink region displays couple of belief parameters such that the gain function has multiple
roots in the (0, 1) interval, which corresponds to steady states of the monotone selection dynamics. Left
panel displays the case ν > 1. Right panel displays the case 0 < ν < 1. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of the article)

the (0, 1) interval. This case is depicted in the left panel of Fig. 3 (the right panel
displays the case ν ∈ (0, 1)). The region of P -dominance indeed identifies the set of
belief parameters for which the gain function is always positive. In that region, map
(7) admits only the two boundary equilibria: r0 = 0, which is unstable, and r1 = 1,
which is locally asymptotically stable. The pink region instead identifies the set of
belief parameters for which the gain function (18) admits in the (0, 1) interval two
roots, r∗

1 and r∗
2 , which are also steady states of the map (7). In this situation, r0 = 0

is unstable while r = r∗
1 and r1 = 1 are both locally asymptotically stable, each with

its own basin of attraction. The unstable fixed point r∗
2 acts, indeed, as the boundary

of the basin of the two attractors r∗
1 and r1 = 1: if the system starts at r(0) > r∗

2 , then
the long run outcome will be P -dominance; otherwise the system will finally end up
with a polymorphic industry where the fraction of P-firms is r∗

1 . The transition from
a configuration with two pure strategy equilibria where P strictly dominates R (and
with r0 = 0 unstable and r1 = 1 locally asymptotically stable for Eq. 7) to a situ-
ation with multiple stable equilibria occurs when points (ν, δ) cross the bifurcation
curves l(ν, δ) = −1

γ (N−1)
(when ν > 1) or h(ν, δ) = −1

γ (N−1)
(when 0 < ν < 1).

These bifurcation curves are clearly visible in Fig. 3 as the boundary of the set of
P -dominance.

Thus, while overestimation of the distribution of P-firms leads to a clear cut sit-
uation (P dominates R), its underestimation may lead to mixed configurations with
coexistence of both types of firms. When the level of underestimation is particularly
high, then an interval in r exists such that strategy R strictly dominates strategy P.
These results have an immediate economic interpretation. Recall that, when man-
agers have a correct estimation of the underlying probability (w = r), P always
dominates R because players do not condition their strategies on unobservable incen-
tive contracts. In other words, when w = r the incentive contract does not work as
a strategic commitment device. Clearly, overestimation of r works even less to this
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purpose: a level of w such that w > r makes it even less plausible that firms adopt
non-profit-maximizing behavior. However, in the case of underestimation of the true
probability r , the commitment effect is, in some sense, induced by the misperception
of the probability, thus giving room to the survival of non-profit-maximizing firms.
The same reasoning applies to the cases of first-over-then-underestimation and first-
under-then-overestimation. In fact, also in these cases, Proposition 5 establishes that
mixed configurations with coexistence of both types of firms are possible only in
regions of r where the probability deformation underestimates the true probability of
r .

5 Conclusions

The evolutionary stability properties of preferences alternative to mere profit max-
imization is clearly linked to the amount of information available to agents. When
agents know each other’s preferences, the threat to behave differently is credible and
agents with alternative preferences have strong arguments to invade the population
and survive in the long-run. On the other hand, lack of such information makes the
commitment to a different behavior no longer credible, and it is usually believed that,
in those cases, only profit maximizers survive (see Dekel et al. 2007; Ok and Vega-
Redondo 2001, for prominent research in this direction). However, the recent study in
Alger and Weibull (2013) shows that this is valid only as long as the matching process
in a large population is uniform. More general assortative matching processes lead to
alternative preferences (in their case moralistic preferences) to be evolutionary stable
and profit maximizers to vanish in the long–run.

In the context of industrial organization, strategic delegation is usually regarded as
a device that makes the commitment to a more aggressive behavior credible. Share-
holders, by hiring a manager to decide the firm’s strategy, make sure that the threat
will be indeed pursued. However, often the way managers are paid is private infor-
mation. This is not only highlighted by prominent researchers in the field (see for
instance (Fershtman and Kalai 1997)), but has also been witnessed by the impressive
amount of empirical research on the determinants of CEOs compensation.

In an otherwise standard Cournot oligopoly, we investigate the effects of varying
degree of information available to agents about how managers are paid. First, we hide
such information to the first–stage–players (the owners) only, and uncover it at the
second stage. Here the second stage Nash equilibrium chosen by informed managers
displays all the features of a classic delegation game, with R–firms producing more
than P–firms. However, since the information is not available to actors of the first
stage, we find that, depending on market parameters, the game can be either dom-
inance solvable with only one type of firm surviving, or mixed equilibrium states
exist. As long as owners are not too impatient to change their preferences, such states
are stable and coexistence of both types prevails with substitute goods. By contrast,
when goods are complements, mixed states are unstable and behavioral heterogeneity
in the population will vanish in the long–run.
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Then we hide the information also at the second stage. This setup belongs to
the family of games studied in Ok and Vega-Redondo (2001) and the conclusion is
just an example of their results. However, the situation changes completely when
we allow managers to violate the basic principles of Von Neumann–Morgenstern
Expected Utility Theory and make their choices according to Prospect Theory (PT).
By changing the way managers select the second stage Nash equilibrium, we find
that the conclusion that profit maximizers are the ultimate survivors seems to be
hazardous. Under private information and risk attitudes in accordance with Prospect
Theory, the question of which preference is the ultimate survival in the long–run has
no unique reply, but depends on the prevailing risk attitude in the population, the
number of agents extracted to play the one–shot game, and the parameter of product
differentiation. The clear–cut situation of P-firms dominance arises when managers
systematically overestimate the true probability. Otherwise, provided a necessary
condition implied by Proposition 4, we show that different combinations of risk atti-
tudes lead to situations where both kinds of preferences can prevail. In this case,
the underestimation of true probability strengthens the commitment effect of adopt-
ing non-profit-maximizing behavior. As a consequence, for certain combinations of
parameters, a stable population state with preference heterogeneity exists, a fact that
is new to us in a setting of private information.

The shift from Von Neumann–like risk attitudes to PT–like risk attitudes is crucial
for our results in Section 4. Our view on this change in the players way of selecting
the equilibrium is that the true fraction of P–firms may be unknown to players, thus
forcing them to make their best forecast through the belief. In this respect, the evolu-
tionary game may be seen as a game where information is completely absent. On the
other hand, even if players know the true fraction of P–firms in the population, labo-
ratory experiments clearly show that human beings may distort their risk attitude in a
way that is not consistent with utility theory (see, for instance, the seminal paper on
Prospect Theory by Kahneman and Tversky 1979).

When one recognizes that agents may even not know the exact distribution of each
type in the population, then alternative attitudes toward risk may rationalize agents
choices in selecting the second stage state dependent Nash equilibria. The novelty
of this paper is the separation between risk attitudes and agents’ objective functions.
Taking a particular form of risk attitudes as exogenously given, we show that this has
deep implications in the long–run objective function of agents.

We remark here that many aspects of the dynamics have not been addressed in
this paper, as we decided to focus on steady states analysis and configuration of
the basins of attraction of the deterministic system. As a matter of fact, it is well-
known that such systems can generate periodic or chaotic dynamics when the game
is, for instance, of anti-coordination type (see Kopel et al. 2014) due to overshooting
around the equilibrium with coexistence of the different types (see also Bischi et al.
2003; Droste et al. 2002, among others, for issues on the global analysis of similar
systems). Although these points are worth being explored, they are mainly linked to
the agents’ behavioral assumption (e.g. agents’ intensity of choice and inertia in the
switching process) rather than to the underlying economic model. For this reason,
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in this paper, we decided to focus just on possible equilibrium configuration of the
system, remarking that equilibria with coexistence of both P and R-firms can indeed
be stable in some given sets of the parameters space.

The market structure proposed in this paper is intentionally kept at the most basic
level. While one may view this choice as a drawback of the model, we emphasize
that our results hold despite the simplicity of the model. In this sense, we view the
simplicity of the underlying model as a way to isolate, in a well known framework,
the effect of varying degree of information and of managers’ behaviors.

Some additional questions need to be explored. Our finding that preference het-
erogeneity may arise endogenously in the long–run also when information is private
is unaffected by all market parameters but product differentiation, marginal costs,
and even the fraction of revenues included in the manager salary. This suggests that
future research should explore the validity of this result for a wider class of evolution-
ary games, including different compensation schemes (e.g. market share) and other
competitive settings (e.g. price competition).

Interestingly, Proposition 5 shows that, as long as a mild necessary condition is
valid, our results are not affected by the asymmetry of the fitness functions intro-
duced by the degree of product differentiation. Nonetheless, the interaction between
evolving preferences and fully asymmetric games is a topic that deserve more
attention.

Finally, we view this paper as a starting point to a new way to model evolving
preferences. If one identifies agent behavior as a couple of objects, one modeling
the objective function and the other the risk attitudes of a given individual, then the
score function (that is what we call the switching function) is bi–dimensional. For
instance, we already know that a Von Neumann Profit Maximizer will survive when
competing against other Von Neumann–like players. But will the Prospect Theory
R–firms population resist invasion of – say– Ellsberg–like P–firms mutants?

A Proofs

A.1 Proof of Lemma 1

The lemma follows from a standard local stability analysis on the map (7). In
fact, a fixed point r∗ ∈ (0, 1) is locally asymptotically stable provided that∣
∣
∣
dr(t+1)
dr(t) |r(t)=r∗

∣
∣
∣ < 1. By Assumption 4. on the Monotone Selection dynamics, r∗ is

stable whenever

dr(t + 1)

dr (t) |r(t)=r∗
= 1 + r∗

(
∂F (r∗, 0)

∂G

dG(r∗)
dr

)

∈ (−1, 1) (20)

which is equivalent to Eq. 8; a flip bifurcation occurs whenever dr(t+1)
dr(t) |r(t)=r∗ = −1,

i.e. at dG(r∗)
dr

= − 2

r∗ ∂F(r∗,0)
∂G

. It is straightforward to see from Eq. 20 that an inner

steady state r∗ with dG(r∗)
dr

> 0 is always unstable because of Assumption 1. QED
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A.2 Proof of Proposition 4

To prove the claim, it is sufficient to show that G(w, r) in Eq. 18 is always positive
if γ (N − 1) < 1. This indeed happens since |w − r| < 1.

A.3 Proof of Proposition 5

Consider the function g(r) = (w(r) − r)γ (N − 1) + 1, with w(r) defined in Eq. 19,

g(r) = 1 + γ (N − 1)

{
δ1−νrν − r 0 ≤ r ≤ δ

1 − (1 − δ)(1−ν)(1 − r)ν − r δ < r ≤ 1
(21)

with 0 ≤ δ ≤ 1 and ν ∈ (0, 1) ∪ (1, +∞). The roots of equation g(r) = 0 are
also roots of G(w(r), r) = 0 in Eq. 18 and, by Assumption 3. on the evolutionary
process, fixed points for Eq. 7.

Observe that g(0) = g(1) = 1 and that g is smooth in [0, 1], with derivative

g′(r) = γ (N − 1)

{
δ1−νrν−1ν − 1 0 ≤ r ≤ δ

(1 − δ)(1−ν)(1 − r)ν−1ν − 1 δ < r ≤ 1
(22)

Define:
h(ν, δ) = (1 − δ)ν

1
1−ν − (1 − δ)ν

ν
1−ν

and
l(ν, δ) = δν

ν
1−ν − δν

1
1−ν

Observe that:

– h(ν, δ) = 0 for δ = 1, while for δ ∈ [0, 1 ), it is −1 < h(ν, δ) < 0 whenever
0 < ν < 1, and 0 < h(ν, δ) < 1 for ν > 1;

– l(ν, δ) = 0 for δ = 0, while for δ ∈ ( 0, 1], it is −1 < l(ν, δ) < 0 whenever
ν > 1, and 0 < l(ν, δ) < 1 for 0 < ν < 1.

Now, proceed with the statements. We prove the first statement in the case δ = 0
and ν > 1 (the case δ = 1 and 0 < ν < 1 is similar).

Suppose δ = 0. The function g reduces to g(r) = 1+ (1− (1− r)ν − r)γ (N −1).
Given ν > 1, it is g′(r) > 0 when r < r̄1 and g′(r) < 0 when r > r̄1. Thus
g(r) ≥ g(0) = g(1) = 1. This proves that g(r) > 0 for each r ∈ [0, 1].

Finally we prove the second statement (the third is similar). Suppose ν > 1 and
observe that r̄2 = arg min g(r), since g′(r) < 0 for r < r̄2 and g′(r) > 0 when
r > r̄2. The minimum value of g is thus g(r̄2) = 1 + γ (N − 1)l(ν, δ). Define the
following sets:

– El
1(γ, N) =

{
(ν, δ) s.t. 0 < δ ≤ 1, l(ν, δ) > −1

γ (N−1)

}
;

– El
2(γ, N) =

{
(ν, δ) s.t. 0 < δ ≤ 1, l(ν, δ) = −1

γ (N−1)

}
;

– El
3(γ, N) =

{
(ν, δ) s.t. 0 < δ ≤ 1, l(ν, δ) < −1

γ (N−1)

}
,

which are nonempty provided that the necessary condition γ (N −1) ≥ 1 holds; these
sets define the conditions on the plane (ν, δ) for the sign of g(r̄2):

When (ν, δ) ∈ El
1(γ, N), then g(r̄2) > 0 and g(r) > 0 for each r ∈ [0, 1].
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When (ν, δ) ∈ El
2(γ, N), then g(r̄2) = 0 and g(r) > 0 for each r ∈ [0, 1] \ {r̄2},

while r̄2 is a fixed point.
When (ν, δ) ∈ El

3(γ, N), then g(r̄2) < 0 and equation g(r) = 0 has two roots
r∗

1 < r̄2 and r∗
2 > r̄2.

The stability analysis of these steady states for Eq. 7 follows from the proof of
Proposition 1. The couple of fixed points (possibly stable and unstable) are created
through a fold bifurcation for Eq. 7 on the bifurcation curves El

2(γ, N) (when ν > 1)
and Eh

2 (γ, N) (when 0 < ν < 1) in the parameter space (ν, δ).

B Derivation of uninformed managers’ expected utility

Consider, as in the case of informed managers, the (inverse) demand system (1),
which can be written, for a given number K of P-firms, as follows

pP,i

(
K, xP,i

) = A − xP,i − γ

⎛

⎝
K∑

h=1,h�=i

xP,h +
N−K∑

h=1

xR,h

⎞

⎠

pR,j

(
K, xR,j

) = A − xR,j − γ

⎛

⎝
K∑

h=1

xP,h +
N−K∑

h=1,h�=j

xR,h

⎞

⎠

where, by symmetry, it is
K∑

h=1,h�=i

xP,h = (K − 1) xP,i

N−K∑

h=1,h�=j

xR,h = (N − K − 1) xR,j

K∑

h=1
xP,h = KxP

N−K∑

h=1
xR,h = (N − K) xR

Given K , the objective functions of managers in the i-th P-firm and j -th R-firm
are, respectively,

UP (K, xP,i) = xP,i

[
pP,i

(
K, xP,i

) − c
]

= −x2
P,i + xP,i

[
A − c − γ

(
(K − 1) xP,i + (N − K) xR

)]

UR(K, xR,j ) = xR,j

[
pR,j

(
K, xR,j

) − αc
]

= −x2
R,j + xR,j

[
A − αc − γ

(
KxP + (N − K − 1) xR,j

)]

At a given time, managers have beliefs w ∈ [0, 1] that a P-firm is extracted from
the population. To obtain the expected utility uR(r, xR,j ) of a R-manager we calculate

uR(w, xR,j ) =
N−1∑

i=0
UR(N − 1 − i, xR,j )

(
N − 1

i

)

wN−1−i (1 − w)i

= −x2
R,j + xR,j (A − αc)

−γ xR,j

N−1∑

i=0

[
(N − 1 − i)xP + ixR,j

] ∗

∗
(

N − 1
i

)

wN−1−i (1 − w)i =
= −x2

R,j + xR,j (A − αc)

−γ xR,j

[
(N − 1)

(
wxP + (1 − w) xR,j

)]

(23)
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The expected utility uP (w, xP,i) of a P-manager is calculated analogously.
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