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Abstract The aim of this paper is to propose a new empirical method for identify-
ing technologically important patents within a patent citation network and to apply
it to the telecommunication switching industry. The method proposed is labelled the
genetic approach, as it is inspired by population genetics: as geneticists are inter-
ested in studying patterns of migration and therefore the common origins of people,
in innovation studies we are interested in tracing the origin and the evolution of today
knowledge. In the context of patent and citation networks, this is done by calculat-
ing the patent’s persistence index, i.e., decomposing patent’s knowledge applying the
Mendelian law of gene inheritance. This draws on the idea that the more a patent is
related (through citations) to “descendent” patents, the more it affects future techno-
logical development and therefore its contribution persists in the technology. Results
show that the method proposed is successful in reducing the number of both nodes
and links considered. Furthermore, our method is indeed successful in identifying
technological discontinuities where previous knowledge is not relevant for current
technological development.
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1 Introduction

The use of patents as an indicator of innovative activities is rather established in
the innovation literature (Yoon and Kim 2011; Griliches 1991). However, one of the
usual caveats pointed out by scholars is that patents are not informative about the
importance (and the economic value) of the invention they disclose. The usual way to
overcome this issue is to look at forward citations.1 In fact, as the number of citations
signals the importance of scientific articles, we have evidence that important patents
receive as well more citations.

Recently, exploiting the similarity between scientific and patent citations a new
stream of literature has adopted a network approach to the study of patent and citation
data, and analytical tools previously used for publication networks have been used in
identifying important patents (von Wartburg et al. 2005; Fontana et al. 2009). The aim
of this paper is to contribute to this stream of research and to propose a new method
for identifying technologically important patents in a patent citation network.

In order to make sense of the new indicator and method, we need to define our
notion of importance. First of all, we need to stress that this work focuses on the
technological importance of patents, as a patent citation network pinpoints only the
technological relation between inventive steps (i.e. patents). In the next section, we
will discuss at length the nature and the interpretation of such links. For the moment,
it is enough to consider that being cited as prior art2 implies a technological relation
between two inventions.

In this paper, the importance of a patent relates to the persistence of its techno-
logical contribution. This draws on the idea that the more a patent is related (through
citations) to “descendent” patents, the more it affects future technological develop-
ment and therefore its contribution persists in the technology. The choice of a genetic
jargon is not accidental. In fact, from a purely conceptual perspective, the exer-
cise carried out here is similar to the one made by population geneticists. As they
trace our (geographical) origins by looking at genetic mutation in today’s popula-
tion (Cavalli-Sforza et al. 1994), in this paper we propose a method to “decompose”
the technological content of today’s patents into the technological contribution of the
previous ones. We can therefore investigate the origin and development of today’s
knowledge, identifying technological lineages representing cumulative chains of
technological advances leading to today’s knowledge. For this reason, this new
method is labelled the “genetic approach” (GA) to patent citation networks.

As we will see, differently from common approaches to patent and citation data,
the GA (and, in particular, the knowledge persistence indicator) assesses patents’
citation structure from a broader perspective, considering not only direct citations but
also all the direct and indirect “descendants”. Therefore, importance is not a “local”
characteristic of the node (i.e. the number of citations a patent has) but a global
characteristic.

1Scholars have addressed the problem of evaluating patent values using several indicators such as forward
citations and renewal fees (Bessen 2009; Harhoff et al. 2005; Gambardella et al. 2008).
2In most patent systems the prior art constitutes all information that has been made available to the public
that might be relevant to a patent’s claims of originality.
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In this article, we propose an application of the methodology in the context of
the telecommunication switching industry. This represents an interesting case study
because, in the last decades, this industry has gone through numerous incremen-
tal and radical technological changes. Results show that the method proposed is
successful in reducing the number of both nodes and links considered. Further-
more, our method is indeed successful in identifying technological discontinuities
where previous technological knowledge is not relevant for current technological
development.

As regards the broader impact of this new methodology, we can expect two lines of
generalization. The first (obvious) one is the possibility to apply the persistence index
to other technological fields in order to characterize their cumulative and disrup-
tive dynamics. The scientific importance of such an exercise is to foster quantitative
research and appreciative theorizing defined as rigorous storytelling (Nelson 1989)
in studies related to technology dynamics and its effect on industry dynamics.3 The
second one regards the possibility of applying the persistence outside the context of
patent citation networks. We postpone some speculations on this aspect until the last
section.

The paper is structured as follows: Section 2 introduces patent and citation
networks and provides the theoretical background for our notion of importance;
Section 3 presents the details of the new method; Section 4 provides the comparison
to existing alternative method; Section 5 introduces the industry here examined and
the dataset; and Section 6 presents the empirical results. Conclusions follow.

2 Theoretical background

2.1 A network approach to patent and citation data

Patents and citations have been already used for building several types of knowledge
networks the nodes of which are firms, inventors (Balconi et al. 2004), or techno-
logical classes (Bottazzi and Pirino 2010). The network analyzed in this work is
composed of patents (the vertexes) and citations (the arcs). In particular, the forward
citation between two patents establishes a directed link going from the cited to the
citing patents. If we adopt a stylized (but realistic) view of patents, considering them
as a collection of “technical problems and newly proposed solutions”, the advan-
tage of the network approach is the possibility to appreciate the interrelated nature of
technological developments.

As regards the nature of such relations, this depends on the interpretations of cita-
tions (e.g. knowledge spillovers, knowledge flows, etc.) (Marco 2007). If, on the one
hand, we prefer to remain rather agnostic about the exact nature of this relation, on
the other hand, such a technical relation is codified in the definition of prior art. The
citation to an older patent means that the invention disclosed in the old patent can be
relevant to the new patent’s claims of originality. This means that the definition of the

3As regards this point, a MATLAB code for the calculation of the persistence index is available on request.
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prior art allows us to limit and to circumscribe the novelty of an invention. Following
(Strandburg et al. 2009) “. . . A citation from one patent to another may indicate either
that the later patent builds upon the technology of the earlier patent or simply that the
earlier technology was closely enough related to be material to determining whether
the later patent should be issued... (page 108)”. In this work, we adopt a “minimal”
connotation of such links: if patent A cites patent B, we can think of a technological
relation between the inventions disclosed by the two patents. In a conservative way
we can claim that a patent citation network built as just described allows us to map the
technological relations between all the inventions carried out within a specify tech-
nology.4 The analysis of its structure and topology (i.e. the layout of interconnections
of the various elements) allows unfolding patterns of technical changes.

The challenge posed by patent citation networks is not only their size,5 but also
other characteristics such as directionality and acyclicity. The former refers to the
fact that ties are not symmetric. The latter means that no cycles are present in the
network, as patents can only cite previous patents and therefore the time dimension
is embedded into the ties’ direction. These characteristics make difficult to apply
standard network analysis techniques, as these mainly deal with undirected networks
and most of the usual indicators cannot be applied in a straightforward way to a
directed network.6

For these reasons, the interest on patent citation networks is not confined to inno-
vation studies. Researchers in complex systems began to be interested in the patent
citation network as a whole, as it constitutes an example of a complex system emerg-
ing from human activities. They apply mechanical statistics in order to study network
dynamics (i.e. the study of the organizing principle) and to model a system so as to
replicate specific properties such as the power law distribution of the number of for-
ward citations (Valverde et al. 2007).7 They explain the emergence of such a property
by the combination of two (necessary) forces: network expansion and “preferential
attachment” (Barabási and Albert 1999; Albert and Barabási 2002).8 In particular,
they adapt the latter principle for the context of patent and citation network, making
the probability of a patent to be cited dependent on the number of current citations
and the age of the patent. These studies are rather recent and if, on the one hand, they
shed some light on the structure and dynamics of patent networks, on the other hand,
their approach is poorly grounded in innovation studies. For instance, they are not
interested in estimating (and explaining) sectoral differences in the parameters fitting
their models. For these scholars, the patent citation network is just an example of a

4Note that this highlights the fact that the method here proposed is meaningful only for technology
appropriated through patents.
5Notice that the whole NBER patent dataset has 3 774 768 nodes and 16 522 438 links.
6For instance, centrality betweenness in a directed network is based on the assumption that directional ties
can be transformed into unidirectional (Wasserman and Faust 1994).
7The number of forward citations follows a scale-free distribution, meaning that a few patents have most
of the links, whereas the large majority has just a few.
8According to this organizational principle, each new node probability of having k links decays following
a power law distribution, namely P(k) ∼ k−γ . Therefore, new nodes have a “preference” in connecting to
already well-connected nodes.
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complex system emerging from individual (innovative) behaviors and their aim is to
find potential commonalities with natural complex systems.

In the innovation studies domain, there has been a recent9 interest in patent citation
networks, and in a short time several empirical articles have been published. All of
them use the bibliometric indicators developed by Hummon and Doreian (1989) for
identifying the main flow of knowledge within a patent citation network (Mina et al.
2007; Verspagen 2007; Fontana et al. 2009; Barberá et al. 2010; Martinelli 2012).

The GA here proposed heavily differentiates from the studies just mentioned.
Differently from the complex system approach, we are interested in grounding the
indicators in the innovation literature and the persistence indicator is going to shed
some light about technology evolution. Differently from the Hummon and Doreian
approach (HDA), the GA is more flexible in its construction as it does not stress the
importance of direct links. As the HDA is now increasingly used in the literature, we
are going to discuss in detail their differences in Section 4.

2.2 Importance as knowledge persistence

The aim of this section is to provide a theoretical background for the notion of
importance proposed in this paper. As already anticipated in the introduction, impor-
tant patents are the ones the technological contribution of which is found in today’s
patents. How is knowledge transmitted through the network and then found in recent
patents? Endorsing a neutral outlook on the meaning of the links, we can think of
citations as pipes through which pieces of knowledge are inherited from cited to
citing patents. Therefore, as a population genetist compares the genotype of contem-
porary populations, we could study the “genetic” structure of today’s knowledge10

and rigorously trace their origin.
The genetic decomposition is explained in the next section. However, we can

anticipate that it is operationalized using the Mendelian notion of genetic inheritance.
We are, therefore, able to identify “knowledge lineages” depending on the cita-
tion structure between a patent and all its direct and indirect “descendants”. In fact,
the contribution of each patent depends on the topological structure of the network
composed of all the paths generated in it.11

In this way, a patent citation network represents a system of knowledge generation
where the inventive step is provided by the recombination of existing (as inherited)

9This field of research is relatively new, excluding some explorative papers such as Ellis et al. (1978). In
this study, the analysis of patent citation networks is presented as a study about technological relatedness,
which can be interpreted as an application to technology of the approach pioneered by Garfield (1979)
for the study of links among scientific disciplines. However, those scholars already admit the difficulty
of an extensive use of this method because of the lack of a systematic database of patent citations (unlike
the possibility of using the ISI database for publications). Probably it is for this reason that, until recently,
there has been limited scientific work on patent citation networks.
10Section 3 clarifies how “today’s knowledge” is defined.
11It is important to stress that, if on the one hand, the conceptual similarity with genetics is evident,
on the other, the employment of the same methodologies and statistical tools for the analysis is prob-
lematic. In fact, geneticists often use frequencies of the alleles for the clustering exercise, which cannot
straightforwardly translated in the context of patents.
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pieces of knowledge. Following the Mendelian decomposition mechanism, it appears
that a building block of the evolutionary process, which is random mutation, is miss-
ing. In this respect, the genetic patent decomposition might look like a deterministic
representation, where new inventions are simply a sum of proportion of previous
knowledge and where nothing genuinely new is created. However, knowledge is
recombined and therefore, by definition, is transformed into something different and
therefore new. Undoubtedly, this concept of innovation used in this work is rather
similar to the concept of “recombining knowledge” put forward by Weitzman (1998,
1996), according to which . . . new ideas arise out of existing ideas in some kind of
cumulative interactive process”. . . (Weitzman 1996, page 209).

We expect that, in a dense network, few patents are successful in spreading their
knowledge, displaying a high level of persistence and generating a large lineage of
descendent patents. These lineages represent chains of technical change with a certain
extent of cumulativeness. Therefore, the use of both the genetic decomposition and
the persistence index allows us to answer questions related to patents technological
importance and technology dynamics.

3 A genetic approach to patent citation networks: genetic decomposition
and knowledge persistence12

Figure 1 represents a very simple patent citation network structure with five start-
points, two intermediates and two endpoints.13 Endpoints are generally recent patents
and they represent the set of what in the previous section was labeled “today’s knowl-
edge”. The genetic decomposition corresponds to decompose the knowledge content
of the endpoints in function of the startpoints. After the decomposition is performed,
it is possible to quantify the degree in which the startpoints’ prospective knowledge
is retained in the endpoints and to look at how much knowledge the two endpoints
actually share.

Clearly, both these aspects depend on the structure of the forward citations and on
the number of intermediates and their citations. This means that, for calculating the
persistence index, we should not focus only on startpoints but we also need to account
for the intermediates’ contribution that represents the “new” knowledge injected in
the system. In fact, in the framework of the genetic decomposition in a patent citation
network, both knowledge persistence and knowledge creation coexist. Summarizing,
Fig. 1 represents a process of knowledge creation, transmission, and transformation.

The simple network displayed in Fig. 1 is composed of three layers of patents,
indicated by TR0, TR1, and TR2. The genetic decomposition of the network in Fig. 1
is performed using the following heuristics:

1. Endpoints are identified, and working backwards, each patent is assigned to a
layer;

12As already mentioned in the introduction, a MATLAB code for performing the calculations of this
section is available on request.
13Note that directionality follows the direction of the knowledge flow between cited and citing patents.
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Fig. 1 Simple patent citation network structure

2. For each startpoint belonging to the first layer (TR0 in Fig. 1), the persistence
index is calculated. This is going to quantify how much of their knowledge is
retained in the endpoints (TR2 in Fig. 1);

3. The startpoints are deleted (the network is truncated) and therefore a new layer
of startpoints is created (TR1 in Fig. 1);

4. Calculation of the persistence index for the new group of startpoints;
5. Deletion of the layer and repetition of step 2 and 3 up to the last layer.

This procedure is repeated for each layer and the number of layers depends on the
length of the largest geodesic distance in the network.14

Steps 2 and (recursively) 4 represent the core of the new method, which corre-
sponds to the application of the Mendelian law of genetic inheritance to citations.

Looking at the first layer (TR0) in Fig. 1, we can see that the only patent cited by
patent F is patent A; thus 100 % of the inherited knowledge embodied in patent F is
the knowledge of patent A. Instead, patent G makes three citations to patents B, C,
and D; thus the inherited knowledge embodied in patent G consists 33.3 % of patent
B, 33.3 % of patent C and 33.3 % of patent D.

In the second layer (TR1), the endpoint I makes only one citation and that is
directed to patent F. Since the embodied knowledge in patent F is 100 % that of
patent A, the inherited knowledge embodied in patent I is again 100 % that of patent
A. The endpoint H makes three citations. The first is to patent F that has 100 %
patent A knowledge; thus 1

3 100 % = 33.3 % of the inherited knowledge embodied
in patent H is the knowledge of patent A. The second citation of patent H is to patent
G that embodies 33.3 % of each of the respective knowledge of patents B, C, and D.

14The geodesic is the longest shortest distance between two nodes.
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Table 1 Genetic decomposition and persistence of knowledge for Truncation 0

Startpoints

A B C D E

Endpoints I 1 0 0 0 0

H 0.33 0.11 0.11 0.11 0.33

Sum 1.33 0.11 0.11 0.11 0.33

Since patent H inherits only 1
3 of its knowledge from patent G, it inherits indirectly

1
3 33.3 % = 11.1 % of each of the knowledge of the startpoints B, C, and D. Finally
33.3 % of the inherited knowledge in patent H comes directly from startpoint E.
These results are given in Table 1 in matrix form.

Focusing on the TR0 level, the genetic decomposition answers the question: How
much knowledge of (startpoints) A, D, C, B, and E is retained in (endpoints)H and I?
The answer is displayed in Table 1, where each other row decomposes the inherited
knowledge embodied in another endpatent down into the shares of the startpoints
which have supplied the knowledge. For this reason, each row adds up to 1.0.

The persistence index can be found in the last row, the column sum. It supplies a
fractional count that is the basis of the persistence index: effectively, 1.33 out of the
2 endpoints are the pure descendants of the startpoint A, 0.33 out of 2 are the pure
descendants of the startpoint E, and each of the startpoints B, C, and D has 0.11 pure
descendants. Clearly, startpoint A is the most important startpoint since it is 1.33

0.33 = 4
times as important as patent E and 1.33

0.11 = 12 times as important as patents B, C, and
D. Patent E is the second most important startpoint and startpoints B, C, and D look
not so important on their own.

As explained in the step list before, the decomposition algorithm puts only the
startpoints into competition. In other words, the intermediate patents F and G do not
show up in Table 1 as knowledge suppliers as they just transmit the knowledge from
the startpoints to the endpoints. Therefore, after step 2, startpoints in layer TR0 are
removed from the network (i.e., truncate the network from the left), and a new set of
startpoints is created. In the example of Fig. 1, one left truncation (i.e., removal of
patents A , B ,C, D, and E) brings patents F and G forward as startpoints. Table 2

Table 2 Genetic decomposition
and persistence of knowledge
for Truncation 1

Startpoints

F G

Endpoints I 1 0

H 0.5 0.5

Sum 1.5 0.5
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shows the results for the genetic decomposition and the persistence index for the TR1
level.

How much knowledge of F and G is retained in H and I? Patent F appears to have
1.5 pure descendants and patent G has 0.5 pure descendants; thus patent F is 1.5

0.5 = 3
times as important as patent G.

In the simple network displayed in Fig. 1, only three layers are present since
another step of truncation leaves us only with the endpoints. In real samples, the
network is left truncated and analyzed as long as it is possible to truncate further.
It follows that, for each layer, a matrix such as Table 1 and 2 is calculated and
the persistence index is calculated as the sum of each contribution (the last row in
Tables 1 and 2). Furthermore, the persistence index is then normalized using the max-
imum, meaning that for each truncation the persistence index takes a value between 0
and 1.15

4 The genetic approach vs. other approaches

Before moving to the empirical details, it is worth to spend few words to compare this
new method to existing comparable methods. In particular, we are going to discuss
differences with citation count, the originality indicator proposed by Trajtenberg et al.
(1997), and the connectivity approach (Hummon and Doreian 1989). Furthermore,
in the empirical section (Section 6.1), we will compare the persistence index to all
these indicators in order to show their relations.

The network approach to patent and citation data represents a shift of perspective
respect to citation counts. The two have already shown some complementarities: hav-
ing a large number of citations is not a sufficient condition for becoming an important
connection in the main flow of knowledge within the network (Fontana et al. 2009).
Citation counts can be easily performed from a network perspective. In fact, it is
always possible to count the direct number of ties a patent has. However, any net-
work approach allows us to enlarge this local perspective and to evaluate the whole
citation structure.

Trajtenberg et al. (1997) use a similar jargon for introducing some patent indi-
cators of basicness and generality of invention. In particular, their measurement of
patent importance does not consider only the forward citations but also the impor-
tance (i.e. the forward citation) of the citing patents. They compute patent importance
as a sum of forward citation and a fraction of the forward citation of the citing patents.
As they evaluate importance looking at two rounds of forward citations, they broaden
the local perspective of citation counts. However, the choice of the weight is rather
arbitrary (as well as the choice to stop at the second round) and it does not account
for possible cross citations between all these subsequent patents. In this respect, the
network approach here implemented allows us to account for all the patent citation
structures.

15It is worth noting that by construction, the persistence index can be calculated only for startpoints and
intermediates.
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Finally, as already anticipated in Section 2.1, recently scholars (among other see:
Mina et al. (2007); Verspagen (2007); Fontana et al. (2009); and Barberá et al. (2010))
have used the bibliometric method proposed by Hummon and Doreian for identifying
the main flow of knowledge in a patent citation network.

Ultimately, both the genetic approach (GA) and the Hummon and Doreian
approach (HDA) have the same aim, which is to trace “important” technological
advances. However, they deeply differ in the underlying rationale and definitions. An
example from population genetics can be helpful. Summarizing, we can say that the
work of geneticists is: given the observed population, genetic differences with ances-
tors16 highlight streams of migration. The application of the GA to endpoints follows
exactly the same rationale and therefore it can be considered a backward mapping
of successful (persistent) technologies. The application of the HDA to populations
would work in a completely different way, that is: starting from the ancestors at each
(population) bifurcation, follow the future development of the largest stream. This
would correspond to tracing just the largest population and ignoring the remainders
and their future development. Of course, the application of the HDA by geneticists
would be nonsense. However, this example clarifies the basic differences between the
two approaches that is, the direction of mapping: backwards for the GA and forward
for the HDA. As a consequence, the HDA might be very sensible to “local” peaks and
therefore discarding chains of innovations which from an ex-post perspective (the
importance of the endpoints) is relevant. Furthermore, the HDA uses a search algo-
rithm that selects highly valuable subsequent links, which introduces a certain bias
towards a particular definition of cumulativeness and over-emphasizes the notion of
incremental progress.17 By contrast, the implementation of the GA presented in this
work is rather flexible, as the analysis of the persistence weighted network does not
impose any specific structure.

5 Case study and dataset

5.1 The telecommunication switching industry

Before moving to the empirical section, we are going to discuss briefly the indus-
try under examination. We do not want to summarize the milestones of technical
change in the telecommunication switching industry18 but rather desire to convince
the reader on the validity of this industry as a testbed. This consideration is based
on two facts: first, the industry is an innovative one, and second, patents are rep-
resentative of such advances. The study of technical change in the industry clearly
show that the period between the 1975 and 2001 is characterized by both “normal”
and “disruptive” technical change. The former refers to the development and the

16Please note that this is a rough simplification of the principles and statistical methods used by geneticists.
However, it would not be of any help to discuss these in further detail, given the impossibility of using
them in the context of patent genetic decomposition.
17For further details, see Martinelli (2012).
18For a detailed account see Martinelli (2010) and Martinelli (2012).
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consolidation of digital switches, whereas the latter refers to the transition from cir-
cuit to packet switching.19 The presence of such waves of technical change makes
this industry a suitable testbed for a new method for studying technology dynam-
ics. Moving to the second point, interviews with engineers active in the period under
examination support the idea that patents were used for protecting inventions and
enhancing intense cross-licensing (Chapuis and AEj 1990; Martinelli 2010). There-
fore, patents provide complete and comprehensive data about technological change
in the telecommunication switching industry.

5.2 Data

The patent sample was retrieved from the USPTO website using technological
subclasses that all belong to technological class 370 (“Multiplex Communication”).20

The selection of the technological class and technological subclasses was driven
by the reading of their descriptions and by the analysis of firms’ patent portfolio
for companies highly specialized in switch production. In order to account for the
complexity of a switch and to consider important technologies that might not have
been captured by the first search, the first round of cited patents were added to the
original set. These cited patents were retrieved from the NBER patent database (Hall
et al. 2001); for patents granted before 1975, the citations were taken from the patent
documents21 and manually added. The final sample includes 6214 patents covering
the period 1924-2003.

Citations for patents issued before 1975 were manually collected. It is important
to note that the citations considered are only the “internal” ones, meaning that once
the patent sample is selected, only citations to patents included in the starting sample
are considered.

19These two switching methods differ in the allocation of the bandwidth, which brings about inefficiencies
in the use of the infrastructure depending on the type of information switched. A circuit switching network
establishes a circuit (or channel) between senders and receivers (which might be telephone, computers,
etc.) before the users may communicate, as if the nodes were physically connected with an electrical cir-
cuit. In this case, the bandwidth is statically allocated also when no information is transmitted (for instance,
when there is a silence during a phone call). By contrast, a characteristic feature of packet switching is
that no connection is established and information is chopped into packets that are individually routed in
the network; this implies that each packet can take a different route between the same sender and receiver.
These two switching modes are differently efficient depending on the type of information transmitted.
The former allows us to guarantee a minimum level of quality of service for voice communication (often
required by control agency on the telecommunication operator). However, it is extremely inefficient in
dealing with bursts typical of data communication.
20These subclasses are:

1. Having space switch as intermediate stage (e.g., T-S-T, T-S-S, or S-S-T) (370/370);
2. Having details of control storage arrangement (370/371 and 370/378);
3. Using time slots (370/458);
4. Synchronization information is distributed over multiple frames (510/370).

21The pdf version of original patent documents are available at: http://patft.uspto.gov/netahtml/PTO/
search-adv.htm.

http://patft.uspto.gov/netahtml/PTO/search-adv.htm
http://patft.uspto.gov/netahtml/PTO/search-adv.htm
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6 Empirical analysis22

This section is going to present the results obtained using the GA introduced in the
previous sections. In particular, two types of analyses are performed: (i) the persis-
tence index is used to identify important patents and to assess firm’s patent portfolios
and (ii) the persistence index is used to weight the citation network in order to shed
some light about technology dynamics in the telecommunication switching industry.

6.1 Persistent patents

As mentioned in Section 3, the persistence index is calculated only for the startpoints
generated after each truncation; therefore the persistence index can be calculated only
for a subsample of the patents. Table 3 shows the number of startpoints evaluated in
each of the 25 truncation levels present in our network.23

The persistence index calculated at each truncation presents a very skewed distri-
bution displayed in Appendix A. Even if graphs are small, they clearly show the high
left skewness, meaning that only a handful of patents are successful in spreading their
knowledge, whereas the contribution of the high majority is diluted over time. This
is consistent with the evidence on strongly skewed distribution of other indexes for
patent importance and value (e.g. forward citations, license fees, etc. etc.) indicating
that, generally, only few patents are important and valuable (Marsili and Salter 2005;
Silverberg and Verspagen 2007).

As high persistence indicates high technological importance, we can rank patents
and identify “important” ones. Given a rank, we can expect a certain extent of arbi-
trariness in deciding which patents are important, those corresponds to set a minimum
threshold. However, in the case of persistence index, arbitrariness is very low because
of its extremely skewed distribution. Using a rather conservative cut off point, which
is 0.5, we extract 79 “important patents”.24

The rationale about using a method for reducing network complexity is the pos-
sibility to infer some properties on the whole network just using that subsample. In
order to test whether our subsample (representing 1.27 % of the full sample) is a rep-
resentative one, we compare some patent indicators and test the persistent subsample
against the full population. Table 4 reports some summary statistics for patents char-
acteristics and citations indicators for the set of persistent patents and the remaining
sample.25 The table includes:

1. the patent citation count proposed by Jaffe and Trajtenberg (2005), which
consists in the number of forward citations plus 1;

2. the average issue year of the patent;

22For the results obtained using the HDA on the same data, see Martinelli (2010).
23The longest geodesic in the network is 25; therefore, the network here analyzed has 25 levels of
truncation.
24See Appendix B for the complete list and some relevant information.
25Note that, because of data availability, some observations are missing for the number of claims and
generality measure.
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Table 3 Number of startpoints
per truncation Truncation Number of startpoints

0 1787

1 485

2 239

3 160

4 131

5 127

6 120

7 139

8 148

9 135

10 144

11 178

12 219

13 219

14 225

15 244

16 231

17 242

18 217

19 157

20 102

21 52

22 33

23 14

24 6

TOTAL 5754

3. the SPLC (Search Path Link Count) indicator introduced by Hummon and
Doreian (1989) in their main path analysis. Without entering into the details,
these indicators evaluate the connectivity of a citation by measuring how many
downstream and upstream patents are connected throughout such citation;26

4. the number of claims reported in the patent;
5. the generality index proposed by Trajtenberg et al. (1997) calculated on the IPC

patent classes.

26For details see Hummon and Doreian (1989). It is worth noting that the SPLC indicator evaluates cita-
tions and not patents, and therefore they can be assigned to either the cited or the citing patent of each
citation. The interpretation does not vary a lot and in this case the citation weight is assigned to the citing
patent.
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Table 4 Summary statistics for citation indicators

Variable N Mean Median SD Min Max

Citation 5675 4.502 3 3.623 2 39

Count 79 13.303 11 8.386 2 58

Issue year 5675 1987.293 1989 10.121 1946 2003

79 1984.57 1987 10.972 1956 2001

SPLC 5674 0.01 0.001 0.046 0 .955

79 0.288 0.098 0.42 0 2

Claims 4219 15.489 12 13.518 1 236

54 20.185 18.5 15.102 1 86

Generality 5458 0.579 0.682 0.312 0 1

75 0.548 0.677 0.301 0 1

Table 4 shows that the patents extracted using genetic decomposition are older,
receive more citations, have higher connectivity, and display more claims. Interest-
ingly, figures related to the generality indicator are rather similar, suggesting some
potential similarity between the two indicators (however see Fig. 2). These results
hold both for the mean and the median.

Table 5 shows the results of the comparison between the two samples. The non
parametric Wilcoxon-Mann-Whitney used for accounting for the high skewness of
the variables rejects the hypothesis of samples extracted from the same distribution
for the citation count and the SPLC.

As anticipated in Section 4, we now focus on the comparison between the
persistence index and other patent indicators there exposed.

Figure 2 shows the scatterplots of the persistence index against the number
of forward citations, the generality index (calculated on the IPC classes of back-
ward citations), and the SPLC indicator. What clearly appears from the graphs
is the lose relations between the new proposed indicator and the already existing
ones. Indeed, this points to the fact that the former unfolds a different aspect of
individual inventions covered by patents. In particular, we can see that high persis-
tence is not systematically correlated to high frequency of forward citations, high
level of generality, and high level of cumulativeness. In fact, going back to the
discussion of the previous sections, persistence as explained and operationalized
relates to both “long term” and widespread influence of a patent on subsequent
innovations.

As inventions covered by patents are developed within a firm, persistence can be
used to a evaluate firm’s patent portfolio. In this respect, we use the persistence index
for dividing the patent set into four equal groups and we look at the 10 top assignees
for each quartile. Table 6 reports (for each quartile) the name of the assignee, the
number and the percentage of its patents in that quartile, and the average issue year
of these patents. The latter is displayed in order to give an idea of the “vintage” of
the portion of the patent portfolio in each quartile.
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Table 5 Results of the Wilcoxon-Mann-Whitney test on the median

Variables z P-value

Weighted patent count −9.015 0.000

SPLC −8.845 0.000

Claims −0.965 0.3346

Generality 1.949 0.0513

Table 6 shows not great differences in the assignees’ names over quartiles. How-
ever, when we look at the concentration and the dispersions of the shares of patents,
we can see that the upper and the top quartiles are more concentrated as the top four
companies account for a larger share of (more persistent) patents. Furthermore, the
increase in the HHI index over quartiles support the idea that persistent patents are
developed by a lower number of companies. In a nutshell, companies developed both
persistent and not-so persistent inventions, However, only a few companies are able
to produce inventions the impact of which are found in subsequent inventions. In
the final part of next session we will elaborate more on the relation between these
companies and technological evolution.

6.2 The persistence weighted network

Following the previous section, we can see that the persistence index is associated
with patents and, therefore, from a network perspective, it refers to a characteris-
tic of the node. However, this indicator can be also used to weight the links of the
patent citation network in order to build a persistence weighted network. In such a
network, each link (i.e. the citations) is weighted using the product of the normalized
(by the maximum) persistence index of the citing and cited patents to which the link
connects. The persistence index is therefore used for transforming the binary patent
citation network into a weighted one, where the values of the links inform the per-
sistence level of the knowledge transferred by that citation. It is worth to point out
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Fig. 2 Persistence index and patent indicators
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Table 6 Assignees over patent persistence quartiles

First Quartile Second Quartile

Assignee Num. patents % Av. Issue year Assignee Num. patents % Av. Issue year

Bell Labs 93.0 6.5% 1977.83 Bell Labs 86.5 6.1% 1978.15

IBM 72.0 5% 1985.18 IBM 70.0 4.9% 1985.10

Motorola 61.0 4.2% 1993.93 Motorola 58.5 4.1% 1993.12

NEC 43.7 3.1% 1989.91 NEC 42.5 3% 1989.28

Scientific Atlanta 34.0 2.4% 1995.09 Ericsson 39.0 2.7% 1992.31

Siemens 32.0 2.2% 1982.22 Siemens 39.0 2.7% 1983.67

AT&T 26.0 1.8% 1992.81 Alcatel 32.0 2.2% 1991.30

Hitachi 25.5 1.8% 1988.81 GTE 31.0 2.2% 1982.87

Alcatel 24.0 1.7% 1990.13 Fujitsu 28.0 1.9% 1993.00

TOTAL 1439 1438

C4 0.1874 0.1791

HHI 0.0149 0.0150

Third Quartile Fourth Quartile

Assignee Num. patents % Av. Issue year Assignee Num. patents % Av. Issue year

Bell Labs 127.0 6.5% 1977.88 Bell Labs 167.8 11.7% 1978.63

IBM 69.0 6.5% 1983.33 IBM 75.0 5.2% 1984.73

NEC 56.2 6.5% 1990.30 NEC 58.5 4.1% 1989.55

Ericsson 52.0 6.5% 1990.33 Motorola 57.0 4% 1993.04

Alcatel 48.0 6.5% 1993.69 Ericsson 49.0 3.4% 1991.20

Siemens 45.5 6.5% 1983.02 AT&T 46.8 3.2% 1992.10

Fujitsu 39.7 6.5% 1992.81 Alcatel 45.0 3.1% 1991.66

AT&T 38.0 6.5% 1991.73 Nortel 43.0 3% 1989.66

Motorola 37.0 6.5% 1992.78 Fujitsu 43.0 2.9% 1992.15

TOTAL 1439 1438

C4 0.2114 0.2490

HHI 0.0205 0.0286

The number of patents has decimal because it is a fractional count; for instance, if a patent has three
assignees they all account for 0.33 each

that, if on the one hand, this use of the persistence index is rather straightforward,
on the other hand, it is just one possibility, leaving many opportunities for alternative
applications. In fact, we think the persistence index is a rather flexible indicator and
it can be used in several ways both for network analysis and visualization. We leave
for future research further explorations and methodological extensions.

Given the fact that the persistence index is available for a subsample of patents, it
is not possible to weight all the citations. Therefore, the weighted network includes
16,747 citations, corresponding to 80.3 % of the full sample.
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Figure 3 represents the distribution of the logarithm of the citations weight. It
highlights the fact that very few links transmit persistently knowledge.27 In fact, in
this graph, the last column represents the number of citations with the highest weight,
directly connecting the patents with the highest persistence index.28

In the following pages, the persistence weighted network is analyzed looking at
how its structure evolves considering different cutoff points. Using a visual metaphor,
we can conceive the persistent weighted network as the technological landscape,
where patent height depends on the persistence index. Using a very high cut off point
corresponds to deleting unimportant links and consider only citations with a (relative)
high persistence measure. In this logic, the first step is to set a very high threshold
such as 0.9 and to look at citations transmitting the most persistent knowledge within
the network.

The resulting network structure (Fig. 4) presents two separated components indi-
cating two disconnected areas of highly persistence knowledge unfolding from a
network of more diluted knowledge. Undoubtedly, this fragmentation is dependent
on the chosen threshold. However, this two component structure is stable down to
0.75 threshold.

The existence of two separate components suggests the presence to two sepa-
rate technologies that did not intensively interbreed. In fact, the lack of a bridge
between the components indicates that the two components do not share any persis-
tence knowledge. A way to validate this finding is by looking at some characteristics
of the two components such as their vintage, their technological contents, and their
assignees.

27The summary statistics for the weights are: mean 0.0169, standard deviation 0.0655, minimum 1.05e-09,
and maximum 1.
28Because of the normalization by the maximum the maximum weight is 1, which becomes 0 using the
logarithmic transformation.
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Fig. 4 Network with cut off point 0.90

At first, components 1 and 2 differ in their vintage: component 1 comprises
patents granted between 1949 and 1977, whereas components 2 are patents granted
between 1980 and 1999. Beyond the years of grant, substantial differences emerge.
Looking at their technical contents, component 1 deals with the development of a
reliable digital telecommunication circuit switching, while component 2 is composed
of three branches converging to patent 5953344 and finally to the endpoint 6272129.
These patents address technical solutions responding to increasing demand for data
communication and the development of packet switching and the use of Internet
protocol.

According to the literature, the industry underwent a wave of disruptive techno-
logical change from circuit switching to packet switching, occurring in the period
under examination. Following the innovation literature, this discontinuity represents
a paradigmatic change (Dosi 1982) as it affects not only the design of telecommuni-
cation switches but also technological competences (both at firm and inventor level)
needed for their development (Martinelli 2012). Therefore, patents in the two sepa-
rated components in Fig. 4 disclose radically different inventions. The lack of highly
persistent connections suggest that the later technology (i.e. the packet switching
indicated with 2) is loosely built on previous technological development.

Given these two peaks represent such different technologies it is interesting to
look at how they are connected and therefore to what extent knowledge from an early
paradigm is retained in a subsequent one. This means to look at how the network
structure changes, lowering the cutoff points. For instance, we can imagine two oppo-
site scenarios: on the one hand, these two peaks may be connected by several links or
they may be connected by unique link. Both examples would correspond to two dif-
ferent ways through which the technology evolves and a technological discontinuity
emerges.
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Figure 5 shows citations with a weight larger than 0.75, which allows us to
include in the structure more patents and citations. The additionally included
patents are indicated in white. Looking at the structure, we can observe that
most of the citations newly included are in the area of the two separate com-
ponents (where some triads are closed). This means that, in this case, persistent
(and therefore important) knowledge links tend to cluster around the peaks rather
than connecting them. Second, the citation network is by no means broken any-
where between the earlier and the latest patents and a single semipath connect the
two components. More on this point: it is interesting to notice that the connec-
tion between the two components takes place through one single patent (patent
4245341).

As the structure is dependent on the choice of cut off points, Fig. 6 shows the
resulting network when the threshold is lowered to 0.5.

The two structures are different but still comparable, despite the increase in the
number of nodes and edges.

Looking at the whole structure, we can notice: (i) the emergence of a few short
paths (indicated with A in Fig. 6), and (ii) the emergence of a shortest path connecting
the two isolated components of Fig. 4 (indicated with B in Fig. 6). Following the
analysis of the previous figures, it is interesting to look at the technical contents of
these patents.

Despite the different vintage of the newly added patents indicated in A
and B, they all disclose similar technological developments. They relate to
the design of an hybrid switch (the ATM), including features of both cir-
cuit and packet switching. The early patents in A put forward the idea of
packets, but still in a “connection-oriented” framework, whereas the patent
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Fig. 5 Network with cut off point 0.75
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in group B includes later patents related to the early development of ATM.
ATM switches data are still divided into packets but the path is conceived
at the outset, and all the packets are then sent through the same circuit.
Despite its potential in mitigating some problems of packet switching (such
as the decrease in the Quality of Service), it was still not optimal for quick
demand increase for data communication, and therefore quickly dismissed by
manufacturers .

The technical content of the patents included by lowering the threshold
sheds some light on chains of less-and-less persistent innovation, detecting ways
through which the technological space was explored. In the case of the telecom-
munication switching industry, this corresponds to abandoned technologies. In
a dynamic perspective, this method highlights patents that contained relatively
persistent knowledge but that are made obsolete with the emergence of new
knowledge.

In order further to validate our finding. we can look at the assignees for these
highly persistent patents in the network. The lower-right pane of Table 6 dis-
plays the top 10 assignees of the patents in the top quartile of the persistence
index. All these companies have been top-players in telecommunication switches,
however, specialized in different market segments and therefore on slightly differ-
ent technologies. The average issue year of their persistent patents help to place
such patents (and therefore firm’s technological choices) in the technological evo-
lution timeline. Bell Laboratories was the most advanced institution as regarding
telecommunication switching and in particular in the use of circuit switching. Not
surprisingly, its share of persistent patents are rather old and reflect the com-
mercial introduction of digital switches based on circuit switching. As regarding
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digital switches, Nortel also represents a case of success being able to interna-
tionalize rapidly in the early 1990s (Sutton 1998). By contrast, IBM has never
active in the telephone switching market, as its main interest was in computer
networking and data transmission. In this respect, its patent portfolio is slightly
younger than that of Bell Laboratories. Consistently with what emerges from
the history of telecommunication switching industry (Fransman 1995; Martinelli
2010), only a limited number of companies (among which the Japanese NEC and
Fujitsu, and Nortel) were involved in developing of ATM switches (the branches
A and B in Fig. 6) in the late 1980s. Finally, Motorola has been active in a
specific and later-developed submarket designing and selling wireless network
infrastructure equipment (for instance: cellular transmission base stations and signal
amplifiers).

Going back to Section 4, we can now return on one of the difference between
the GA and the HDA. In the empirical exercise just carried out, there is no reason
to assume that technology evolution developed only along one path, especially in
case of a technological discontinuity where lot of “search around” is performed. In
the HDA, the search algorithm sequentially searches for a path between each start-
point edges with the highest connectivity measure are sequentially selected up to an
endpoints. It follows that, in the case of the HDA approach, the single ridge con-
necting the two peaks is endogenous in the search algorithm that does not allow for
the emergence of multiple paths. On the contrary, in the analysis so far performed
using the GA approach, no “greedy” algorithm is used and multiple connecting semi-
paths might emerge. From these different algorithms, different considerations about
the time structure emerge. If, on the one hand, in both cases we have the representa-
tion of technology evolution, on the other hand, in the GA, the time dimension is less
constraining, but is still present in the direction of the arcs and in the numbering of
patents.

7 Conclusion

The availability of patents and citations data has increased their use as
innovation indicators. Recently, we observe the emergence of a complementary
approach to patent and citation counts, which is to consider them from a network
perspective. In fact, it is possible to exploit citations to map the technological
relation between inventions (i.e. patents). In this setting, a patent citation
network represents the space of the “technologically possible solutions”, the
structure and dynamics of which characterize technical change in a specific
technology.

The aim of this paper is to propose a new empirical method for identifying tech-
nologically important patents within a patent citation network and to apply it to the
telecommunication switching industry.

The method proposed is inspired by population genetics: as geneticists are inter-
ested in studying patterns of migration and therefore the common origins of people,
in innovation studies we are interested in tracing the origin and the evolution of
today knowledge. In this respect, the genetic parallel is rather clear: as patent A
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cites patent B, we can say that patent A inherits some knowledge from patent
B. At the heart of this genetic method for analyzing patent and citation data is
the persistence index that measures how much knowledge from older patents is
retained (and therefore persists) into the recent patents. Accordingly, to the genetic
parallel, the persistence index is calculated decomposing patent’s knowledge apply-
ing the Mendelian law of genes inheritance. In this framework, the novelty of a
patent (i.e. its inventive step) derives from the recombination of its “inherited”
knowledge.

The empirical exercise of this paper consist in the use of this persistence index for
identifying important patents and citations within the network. In particular, the anal-
ysis of the structure and evolution of the persistence weighted network allows us to
unfold specific patterns of technological change in the case of the telecommunication
switching industry.

If a network approach on patent data is not new, this paper suggests an alterna-
tive method overcoming some limitations in the existing approaches. In particular,
the genetic approach is a flexible method that places very little assumptions on
the possible outcomes of the emerging patterns of technical change. First of all,
this approach is designed to account for differences in technology evolution, mean-
ing that new technologies characterized by different levels of cumulativeness or
radicalness can display different network structures. In this respect, this method
allows for testing hypothesis that are not confined to structural network prop-
erties but that are rooted in innovation studies. Second, the genetic approach
does not make any assumptions about optimality or efficiency structure in the
pattern of network evolution. Again, this means that it accommodates for dif-
ferences in patterns of technical change. Finally, as regards the Hummond and
Doreian approach, the method here presented has a different rationale with less
emphasis on direct links and uniqueness of the emerging pattern of technical
change.

Summarizing, we can conclude that the method proposed is successful in reducing
the number of both nodes and links considered. This reduction might look arbitrary
as it is based on cut-off points. However, the persistence index displays a highly left-
skewed distributions that mimics a scale-free distribution. This makes easier to justify
cut off choices and confirm the idea that few patents are “important” both in terms of
economic value and in terms of knowledge contribution.

Furthermore, our method is indeed successful in identifying technological dis-
continuities where previous knowledge is not relevant for current technologi-
cal development. Indeed, we can show that our methodology can be success-
fully used for identifying different technological paradigms are defined by Dosi
(1982).

As regarding the broader impact of this new methodology, we can expect two
lines of generalization. The first obvious one is the application of the persis-
tence index to other technological fields in order to characterize their cumulative
and disruptive dynamics. The scientific importance of such exercise is to foster
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quantitative research and appreciative theorizing defined as a rigorous storytelling
(Nelson 1989) in studies related to technology dynamics and its effect on industry
dynamics.

The second one concerns the relevance of the methodology to other types
of networks. The GA method could be used to analyze any graph representa-
tion of dynamic evolutionary processes (that follows the arrow of calendar time)
where entities evolve into different/other entities by mutation and/or recombina-
tion while retaining various properties of their predecessors. In fact, all these
processes can, in principle, be represented as a directed and acyclical graph on
which it is possible to apply our method. Nature provides other examples of net-
works with these characteristics, such as: family trees, phylogenetic networks, food
webs, feed-forward neural networks, and software call (Karrer and Newman 2009).
Any such graph is a system that is potentially analyzable by our GA, which is
essentially a fractional system of compound inheritence accounting. Related to
the field of innovation studies, publication citation networks are another acyclical
network “commonly” studied; the application and the interpretation of the per-
sistence index in such context would be rather straightforward. In particular, our
indicator could be used as a scientometrics tool to evaluate the long-run impact
of individual papers and indirectly their authors/affiliated organizations. In his-
torical perspective, the persistence approach differentiates between fashion of the
day and long lasting influence, also refereed in network analysis as the difference
between popularity and prestige. Finally, an other interesting application related to
innovation could be for studying hierarchical organizations of learning (i.e., suc-
cessions of master(s) and apprentices or supervisors and PhD. students) to find out
the most (i.e., persistently) influential/prolific individual or different lineages of
styles/paradigm.

Looking at the limitations of this method, we can identify two main caveats.
If, on the one hand, this method can potentially be applied for comparative stud-
ies about technology dynamics in different technology, on the other hand, this is
only possible for sectors in which patents are used for innovation appropriabil-
ity. Limitations on the methodology itself relate to the (necessary) assumptions
of the use of the Mendelian laws for the operationalization of the persistence
indexes. However, in our connotation of the links between patents, the network
under examination represents a system of both knowledge creation and reten-
tion. Therefore, it sounds plausible to assume that the innovative step in each
patent is in the recombination of existing knowledge (i.e. inherited by the previous
patents).
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Appendix A: Distribution of persistence index

Histogram of the frequency distribution of the persistence index for the first 6 truncations
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Histogram of the frequency distribution of the persistence index for the second 6 truncations
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Histogram of the frequency distribution of the persistence index for the last 3 truncations



Measuring knowledge persistence 649

Appendix B: List of persistent patents

Table 7

Number Issue Technological Persistence Assignee

year class index

2773934 1956 179/15 1 GENERAL DYNAMICS

2917583 1959 370/362 1 BELL LABORATORY

3049593 1962 370/360 1 INT STANDARD ELECTRIC US

3172956 1965 370/376 1 BELL LABORATORY

3458659 1969 370/370 1 NEW NORTH ELECTRIC

3632883 1972 370/368 1 PHILIPS

3736381 1973 370/370 1 BELL LABORATORY

3818142 1974 370/370 1 ERICSON

3975712 1976 714/800 1 MOTOROLA

4093823 1978 370/535 1 CHUWESLEYW

4229792 1980 370/447 1 HONEYWEL

4332027 1982 370/448 1 BUROUGHS

4412326 1983 370/448 1 BELL LABORATORY

4641304 1987 370/447 1 RCA

4773065 1988 370/362 1 TOSHIBA

4941141 1990 370/376 1 NEC

5012469 1991 370/322 1 SARDANA KARAMVIR

5093827 1992 370/354 1 BELL LABORATORY

5214642 1993 370/471 1 HITACHI

5345446 1994 370/358 1 BELL LABORATORY

5390175 1995 370/398 1 ATT

5790806 1998 709/252 1 SCIENTIFIC ATLANTA

5953344 1999 370/443 1 LUCENT TECHNOLOGY

6115390 2000 370/443 1 LUCENT TECHNOLOGY

6272129 2001 370/356 1 3COM

4096355 1978 370/458 0.998 IBM

4074072 1978 370/388 0.994 BELL LABORATORY

5101404 1992 370/398 0.966 HITACHI

3761894 1973 710/53 0.924 BELL LABORATORY

4727536 1988 370/468 0.859 GENERAL DATACOM

5467342 1995 370/253 0.815 SCIENTIFIC ATLANTA

4251880 1981 370/468 0.804 BELL LABORATORY

4759010 1988 370/379 0.804 NEC

5161152 1992 370/463 0.797 ALCATEL

3737586 1973 370/370 0.788 BELL LABORATORY

4245341 1981 370/535 0.785 NATIONALE INDUSTRIEL AROSPATIALE

5303234 1994 370/442 0.774 NEC
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Table 7 (continued)

Number Issue Technological Persistence Assignee

year class index

5142532 1992 370/432 0.768 BRITISH TELECOMUNICATION

3770897 1973 370/510 0.758 ITT

3770897 1973 370/510 0.758 LINK LABORATORY

3456242 1969 709/251 0.739 DIGIAC

3694580 1972 370/371 0.728 BELL LABORATORY

4658152 1987 370/535 0.717 BELL COMUNICATION RESEARCH

4556972 1985 370/354 0.705 BELL LABORATORY

3796835 1974 370/355 0.691 IBM

5327428 1994 370/353 0.682 IBM

5570355 1996 370/352 0.676 LUCENT TECHNOLOGY

4736371 1988 370/236 0.675 NEC

4482999 1984 370/452 0.661 IBM

5894477 1999 370/353 0.652 NORTEL

3649763 1972 370/372 0.65 BELL LABORATORY

4312065 1982 370/230 0.65 TEXAS INSTRUMENT

4408323 1983 370/389 0.65 BELL LABORATORY

3854011 1974 370/510 0.645 GENERAL DYNAMICS

5953330 1999 370/352 0.643 LUCENT TECHNOLOGY

5005171 1991 370/522 0.64 BELL LABORATORY

3740480 1973 370/370 0.633 BELL LABORATORY

4763319 1988 370/397 0.623 BELL COMUNICATION RESEARCH

5355362 1994 370/222 0.618 NEC

4488288 1984 370/393 0.607 BELL LABORATORY

5428608 1995 370/261 0.594 ATT

5623491 1997 370/397 0.593 DSC COMUNICATION

4852089 1989 370/468 0.571 DATA GENERAL

5384777 1995 370/337 0.568 IBM

4063220 1977 340/825 0.563 XEROX

5351236 1994 370/358 0.563 BELL LABORATORY

5982767 1999 370/352 0.555 MITEL

5233606 1993 370/418 0.55 BELL LABORATORY

4621357 1986 370/370 0.549 BELL LABORATORY

5276678 1994 370/267 0.539 INTELECT

3974340 1976 370/228 0.536 ERICSON

5144619 1992 370/353 0.526 NORTEL

5295140 1994 370/443 0.525 MOTOROLA

4679190 1987 370/355 0.523 IBM

4543574 1985 340/825 0.522 NTT
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Table 7 (continued)

Number Issue Technological Persistence Assignee

year class index

3766322 1973 370/422 0.519 PLESSY

4764921 1988 370/510 0.515 NORTEL

4764921 1988 370/510 0.515 NTT

4947388 1990 370/411 0.512 HITACHI

2754367 1956 179/15 0.509 GENERAL ELECTRIC

5784369 1998 370/358 0.5 ERICSON
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