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Abstract This paper studies the firm size distribution arising from an endoge-
nous growth model of quality ladders with expanding variety. The probability
distribution function of a given cohort is a Poisson distribution that converges
asymptotically to a normal of log size. However, due to firm entry propelled
by horizontal R&D, the total distribution—i.e., when the entire population
of firms is considered—is a mixture of overlapping Poisson distributions
which is systematically right skewed and exhibits a fatter upper tail than the
normal distribution of log size. Our theoretical results qualitatively match the
empirical evidence found both for the cohort and the total distribution, and
which has been presented as a challenge for theory to explain. Moreover, by
obtaining a total distribution with a gradually increasing average over a long
time span, the model is able to address complementary empirical evidence that
points to a total distribution subtly evolving over time.
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1 Introduction

Empirical evidence clearly shows that the firm size distribution (FSD) is highly
right-skewed, with the skewness apparently being driven by idiosyncratic
stochastic processes of firm growth (e.g., Sutton 1997). Although the precise
shape of the distribution is a subject of debate, empirical studies suggest that
it is more right skewed (Sutton 1997; Cabral and Mata 2003; Bottazzi et al.
2007, among many others) and exhibits a fatter upper tail (e.g., Axtell 2001;
Gaffeo et al. 2003; Growiec et al. 2008) than the lognormal distribution, which
was originally used as a model for the highly skewed FSD (Gibrat 1931).

On the theoretical side, recent papers have made an important contribu-
tion to this literature by studying the interplay between economic growth,
innovative activity and skewed firm size distributions (Thompson 2001; Klette
and Kortum 2004; Segerstrom 2007), thus formally accommodating the early
Schumpeterian view that linked market structure and the pace of innovation.
In these models, monopolistic competition prevails and the underlying sto-
chastic process of firm growth is a Poisson process of quality ladders (vertical
R&D). This process for innovation then leads to persistent heterogeneity of
size across firms along the balanced-growth path (BGP). Segerstrom (2007)
shows how a model of quality ladders without intersectoral spillovers generates
a skewed FSD, with size being proportional to firm quality. However, in
this model the distribution is (asymptotically) lognormal. Klette and Kortum
(2004) build a quality-ladders model of multi-product firms where each firm’s
product space is time-varying but the overall product space is constant. Firm
size, measured as the number of products per firm, follows a logarithmic series
distribution. Thompson (2001) uses a model where quality ladders display-
ing intersectoral spillovers are combined with variety expansion (horizontal
R&D). A mixed Gamma distribution of firm size is derived, with size being
proportional to relative firm quality. Both the logarithmic and the mixed
Gamma distributions are more skewed and have heavier upper tails than the
lognormal.1

In our paper, an alternative model of monopolistic competition that com-
bines the quality-ladder with the expanding-variety mechanism is considered,
such that a right-skewed, fat-tailed FSD is analytically derived from the
interaction of those two mechanisms along the BGP. Klette and Kortum
(2004), as well as Segerstrom (2007), focus on a single direction of innovative
activity and thus are not able to grasp the link between the properties of the
FSD and the well-known fact that economic growth occurs both along an
extensive (introduction of new goods) and an intensive margin (increase in
good quality) (e.g., Freeman and Soete 1997; Klepper 1996). This shortcoming
is apparently overcome by Thompson (2001). However, the way horizontal

1Along a somewhat different line, the endogenous growth R&D models by Aghion et al. (2001)
and Laincz (2009) allow for the derivation of a non-degenerate cross-section distribution of market
structures, i.e., a distribution of firm sizes as measured by market shares within each industry, taken
across all industries.
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entry is modelled in his model—horizontal innovations do not change the
distribution of relative quality because, by assumption, the distribution of
relative quality among entrants at any date is identical to the distribution
across existing varieties at that date—implies that there is no direct impact
of firm entry on the size distribution; indeed, it is only necessary to take the
vertical innovation process into account when deriving the FSD (for a similar
modelling approach, see Howitt 1999).

In contrast, our paper explicitly analyses the impact of successive cohorts
of firms (indeed of varieties) entering the market in the shape of the FSD, in
order to capture the link between a richer dynamic environment of innovation
and market structure. As in Segerstrom (2007) (see also, e.g., Barro and Sala-
i-Martin 2004, ch. 7), there are no intersectoral spillovers in vertical R&D and
size is linear in firm quality; firm size is thus measured as technological-
knowledge stock per firm, which relates closely to production (sales) per firm.
Hence the FSD of a given cohort is a Poisson distribution that converges
asymptotically to a normal of log size (i.e., a lognormal of size). However,
due to firm entry propelled by horizontal R&D (e.g., Barro and Sala-i-Martin
2004, ch. 6), the total FSD—i.e., the FSD when the entire population of firms
(varieties) is considered—is a mixture of overlapping Poisson distributions
of log size that is systematically right skewed. This feature allows us to
accommodate the empirical evidence reported by Cabral and Mata (2003) and
Cabral (2007), according to which the FSD of a given cohort is significantly
right-skewed at birth but evolving over time toward a lognormal distribution
of size, whereas the total FSD is “fairly stable” and skewed to the right vis-à-
vis the lognormal. This evidence has been presented as a challenge for theory
to explain (Klepper and Thompson 2006).2 Furthermore, our model predicts
a total FSD with an upper tail that is systematically fatter than in the case of
the normal distribution, which is also in accord with the empirical evidence
mentioned earlier. In particular, we show that an (inverse) power-law scaling
behaviour may emerge in the upper tail.3

2As their own explanation, Cabral and Mata (2003) consider the “small-firms selection” argument
based on a theoretical model where financing constraints are especially relevant for small young
firms. However, according to the recent empirical results by Angelini and Generale (2008),
financial constraints are not the main determinant of FSD evolution, especially in financially
developed economies. In a very recent paper, Gallegati and Palestrini (2010) build a statistical
model without entry that explicitly addresses Cabral and Mata’s findings with respect to the FSD
of a cohort of firms. Gallegati and Palestrini give an alternative explanation based on a “sample
selection bias” argument, according to which a cohort of surviving firms may have a positive
average rate of growth, which breaks the assumptions needed to “escape” the lognormal result
(in particular, the assumptions needed in order to have an asymptotic Pareto FSD).
3Although Cabral and Mata (2003) and Cabral (2007) analyse the evidence on FSD with size
measured as employment per firm, a number of recent papers address the sensitivity of the FSD
to different measures of size (employment, sales, capital and value added). Empirical results for
sales per firm are obtained by Axtell (2001) and Gaffeo et al. (2003) (with respect to the tails
weight), Bottazzi et al. (2007) (skewness) and Huynh et al. (2010) (evolution of cohort FSD). The
evidence is qualitatively similar to that obtained when employment is the measure of firm size.
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In our model (potential) entrants perform either vertical R&D, by which
they increase the quality of an existing variety and hence substitute the
incumbent (creative-destruction effect), or horizontal R&D, by which they
create a new variety (e.g., Howitt 1999; Segerstrom 2000; Strulik 2007). Size
upon entry rises over time due to spillovers from incumbents to entrants in
both vertical and horizontal R&D. However, firms entering along the vertical
margin are more efficient, and thus larger, than the incumbent in a given
industry, while firms entering along the horizontal margin, by benefiting from
an imperfect imitation effect, are less efficient, and thus smaller, than the
incumbent average size across industries. Therefore, we capture in a simple
manner the empirical evidence that suggests there is significant variation in the
relative efficiency of new firms (Dunne et al. 1988; Audretsch 1995; Geroski
1995).

Due to the otherwise simple structure of our model, firm exit exists only
in the vertical direction and as part of the mechanism (creative destruction)
by which monopolist size grows over time in a given industry.4 Thus, in
order to derive the FSD, we keep track of the quality level in an arbitrary
industry, irrespective of the fact that the monopolist’s identity in that industry
is changing over time. Moreover, since we focus on the symmetric BGP
equilibrium, the Poisson arrival rates are constant across industries and over
time, implying that the growth rate of size is also constant across industries and
over time. One unfortunate side effect of our approach is then that the growth
rate of size (both in terms of expected value and variance) is independent of
age and size, which is a counterfactual result (see, e.g., Klette and Kortum
2004).

Outside the endogenous growth literature, horizontal entry plays a major
role in shaping the total FSD in many models. A recent paper with an entry
mechanism close to ours is Luttmer (2007). The author emphasises horizontal
entry by linking the expected productivity and size of a potential entrant
to the productivity and size of incumbents, such that the size of entrants
is a constant fraction of the average size of incumbents. Luttmer studies a
dynamic monopolistic-competitive model of entry and exit, where incumbent
firms become more productive at an idiosyncratic exogenous stochastic rate,
while potential entrants can pay an entry cost to select a random incumbent
firm and then—due to imperfect imitation—adopt a scaled-down version of
its technology. A stationary FSD is analytically derived with support given by
relative productivity per firm and with a Pareto upper tail, which is fatter than
the lognormal upper tail.5

4In fact, differently from the standard expanding-variety literature, we allow for entry as well as
exit also along the horizontal direction. However, the structure of the model and, in particular, the
assumption of an R&D lab-equipment specification, imply that positive (net) entry prevails along
the BGP.
5Recent economic models in the same line are developed by Gabler and Licandro (2008) and
Poschke (2009).
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Horizontal entry is pivotal in generating an asymmetric fat-tailed FSD in
yet a different strand of the literature, dedicated to studying statistical models
of firm dynamics.6 For example, Growiec et al. (2008) develop a statistical
model where the FSD is a lognormal distribution multiplied by a “stretching
factor” which increases with the number of firms entering the market; the
FSD is then shown to have a Pareto upper tail. For a very small number of
firms, the “stretching factor” becomes negligible and the distribution is close
to a lognormal. In turn, the submarkets model by Klepper and Thompson
(2006) predicts that, in the steady state, for firms of any age, the distribution
of the number of submarkets in which they participate is Poisson, but the
mean is strictly increasing in age. There is also a corresponding steady-state
distribution of the sizes of these firms, such that the distribution of firms of
a given age is positively skewed and has a Poisson upper tail. The older the
cohort, the greater the mean and variance and the smaller the skewness of
the corresponding FSD. These predicted properties of the FSD are similar to
those in our model and (qualitatively) match those found by Cabral and Mata
(2003) for the FSD of a cohort of firms.

We derive a total FSD that is not stationary, since its average is not
constant over time. This contrasts with the steady-state distributions derived
in the literature (e.g., Thompson 2001; Klette and Kortum 2004; Klepper and
Thompson 2006; Luttmer 2007, and many others). Our result for the average of
firm (log) size, whose positive growth along the BGP reflects the endogenous
growth of quality in our model, is in accordance with the empirical evidence
for firm size measured as sales per firm (e.g., Jovanovic 1993).7 On the other
hand, the variance of the distribution displays a non-monotonic behaviour
over time. In fact, our results show that when the number of cohorts is still
relatively small, the variance quickly increases over time; however, the number
of cohorts has a dampening ef fect on the behaviour of the variance, such that
the variance stabilises as the number of cohorts becomes sufficiently large.

Overall, this implies that if we consider the variance adjusted by the average
firm size and compute the coefficient of variation, we find a monotonically
decreasing time path whatever the number of cohorts. Thus, it is clear that our
FSD is not stationary, even if we consider normalised firm sizes.8 To sum up,
although we are able to obtain a stable total FSD in terms of skewness and
upper-tail weight, in line with the empirical evidence presented by Cabral and
Mata (2003) and others, our theoretical result is also able to address comple-
mentary empirical evidence that points to a FSD subtly evolving over time.

The fact that the FSD is derived within a general equilibrium model of
endogenous growth allows us to derive interesting policy implications. Since

6See de Wit (2005) for an extensive literature review of statistical models of firm dynamics.
7In contrast, Thompson (2001) predicts that firm size, measured as sales per firm, is stationary
along the BGP.
8The focus on normalised firm size—i.e., firm size divided by its average—in order to analyse
the shape of the steady-state FSD when size is non-stationary has been conducted by, e.g., Rossi-
Hansberg and Wright (2007).
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the properties of the FSD can be directly related to the underlying firm
dynamics arising from systematic innovative activity, we are able to study the
effect of R&D subsidies and other forms of industrial policy on economic
growth and on market structure, e.g., measured by concentration. In particular,
our model allows us to study separately the effects of subsidies to vertical and
horizontal R&D. In the literature, the importance of distinguishing between
subsidies has been emphasised by Peretto (1998), although in quite a different
analytical setup that analyses an equilibrium which is symmetric with respect
to firm size; hence, concentration is trivially measured as the reciprocal of
the number of firms. Laincz (2009) studies the impact of R&D subsidies on
concentration within a model where firms are heterogeneous with respect to
size; however, only vertical R&D is considered. Finally, Thompson (2001)
performs comparative statics by focusing on changes in the parameters related
to both vertical and horizontal R&D and the analysis of size distribution is
akin to ours; however, the author does not explicitly address the effect of R&D
subsidies on growth and concentration.

Our comparative-statics results depend upon the source of the change in
the general equilibrium, such that the effect of R&D subsidies and targeted
industrial policies is either growth- and concentration-enhancing or growth-
neutral and concentration-reducing. In general, our predictions confirm the
qualitative results in the papers cited above, while extending them to a
framework where vertical and horizontal R&D explicitly interact in order to
produce a non-degenerate FSD.

The remainder of the paper has the following structure. In the next two
sections, we present the model, giving a detailed account of the production,
price and R&D decisions, and derive the dynamic general equilibrium and
the BGP. In Section 4, we analyse the FSD that results from the interaction
between the expanding variety and the quality-ladders mechanism along the
BGP. In Section 5, we focus on the impact of policy, namely R&D sub-
sidies, on economic growth and market structure. Section 6 presents some
concluding remarks.

2 Model

We explore a dynamic general equilibrium model of a closed economy where
a single competitively-produced final good can be used in consumption, pro-
duction of intermediate goods, and R&D. The final good is produced by a
(large) number of firms each using labour and a continuum of intermediate
inputs indexed by ω ∈ [0, N]. The economy is populated by fixed infinitely-
lived households who inelastically supply labour to final-good firms. In turn,
families make consumption decisions and invest in firms’ equity.

Potential entrants can devote resources either to horizontal or to vertical
R&D. Horizontal R&D increases the number of intermediate-good industries
N, while vertical R&D increases the quality of the good of an existing industry,
indexed by j(ω). Quality level j(ω) translates into productivity of the final
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producer from using the good produced by industry ω, λ j(ω), where λ > 1 is
a parameter measuring the size of each quality upgrade. By improving on the
current best quality j, a successful R&D firm will introduce the leading-edge
quality j(ω) + 1 and hence render inefficient the existing input supplied by the
producer of ω. Therefore, the successful innovator will become a monopolist in
ω. However, this monopoly is temporary, because a new successful innovator
will eventually substitute the incumbent.

2.1 Households

The economy is populated by a fixed number of infinitely-lived households
who consume and collect income from investments in financial assets (equity)
and from labour. Households inelastically supply labour to final-good firms;
thus, total labour supply, L, is exogenous and constant. We assume con-
sumers have perfect foresight concerning the aggregate rate of technological
change over time,9 and choose the path of final-good aggregate consumption
{C(t), t ≥ 0} to maximise the discounted lifetime utility

U =
∫ ∞

0

(
C(t)1−θ − 1

1 − θ

)
e−ρtdt, (1)

where ρ > 0 is the subjective discount rate and θ > 0 is the inverse of the
intertemporal elasticity of substitution, subject to the flow budget constraint

ȧ(t) = r(t) · a(t) + w(t) · L − C(t), (2)

where a denotes households’ real financial assets holdings, r the equilibrium
market real interest rate and w the real labour wage. The initial level of wealth
a(0) is given, whereas the non-Ponzi games condition limt→∞a(t)e− ∫ t

0 r(s)ds ≥ 0
holds. The optimal path of consumption satisfies the well-known differential
Euler equation

Ċ(t)
C(t)

= 1

θ
· (r(t) − ρ) , (3)

as well as the transversality condition lim
t→∞e−ρtC(t)−θa(t) = 0.

2.2 Production and price decisions

The final-good firm has a constant-returns-to-scale technology using labour
and a continuum of intermediate goods with measure N and individual quality

9As we will see below, the uncertainty in R&D at the industry level creates jumpiness in
microeconomic outcomes. However, as the probabilities of successful R&D across industries
are independent and there is a continuum of industries, this jumpiness is not transmitted to
macroeconomic variables.
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level j, both changing over time t, which is well-known from Barro and Sala-i-
Martin (2004, ch. 6 and 7)

Y(t) = L1−α

∫ N(t)

0

(
λ j(ω,t) · X(ω, t)

)α
dω, 0 < α < 1, λ > 1, (4)

where L is the labour input and 1 − α is the labour share in production, λ is the
size of each quality upgrade, and λ j(ω,t) · X(ω, t) is the input of intermediate
good ω measured in efficiency units at time t.10 That is, we integrate the
final-producer technology that is considered in variety-expansion and quality-
ladders models (Barro and Sala-i-Martin 2004, ch. 6 and 7, respectively).

Final producers are price-takers in all the markets in which they participate.
They take wages, w(t), and input prices P(ω, t) as given and sell their output at
a price equal to unity. From the profit maximisation conditions, we determine
the aggregate demand of intermediate good ω as

X(ω, t) = L ·
(

λα j(ω,t) · α
P(ω, t)

) 1
1−α

, ω ∈ [0, N(t)]. (5)

The intermediate-good sector consists of a continuum N(t) of industries.
There is monopolistic competition if we consider the whole sector: the monop-
olist in industry ω fixes the price P(ω, t) but faces the isoelastic demand curve
(Eq. 5). We assume that the intermediate good is non-durable and entails a unit
marginal cost of production, in terms of the final good, whose price is taken as
given. The profit maximising price in industry ω is a constant markup over
marginal cost P(ω, t) ≡ P = 1/α > 1,11 which implies the aggregate quantity
produced of ω

X(ω, t) = L · (
λα j(ω,t) · α2

) 1
1−α . (6)

Using the results above we get the profit accrued by the monopolist in ω

π(ω, t) = π̃ · L · λ α
1−α

j(ω,t), (7)

where π̃ ≡ (1/α − 1) · α 2
1−α .

Substituting Eq. 6 in Eq. 4 yields the aggregate output

Y(t) = α
2α

1−α · L · Q(t), (8)

where

Q(t) =
∫ N(t)

0
λ

α
1−α

j(ω,t)dω (9)

is the intermediate-input aggregate quality index, which measures the
technological-knowledge level of the economy, since, by assumption, there

10In equilibrium, only the top quality of each ω is produced and used; thus, X( j, ω, t) = X(ω, t).
Henceforth, we only use all arguments ( j, ω, t) if they are useful for expositional convenience.
11We assume that innovations are drastic, i.e., 1/α < λ, such that existing monopolies do not need
to limit price and can instead charge the unconstrained monopoly price.
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are no intersectoral spillovers. Total resources devoted to intermediate input
production are also a linear function of Q(t)

X(t) =
∫ N(t)

0
X(ω, t)dω = α

2
1−α · L · Q(t), (10)

as are total profits

�(t) =
∫ N(t)

0
π(ω, t)dω = π̃ · L · Q(t). (11)

2.3 R&D

We take the simplifying assumptions that both vertical and horizontal R&D
are performed by (potential) entrants, and that successful R&D leads to the
set-up of a new firm in either an existing or in a new industry (e.g., Howitt
1999; Segerstrom 2000; Strulik 2007). Moreover, there is perfect competition
among entrants and free entry in R&D business.

As in the standard model of quality ladders, vertical R&D constitutes the
search for new designs that lead to a higher quality of existing intermediate
goods. Each new design is granted a patent and thus a successful innovator
retains exclusive rights over the use of his/her good. By improving on the
current top quality level j(ω, t), a successful R&D firm earns monopoly profits
from selling the leading-edge input of j(ω, t) + 1 quality to final-good firms. A
successful innovation will instantaneously increase the quality index in ω from
q(ω, t) = q( j ) ≡ λ

α
1−α

j(ω,t) to q+(ω, t) = q( j + 1) = λ
α

1−α q(ω, t). In equilibrium,
lower qualities of ω are priced out of business.

Let Ii ( j) denote the Poisson arrival rate of vertical innovations (vertical-
innovation rate) by potential entrant i in industry ω when the highest quality
is j. Rate Ii ( j) is independently distributed across firms, across industries and
over time, and depends on the flow of resources Rvi ( j) committed by entrants
at time t. As in, e.g., Barro and Sala-i-Martin (2004, ch. 7), Ii ( j) features
constant returns in R&D expenditures, Ii ( j) = Rvi ( j) · 	 ( j), where 	 ( j) is
the R&D productivity factor, which is assumed to be homogeneous across i in
ω. We assume

	( j ) = 1

ζ · L · q( j + 1)
(12)

where ζ > 0 is a constant flow fixed cost. With Eq. 12, we wish to capture the
idea that the larger the scale of expected production of a firm, L · q( j + 1),
is (see Eq. 6), the larger the costs necessary to discover and develop the
associated technology will be: e.g., construction of prototypes and samples,
new assembly lines and training of workers. These assumptions guarantee
that spending in R&D increases at the same rate as output, delivering a BGP
without scale effects, in line with the last generation of quality-ladders models
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(e.g., Barro and Sala-i-Martin 2004).12 Also, differently from Howitt (1999)
and others, we assume that there are no intersectoral spillovers in vertical
R&D (e.g., Segerstrom 2007; Etro 2008). Aggregating across i in ω, we get
Rv( j ) = ∑

i Rvi( j ) and I( j ) = ∑
i Ii( j ), and thus

I( j ) = Rv( j ) · 1

ζ · L · q( j + 1)
(13)

As the terminal date of each monopoly arrives as a Poisson process with
frequency I( j ) per (infinitesimal) increment of time, the present value of a
monopolist’s profits is a random variable. Let V( j ) denote the expected value
of an incumbent firm with current quality level j(ω, t),13 such that V( j ) =
π( j )

∫ ∞
t e− ∫ s

t (r(v)+I( j(v)))dvds, where π( j ), given by Eq. 7, is constant in-between
innovations. We antecipate that, along the BGP, r and I are constants; hence,
we can further write

V( j ) = π( j )
r + I( j )

. (14)

On the other hand, free-entry prevails in vertical R&D such that the condition
I( j ) · V ( j + 1) = Rv( j ) holds, which implies that

V ( j + 1) = 1

	( j )
= ζ · L · q( j + 1). (15)

By substituting Eq. 14 into Eq. 15 and using Eq. 7 to simplify, we get the
arbitrage equation facing a vertical innovator

r + I = π̃

ζ
(16)

According to Eq. 16, the rates of entry are symmetric across industries,
I( j ) = I.

Variety expansion arises from R&D aimed at creating a new intermediate
good. Again, innovation is performed by a potential entrant, which means
that, because there is free entry, the new good is produced by a new firm.
Under perfect competition among R&D firms and constant returns to scale at
the firm level, instantaneous entry is obtained as

.

Ne(t) = 1/η · Rne (t), where
.

Ne(t) is the contribution to the instantaneous flow of new varieties by R&D
firm e at a cost of η units of the final good and Rne (t) is the flow of resources
devoted to horizontal R&D by innovator e at time t. The cost η is assumed to
be symmetric, with η ≡ η(t) = φN(t)β , where φ and β are positive constants
(e.g., Evans et al. 1998; Barro and Sala-i-Martin 2004, ch. 6). That is, the
cost of setting up a new variety (cost of horizontal entry) is increasing in the

12Moreover, the increasing difficulty in creating new qualities over t due to the growth in j exactly
offsets the increasing rewards from marketing higher qualities—see Eqs. 12 and 7. As shown
below, this allows for a constant Poisson rate along the BGP.
13We assume that entrants are risk-neutral and, thus, only care about the expected value of
the firm.
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number of existing varieties, N; the scale of the economy induces a negative
externality in the form of a barrier to entry because it becomes costlier to
introduce new varieties in large growing economies. Then, Rn = ∑

e Rne and
.

N(t) = ∑
e

.

Ne(t), implying

Rn(t) = η(t) · Ṅ(t) (17)

Next, consider the average of the quality index for the existing varieties

μq(t) =
∫ N(t)

0

q(ω, t)
N(t)

dω = Q(t)
N(t)

. (18)

We assume that the horizontal innovator enters with quality level mμq(t),
where m is a positive constant; i.e., there is a spillover from incumbents to
potential entrants. However, while, e.g., Howitt (1999) and Thompson (2001)
consider m = 1, we posit m ∈ (0, 1). The fact that firms enter with a scaled-
down version of the average quality level of existing varieties, for instance
due to imperfect imitation of incumbents’ technology (e.g., Luttmer 2007;
Poschke 2009),14 implies that firms entering along the horizontal margin are
less efficient, and thus smaller (see Eq. 6), than the incumbent average size
across industries. This assumption captures the empirical observation that
new firms start, on average, with small market shares relative to incumbents
(Dunne et al. 1988; Geroski 1995; McCloughan 1995). In contrast, as explained
above, firms entering along the vertical margin are more efficient, and thus
larger, than the incumbent in a given industry; this introduces significant
variation in the relative efficiency of new firms in our model, which is also
in line with the empirical evidence (e.g., Audretsch 1995; Geroski 1995).

As the horizontal innovator’s monopoly power will be also terminated
by the arrival of a successful vertical innovator in the future, the benefits
from entry are given by V(μq) = μπ(t)

∫ ∞
t e− ∫ s

t [r(ν)+I(μq(ν))]dνds, where μπ =
π̃ Lmμq (see Eq. 7). Analogously to V( j ) in Eq. 14, we then have

V(μq) = μπ(t)
r + I(μq)

. (19)

The free-entry condition is Ṅ · V(μq) = Rn, which simplifies to

V(μq) = η(t). (20)

Substituting Eq. 19 into Eq. 20, yields the arbitrage equation facing a horizon-
tal innovator

r + I = μπ(t)
η (t)

. (21)

14As noted by Poschke (2009), one possible explanation is that potential entrants cannot copy
incumbents perfectly due to tacitness of knowledge embodied in these firms. However, the entry
mechanism can be interpreted in other ways besides imitation. For instance, one can consider
incumbents’ productivity as an indicator of knowledge in the economy. If entrants can draw on
that, either as a spillover or because it is embodied in the production facilities they acquire upon
entry, then they benefit from incumbents’ productivity.
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Finally, no-arbitrage in the capital market requires that the two types of
investment—vertical and horizontal R&D—yield equal rates of return; other-
wise, one type of investment dominates the other and a corner solution obtains.
Thus, if we equate the effective rate of return r + I for both types of entry by
considering Eqs. 16 and 21, we get the inter-R&D arbitrage condition

μq(t) = Q (t)
N (t)

= η (t)
ζ Lm

. (22)

This condition is one of the key ingredients of the model. It equates the cost
of vertical R&D, ζ , to the (effective) cost of horizontal R&D, η/(Lmμq).
Furthermore, by rewriting Eq. 22 as π̃/ζ = (π̃ Lm/φ) · Q/Nβ+1, we see that
the inter-R&D arbitrage condition defines a unique intersection between the
two (effective) rates of return in the space (N, r + I), for a given level of
technological knowledge, Q. It can then be shown that, whatever the value
of the positive constants ζ , φ, m and L, an interior solution obtains with
simultaneous vertical and horizontal R&D as a stable equilibrium for the
capital market:15 to the left of the equilibrium (when the number of varieties,
N, is too small for a given Q), the rate of return to horizontal R&D is higher
than the rate of return to vertical R&D, funds are reallocated from vertical to
horizontal R&D such that N increases relatively to Q, and the market moves
back to the intersection point; to the right of the equilibrium (N is too large
for a given Q), the opposite movement is observed (see, e.g., Peretto 1998, for
a similar analysis).

3 Balanced-growth path

The aggregate financial wealth held by all households is a(t) = ∫ N(t)
0 V(ω, t)dω,

which, from the arbitrage condition between vertical and horizontal entry,
yields a(t) = η(t) · N(t). Taking time derivatives and comparing with Eq. 2, we
get an expression for the aggregate flow budget constraint which is equivalent
to the product market equilibrium condition (see Gil et al. 2010)

Y(t) = C(t) + X(t) + Rv(t) + Rn(t). (23)

The dynamic general equilibrium is defined by the allocation {X(ω, t),
ω ∈ [0, N(t)], t ≥ 0}, by the prices {p(ω, t), ω ∈ [0, N(t)], t ≥ 0} and by the
aggregate paths {C(t), N(t), Q(t), I(t), r(t), t ≥ 0}, such that: (i) consumers,
final-good firms and intermediate-good firms solve their problems; (ii) vertical,
horizontal and inter-R&D arbitrage conditions are met; and (iii) markets clear.

15If we consider the capital market equilibrium represented in the space (N, r + I), a graph can
be drawn with, e.g., the number of varieties, N, on the horizontal axis (conditional on Q) and
the effective rate of return, r + I, on the vertical axis. Then, Eq. 16 defines a horizontal line,
while Eq. 21 is always downward-sloping in N (for a given Q), hence crossing Eq. 16 from above
whatever the value of the positive constants ζ , φ, m and L.
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We now derive and characterise the BGP. Let gy ≡ ẏ/y represent the
growth rate of variable y(t). Along the BGP, the aggregate resource constraint
(Eq. 23) is satisfied with Y, X, C, Rv and Rn growing at the same constant rate.
By considering Eq. 8 and by time-differentiating Eq. 22 with η(t) = φN(t)β ,
the following necessary conditions for the existence of a BGP are derived:
(i) gC = gQ = g; (ii) gI = 0; and (iii) gQ/gN = (β + 1), gN �= 0. Observe that
g is the long-run aggregate growth rate and that gQ and gN are monotonically
related.

If we assume that the number of industries, N, is large enough to treat Q as
time-differentiable and non-stochastic, then we can time-differentiate Eq. 18 to
get Q̇(t) = ∫ N(t)

0 q̇(ω, t)dω + q(N, t)Ṅ(t). After some algebraic manipulation of
the latter, we can write, for I > 0,

gQ = I · (
λ

α
1−α − 1

) + gN. (24)

Next, solve Eq. 3 with respect to r and note that, along the BGP, gC = gQ = g,
to get r = ρ + θg. The latter, combined with g = (β + 1) · gN , Eqs. 24 and 16,
yields

g = δ (β + 1)
(
λ

α
1−α − 1

)
(β + 1)

(
λ

α
1−α − 1

) + β/θ
. (25)

gN = δ
(
λ

α
1−α − 1

)
(β + 1)

(
λ

α
1−α − 1

) + β/θ
, (26)

I = δβ

(β + 1)
(
λ

α
1−α − 1

) + β/θ
, (27)

where δ ≡ (π̃/ζ − ρ) /θ . Observe that lim
β→∞g = gno−entry and that g, gN, I > 0

require δ > 0. Since, from Eq. 3, g = gC = (r − ρ) /θ , then r > ρ must occur;
this condition also guarantees gN > 0.16 Thus, under a sufficiently productive
technology, our model predicts a BGP with constant positive g and gN , where
the former exceeds the latter by an amount corresponding to the growth of
intermediate-good quality, driven by vertical innovation; to verify this, just
check Eq. 24 and solve to get Q̇/Q − Ṅ/N = I

(
λ

α
1−α − 1

)
, which is positive

if I > 0. This implies that the consumption growth rate equals the growth rate
of the number of varieties plus the growth rate of intermediate-good quality,

16Also, considering a(t) = η(t) · N(t) and Eq. 22, we re-write the transversality condition as

lim
t→∞e−ρtC(t)−θ ζ · L · Q(t) = lim

t→∞e−ρt
(

C(t)
Q(t)

)−θ

ζ · L ·
(

Q̂egt
)1−θ = 0 (28)

where Q = Q̂egt and Q̂ denotes detrended Q. Thus, the transversality condition implies ρ >

(1 − θ)g; i.e., r > g, since g = (r − ρ) /θ . This condition also guarantees that attainable utility is
bounded, i.e., the integral (Eq. 1) converges to infinity.
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in line with the view that industrial growth proceeds both along an intensive
and an extensive margin (e.g., Peretto 1998; Howitt 1999; Thompson 2001).

The number of firms along the BGP is also of interest. Given Eq. 22 and our
assumption of η(t) = φN(t)β , we find

N =
(

m · ζ · L
φ

· Q
) 1

β+1

(29)

Observe that m and φ have no growth effects, i.e., no impact on the BGP values
of the growth rates, g and gN , and the Poisson rate, I (see Eqs. 25–27), but have
a level effect, by influencing the number of firms, N, along the BGP.

4 Firm size distribution

This section is concerned with the properties of the firm size distribution (FSD)
in the intermediate-good sector that results from the interaction between the
expanding variety and the quality-ladder mechanism along the BGP, bearing
in mind that both the rate of variety expansion, gN , and the Poisson (quality-
ladders) rate, I, are constant across industries and over time (see Eqs. 26
and 27).

With firm size measured as production (or sales) per firm, X(ω, t), Eq. 6
then implies that size is proportional to the quality index q(ω, t) = q( j ) ≡
λ

α
1−α

j(ω,t). On the other hand, recall that the intermediate-good sector consists
of a continuum N of industries, each one comprising a monopolist that will
eventually be replaced by a new successful innovator in the vertical direction.
Due to the assumption of perfect spillovers from incumbents to entrants in
vertical R&D, firms in each existing industry enter at a size proportional
to q( j + 1), i.e., immediately above the size, proportional to q( j ), of the
incumbent they have just replaced. Therefore, in order to derive the FSD, we
will keep track of an arbitrary j corresponding to a monopolist with quality
index q( j ) in a given industry ω, irrespective of the fact that the monopolist’s
identity is changing over time.

4.1 Firm size distribution of a given cohort

First, we consider the FSD for a given cohort c of varieties, i.e., for the measure
of firms that enter at time t = tc and become monopolists in new industries pro-
ducing new varieties indexed by ωc ∈ ]

Ntc−ε, Ntc

]
, where ε > 0 is the time span

between consecutive cohorts and Nt = 0 if t < 0; since these monopolists will
eventually be replaced by new successful innovators in the vertical direction,
we are tracking the FSD for a specified set of goods, but not for the same firms
over time. Under continuous time, and since gN = Ṅ/N is an instantaneous
growth rate, then limε→0

(
Ntc − Ntc−ε

)
/ε = NgN , which is positive provided N

and gN are positive.
As an initial condition, we assume that j = jc ≥ 0 for all industries ωc at

t = tc. Then Eq. 6 implies that all of these industry monopolists start off with
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the same size at time t = tc. Since the same vertical innovation rate I prevails
in all industries and is constant over time, the distribution of an arbitrary j is
Poisson with parameter I(t − tc). The mean of this distribution is I(t − tc) and
the variance is also I(t − tc), so both the mean and the variance of j increase
over t.

A well-known property of the Poisson distribution with parameter � is that
it converges to a normal distribution with mean � and variance � as this
parameter converges to infinity. Thus, for sufficiently large t − tc, the distri-
bution of j becomes approximately normal with mean I(t − tc) and variance
I(t − tc). Now, Eq. 6 implies that lnX = lnB + k · j, where B ≡ Lα

2
1−α > 0 and

k ≡ [
α/(1 − α)

]
lnλ > 0 are constants. Then, lnX is approximately normally

distributed with mean lnB + kI(t − tc) and variance k2 I(t − tc). Thus, the
distribution of firm size X is approximately lognormal when t − tc is large. A
direct corollary is that, as regards a given cohort, both the average and the
variance of size increase monotonically over time.

This result allows us to accommodate the important evidence reported by
Cabral and Mata (2003) and Cabral (2007), according to which the FSD of a
given cohort is significantly right-skewed at birth—in our case, corresponding
to a Poisson distribution of log size—but evolving over time toward a normal
distribution of log size (i.e., a lognormal of size). Figure 1 depicts the FSD of a
given cohort by considering the probability function of log size over time (see
also Table 1).17

4.2 Total firm size distribution

4.2.1 Derivation

Now, we focus on the total FSD, i.e., the FSD when the entire set of varieties
is considered. We show that the FSD is an overlapping mixture of Poisson
distributions which is systematically right skewed and exhibits a fatter upper
tail than the normal distribution for log size.

Consider again a given cohort of varieties, born at time tc and produced
by monopolists in new industries indexed by ωc ∈ ]

Ntc−ε, Ntc

]
. For ease of

exposition and without loss of generality, let us assume ε = 1 such that the
measure of a given cohort can be represented by the discrete increment
�tc = Ntc − Ntc−1, where c, t ∈ N. Let q̄t denote the average of the quality index
q ≡ λ

α
1−α

j at time t and j̄t the level of j implicit in q̄t. Also, let

z ≡ ln q = k · j, k ≡ [
α/(1 − α)

]
lnλ. (30)

17The cohort distributions in Fig. 1 and Table 1 are computed by considering the baseline
parameter values that are described in Section 4.2.2, below.
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Fig. 1 The firm-size distribution (FSD) of a given cohort as depicted by the probability function
of log size over time (computation with the baseline parameter values): the cohort FSD is
significantly right-skewed at birth, corresponding to a Poisson distribution, but evolves over time
toward a normal distribution of log size (i.e., a lognormal of size)

In order to derive the distribution of z in Eq. 30, we heuristically analyse the
evolution of the successive cohorts over time, which can then be described by
the following steps:18

1. At instant tc = 0, cohort c = 0 is born, such that �0 = N0, j̄0 = 0, q̄0 = 1,
and:

a. The quality level of the firms belonging to the cohort c = 0 (�0)
evolves following Po(It) + j̄0 over [0, t[;

18Bearing in mind that simultaneous vertical and horizontal R&D is a stable equilibrium in the
capital market (see Section 2.3), we assume throughout the simulation exercise that the number of
firms, N, at time t satisfies the inter-R&D arbitrage condition (22) given the level of technological
knowledge, Q, also at t, for t ≥ 0. That is, we assume that Eq. 22 holds for the first cohort, when
N = N0 (and Q = Q0); subsequently, as new cohorts enter the market, the assumption that N
grows in tandem with Q at the constant rate gN = gQ/(1 + β) (see Eqs. 24 and 26) ensures that
condition (22) continues to hold along the BGP. Thus, whatever the number of cohorts considered
in each step of the simulation exercise, the corresponding N is implied by Q such that a BGP
equilibrium with simultaneous vertical and horizontal R&D always holds as determined by Eq. 22.
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Table 1 The properties of the FSD of a given cohort over time (computation with the baseline
parameter values)

t = 100 t = 250 t = 500 t = 1,000 t = 1,500 t = 2,000 t = 2,500

E(z) 2.9060 7.2650 14.5300 29.0600 43.5900 58.1200 72.6500
V(z) 2.9060 7.2650 14.5300 29.0600 43.5900 58.1200 72.6500
Variation coeff. 0.4493 0.2260 0.1344 0.0799 0.0589 0.0475 0.0402
Skewness coeff. 0.5866 0.3710 0.2623 0.1855 0.1515 0.1312 0.1173
Upper-tail weight coeff. 1.0978 1.0847 1.0641 1.0490 1.0380 1.0332 1.0313
Lower-tail weight coeff. – 0.8880 0.9138 0.9456 0.9563 0.9622 0.9992

b. The average quality index for all pre-existent cohorts at t = 1 (�0) is
given by

q̄1 = λ
α

1−α
(I+ j̄0) = λ

α
1−α

I .

2. At instant tc = 1, cohort c = 1 is born, such that N1 = N0egN , �1 = N1 −
N0 = N0(egN − 1), q̄1 = λ

α
1−α

(I+ j̄0) = λ
α

1−α
I , and:

a. The quality level of the firms belonging to the cohort c = 1 (�1)
evolves following Po(I(t − 1)) + j̄1 over [1, t[, such that j̄1 solves
λ

α
1−α

j̄1 = 1 + m(q̄1 − 1).19 Thus, j̄1 = ln (1 + m(q̄1 − 1)) /k, m ∈ (0, 1);
b. The average quality index for all pre-existing cohorts at t = 2 (�0 +

�1) is given by

q̄2 = �0λ
α

1−α
(2I+ j̄0) + �1λ

α
1−α

(I+ j̄1)

N1

= λ
α

1−α
Ie−gN

(
q̄1 + (egN − 1)λ

α
1−α

j̄1
)

.

3. At instant tc = 2, cohort c = 2 is born, such that N2 = N0e2gN = N1egN ,
�2 = N2 − N1 = N1(egN − 1), q̄2 = λ

α
1−α

Ie−gN

(
q̄1 + (egN − 1)λ

α
1−α

j̄1
)

, and:

a. The quality level of the firms belonging to the cohort c = 2 (�2)
evolves following Po(I(t − 2)) + j̄2 over [2, t[, such that j̄2 solves
λ

α
1−α

j̄2 = 1 + m(q̄2 − 1). Thus, j̄2 = ln (1 + m(q̄2 − 1)) /k;
b. The average quality index for all pre-existing cohorts at t = 3 (�0 +

�1 + �2) is given by

q̄3 = �0λ
α

1−α
(3I+ j̄0) + �1λ

α
1−α

(2I+ j̄1) + �2λ
α

1−α
(I+ j̄2)

N2

= λ
α

1−α
Ie−gN

(
q̄2 + (egN − 1)λ

α
1−α

j̄2
)

.

19Observe that, for all t, 1 + m(q̄t − 1) ≈ mq̄t for q̄t large enough, where m ∈ (0, 1) denotes the
degree of imperfect imitation by horizontal entrants (see Section 2.3). However, since 1 + m(q̄t −
1) > 1 provided q̄t ≥ 1, we can compute ln (1 + m(q̄t − 1)) as a positive number for any arbitrarily
small (non-negative) value of m and q̄t . This is not the case for ln (mq̄t), because mq̄t may take
values below unity.
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4. Finally, at instant tc = t − 1, cohort c = t − 1 is born, such that Nt−1 =
N0e(t−1)gN = Nt−2egN ,�t−1 = Nt−1 − Nt−2 = Nt−2(egN − 1), and:

a. The quality level of the firms belonging to the cohort c = t − 1 (�t−1)
evolves following Po(I(t − tc)) + j̄t−1 over [tc, t[, such that j̄t−1 solves
λ

α
1−α

j̄t−1 = 1 + m(q̄t−1 − 1), which implies j̄t−1 = ln (1 + m(q̄t−1 − 1)) /k;
b. The average quality index for all pre-existing cohorts at t (�0 + �1 +

... + �t−1) is given by

q̄t = λ
α

1−α
Ie−gN

(
q̄t−1 + (egN − 1)λ

α
1−α

j̄t−1

)
, t � 2.

Then, at instant t ≥ 1, the distribution of z is a mixture of overlapping Poisson
distributions with the following cumulative distribution function (cdf)

Ft(z) =
t∑

i=0

�i

Nt
FPo(I(t−i)+ j̄i)(z/k) =

t∑
i=0

�i

N0egNt
FPo(I(t−i))(u), (31)

where u = (z − ln(1 + m(q̄i − 1))) /k, Nt = N0egNt, �0 = N0, �i = N0
(
egN −

1
)
egN(i−1) for i ≥ 1, and FPo(I(t−i)) (u) denotes the cdf of the Poisson distribution

with parameter I (t − i) evaluated at u.
The distribution in Eq. 31 reflects the systematic horizontal entry along the

BGP. As one can see, the total FSD is a direct function of the technological
parameters α, λ (through k) and m, and an indirect function of the remaining
structural parameters of the model, through their influence on the endogenous
variables gN and I (see Eqs. 26 and 27). In contrast, the distribution does not
depend on the size of the first cohort, N0, which is predetermined in the model.

Moreover, considering that R&D expenditures per firm are also propor-
tional to the quality index q( j ) ≡ λ

α
1−α

j(ω,t) (to see this, solve Eq. 13 in order
to Rv), we conclude that the distribution of R&D expenditure is also given
by Eq. 31. Then, R&D intensity (defined by the ratio of R&D expenditure
to sales) is constant across firms, which implies that the model predicts R&D
intensity is independent of firm size. This matches one of the stylised facts that
have emerged from recent empirical studies using firm-level data (see Klette
and Kortum 2004, and also Segerstrom 2007).

4.2.2 Properties

The sth moment of the variable z, E (zs), with cdf in Eq. 31, is given by

E
(
zs) = ∑

z=ln(1+m(q̄i−1))+ku,u=0,1,2,...z
s ft(z) =

=
∞∑

u=0

{
t∑

i=0

(ln(1 + m(q̄i − 1)) + ku)
s �i

Nt
fPo(I(t−i))(u)

}
=

=
∞∑

u=0

{
t∑

i=0

(ln(1 + m(q̄i − 1)) + ku)
s �i

N0egNt

e−I(t−i) (I(t − i))u

u!

}
, (32)
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where s = 0, 1, 2, ..., ft(z) is the probability function of log size z, and
fPo(I(t−i))(u) is the probability function of the Poisson distribution with para-
meter I (t − i) evaluated at u. Since it is not possible to obtain an analytical
expression of the sum of the series in Eq. 32, we proceed with our analysis by
computing approximate numerical results.

To do so, we calibrate the model with the following baseline parameter
values: β = 2.4, φ = 1, ζ = 0.7, λ = 2.5, ρ = 0.02, θ = 1.5, α = 0.4, L = 1, and
m = 0.4. Since they have no impact on the FSD, φ and L are normalised to
unity; in particular, the latter implies that all aggregate magnitudes can be in-
terpreted as per capita magnitudes. Given that along the BGP gQ − gN = βgN ,
we calibrate β by computing the ratio between the growth rate of the average
firm size and the growth rate of the number of firms we have found in the
empirical data.20 The value for m follows from the empirical evidence reported
by Geroski (1995) and McCloughan (1995) (see more references therein),
according to which the average size of entrants ranges, respectively, between
33 and 50%, and between 25 and 66% of the average size of incumbents; thus,
we chose roughly the mid-point value for m. The values for θ , ρ and α are set in
line with the standard literature (see, e.g., Barro and Sala-i-Martin 2004). The
values of the remaining parameters, ζ and λ, are chosen in order to calibrate
the BGP aggregate growth rate, g, around 3.5 percent/year, corresponding to
the average growth rate of World GDP in 1992–2007. Then, the implied values
for gN and I are, respectively, 1.0 and 2.9%/year. The latter then means that
the model predicts an average lifetime of a design of 34 years, which is within
the range of values considered in the empirical literature (see Strulik 2007).
Moreover, the implied value for the real interest rate is 7.2%, in line with the
empirical value for the long-run average real return on the stock market, and
which should be taken as the equilibrium rate of return to R&D, as argued
by Jones and Williams (2000). Nonetheless, extensive sensitivity analysis has
shown that the results presented hereafter are robust, in qualitative terms, to
changes in the underlying parameters (see Section 5 and the Appendix).

In Table 2 and Fig. 2, we characterise the FSD by considering the probability
function of log size ft(z) for an increasing number of cohorts over time, while
we let the parameters of the model take their baseline values throughout
the analysis. The skewness and the tail-weight coefficients compare the FSD,
in Eq. 31, with a normal distribution of log size with the same average and
variance.21 The interpretation of their values is as follows: if the skewness

20The data concerns 23 European countries in the period 1995–2005 and is available from the
Eurostat on-line database (link at http://epp.eurostat.ec.europa.eu).
21We consider the Fisher skewness coefficient of a distribution F, which is given by μ3/μ

3
2,

where μs denotes the s-th central moment of F. As regards the tail weight, we consider modified
versions of the tail-weight coefficient defined in Hoaglin et al. (1983). Thus, the right-tail

weight is given by
(

F−1(0.99)−F−1(0.5)

F−1(0.75)−F−1(0.5)

) (
�−1(0.99)−�−1(0.5)

�−1(0.75)−�−1(0.5)

)−1
and the left-tail weight is given by(

F−1(0.5)−F−1(0.01)

F−1(0.5)−F−1(0.25)

) (
�−1(0.5)−�−1(0.01)

�−1(0.5)−�−1(0.25)

)−1
, where F−1 and �−1 denote the inverse cdf of F and of

the standard Normal, �, respectively.

http://epp.eurostat.ec.europa.eu
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Table 2 The total FSD properties for an increasing number of cohorts/periods of time (computa-
tion with the baseline parameter values)

t = 100 t = 250 t = 500 t = 1,000 t = 1,500 t = 2,000 t = 2,500

E(z) 1.4399 3.1288 5.9660 11.7786 17.6038 23.4286 29.2539
V(z) 0.7916 1.3266 1.4343 1.4182 1.4175 1.4178 1.4189
Variation coeff. γz 0.6179 0.3681 0.2007 0.1011 0.0676 0.0508 0.0407
Skewness coeff. 0.8358 1.4837 1.7513 1.7716 1.7702 1.7700 1.7678
Upper-tail weight coeff. 1.2850 1.4089 1.6824 1.6653 1.6655 1.6651 1.6651
Lower-tail weight coeff. – 0.8912 0.9854 0.9994 0.9999 1.0286 1.0286

coefficient is above (below) zero, then the FSD is right (left) skewed (this coef-
ficient for the normal distribution is zero); if the upper (lower) tail coefficient is
above unity, the FSD has an upper (lower) tail heavier than the upper (lower)
tail of the normal distribution. As already explained, since we are only able
to compute approximate numerical results, small variations in the coefficients,
especially if they do not show persistence in direction (i.e., upwards or down-
wards), should be interpreted with due caution. The same applies to changes in

Fig. 2 The total firm-size distribution (FSD) as depicted by the probability function of log
size ft(z) for an increasing number of cohorts/periods of time (computation with the baseline
parameter values): the FSD is systematically right skewed and exhibits a fatter upper tail than the
normal distribution of log size
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the average, E(z), in the variance, V(z), and thus in the variation coefficient,
γz = √

V(z)/E(z).
Firstly, we find that the average of (log) size is not constant over time. The

average increases monotonically, as would be expected since sales per firm,
X(ω, t), and hence lnX(ω, t), are propelled by the endogenous growth of
quality (see Eq. 6), which is positive along the BGP. An upward trend in
average sales per firm over the long run is reported by, e.g., Jovanovic (1993).
In turn, the variance displays a non-monotonic pattern over time: a rapid
increase in the variance, when the number of cohorts is still relatively small, is
eventually followed by a decrease when the number of cohorts rises to a certain
threshold, and by a stabilisation thereafter (the latter is defined numerically
within a given tolerance error term—in light of the results presented in Table 2,
the order of this tolerance error term is of two decimal figures). This behaviour
reflects the stabilising ef fect of the number of cohorts on the variance. That
is, as shown in Section 4.1, for a given cohort, both the average and the
variance of size increase monotonically over time (see Table 1). The fact that
the number of cohorts increases exponentially at rate gN , combined with size
upon horizontal entry rising over time in tandem with average size of existing
firms due to the (imperfect) spillovers from incumbents to entrants, implies
that a stabilisation in the dispersion of firm size will eventually set in when the
entire population of firms is considered.22

Secondly, the skewness and the upper-tail weight coefficients are systemati-
cally above zero and one, respectively, i.e., the skewness is larger and the upper
tail is fatter than those observed with the normal distribution of log size, to
which the FSD of a single cohort converges. Moreover, the coefficients become
roughly stable for a sufficiently large number of cohorts (in the numerical
exercise presented in Table 2, for around t > 1,000, again within a tolerance
error term with a order of two decimal figures). The mechanism behind
these results is similar to the one that explains the effect of the number of
cohorts on the variance, as described above.23 Thus, our theoretical predictions
qualitatively address the evidence for total FSD in, e.g., Cabral and Mata
(2003) and Bottazzi et al. (2007), as regards skewness, and in Gaffeo et al.
(2003) and Growiec et al. (2008), as regards upper-tail weight. On the other
hand, the lower tail is less heavy than the normal lower tail for a relatively
small number of cohorts, but stabilises around the tail weight of the normal
distribution over time.

22A similar result follows if, instead of considering that a given cohort of entrants introduces
new varieties with the quality level concentrated at a given point of mass (given by m times the
average quality level of extant varieties), we assume that the quality level of those new varieties
follows a non-degenerate distribution, provided this distribution has a smaller variance than the
distribution of the quality level of the extant varieties.
23At a given instant of time, due to the co-existence of different cohorts, not all firms have had
the same time to grow, while the population of firms itself continuously grows. Such behaviour
of firm entry and growth resembles the well-known Yule process, whose limiting distribution
exhibits a heavy upper tail and was used by Simon (1955) as a model for various skewed empirical
distributions, including the city size distribution (see de Wit 2005).
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Fig. 3 Log-log plot of the tail of the cdf of size, 1 − F(q), for a different number of cohorts/periods
of time (computation with the baseline parameter values): an (inverse) power law scaling behav-
iour emerges in the upper tail as the number of cohorts increases; the estimates of the power-law
coefficient stabilise at 0.83, which is within the range of empirical estimates found in the literature

Finally, by considering Eq. 31 with support changed from z to q ≡ ez, we
obtain the cdf of size, Ft(q). Then, we are also able to show that an (inverse)
power law scaling behaviour emerges in the upper tail as the number of
cohorts increases. Figure 3 depicts the tail cdf 1 − F(q) in a log-log scale, with
an OLS regression line that informs us on the goodness of fit to a power
law distribution. The slope of the regression line corresponds (in modulus)
to the estimate of the power law coefficient.24 For the baseline parameters,
the estimates of the power-law coefficient stabilise at 0.83, which is within
the range of empirical estimates obtained by Gaffeo et al. (2003) when firm
size is measured by sales. However, as further noted in Section 5, for any
given number of cohorts, our estimates are somewhat sensitive to shifts in the

24In the empirical literature, the goodness of fit of the data to a power law (strict Pareto) F(x) =
1 − (a/x)p , x ≥ a, p > 0, is usually determined by means of the OLS regression ln(1 − F(x)) =
b − p lnx, b = p lna, where x stands for firm size and F is the corresponding empirical cdf. In our
case, we fit the line ln(1 − F(x)) = b − p lnx, where x ≡ q, to the log-log plot of the theoretical
tail of the cdf generated by Eq. 31 with support changed from z to q.
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parameters of the model, despite the fact that the goodness of fit, measured by
the R2 (square of the correlation coefficient) remains very high.

To sum up, a stable FSD arises with respect to the variance, the skewness
and the upper-tail behaviour, which is in accord with the empirical properties
of the FSD emphasised in the literature when the entire population of firms
is considered. Nevertheless, since not all the moments of the distribution
are stationary, not even asymptotically, then the total FSD is not stationary.
Furthermore, the fact that the coefficient of variation decreases monotonically
over time makes it clear that the FSD is not stationary even if we consider
normalised firm sizes—i.e., firm sizes divided by the average firm size.

5 Comparative statics and policy implications for growth and market structure

Since the properties of the FSD cannot be derived analytically, a sensitivity
analysis was conducted in order to access the robustness of our results. We
tested for a wide range of parameter values and concluded that the skewness
and the upper-tail weight coefficients presented in Table 2, whose values are
systematically above zero and one, respectively, are robust to changes in all
parameters (see the Appendix). That is, we always obtain a FSD that is right-
skewed and has a fatter upper tail than the normal of log size. In contrast, the
weight of the lower tail is sensitive to changes in β, m, λ and α, such that the
lower-tail weight coefficient oscillates between values below and above unity.
Also, the slope of the distribution in the log-log scale is somewhat sensitive
to changes in the parameters of the model (an illustration of the impact of
changes in β , ζ and m can be seen in Fig. 5).

From the point of view of the policy implications of our model, the impact of
changes in the technological parameters β, ζ , m and φ is of special interest, in
as much as these changes may be induced by the government by granting R&D
subsidies and/or conducting other forms of industrial policy.25 As far as R&D
subsidies are concerned, we focus on the separate effects of those targeted
at vertical R&D—which can be seen as pertaining to process innovation and
incremental product innovation—and those targeted at horizontal R&D—
pertaining to radical product innovation. The importance of analysing the
impact of R&D subsidies separated this way has been convincingly emphasised
by Peretto (1998).

We explore the fact that the properties of the FSD can be directly related
to the firm dynamics arising from systematic innovative activity, in order to
analyse the simultaneous impact of policy on economic growth and market
structure, characterised by the number of firms, the average firm size and
market concentration. As regards the latter, we use the well-known Herfindahl

25We study the effect of subsidies by considering that the government budget is always balanced
and that changes in subsidies are exactly matched by changes of opposite sign in nondistortionary
taxes (e.g., lump-sum taxes on consumption).
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Table 3 Growth rates, Poisson rate, number of firms and total FSD properties under different
scenarios for selected parameters, with t = 2,000

t = 2,000 Scenario A Scenario B Scenario C Scenario D Scenario E
(baseline) β = 1.4 ζ = 0.4 m = 0.6 φ = 0.6

g 0.0347 0.0370 0.0671 0.0347 0.0347
gN 0.0102 0.0154 0.0197 0.0102 0.0102
I 0.0291 0.0256 0.0562 0.0291 0.0291
N 1.3537 1.5357 1.1482 1.5251 1.5731
E(z) 23.4286 13.4606 45.2422 27.5488 23.4286
V(z) 1.4178 0.9741 1.4101 1.2182 1.4178
Variation coeff. γz 0.0508 0.0733 0.0262 0.0401 0.0508
Skewness coeff. 1.7700 1.9949 1.7770 1.5231 1.7700
Upper-tail weight coeff. 1.6651 1.7078 1.6498 1.6176 1.6651
Lower-tail weight coeff. 1.0286 0.6502 1.0267 1.3482 1.0286
Variation coeff. γq 3.4002 4.4808 4.3624 3.1556 3.4002
Herfindahl index 9.2796 13.7250 17.4447 7.1848 7.9849

index as a measure.26 Bearing in mind that the market share of the incumbent
in industry ω with quality level j(ω, t), measured at the aggregate level, is given
by X( j )/X = q( j )/Q, we have

H(t) = 1

N(t)
+ N(t) · V

(
q( j )
Q(t)

)
= 1

N(t)

{
1 + (

γq(t)
)2

}
. (33)

where γq denotes the coefficient of variation of q ≡ λ
α

1−α
j. As noted by Laincz

(2009), the expression in Eq. 33 allows us to separate two effects on concentra-
tion: the first term captures the impact of the number of firms on concentration
if all firms have equal market shares (if this is the case, the concentration
measure is 1/N, which is the minimum level of concentration given N firms in
the market), while the second term shows how the dispersion of market shares
contributes to concentration, for a given number of firms. Concentration, as
measured by the Herfindahl index, declines with a ceteris paribus increase
in Q(t), through the BGP value of N(t) (see Eq. 29). Since Q(t) grows at
the constant rate g > 0 along the BGP, we focus on changes in concentration
conditional on Q(t).

As expected, the comparative-statics results depend upon the source of
the change in the general equilibrium. For the purpose of illustration, in
Table 3 and Fig. 4 we consider four different scenarios, besides the baseline
(scenario A), each of which corresponding to a deviation from the baseline
value of one of the technological parameters β, ζ , m and φ. Figure 4 depicts
the probability function of log size, ft(z), for each scenario, while Table 3
displays the properties of the distribution and the corresponding values for
the economic growth rate, g, the growth rate of the number of firms, gN , the
Poisson rate, I, the number of firms, N, and the Herfindahl index (see also
Fig. 5).

26For a similar use of the Herfindahl index at the aggregate level, see Thompson (2001) and
Laincz (2009).
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Fig. 4 The total FSD under different scenarios for selected parameters (in log size), with t = 2,000.
Scenario A: baseline parameter values. Scenario B: industrial policy aimed to reduce the negative
externality from the existing varieties, amounting to a decrease in β. Scenario C: subsidy to vertical
R&D, amounting to a decrease in ζ . Scenario D: industrial policy aimed to promote the positive
spillovers from incumbents to horizontal entrants, amounting to an increase in m. Note: the FSD
for scenario E (subsidy to horizontal R&D, amounting to a decrease in φ) is the same as for
scenario A, hence it is not shown

Let us consider first a subsidy to vertical R&D, which amounts to a decrease
in the fixed flow cost of vertical entry, ζ (scenario C). This induces a reduction
in the number of firms, N, for a given Q, such that the initial decrease in ζ

is matched by an increase in average quality (see Eq. 22). The reduction in
ζ also increases the effective rate of return I + r (see Eq. 16), which secures
the larger resources allocated to investment (vertical and horizontal R&D) at
the expense of present consumption (and hence granting a larger consumption
growth—see the impact of ζ on Eq. 3). This, in turn, implies an increase in
both the growth rate of the number of firms, gN , and the Poisson arrival rate,
I, from which follows an increase in average firm size E(z) and a decrease
in the coefficient of variation γz; however, in our numerical illustration, the
latter translates into an increase in the coefficient of variation γq.27 Thus,

27Given that q ≡ ez, the change of support from z to q brings about an increase in the variance that
exceeds the increase in the average of the FSD (indeed, as shown in Table 3, γz < 1 while γq > 1).
Since V(z) = E(z2) − (E(z))2 and V(q) = E(e2z) − (E(ez))2, this behaviour must be due to the
fact that the effect of the change of support on the second moment of the distribution dominates
the effect on (the quadratic of) the first moment. If this dominance is strong enough, then a shift
in a given parameter with respect to the baseline that affects the coefficient of variation may imply
that γz/γ

base
z < 1 and γq/γ base

q > 1, where γ base denotes the coefficient of variation corresponding
to the baseline scenario. This is the case as regards the change in ζ analysed in Table 3.
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Fig. 5 Log-log plot of the tail of the cdf of size, 1 − F(q), for selected parameters, with t = 2,000.
Scenario A: baseline parameter values. Scenario B: industrial policy aimed to reduce the negative
externality from the existing varieties, amounting to a decrease in β. Scenario C: subsidy to vertical
R&D, amounting to a decrease in ζ . Scenario D: industrial policy aimed to promote the positive
spillovers from incumbents to horizontal entrants, amounting to an increase in m. The tail of the
cdf for scenario E (subsidy to horizontal R&D, amounting to a decrease in φ) is the same as for
scenario A (baseline), hence it is not shown

concentration measured by Eq. 33 increases through both the number and
the dispersion component, i.e., subsidies to vertical R&D stretch the FSD
such that firm sizes are more spread out with fewer firms. Overall, there is
a positive impact on economic growth, g, on concentration and on average
firm size. Observe that the impact of ζ on the FSD, and hence on γq, is only
indirect through the effect of ζ on gN and I.

In contrast, by lowering the fixed flow cost of horizontal entry, φ, a subsidy
to horizontal R&D has level effects only (scenario E): it increases the number
of firms, such that the initial decrease in φ is matched by a decrease in average
quality; however, since there is no impact of φ on the effective rate of return,
both vertical and horizontal R&D are left unchanged (a higher number of
firms with a smaller φ implies that the same amount of horizontal R&D
sustains a given growth rate of the number of firms) and hence there is no
effect on growth along either the vertical or the horizontal margin. Thereby,
there is no impact on average firm size (despite the increase in the number of
firms) and on the coefficient of variation (both γz and γq). That is, there is no
change in the FSD, and thus concentration decreases only through the number
component. Overall, there is no impact on either economic growth or average
firm size, but a negative impact on concentration.

An industrial policy aimed at reducing the negative externality induced by
the number of existing varieties (barrier to horizontal entry) acts by decreasing
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the elasticity of the horizontal entry cost, β (scenario B). This implies an
increase in the number of firms, in a similar fashion to a subsidy to horizontal
R&D, while also having no impact on the effective rate of return. However, be-
cause a change in β alters the balance between the growth rate of the number
of firms and the growth rate of quality (recall, from the necessary conditions
for the existence of a BGP, that gQ/gN = (β + 1)), there will be a shift of
resources from vertical R&D to horizontal R&D, and hence an increase in
the growth rate of the number of firms and decrease in the Poisson arrival
rate. A fall in average firm size and an increase in the coefficient of variation
(both γz and γq) then follow. Although the final result on concentration is a
priori ambiguous, our numerical results show an increase in concentration as
the number component is dominated by the dispersion component in Eq. 33.
Overall, there is a positive impact on economic growth and on concentration,
and a negative impact on average firm size. Observe that, similarly to ζ , the
impact of β on the FSD is only indirect, through the effect of β on gN and I.

On the other side of the coin, an industrial policy aimed at promoting the
positive spillovers from incumbents to horizontal entrants, by increasing the
degree of imperfect imitation by horizontal entrants, m, (scenario D) raises
the number of firms while having no impact on the effective rate of return.
Since there is also no effect on the relationship between the growth rate of
the number of firms and the growth rate of quality, then a change in m has
only level effects, similarly to a subsidy to horizontal R&D. However, m has a
direct impact on the FSD, such that the average firm size increases (despite
the increase in the number of firms) and the coefficient of variation (both
γz and γq) decreases. Thus, concentration falls through both the number and
the dispersion component. Overall, the impact is null on economic growth,
negative on concentration and positive on average firm size.

Finally, policy intervention that increases m may also induce a FSD with
a fat lower tail, as shown in Table 3. Fat lower tails have been apparently
overlooked by the literature on firm size but have been reported by empirical
studies on income and city size distributions (see Reed 2002, 2003).

To sum up, the effect of R&D subsidies and targeted industrial policies
is either: (i) growth- and concentration-enhancing or (ii) growth-neutral and
concentration-reducing. In particular, subsidies to vertical R&D belong to (i),
while subsidies to horizontal R&D fit into (ii). Comparing with the literature,
Laincz (2009), who considers subsidies to R&D only along the vertical direc-
tion, also obtains a positive relationship between growth and concentration as
in (i). In contrast, Peretto (1998) considers both vertical and horizontal R&D
but his measure of concentration is the reciprocal of the number of firms (i.e.,
equivalent to the first term in Eq. 33), since the author confines his analysis to
an equilibrium which is symmetric with respect to firm size. Peretto’s model
predicts a positive relationship between growth and concentration as follows:
subsidies to vertical R&D are growth- and concentration-enhancing, while
subsidies to horizontal R&D are growth- and concentration-reducing.

Thus, we extend Laincz’s and Peretto’s results as regards the effect of sub-
sidies to vertical and horizontal R&D on concentration and growth to a setup
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with a non-degenerate FSD that exhibits the desired (qualitative) empirical
properties. In particular, the contrast between Peretto’s results as regards the
effect of subsidies to horizontal R&D on concentration and our prediction
of a null impact of this type of subsidies on growth directly reflects the lack
of relationship between growth and the flow fixed entry cost φ. Intuitively,
the latter stems from the dominant effect exerted by the vertical-innovation
mechanism over the horizontal-entry dynamics. Indeed, given the postulated
horizontal entry technology and the lab-equipment R&D specification,28 a
BGP with positive (net) entry occurs ultimately because entrants expect
incumbency value to grow propelled by quality-enhancing R&D. In contrast,
Peretto (1998) assumes that R&D is knowledge-driven. In this case, the choice
between vertical and horizontal R&D implies a division of labour between the
two types of R&D. Since the total labour level is determined exogenously,
horizontal entry occurs at the same rate as population growth along the BGP.
Under this framework, a subsidy to horizontal R&D competes away scarce
resources from vertical R&D and ultimately implies a fall in the growth rate.

However, one cannot conclude from the results described above that the
relationship between concentration and growth is only either positive or null in
our model. Indeed, it can be shown that changes in the preferences parameters
ρ and θ imply a change of growth and concentration in opposite directions (not
shown in Table 3). Thus, we confirm the ambiguity of the sign of the growth-
concentration relationship emphasised by Thompson (2001) and others (see
Thompson for several references to the related empirical literature).

Also noteworthy is the ambiguity of the sign of the relationship between
economic growth and average firm size predicted by our model (see g and E(z)

in Table 3). Although recent empirical work has found a positive relationship
between average firm size and growth at the aggregate level, the majority of
the empirical literature still gives little support for this view (see Pagano and
Schivardi 2003).

In contrast, our model predicts an unequivocal relationship between eco-
nomic size, measured by population size L, and both the number of firms and
concentration: see the positive impact of L on Eq. 26 and, thereby, the negative
impact on Eq. 33 (due to the removal of scale effects in our model, L has no
impact on the FSD and hence on γq). This matches one of the robust stylised
facts that emerges from international comparisons of manufacturing industrial
structures: large countries tend to have a larger number of firms and lower
concentration rates than small countries (see, e.g., Sherer and Ross 1990). One
of the most important theoretical results in Peretto (1998) makes a similar
prediction, which we herein extend to a framework where the FSD is non-
degenerate.

28Using Rivera-Batiz and Romer (1991)’s terminology, the assumption that the homogeneous final
good is the R&D input means that one adopts the “lab-equipment” version of R&D, instead of
the “knowledge-driven” specification, in which labour is ultimately the only input.
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6 Concluding remarks

With this paper, our goal has been to show how a simple model of endogenous
growth with simultaneous vertical and horizontal R&D is able to account
for several observed features of the FSD. We thereby establish a connection
between endogenous growth theory and findings from firm-level studies of
firm dynamics and innovation.

In particular, we have derived a highly-skewed fat-tailed FSD within a
model where the only source of firm heterogeneity is the Poisson process of
quality ladders (vertical R&D). In contrast, Thompson (2001) and Klette and
Kortum (2004) combine the Poisson process with other stochastic features in
order to introduce other dimensions of (exogenous) firm heterogeneity in their
models. Our theoretical results qualitatively match the empirical evidence
found both for the cohort and the total distribution, and still not addressed
by the literature on endogenous growth and firm dynamics.

The simplicity of our stochastic structure, however, comes at the expense
of empirically adequate predictions relating to firm age and exit dynamics. In
particular, future work should seek to extend the present model in order to
include elements that capture (i) exit probabilities that are decreasing in firm
size and age,29 and (ii) growth rates of size (both in terms of expected value
and variance) decreasing in size and age among surviving firms, which are well-
known empirical features of firm dynamics (see, e.g., Klette and Kortum 2004).

Another possible extension of our model would be to allow both incumbents
and entrants to perform R&D (e.g., Segerstrom 2007), although this would
imply a more complicated setup. This feature may be essential for further
evaluating the impact of R&D subsidies, which, as emphasised by Mansfield
(1986), are in reality often explicitly designed to act on the marginal expendi-
tures of incumbents that do R&D.
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suggestions, which we found extremely helpful and constructive.

Appendix

Since the properties of the FSD derived in Section 4.2.1 cannot be studied by
analytical methods, we proceeded with our study by computing approximate
numerical results. Then, a sensitivity analysis must be conducted in order to
access the robustness of our results.

The sensitivity analysis consists of: (i) considering a sensible interval of
variation for each parameter—defined in the light of both theoretical and
empirical considerations—; and (ii) re-running the simulation exercise by

29See Thompson (2001) on the difficulty of introducing horizontal (net) exit in this class of
endogenous growth models.
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Table 4 Extreme values for the parameters of interest in the sensitivity analysis

β λ ζ ρ θ m α

Theoretical (0;∞) (1;∞) (0;∞) (0; 1) (0;∞) (0; 1) (0; 1)

support
Extreme {0.8; 10.0} {1.5; 8.0} {0.3; 1.5} {0.01; 0.08} {0.5; 5.0} {0.15; 0.85} {0.25; 0.55}

values
considered

letting a given parameter take the extreme values of that interval, while the
other parameters are set to their baseline values. Recall that we have calibrated
the model with the following baseline parameter values: β = 2.4, φ = 1, ζ =
0.7, λ = 2.5, ρ = 0.02, θ = 1.5, α = 0.4, and m = 0.4.

Table 4 of this appendix presents the extreme values for each parameter
of interest considered in the sensitivity analysis. No sensitivity analysis was
carried out for φ and L, since they have no impact on the FSD, while a set of
practical criteria has commanded the selection of the extreme values for the
remaining parameters.

Thus, given the lack of well-established empirical guidance, we have chosen:
the lower value for β as the smallest possible value that allowed for the
numerical computation of the lower tail-weight coefficient;30 the upper values
for β and λ by observing that they defined a threshold above which an increase
of those parameters had a negligible impact on the endogenous variables (g,

gN and I); the lower value for λ and the upper values for ρ and ζ such that
the implied economic growth rate was not too low (i.e., roughly below one
percent);31 the lower value for ζ such that the implied economic growth rate
was not too large (roughly above 10%). On the other hand, the extreme
values for α, θ and m were chosen broadly in line with the range of values
cited by the empirical literature (regarding the latter two, the interval was
augmented by a tolerance error term, given the uncertainty surrounding the
empirical estimates) (see Barro and Sala-i-Martin 2004, and also Geroski 1995
and McCloughan 1995).

Finally, we performed the sensitivity analysis for t = 2,000 since we wanted
to be sure that even under a wide variation of a given parameter, we would still
get a stabilised FSD regarding the variance, the skewness and the tail weight.

Table 5 of this appendix summarises the results. Thus, after testing for a
wide range of parameter values, we conclude that the skewness and the upper-
tail weight coefficients presented in the text, whose values are systematically
above zero and one, respectively, are robust to changes in all parameters. That

30The numerical computation of the lower tail-weight coefficient is not possible if one cannot
compute the lower quantiles, in particular, the quantiles of probability 0.01 and of probability
0.25.
31The only practical consequence of having a very low level for economic growth is that a quite
larger number of periods/cohorts, T, is required in order to obtain a total FSD with stabilised
variance, skewness and tails weight.
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Table 5 Growth rates, Poisson rate, and total FSD properties under different scenarios for the
parameters of interest

t = 2,000 Scenario 1 Scenario 2.a Scenario 2.b Scenario 3.a Scenario 3.b
(baseline) β = 0.8 β = 10.0 λ = 1.2 λ = 8.0

g 0.0347 0.0400 0.0314 0.0116 0.0467
gN 0.0102 0.0222 0.0029 0.0034 0.0137
I 0.0291 0.0211 0.0339 0.0636 0.0110
E(z) 23.4286 2.7086 37.8121 11.3687 14.5129
V(z) 1.4178 0.6651 4.7832 0.6421 1.8858
Variation coeff. γz 0.0508 0.3011 0.0578 0.0705 0.0946
Skewness coeff. 1.7700 2.1520 1.0560 1.8840 2.0488
Upper-tail weight coeff. 1.6651 1.7352 1.6388 1.6506 1.4057
Lower-tail weight coeff. 1.0286 1.6912 1.4933 0.7281 1.6426

t = 2,000 Scenario 4.a Scenario 4.b Scenario 5.a Scenario 5.b Scenario 6.a
ζ = 0.3 ζ = 1.5 ρ = 0.01 ρ = 0.08 θ = 0.5

g 0.0923 0.0116 0.0389 0.0090 0.0606
gN 0.0271 0.0034 0.0115 0.0026 0.0178
I 0.0774 0.0097 0.0326 0.0075 0.0508
E(z) 62.2455 7.9315 26.2970 6.1850 40.8539
V(z) 1.4122 1.4291 1.4163 1.4383 1.4124
Variation coeff. γz 0.0191 0.1507 0.0453 0.1939 0.0291
Skewness coeff. 1.7691 1.7706 1.7710 1.7519 1.7750
Upper-tail weight coeff. 1.6399 1.6819 1.6650 1.6738 1.6838
Lower-tail weight coeff. 1.0192 1.0019 1.0159 0.9832 1.0305

t = 2,000 Scenario 6.b Scenario 7.a Scenario 7.b Scenario 8.a Scenario 8.b
θ = 5.0 m = 0.15 m = 0.85 α = 0.25 α = 0.55

g 0.0139 0.0347 0.0347 0.0248 0.0337
gN 0.0041 0.0102 0.0102 0.0073 0.0099
I 0.0116 0.0291 0.0291 0.0491 0.0115
E(z) 9.4536 17.8396 32.5608 21.2723 14.2442
V(z) 1.4243 1.7801 1.0858 0.9836 1.8097
Variation coeff. γz 0.1262 0.0748 0.0320 0.0466 0.0944
Skewness coeff. 1.7707 1.9300 1.0003 1.7910 1.9194
Upper-tail weight coeff. 1.6706 1.6279 1.6720 1.6300 1.5360
Lower-tail weight coeff. 1.0008 0.7331 1.6333 0.9134 1.6311

is, we always obtain a FSD that is right skewed and has a fatter upper tail than
the normal of log size. In contrast, we can see that the weight of the lower tail
is sensitive to changes in β , m , λ and α, such that lower-tail weight coefficient
oscillates between values below and above unity.
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