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1 Introduction

When it comes to the competitive diffusion of technologies that are distinguished
by compatibility, most studies are characterized by positive effects of the only
global network externality. The positive effects of the global network externality
exist if consumers’ utilities obtained by adopting a technology are an increasing
function of the number of consumers adopting a technology compatible with it
in the global network (whole market). There exists an extensive literature of the
effects of the only global network externality (Arthur, 1989; Besen and Farrell,
1994; David, 1985; Farrell and Saloner, 1988; Farrell, and Shapiro, 1988; Katz and
Shapiro, 1985, 1992, 1994). The standard result is that global coordination, that
is, total standardization, occurs due to the global network externality, which is a
global feedback by its definition.

On the other hand, some studies assert the importance of local coordination and
have focused on the effects of only local feedback (An and Kiefer, 1995; Cowan
and Miller, 1998). An and Kiefer (1995) find partial standardization in which two
incompatible technologies can coexist in a market when consumers are embedded
in an integer lattice network, the dimension of which is greater than or equal to three.
Note that, in An and Kiefer (1995), consumers are assumed to have a tendency to
follow a local majority, and so, local feedback is modeled in this way. In Cowan and
Miller (1998), consumers are placed on a one-dimensional lattice network (a.k.a.
a ring graph) and assumed to conduct best responses with regard to their expected
utilities that are affected by local neighbors. The result they obtained is that only
partial standardization is possible due to the local feedback that promotes local
coordination, unless external forces such as governmental policies are carried out.

Besides the literature cited above, there is a study that has considered the effects
of a local and “fixed global” externality (Dalle, 1997). Since the externality is “fixed”
and, therefore, does not represent increasing return, this externality is different from
the widely accepted definition of the global network externality. Moreover, the two
types of externalities affect agents’ decision-making additively and independently
in Dalle (1997), that is, they are set as linear. In his simulation, heterogeneous
agents are embedded in a two-dimensional lattice network and interact with their
local neighbors. They are programmed to follow a local majority when they decide
which technology to adopt.According to Dalle (1997), the “fixed global” externality
is modeled as “a sort of fictitious “global” agent who belongs to each agent’s
neighborhood and whose influence on the agent’s decision is not different from local
externalities or interactions.” The results he obtained is that total standardization
is always observed even with “very heterogeneous” agents as long as the “fixed
global” externality is set to assist a certain technology.

Cowan and Cowan (1998) studied the effects of local, regional, and global ex-
ternalities from the firm’s side by examining spatial patterns of coordinated R&D
activities formed by the firms. It is interesting to see the formation of the spatial
patterns depending on parameters in their simple model in which externalities are
all negative and independent of one another. However, in reality, externalities are
mutually interconnected to bring positive and negative feedbacks. For example,
innovations as the fruits of R&D activities often result in lower prices that promote
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consumption, which feeds back to bring prices down further. This interrelated feed-
back amplification plays an important role in the dynamical behaviors of both the
supply side and the demand side. Such nonlinear coupling between externalities is
one of the main problems to be examined in our present paper.

As was emphasized in the above literature (An and Kiefer, 1995; Cowan and
Cowan, 1998; Cowan and Miller, 1998; Dalle, 1997), local coordination matters,
indeed, especially for obtaining partial standardization. For example, if a consumer
is the only one who uses a certain type of technology, say a PC, within a group to
which he belongs, or if there are only a few consumers who use the technology in his
group, it can be imagined that his willingness to utilize a PC instead of a Macintosh
decreases. This is because, in this extreme case, the technology he is using is not
compatible with what his neighbors are using, and, therefore, he cannot coordinate
with, say, his colleagues with whom he most likely interacts. People in general act
locally on a daily basis even though they may think globally. For instance, we have
family, friends, colleagues, and so on, and we interact with them most likely. Not
only the number but also the type of people with whom one usually interacts is more
or less fixed, even though it is possible to expand one’s community. Concerning
the effects of local interaction, therefore, is critical due to this restriction from
which people cannot be free physically or abstractly. However, at the same time, it
is important to take into account the global network externality that characterizes
highly technological products. There are two types of externalities, and this implies
that we have to be concerned with these two under a single unified framework.

In this present paper, the competitive diffusion of two incompatible technolo-
gies, such as PC vs. Macintosh, VHS vs. Betamax and so on, is studied based on an
evolutionary game theoretical approach. The framework of the model we used is
known as a spatial game. In the spatial-game setting, consumers (or agents), who
are embedded in a two-dimensional square lattice network, play 3×3 symmetric
coordination-like games with their nearest neighbors and aggregate the resulting
payoffs. Their aggregated payoffs are treated as utilities that affect decision-making.
In the model, consumers are assumed to pursue a copycat behavior, under which
each consumer imitates the most successful neighbor’s strategy in terms of utilities
that is given as the aggregated payoff. Note that this decision-making dynamics is
different from those utilized by some earlier studies cited above. Through imitation,
strategies diffuse on a two-dimensional square lattice network.

In the payoff matrix of the game, payoff elements are determined dynamically.
The effects of global feedback are realized in the dynamic payoff matrix of the
game, and the framework of the spatial game provides the model with the effects
of local feedback. In other words, the consumers can enjoy network externalities
by global coordination (global network externality), and at the same time, unlike
in the earlier literature, the global network externality is transmitted and enhanced
by local coordination (local network externality). Positive effects of the local net-
work externality exist if consumers’ utilities obtained by adopting a technology
are an increasing function of the number of these of local neighbors adopting a
compatible technology. Note that the two types of network externalities are set as
multiplicative, that is, as nonlinear. For instance, if one has neighbors with whom
one can talk and share information about, say, a Macintosh computer, one may be
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able to enjoy oneself with a benefit from the global network externality through
the local interactions. Moreover, the benefit one receives may be amplified as the
number of neighbors with whom one can locally coordinate increases. Introducing
the multiplicative effects of global and local network externalities makes our model
and its results unique. Not only total but also partial and robust standardization –
for example, the phenomenon that Macintosh is still surviving in the market – can
occur even with both local and global network externalities and less heterogeneous
agents. The scenario of our model is based on an idea that human beings are more
or less spatially restricted in a physical and abstract sense, and that their payoffs
are affected by their local interactions even though there exists global feedback. A
number of studies in evolutionary game theory have shown that the effects of the
physical and abstract spatiality are critical for people’s behavior (Axelrod, 1984;
Pollock, 1989; Nowak and May, 1992, 1993; Herz, 1994; Oliphant, 1994; Nowak,
Bohoeffer, and May, 1994a,b, 1996; May, Bohoeffer, and Nowak, 1995; Szabó and
Töke, 1997; Tomochi and Kono, 2002).

Details of the model are explained in the next section. In Section 3, results of
the simulations based on the rules of the game in Section 2 are shown to clarify
the payoff and initial-condition-dependent behavior of the system. The effects of
innovation factors that may alter paths toward a lock-in situation (Arthur, 1989)
are illustrated in Section 4. In Section 5, a mean-field theory, which is widely used
in physical systems, is formulated to approximate the results of the simulations in
Sections 3 and 4. Discussions are given in the last section.

2 The model

2.1 Payoffs and utilities

Consumers are placed on a two-dimensional square lattice network. Each consumer
has one of the three possible strategies: adopting either a technology A or B, or a
strategy C of adopting neither. Note that the technologies A and B are incompatible.
Those who follow the strategy C are the potential consumers who will purchase
either A or B in the future. In the following, adopting either A, B, or C is expressed
by +1,−1, or 0, respectively, that is, at time t (≥ 1) a consumer in the i-th cell
(1 ≤ i ≤ |N |) takes a pure strategy σi(t) that is either +1,−1, or 0. The symbol
|N | denotes the total number of whole population. It has been confirmed by the
simulations that |N | = 1012 is large enough, and, therefore, |N | is set as 1012 in the
following. At each time, a consumer i plays one-shot 3×3 symmetric coordination-
like games with his nine immediate local neighbors including himself (the Moore
neighborhood), denoted as n(i), under the payoff matrix for a row player given in
Table 1. Note that this local interaction under the framework of the spatial game is
the source of the local feedback in the model.

In Table 1, Ri(±1) denotes a consumer i’s payoff derived from a technology
itself and is given as

Ri(±1) = r(±1) ± ωθi . (1)
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Table 1. Payoff matrix for a row player. The definitions of Ri(±1) and S(±1, t) are given in Eqs. (1),
(2), and (3)

Strategy A (+1) Strategy B (−1) Strategy C (0)

Strategy A (+1) Ri(+1) + S(+1, t) Ri(+1) Ri(+1)
Strategy B (−1) Ri(−1) Ri(−1) + S(−1, t) Ri(−1)
Strategy C (0) 0 0 0

The parameters, r(±1), that represent the performance of the technologies by itself
are assumed to be greater than zero. The random variable θi is uniformly generated
between −0.5 and 0.5, and ω is assumed to be a small positive value compared to
r(±1), that is, 0 < w � r(±1). Introducing such wθi enables Ri(±1) to contain
a small amount of fluctuation, reflecting the fact that the benefit obtained from a
technology is not exactly the same but is slightly different for each, and, therefore,
the model can contain consumers with slightly biased preferences (Cowan and
Cowan, 1998; Farrell and Saloner, 1988; Dalle, 1997).

The enhanced payoffs, S(±1, t), are obtained by consuming a technology com-
patible with one that is used by local neighbors, that is, by coordinating with one’s
neighbors. These are expressed as an increasing function of global density of the
consumers of each technology and defined as

S(+1, t) = s(+1)pA(t − 1) and (2)

S(−1, t) = s(−1)pB(t − 1), (3)

respectively, so that the benefit from the global network externality is amplified
through local coordination. The enhanced payoffs, S(±1, t), reflect the positive
effects of the global network externalities, that is, the positive and global feedback
is transmitted through local interactions. Here one can also say that the locally
obtained payoff is weighted by global feedback. The parameters, s(±1), that control
the multiplicative effects of global and local network externalities, are assumed to
be greater than or equal to zero. The terms, pA(t − 1) and pB(t − 1), represent the
fraction of consumers who are adopting the technologies A and B, respectively, in
the whole population at time t−1. Note that, for simplicity, S(±1, t) are represented
as liner functions of pA(t − 1) and pB(t − 1), respectively, in Eqs. (2) and (3). As
one can see, there is time lag on the right hand sides of Eqs. (2) and (3), and it is set
as one unit of time for simplicity in this paper. Both pA(0) and pB(0) are assumed
to be zero, so that the enhanced payoffs become zero at t = 1.

Because of the assumption that adopting a technology A or B strictly dominates
C, the third row in Table 1 is filled with zeros. This assumption corresponds to the
scenario that all consumers sooner or later adopt the technology A or B in the
diffusion process.

The payoff function for a consumer i in a game with a consumer j can be de-
noted as fi(σi(t), σj(t)), that is, fi(±1,±1) = Ri(±1)+S(±1, t), fi(+1,−1) =
fi(+1, 0) = Ri(+1), fi(−1, 0) = fi(−1, +1) = Ri(−1), and fi(0, +1) =
fi(0,−1) = fi(0, 0) = 0. The utility of a consumer i with the strategy σi(t)
at time t, ui(σi(t)), is defined as the sum of the resultant payoffs obtained by
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playing the games with a consumer i’s local neighbors including himself:

ui(σi(t)) =
∑

j∈n(i)

fi(σi(t), σj(t))

= |n|(Ri(+1) + S(+1, t)pi(σi(t), t))
1
2
σi(t)(σi(t) + 1)

+ |n|(Ri(−1) + S(−1, t)pi(σi(t), t))
1
2
σi(t)(σi(t) − 1) (4)

where |n| stands for the number of local neighbors including himself, which is set
as nine. The term, pi(σi(t), t), in Eq. (4) is the fraction of the consumers, who have
the same strategy as i’s strategy among i’s nine local neighbors including himself,
and is given as

pi(σi(t), t) =
1
|n|

∑
j∈n(i)

{
1
4
σi(t)(σi(t) + 1)σj(t)(σj(t) + 1)

+
1
4
σi(t)(σi(t) − 1)σj(t)(σj(t) − 1)

+(σi(t) + 1)(σi(t) − 1)(σj(t) + 1)(σj(t) − 1)

}

=
1

2|n|
∑

j∈n(i)

{σi(t)σj(t)(σi(t)σj(t)+1)+2(σ2
i (t)−1)(σ2

j (t)−1)}. (5)

A consumer i’s utility in Eq. (4) is an increasing function of pA(t−1) or pB(t−1)
and pi(σi(t), t) depending upon the values of σi(t) and σj(t) where j ∈ n(i), that
is, both global and local network externalities are modeled here. Notice that, clearly,
both network externalities are integrated through the parameters s(±1) that control
nonlinear effects of the two types of externalities. The global-density-dependent
payoffs in Eqs. (2) and (3) are taken into the utility in Eq. (4) through the consumers’
local interactions with local neighbors.

Since i himself is counted as his own neighbor, it holds that

0 <
1
|n| ≤ pi(σi(t), t)) ≤ 1 ∀ i and t . (6)

The reason a consumer i himself is included in n(i) is that i can expect to acquire
the benefit of the global network externality not only through his local neighbors
but also by himself. The consumer i is a sort of fictitious neighbor of i himself,
and counting i himself as his neighbor guarantees him to enjoy the benefit of
economies of scale, and allow him to obtain the minimum amount of the benefit
of global network externality, even when none of his neighbors, excluding the
fictitious neighbor i himself, adopts a technology compatible with his. For example,
especially in these days, one might say that a certain degree of global interaction
that is independent of local interactions can be possible by rapidly developing
communication technologies such as the internet.
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2.2 Updating rule

The updating rule adopted in this paper is the so-called copycat rule. Here, each
consumer imitates the most successful strategy in his neighborhood in terms of
consumers’ utilities, that is, the consumer i’s strategy at time t + 1 is defined as
follows:

σi(t + 1) = {σj(t) | uj(t) = max
j∈n(i)

uj(t)} . (7)

It is assumed that consumers with the strategy C throw a die to decide which strategy
to adopt when there is a tie between maximum utilities of the strategy A and B in
the neighborhood. On the other hand, those who already have the strategy A or
B are assumed to keep their current strategies when there is a tie. The copycat is
adopted in this paper because it is commonly observed that people try to imitate the
most successful neighbor’s behavior (Axelrod, 1984; Tomochi and Kono, 2002).

In order to introduce the effect of both asynchronous updating and social at-
mosphere by which behaviors of people in a society are more or less affected, the
above updating in Eq. (7) is assumed to occur with the updating probability µ(t)
that is given as an increasing function of the fraction of those who adopt either
technology:

µ(t) = ν(pAB(t))ξ (8)

where pAB(t) = pA(t) + pB(t) = 1 − pC(t), and ν (0 < ν ≤ 1) and ξ are
parameters (see Dalle, 1997; Huberman and Glance, 1993). What this means is that
people in general are skeptical about a newly released technology and only a few
people initially become so-called “early adopters.” As a certain type of technology,
for example, OS and VTR, spread and are accepted by more people, the economic
activity relating to it becomes lively. However, our main interest in the paper is
not to discuss or to find an exact functional relationship between pAB(t) and µ(t).
Therefore, Eq. (8) is introduced as one of the arbitrary increasing functions of the
fraction of the people who adopt either A or B.

Additionally, by introducing Eq. (8), it is observed that the growth of pAB(t) co-
incides with a well-known S-shape curve that is formulated by the logistic equation
introduced by Verhulst in 1838 (see Balakrishnan, 1991; Valente, 1995),

pAB(t + 1) − pAB(t) = λ pAB(t) (1 − pAB(t)) (9)

with a certain parameter set of ν, ξ, and λ. Note that the parameters in the payoff
matrix do not affect pAB(t) as long as the strategies A and B strictly dominate the
strategy C. Figure 1 shows pAB(t) (black circles) that is obtained from the network-
based simulation with the initial valuepAB(1) = 20/1012 and the parametersν = 1
and ξ = 0.5 in Eq. (8) and pAB(t) (square dots) in Eq. (9) that is numerically solved
with the initial value pAB(1) = 20/1012 and the parameter λ = 0.32. It is observed
that two plots, which form an S-shape curve, as shown in Fig. 1 are almost identical.
This fact will be utilized later in Section 5 where a mean-field approximation is
applied to recover the results of the simulations in Sections 3 and 4.
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Fig. 1. The black circles are obtained as a result of the cellular-automata-based simulation with the
initial value pAB(1) = 20/1012 and the parameters ν = 1 and ξ = 0.5. The square dots are attained
by numerically solving Eq. (9) with the initial value pAB(1) = 20/1012 and the parameter λ = 0.32.
These two are almost identical, and it suggests that pAB(t) could be described by the logistic equation
in Eq. (9). This fact will be utilized later in Section 5 in which a mean-field theory is conducted

3 Numerical results of the model

Simulations are conducted based on the rules of the game explained in the previous
section. The results of parameter runs are shown in this section. The consumers
with one of the three distinct strategies are uniformly and randomly distributed
at time t = 1 in the game field of a two-dimensional square lattice network. A
periodic boundary condition is used so that the Moore-neighborhood structure can
be preserved over the game field. Fifty realizations with fifty different initial random
configurations are examined in order to obtain relative frequencies of three possible
equilibria, denoted asA∗, B∗, and P∗. The symbolA∗ denotes the equilibrium where
the technology A takes over the whole market, and B∗ denotes the technology B. In
other words, these two equilibria represent total technological standardization. The
symbol P∗ stands for a polymorphic equilibrium, where the technologies A and B
coexist; it stands for partial standardization.

The small fluctuation term in payoff, ω, is fixed as 0.001, that is, the level of
heterogeneity of consumers is kept very small. It has been confirmed that a small
increase in ω first reduces the relative frequency of the realization of P∗, since the
formation of the equilibrium P∗ is sensitive to the spatial form of the boundary
between the regions of A and B and the boundary is affected by ω. It has been also
confirmed that a further increase in ω leads to the growth of the relative frequency
of realization of P∗ up to unity, since it overcomes the effects of both r(±1) and
the externalities so that consumers only choose their favorite technologies based on
their strong bias. The same kind of “phase transition” has been observed in Cowan
and Cowan (1998), Farrell and Saloner (1988), and Dalle (1997).

Extensive parameter runs are performed with regard to the combinations of
three conditions,

(ic) an initial ratio of consumers who adopt the technology A, B, or C,
(r) the parameters r(±1), and
(s) the parameters s(±1).
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The parameter sets are constructed as combinations of these three conditions. First,
the condition (ic) has two categories:

(ic-1) {pA(1), pB(1), pC(1)} = {10/1012, 10/1012, 1 − 20/1012} and
(ic-2) {pA(1), pB(1), pC(1)} = {9/1012, 11/1012, 1 − 20/1012}.

In the case of (ic-1), there is symmetry in the initial number of those who adopt
the technology A and those who adopt the technology B. On the other hand, in the
case of (ic-2), the technology B is set to have a very slight superiority in number at
the initial point. Secondly, the condition (r) has three categories that are

(r-1) equal: {r(+1), r(−1)} = {1, 1},
(r-2) unequal (B is better): {r(+1), r(−1)} = {1, 2}, and
(r-3) unequal (A is better): {r(+1), r(−1)} = {2, 1}.

Thirdly, the condition (s) has four categories that are

(s-1) no externality: {s(+1), s(−1)} = {0, 0},
(s-2) equal externalities: {s(+1), s(−1)} = {1, 1},
(s-3) unequal externalities (B is better): {s(+1), s(−1)} = {1, 2}, and
(s-4) unequal externalities (A is better): {s(+1), s(−1)} = {2, 1}.

The combinations of the above three conditions give 24 cases. However, only 19
cases, excluding one side of symmetric cases, are examined. Note that not only
symmetric but also asymmetric cases can be examined under the parameter sets
provided above.

Table 2 shows the relative frequencies of the equilibria A∗, B∗, and P∗ for the 19
cases. The robustness of all three equilibria are tested and confirmed in simulations
by slightly but continuously perturbing the equilibrium configuration (namely, the
ratio between A adopters and B adopters) for two thousand repetitions. The time
to reach an equilibrium depends upon the parameters ν and ξ in Eq. (8), and it
has been confirmed that t = 50 (= t∗) is long enough for the system to reach an
equilibrium when ν = 1 and ξ = 0.5 are used. The last column in Table 2 will be
explained in Section 5.

In cases 1 and 8, there are no effects of global or local network externalities,
since both the parameters s(±1) are set as zero which make the terms of exter-
nalities in Eq. (4) disappear. In such cases, it is always observed that the system
reaches polymorphic equilibria, where clusters of the consumers who adopt A and
who adopt B can be seen in the game field. Note that even though there is sym-
metry in the initial number, the initial configuration of the consumers with each
strategy is random. Due to this randomness, the equilibria in case 1 is not exactly as
{pA(t∗), pB(t∗), pC(t∗)} = {0.5, 0.5, 0} but most likely close to the set of these
values. On the other hand, the polymorphic equilibria in case 8 move slightly to-
ward B∗ because of the technology B’s slight superiority in number at the initial
point.

In case 2, there exist positive and equal effects of both global and local network
externalities on the technologiesA and B, as well as symmetry in the initial numbers
as in the condition (ic-1). In such case, three types of equilibria, A∗, B∗, and P∗ are
possible, depending upon the initial configuration. Yet, the relative frequencies of
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Table 2. Relative frequencies of the equilibria A∗, B∗, and P∗. The symbol A∗ denotes the equilibrium
where the technology A takes over the whole market, and B∗ denotes the technology B. The symbol P∗
stands for a polymorphic equilibrium where the technologies A and B coexist. The last column shows
equilibria that are approximated by the mean-field theory in Section 5

Initial Parameters Parameters Case Relative frequencies M.F.
of equilibria

Condition (ic) (r) (s) No. A∗ P∗ B∗ Approx.

(ic-1) (r-1) (s-1) no externalities 1 0 1 0 P∗
equal equal (s-2) equal externalities 2 0.42 0.14 0.44 P∗

(s-3) unequal (B is better) 3 0 0 1 B∗
(s-4) unequal (A is better) – – – – –

(r-2) (s-1) no externalities 4 0 0 1 B∗
unequal (s-2) equal externalities 5 0 0 1 B∗

(B is better) (s-3) unequal (B is better) 6 0 0 1 B∗
(s-4) unequal (A is better) 7 0 0 1 B∗

(ic-2) (r-1) (s-1) no externalities 8 0 1 0 P∗
unequal equal (s-2) equal externalities 9 0.04 0.14 0.82 P∗

(B is more) (s-3) unequal (B is better) 10 0 0 1 B∗
(s-4) unequal (A is better) 11 1 0 0 A∗

(r-2) (s-1) no externalities 12 0 0 1 B∗
unequal (s-2) equal externalities 13 0 0 1 B∗

(B is better) (s-3) unequal (B is better) 14 0 0 1 B∗
(s-4) unequal (A is better) 15 0 0 1 B∗

(r-3) (s-1) no externalities 16 1 0 0 A∗
unequal (s-2) equal externalities 17 1 0 0 A∗

(A is better) (s-3) unequal (B is better) 18 1 0 0 A∗
(s-4) unequal (A is better) 19 1 0 0 A∗

these three equilibria are not equally distributed, and P∗ is less frequent than A∗

and B∗. This is because the initial asymmetric (random) configuration between A
and B adopters is magnified due to the existence of the global feedbacks, despite
the equal parameters of the system. If the difference of initial scatterness between
A and B adopters is negligible, then realization of P∗ is expected. Moreover, it is
expected that the system tends to reach A∗ if initially the B adopters are closer to
each other than the A adopters, since the chance for the initial B adopters to meet
those who are potential B adopters (C adopters around the B adopters in this case)
in the early stage becomes smaller than the chance for the initial A adopters who
are relatively more scattered. This can be very critical for the technology B, since
the initial growth rate of the B adopters slows down and the global feedback is
weakened, and, as a result, it leads to A∗. Let us now denote the average number
of shortest steps between A adopters and between B adopters at t = 1 as SA and
SB , respectively, which can be one of the measurements of how much they are
spread initially in the game field. For example, SA tends to be greater than SB

when the initial A adopters form a relatively more dispersed flock than the initial B
adopters. In such case, the difference, SA −SB , becomes positive by the definition
of SA and SB . Actually, it has been confirmed through the simulations that the
system tends to reach P∗ when SA −SB is equal or very close to zero. On the other
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hand, the system more likely goes toward A∗ when SA − SB is greater than zero,
while, B∗ is observed when SA − SB is less than zero. These facts suggest that
the initial configuration is the key factor for equilibrium selection in case 2. This
result originates from the spatiality of the model that suggests the importance of
agent-based modeling. Further explanation is given in Section 5.

In case 9, positive and equal effects of both global and local network externalities
on both technologies also exist, but now the initial numbers as well as the initial
configuration are asymmetric, as in condition (ic-2). In this case, the system reaches
B∗ more frequently due to B’s slight superiority in its initial number that causes the
effect of the global feedback to be enlarged. In other words, even if there is a slight
difference in initial ratio between consumers who adopt A and those who adopt
B, it is eventually amplified. This corresponds to the effects of increasing returns,
which is discussed by Arthur (1989). Here, it is worthwhile enough to emphasize
that, even though the technology B initially has an slight superiority in number,
there still exists a significant possibility for the technology A to coexist with the
technology B by forming clusters (see Fig. 2). Moreover, even though the possibility
is very small, the technology A still has a chance to conquer the whole market. Note
that all the equilibria are robust, as mentioned earlier. Equilibrium selection is again
dependent upon an initial configuration, though the level of the dependency is not
as high as that of case 2 due to the asymmetry in condition (ic-2). It has been
confirmed that the values of SA − SB tend to be significantly positive when P∗

or A∗ is achieved. If the model does not contain the locality, that is, if pi(σi(t), t)
in Eq. (4) is invariable for i, then the global feedback drives the technology B’s
slight superiority in its initial number all the way to B∗ with probability unity.
However, positive frequencies of P∗ and A∗ in this case are caused by the existence
of multiplicative effects of the global and local feedbacks that originate from local
interaction provided by the framework of the spatial game. Also note that, in such
a case, motivation of introducing agent-based modeling strongly arises. Detailed
explanation on this motivation is given in Section 5.

In cases 3, 4, 5, 6, 10, 12, 13, and 14, the technology B has a strict superiority
in its payoff as well as in its initial number of adopters for some cases. As a result,
in all those cases, the technology B always takes over the market. The same type
of argument applies to cases 11, 16, 17, and 19, but in these cases, the technology
A is the one that takes off.

Interestingly enough, in cases 7 and 15, the technology B always dominates the
market, even though the technology A has a superiority on its externality parameter
s(+1) over s(−1), as seen in the condition (s-4). This is because the technology
B has its superiority on the parameter r(−1) over r(+1) in addition to its initial
number for case 15, and the level of the superiority in network externality for
the technology A could not overwhelm the technology B’s other superiority. It is
expected that A∗ would be observed if s(+1) were set higher, and, for example in
case 7, it has been observed in the simulations that s(+1) = 8 is large enough for
the technologyA to take over the market with probability one. Case 18 is symmetric
in (r) and (s) against case 15, and A∗ is achieved even though the condition (ic-2)
still works against the technology A.
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Fig. 2. There are clusters of the technologies A and B adopters in the game field when P∗ is achieved.
Black and White represent the A and B adopters, respectively

So far, in this paper, switching costs that consumers pay when they switch from
the technology A to B or B to A are assumed to be negligible and set as zero for
simplicity. If sufficient switching costs, which can be treated as new parameters,
are considered in the model, then the consumers’ incentive to switch technologies
decreases, and, therefore, P∗ is conjectured to be encouraged. Actually, it has been
confirmed that this conjecture is correct by simulations with switching costs. Fig-
ure 3 shows the relative frequency of P∗ for case 2 ((ic-1), (r-1), and (s-2)) with a
equal switching cost, c. It can be observed that the relative frequency of P∗ increases
linearly as the value of c increases when it holds c1 (= 1.4) < c < c2 (= 3.2), while
the relative frequency of P∗ seems independent of c for c ≤ c1 and c ≥ c2. This
result is intuitive because, when switching costs are too small, they are conceived as
negligible, while the realization of total standardization for which switching is indis-
pensable most likely becomes hopeless when the costs are too large. When we look
at switching from, for example, B to A, the value of c1 is interpreted as a maximum
cost below which consumers are willing to pay to switch from B to A. From Eq. (4),
c1 is analytically calculated as umax(+1) − umax(−1) = 9( 8

90.5 − 4
90.5) = 2,

which can be said close to c1 since it is an averaged value over fifty trials. On
the other hand, the value of c2 is interpreted as a minimum cost above which
consumers are unable or unwilling to pay to switch from B to A and calculated as
umax(+1)−umin(−1) = 9( 8

90.5− 1
90.5) = 3.5, which can be said close to c2 due

to the same reason mentioned above. The analytical approach when c1 < c < c2
will be discussed in Section 5. Until then, c is set as zero again for simplicity.
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Fig. 3. Relative frequency of P∗ of the case 2 ((ic-1), (r-1), and (s-2)) as a function of the equal switching
cost, c. It can be observed that the relative frequency of P∗ increases linearly as the value of c increases,
while it seems independent of c when c ≤ c1 (= 1.4) and c ≥ c2 (= 3.2)

4 Effects of an innovation factor

Now an innovation factor is introduced into the model. Applying the innovation
factor to the externality might sound odd, but it signifies an innovation that improves
the compatibility of a technology. Due to the innovation, consumers or users can
enjoy more benefit of the externality, since as a result they are more connected.
Note that, for example, the idea of trying to line up VHS on shelves of as many
rental video shops also counts as an innovation on externality.

Table 3 shows relative frequencies of the three equilibria, A∗, B∗, and P∗ when
the effect of an innovation factor is applied to case 5 shown in the previous section.
The last column in Table 3 will be explained in Section 5. For cases 5(a), 5(b),
and 5(c) in Table 3, all the parameters as well as initial conditions are the same
as case 5 up to t = 24, and after t = 25 the parameter s(+1), now denoted as
s(+1, t ≥ 25), is increased to 5(a) s(+1, t ≥ 25) = 2, 5(b) s(+1, t ≥ 25) = 4,
and 5(c ) s(+1, t ≥ 25) = 8, that is, an innovation is introduced to technology
A’s side at t = 25. Note that once an innovation factor has been introduced, it
remains. One can see that the innovation factor in 5(c) is large enough for the
technology A to almost always retake the market, while 5(a) and 5(b) are both
too small. Figure 4a represents the trajectories of {pA(t), pB(t)} projected on the
pA(t)-pB(t) plane with (triangle dots) and without (black circles) the innovation
factor s(+1, t ≥ 25) = 8. It is observed that the technology A regains its market
share after t = 25 and eventually takes over the whole market. Here, note that
introducing an innovation factor could sometimes make the system arrive at a
polymorphic equilibrium (case not shown).

In case 5(d) in Table 3, the same size of innovation factor as case 5(c) is in-
troduced, but at time t = 35, that is, s(+1, t ≥ 35) = 8. In this case, technology
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Table 3. Relative frequencies of the three equilibria, A∗, B∗, and P∗ when an innovation factor is
introduced in case 5 shown in Table 2. The last column shows equilibria that are approximated by the
mean-field theory in Section 5

Initial Parameters Parameters Case Relative frequencies M.F.
of equilibria

Condition (r) (s) No. A∗ P∗ B∗ Approx.
(ic)

(ic-1) (r-2) (s-2) 5(a) s(+1, t ≥ 25) = 2 0 0 1 B∗
equal unequal initially equal 5(b) s(+1, t ≥ 25) = 4 0.02 0 0.98 B∗

(B is better) externalities 5(c) s(+1, t ≥ 25) = 8 0.98 0 0.02 A∗
5(d) s(+1, t ≥ 35) = 8 0.02 0 0.98 B∗
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Fig. 4a,b. The results from the simulations in case 5 with the innovation factor. a The trajectories of
{pA(t), pB(t)} on the pA(t)-pB(t) plane with (triangle dots) and without (black circles) the innovation
factor s(+1, t ≥ 25) = 8, respectively. b The overall mean utilities corresponding to the case with the
innovation factor in Fig. 4a. The x-marks and square dots are for UA(t) and UB(t), respectively
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B still almost always takes over the market, that is, the time t = 35 is too late for
technology A with the innovation factor given as eight, or the innovation factor
s(+1, t ≥ 35) = 8 is too small for introducing it at t = 35 to retake the market.
These results suggest that both the timing and the size of the innovation factor
matter for altering paths toward a lock-in situation.

Figure 4b illustrates the overall mean utilities corresponding to Fig. 4a, where
technology A successfully retakes the market. The overall mean utilities, denoted
as UA(t) and UB(t), are defined as

UA(t) =
1

|NA(t)|
∑

i∈NA(t)

ui(+1, t)

=
1

|NA(t)|
∑

i∈NA(t)

|n|{Ri(+1) + S(+1, t)pi(+1, t)}

= |n|{r(+1) + s(+1)pA(t − 1)

∑
i∈NA(t) pi(+1, t)

|NA(t)| } and (10)

UB(t) = |n|{r(−1) + s(−1)pB(t − 1)

∑
i∈NB(t) pi(−1, t)

|NB(t)| } (11)

where ui(±1, t) = ui(σi(t) = ±1) in Eq. (4), NA(t) and NB(t) are the sets
of consumers who consume the technology A and B in the whole population N ,
respectively, and |NA(t)| and |NB(t)| are the sizes of the sets NA(t) and NB(t),
respectively. The x-marks and square dots represent UA(t) and UB(t), respectively,
in Fig. 4b. As in Fig. 4b, when the disadvantaged technology A comes from behind
to retake the market due to the innovation factor, there exists a crossover between
UA(t) and UB(t). In the case where the system reaches P∗ instead, there is no
significant difference between UA(t) and UB(t). From these, it is observed that
evaluating the overall mean utilities in Eqs. (10) and (11) suggests an equilibrium
at which the system most likely arrives.

5 Mean-field theory

In this section, macroscopic equations for the densities of the agents with different
strategies are derived under the mean-field approximation in which local densities
are replaced by the global density and shown to replicate some of the simulation
results in the previous sections. Microscopically, the local densities of the agents
are different from position to position. However, the deviations of the local densities
from the global density may be assumed randomly distributed if the configuration of
initial agents is chosen by throwing a die. The mean-field approximation is expected
to work as a zero-th order approximation, if the disagreements between the local
and global densities do not play crucial roles. This depends upon the parameters
and initial configurations, and the approximation works well for most of the cases
in our model. However, as will be discussed later in this section, if the effects of
equal amount of externalities are taken into account for both the products A and B,
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the discrepancies between the local and global densities are amplified and prevent
the approximation from being effective.

The following rate equations hold for the fraction of A, B and C adopters:

pA(t + 1) − pA(t) = α(t) pB(t) − β(t) pA(t) + γ(t) pC(t), (12)

pB(t + 1) − pB(t) = −α(t) pB(t) + β(t) pA(t) + δ(t) pC(t), and (13)

pC(t + 1) − pC(t) = −ε(t) pC(t), (14)

where α(t), β(t), γ(t), δ(t), and ε(t) represent transition probabilities (see Ap-
pendix for the derivation of the rate equations). Now, if we let σM

k∈n(j)(t) symbolize
the σj(t + 1) that satisfies the right hand side of Eq. (7), then α(t) is obtained as

α(t) = Pr(σM
k∈n(j∈n(i))(t) = +1, ∀i ∈ B)

= Pr(σM
k∈n(j∈n(i))(t) = +1, ∀i ∈ Bin ∪ Bed)

= Pr(σM
k∈n(j∈n(i))(t) = +1, ∀i ∈ Bin)

+Pr(σM
k∈n(j∈n(i))(t) = +1, ∀i ∈ Bed)

= 0 + Pr(σM
k∈n(j∈n(i))(t) = +1, ∀i ∈ Bed)

= Pr(Bed −→ Aed)

�



a

2

√
pA(t)pB(t){1 + sign[UAed

(t) − UBin(t)]} if pA(1) 	= 0

0 otherwise
(15)

where sign[0] is assumed to be −1. The symbols Aed (Bed and Ced) and Ain (Bin

and Cin) stand for the set of technology A (B and C) adopters who are located at
the edges of the clusters of A (B and C) adopters and the set of technology A (B
and C) adopters who are inside the clusters of A (B and C) adopters, respectively.
The value of α(t) becomes positive when UAed

(t) > UBin(t). In other words, only
when an agent judges that being at the edge of a cluster of the alternative product is
strictly better than being inside a cluster of the current product, the agent switches.
This shows his attachment to the cluster to which he presently belongs. The size of
the probability, which reflects the ratio of encounter between A and B adopters, is
approximated as the product of the length of circumferences of the clusters of A and
B adopters that are measured by the square root of pA(t) and pB(t), respectively,
with a parameter a (0 ≤ a ≤ 1). The same logic works for β(t) that is obtained as

β(t) = Pr(Aed −→ Bed)

�




b

2

√
pA(t)pB(t){1 + sign[UBed

(t) − UAin
(t)]} if pB(1) 	= 0

0 otherwise
(16)

with a parameter b (0 ≤ b ≤ 1). From Eq. (10) and (11), the utilities,
UAin(t), UAed

(t), UBin(t), and UBed
(t) in Eqs. (15) and (16), are defined as

UAin(t) = |n|{r(+1) + s(+1) pA(t − 1)}, (17)
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UAed
(t) = |n|{r(+1) + s(+1) pA(t − 1) �a}, (18)

UBin(t) = |n|{r(−1) + s(−1) pB(t − 1)}, and (19)

UBed
(t) = |n|{r(−1) + s(−1) pB(t − 1) �b} (20)

since we have

1
|NAin

(t)|
∑

i∈NAin
(t)

pi(+1, t) = 1, (21)

1
|NBin(t)|

∑
i∈NBin

(t)

pi(−1, t) = 1, (22)

1
|NAed

(t)|
∑

i∈NAed
(t)

pi(+1, t) = �a, and (23)

1
|NBed

(t)|
∑

i∈NBed
(t)

pi(−1, t) = �b (24)

where |NAin(t)|, |NBin(t)|, |NAed
(t)|, and |NBed

(t)| are the sizes of the sets
NAin

(t), NBin(t), NAed
(t), and NBed

(t), respectively. Note that the parameters,
�a and �b, satisfy 1/9 < �a, �b < 1. The transition probabilities, γ(t), δ(t), and
ε(t), are approximated by applying the logistic equation in Eq. (9) and obtained as

γ(t) = Pr(Ced −→ Aed)

�
{

k(1 − pC(t)) if pA(1) 	= 0

0 otherwise
(25)

δ(t) = Pr(Ced −→ Bed)

�
{

k′(1 − pC(t)) if pB(1) 	= 0

0 otherwise
(26)

ε(t) = Pr(Ced −→ Aed or Bed)

=

{
γ(t) + δ(t) if pA(1) 	= 0 and pB(1) 	= 0

0 otherwise
(27)

with parameters, k and k′ (0 < k, k′ < 1), which control the magnitude of the
transition probabilities.

The last columns in Tables 2 and 3 show equilibria that are obtained by numer-
ically solving Eqs. (12) to (14) and Eqs. (15) to (27). Note that these equilibria are
consistent with the stationary solutions obtained by analytically solving Eqs. (12)
to (14) with Eqs. (15) to (27), which show stability of the equilibria. The parameters
a (= b), �a (= �b), and k (= k′) are chosen as 0.5, 6/9, and 0.16 (= λ/2), respec-
tively. The parameter k (= k′) is set as λ/2, since pA(t) + pB(t) (= 1 − pC(t))
can be described by the logistic equation in Eq. (9), the parameter of which is λ.
It has been confirmed that the robustness of all the three equilibria (A∗, B∗, and
P∗) against mutation that is tested in the simulations is preserved in the mean-field
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theory. One can see that the mean-field theory with the above parameters success-
fully approximates the equilibria the system most likely reaches. However, note
that the mean-field theory reaches its limit of approximation in cases 2 and 9 in
Table 2 where equilibrium selection is highly sensitive to the effects of the initial
configuration that are enlarged by the feedbacks under the parameter sets.

In Fig. 5a and b, the trajectory of {pA(t), pB(t)} and overall mean utilities,
ÛA(t) (� UAin

(t)) and ÛB(t) (� UBin
(t)), which are approximated by the above

mean-field theory, are shown. These figures correspond to the case in Fig. 4a and
b, respectively, which are obtained as a result of a simulation. It is observed that
features of Fig. 4a and b are successfully recovered in Fig. 5a and b.
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Fig. 5a,b. The results from the mean-field approximation that corresponds to the case in Fig. 4. The
parameters a (= b), �a (= �b), and k (= k′) are chosen as 0.5, 6/9, and 0.16 (= λ/2), respectively.
a The trajectories of {pA(t), pB(t)} to A∗ and B∗ on the pA(t)-pB(t) plane with and without the
innovation factor s(+1, t ≥ 25) = 8, respectively. b The overall mean utilities. The ex marks and
square dots are for UA(t) and UB(t), respectively

So far, in this section, switching costs have been set as equal to zero. The
following utilizes the mean-field approximation to case 2 with the equal switching
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cost, c (see Fig. 3). When the equal switching cost is introduced, the terms inside
the sign functions in Eqs. (15) and (16) become

UAed
(t) − c − UBin

(t) = |n|
{

pA(t − 1)�a − pB(t − 1) − c

|n|
}

and (28)

UBed
(t) − c − UAin(t) = |n|

{
pB(t − 1)�b − pA(t − 1) − c

|n|
}

, (29)

respectively. Two unstable fixed points, P1 and P2, in Fig. 6 are calculated as
intersections of pA(t)+ pB(t) = 1 (pC(t) = 0) and equations that are obtained by
setting Eqs. (28) and (29) as equal to zero. Stable fixed points (A∗, B∗, and P∗) and
the initial point are also depicted in Fig. 6. The segment P1P2 in Fig. 6 corresponds
to the region for P∗ to be stable. Clearly, the length of P1P2, which is calculated
as

√
2

(1+�a)(1+�b)|n| ((2 + �a + �b)c + (1 − �a�b)|n|), is an increasing function of c,
which corresponds to the results of the simulations for c1 < c < c2 shown in Fig. 3.
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Fig. 6. Two unstable fixed points, P1 and P2, are calculated as the intersections of pA(t)+ pB(t) = 1
(pC(t) = 0) and equations that are obtained by setting Eqs. (28) and (29) as equal to zero. Stable fixed
points (A∗, B∗, and P∗) and initial point are also depicted in this figure. The segment P1P2 corresponds
to the region for P∗ to be stable

6 Discussion

Competitive diffusion of two incompatible technologies, such as PC vs. Macintosh,
VHS vs. Betamax and so on, is studied under the framework of a spatial game
where consumers are distributed on a two-dimensional square lattice network and
play 3×3 symmetric coordination-like games with their nearest neighbors. The
consumers can enjoy network externalities by global coordination (global network
externality), and, at the same time, the global network externality is transmitted
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and enhanced by local coordination (local network externality). The two types of
externalities are set as multiplicative, that is, the multiplicative effects of global and
local network externalities are introduced.

Both simulations and mean-field approximation show that the system always
reaches robust partial standardization for the parameter sets under which there are
no effects of global or local network externalities. On the other hand, when there are
effects of both global and local network externalities, not only total but also robust
partial standardization is observed, even with less heterogeneous agents, depending
upon the parameters and initial configuration. The model, with not only global but
also local network externalities, appears to be able to produce a variety of possible
equilibria. Additionally, from the study on the model with an innovation factor, it is
shown that both the timing and the size of the innovation factor matter for altering
paths toward a lock-in situation.

Finally, introducing a random connection between consumers into the model is
now underway, which may provide outcomes that are more realistic.

Appendix

Here we introduce the local densities of i’s neighbors who are adopting either the
strategy A, B, or C at time t that are given as �i(+1, t), �i(−1, t), and �i(0, t),
respectively, as follows:

�i(σ, t) =
1

2|n|
∑

j∈n(i)

{σσj(t)(σσj(t) + 1) + 2(σ2 − 1)(σ2
j (t) − 1)} (30)

where σ = +1,−1, or 0. Now, if we let σM
k∈n(j)(t) symbolize the σj(t + 1) that

satisfies the right hand side of Eq. (7), then from Eq. (30) the time evolutions of the
local densities are given as

�i(+1, t + 1) − �i(+1, t)

=
1

2|n|
∑

j∈n(i)

{
(σM

k∈n(j)(t))
2 − σ2

j (t) + (σM
k∈n(j)(t) − σj(t))

}

=
1

2|n|

{ ∑
j∈n(i)

σj(t)(σj(t) − 1)
σM

k∈n(j)(t)(σ
M
k∈n(j)(t) + 1)

2

−
∑

j∈n(i)

σj(t)(σj(t) + 1)
σM

k∈n(j)(t)(σ
M
k∈n(j)(t) − 1)

2

+
∑

j∈n(i)

2(1 + σj(t))(1 − σj(t))
σM

k∈n(j)(t)(σ
M
k∈n(j)(t) + 1)

2

}
, (31)

�i(−1, t + 1) − �i(−1, t)

=
1

2|n|
∑

j∈n(i)

{
(σM

k∈n(j)(t))
2 − σ2

j (t) − (σM
k∈n(j)(t) − σj(t))

}
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=
1

2|n|

{
−

∑
j∈n(i)

σj(t)(σj(t) − 1)
σM

k∈n(j)(t)(σ
M
k∈n(j)(t) + 1)

2

+
∑

j∈n(i)

σj(t)(σj(t) + 1)
σM

k∈n(j)(t)(σ
M
k∈n(j)(t) − 1)

2

+
∑

j∈n(i)

2(1 + σj(t))(1 − σj(t))
σM

k∈n(j)(t)(σ
M
k∈n(j)(t) − 1)

2

}
, (32)

and

�i(0, t + 1) − �i(0, t)

=
1

2|n|
∑

j∈n(i)

(−2)
{

(σM
k∈n(j)(t))

2 − σ2
j (t)

}

=
1

2|n|

{
−

∑
j∈n(i)

2(1 + σj(t))(1 − σj(t))(σM
k∈n(j)(t))

2

}
. (33)

Here the global densities of the strategy A, B, and C consumers are introduced as

pA(t) =
1

|N |
∑
i∈N

�i(+1, t), (34)

pB(t) =
1

|N |
∑
i∈N

�i(−1, t), and (35)

pC(t) =
1

|N |
∑
i∈N

�i(0, t), (36)

respectively. Certainly, it holds

pA(t) + pB(t) + pC(t) = 1. (37)

Now the local densities �i(+1, t), �i(−1, t), and �i(0, t) are replaced by the global
density pA(t), pB(t), and pC(t), respectively, and the following equations are ob-
tained:

1
|N |

∑
i∈N

[ �i(±1, t + 1) − �i(±1, t) ] (38)

= ±Pr(σM
k∈n(j∈n(i))(t) = +1, ∀i ∈ B)

1
|N |

∑
i∈N

1
2|n|

∑
j∈n(i)

σj(t)(σj(t) − 1)

∓Pr(σM
k∈n(j∈n(i))(t) = −1, ∀i ∈ A)

1
|N |

∑
i∈N

1
2|n|

∑
j∈n(i)

σj(t)(σj(t) + 1)

+Pr(σM
k∈n(j∈n(i))(t)= ± 1, ∀i∈C)

1
|N |

∑
i∈N

1
2|n|

∑
j∈n(i)

2(1+σj(t))(1−σj(t))



294 M. Tomochi et al.

and

1
|N |

∑
i∈N

[ �i(0, t + 1) − �i(0, t) ] = Pr(σM
k∈n(j∈n(i))(t)

= +1 ∪ −1, ∀i ∈ C)
1

|N |
∑
i∈N

1
2|n|

∑
j∈n(i)

2(1 + σj(t))(1 − σj(t)) (39)

that lead to Eqs. (12), (13), and (14).
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