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Abstract. General purpose technologies (GPTs) are drastic innovations charac-
terized by pervasiveness in use and innovational complementarities. The dynamic
effects of a GPT are analyzed within a quality-ladders model of scale-invariant
Schumpeterian growth. The diffusion path of a GPT across a continuum of indus-
tries is governed by S-curve dynamics. The model generates a unique, saddle-path
long-run equilibrium.Along the transition path, the measure of industries that adopt
the new GPT increases, consumption per capita falls, and the interest rate rises. The
growth rate of the stock market depends negatively on the rate of GPT diffusion
and the magnitude of the GPT-ridden R&D productivity gains; and positively on
the rate of population growth. It also follows a U -shaped path during the diffusion
process of the new GPT. Finally, the model generates transitional growth cycles of
per capita GNP.
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1 Introduction

In any given economic “era” there are major technological innovations, such as
electricity, the transistor, and the Internet, that have far-reaching and prolonged
impact. These drastic innovations induce a series of secondary, incremental inno-
vations. The introduction of the transistor, for example, triggered a sequence of
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secondary innovations, such as the development of the integrated circuit and the
microprocessor, which are themselves considered drastic innovations. These main
technological innovations are used in a wide range of different sectors, inducing
further innovations. For example, microprocessors are now used in many everyday
products such as telephones, cars, personal computers, and so forth.

In general, drastic innovations have three key characteristics. The first feature
refers to the generality of purpose, i.e., drastic innovations affect a wide range
of industries and activities within industries. Consequently, Bresnahan and Tra-
jtenberg (1995) christened these types of drastic innovations “General Purpose
Technologies” (GPTs henceforth). Several empirical studies have documented the
cross-industry pattern of diffusion for a number of GPTs.1 In addition, a strand
of empirical literature has established that the cross-industry diffusion pattern of
GPTs is similar to the diffusion process of product-specific innovations and that it
is governed by standard S-curve dynamics.2 In other words, the internal-influence
epidemic model can provide an empirically-relevant framework within which to
analyze the dynamic effects of a GPT. During this diffusion process, these drastic
innovations could generate growth fluctuations and even business cycles.

Second, the dynamic effects of these GPTs take a long period of time to mate-
rialize. For instance, David (1990) argues that it may take several decades before
major technological innovations can have a significant impact on macroeconomic
activity. Third, these GPTs act as “engines of growth”. As a better GPT becomes
available, it gets adopted by an increasing number of user industries and fosters
complementary advances that raise the industry’s productivity growth. As the use
of a GPT spreads throughout the economy, its effects become significant at the ag-
gregate level, thus affecting overall productivity growth. In his presidential address
to the American Economic Association, Jorgenson (2001) documents the role of
information technology in the resurgence of U.S. growth in the late 1990s.3 There
is plenty of evidence that the rise in structural productivity growth in the late 1990s
can be traced to the introduction of personal computers and the acceleration in the

1 For example, Helpman and Trajtenberg (1998b) provided evidence for the diffusion of the transistor.
They state that transistors were first adopted by the hearing aids industry. Later, transistors were used
in radios, followed by their adoption by the computer industry. These three industries are known as
early adapters. The fourth sector to adopt the transistor was the automobile industry, followed by the
telecommunications sector.

2 Griliches (1957), for example, studied the diffusion of hybrid seed corn in 31 states and 132 crop-
reporting areas among farmers. His empirical model generates an S-curve diffusion path. Andersen
(1999) confirmed the S-shaped growth path for the diffusion of entrepreneurial activity, using corporate
and individual patents granted in the U.S. between 1890 and 1990. Jovanovic and Rousseau (2001)
provided more evidence for an S-shaped curve diffusion process by matching the spread of electricity
with that of personal computer use by consumers.

3 At the aggregate level, information technology is identified with the output of computers, commu-
nications equipment, and software. These products appear in the GDP as investments by businesses,
households, and governments along with net exports to the rest of the world.
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price reduction of semiconductors, which constituted the necessary building blocks
for the information technology revolution.4

The growth effects of GPTs have been analyzed formally by Helpman and
Trajtenberg (1998a). In their model, GPTs require complementary inputs before
they can be applied profitably in the production process. Complementary inputs
developed for previous GPTs are not suited for use with a newly arrived GPT.
The sequential arrival of GPTs generates business cycles. A typical cycle consists
of two phases, a phase in which firms produce final goods with the old GPT and
components are developed for the new GPT, and a second phase in which final
goods producers switch to the new GPT and the development of components for
that GPT continues. Output declines in the first phase of a cycle as workers switch
from production to research to invent new inputs and increases again in the second
phase once the new technology is implemented.5

Following the Helpman and Trajtenberg (1998a) model, Aghion and Howitt
(1998b) explored the macroeconomic effects of GPTs. They derived a simple ver-
sion of the model from the basic Schumpeterian model of endogenous growth by
adding a second stage to the innovation process, a stage of component-building,
and they endogenized the arrival times of successive GPTs.6 Their model results in
similar per capita GNP growth cycles due to the adoption of the new GPT.

In this paper, I analyze formally the effects of a GPT within a state-of-the-art
model of Schumpeterian growth without scale effects. Schumpeterian (R&D-based)
growth is a type of growth that is generated through the endogenous introduction
of new goods or processes based on Schumpeter’s (1934) process of creative de-
struction, as opposed to physical or human-capital accumulation.7

Earlier models of Schumpeterian growth assumed that the growth rate of tech-
nological change depends positively on the level of R&D resources devoted to
innovation at each instant in time. As population growth causes the size of the
economy (scale) to increase exponentially over time, R&D resources also grow
exponentially, as does the long-run growth rate of per capita real output. In other
words, long-run Schumpeterian growth in these models exhibits scale effects. Two
influential papers by Jones (1995a,b) provided time series evidence for the absence

4 Another study from OECD documents that U.S. investment in information processing equipment
and software increased from 29% in 1987 to 52% in 1999. The diffusion of information and communi-
cation equipment accelerated after 1995 as a new wave of information and communication equipment,
based on applications such as the World Wide Web and the browser, spread rapidly throughout the
economy.

5 There is a growing literature with this approach. See, for example, Helpman and Rangel (1998),
Aghion and Howitt (1998b), and the volume edited by Helpman (1998).

6 Eriksson and Lindh (2000) explored a variation of the Helpman and Trajtenberg (1998a) model in
which technological development occurs partly by discrete replacements of obsolete technologies and
the timing of technology shifts is endogenized.

7 There are two classes of scale invariant Schumpeterian growth models; endogenous and exogenous.
Endogenous [exogenous] Schumpeterian growth models are those in which long-run growth can [cannot]
be affected by permanent policy changes.
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of these scale effects. This evidence led theorists to construct Schumpeterian growth
models that exclude scale effects.8

My approach to modeling the GPTs has the following features. First, the model
abstracts from scale effects and generates long-run growth, which is consistent with
the time-series evidence presented by Jones (1995a). Second, I take into consid-
eration the above mentioned evidence on long diffusion lags associated with the
adoption of a new GPT. I therefore analyze both the transitional dynamics and
long-run effects of a new GPT. Third, I assume that a GPT is beneficial to all firms
in each industry. Thus, when a GPT is implemented in an industry, it affects the
productivity of R&D workers, the size of all future innovations in that industry and
its growth rate. Finally, I assume that, although a GPT’s rate of diffusion is exoge-
nous, its diffusion path across a continuum of industries is governed by S-curve
dynamics.

I incorporate the presence of a GPT into the standard quality-ladder framework
of Schumpeterian growth without scale effects that was developed by Dinopoulos
and Segerstrom (1999). In the model, there is positive population growth and one
factor of production, labor. Final consumption goods are produced by a continuum
of structurally identical industries. Labor in each industry can be allocated between
two economic activities, manufacturing of high-quality goods and R&D services
that are used to discover new products of higher quality.

The arrival of innovations in each industry is governed by a memoryless Poisson
process whose intensity depends positively on R&D investments and negatively on
the rate of difficulty of conducting R&D. Following Dinopoulos and Segerstrom
(1999), I assume that R&D becomes more difficult over time in each industry.
Specifically, I assume that the productivity of R&D workers declines as the size
of the market (measured by the level of population) increases. This assumption
captures the notion that it is more difficult to introduce new products and replace
old ones in a larger market.9

The main purpose of this paper is to explore the effects of GPTs on Schum-
peterian growth. Thus, it is imperative to develop a Schumpeterian growth model

8 Dinopoulos and Thompson (1999) provided a survey of the empirical evidence on scale and growth,
and describe recent attempts to develop models that generate growth without scale effects.

9 Several authors have developed microfoundations for this assumption. Young (1998), Dinopoulos
and Thompson (1998), and Aghion and Howitt (1998a, chapter 12) have combined tastes for horizontal
and vertical product differentiation to generate models in which absolute levels of R&D drive produc-
tivity growth at the firm-level, but aggregate R&D in larger economies is diffused over a larger number
of product lines or industries. At the steady state, the number of varieties is proportional to the level of
population. As population grows, the number of varieties increases and aggregate R&D is diffused over
a larger number of product lines or industries, making R&D more difficult.
Dinopoulos and Syropoulos (2000) have provided microfoundations for this specification in a model of
Schumpeterian growth, where the discovery of higher quality products is modeled as an R&D contest (as
opposed to an R&D race) in which challengers engage in R&D and incumbent firms allocate resources
to rent-protecting activities. Rent-protecting activities are defined as costly attempts of incumbent firms
to safeguard the monopoly rents from their past innovations. These activities can delay the innovation of
better products by reducing the flow of knowledge spillovers from incumbents to potential challengers,
and/or increase the costs of copying existing products. Their model postulates that R&D may become
more difficult as the size of the economy grows because incumbent firms may allocate more resources
to rent-protecting activities.
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that is scale effect free and to analyze the behavior of GPTs within this framework.
After removing the scale effects property from the model, I can discuss its transi-
tional and long-run properties and implications. I use Mulligan and Sala-i-Martin’s
(1992) time-elimination method to study the transitional dynamics of the model.

This analysis generates several novel findings. First, there exists a unique glob-
ally stable-saddle-path along which the measure of industries that adopt the new
GPT increases, per capita consumption expenditure decreases, the market interest
rate increases, and the innovation rate of those industries that have adopted the new
GPT decreases at a higher rate than that of those that have not adopted the new
GPT. Second, the model exhibits transitional growth cycles of per capita GNP.

In previous GPT-driven growth models, GPTs also generate transitional growth
cycles of per capita GNP. However, their results are not robust to the introduction
of positive population growth. The introduction of positive population growth in
Helpman and Trajtenberg (1998a) and Aghion and Howitt’s (1998b) models of
GPTs, will make these growth cycles shorter and shorter as the size of the economy
increases, and in the long-run the GPT-induced cycles disappear. In the present
model, the fall in output comes from the reduction in per capita consumption ex-
penditure on final goods and the rise in the per capita R&D investment. As the size
of the economy increases, the duration of the per capita GNP cycle remains the
same. When all industries have adopted the new GPT and the diffusion process
has been completed, the economy experiences a higher per capita income constant
growth rate.

In the absence of a new GPT, the economy does not exhibit zero long-run growth
as in previous models of GPTs (see Helpman and Trajtenberg, 1998a; Aghion and
Howitt, 1998b). That is, the long-run growth rate depends positively on the rate
of innovation (which equals per capita R&D) and thus any policy that affects per
capita R&D investment has long-run growth effects.10 In addition, the removal of
scale effects allows one to analyze the effects of changes in the rate of growth of
population that is absent from earlier models.

I also analyze the effects of a new GPT on the stock market. The growth rate
of the stock market depends negatively on the rate of GPT diffusion process and
the magnitude of the GPT-ridden R&D productivity gains, and positively on the
rate of population growth. It also follows a U -shaped path during the diffusion
process of the new GPT (Proposition 4). During the transition from the old to the
new GPT, there are two types of industries in the economy: one that has adopted
the new GPT and one that has not yet adopted it. The former type of industry
is more innovative in terms of discovering higher quality products than the latter
type. In the initial stages of a GPT’s diffusion, the aggregate stock value decreases,
since most of the industries belong to the latter type. As more industries switch
to the new GPT, the aggregate stock value rises. This result is consistent with

10 The evidence on the empirical validity of endogenous versus exogenous Schumpeterian growth
models without scale effects is still limited. However, Zachariadis (2003) found strong support for
the Schumpeterian endogenous growth framework without scale effects by using U.S. manufacturing
industry data for the period 1963–1988. The manufacturing sector accounted for more than ninety
percent of R&D expenditures in the U.S. until the late eighties.
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that of previous GPT-driven growth models.11 In addition, an increase in the GPT
diffusion rate increases the economy-wide resources devoted to R&D. Thus, the
probability that the incumbent firm will be replaced by a follower firm increases. In
other words, when the GPT diffusion process accelerates, the decrease in per capita
consumption expenditure is more severe, and per capita R&D investment increases.
This last result provides a novel link between the GPT adoption and higher risk for
incumbent firms and captures the effects of creative destruction on the stock market
valuation of monopoly profits.12

However, the mechanism identified in the present model that links the growth
rate of the stock market with the GPT differs from that of previous GPT-driven
growth models. In Helpman and Trajtenberg’s (1998a) model, for example, during
the first phase, the components of both the best practice GPT and of the previous
one have positive value. When the economy is in the second phase of a typical
cycle, only components of the best practice GPT are valuable because at that time
it is known that no component of the older technologies will ever be used. Thus,
the introduction of a new GPT brings a sharp decline in the real value of the stock
market during a substantial part of phase one, but it picks up toward the end of the
phase. In the second phase, the stock market rises.

The effect of the GPT diffusion on the aggregate investment during the adop-
tion process is ambiguous (Proposition 5). In the initial stages of the diffusion
process, only a limited number of industries adopt the new GPT. These industries
are called the early adopters. As more industries adopt the new GPT, aggregate
R&D investment increases.

The rest of the paper is organized as follows. Section 2 develops the structure
of the model. Section 3 analyzes the long-run properties of the model and Section 4
deals with the transitional dynamics. Section 5 summarizes the model’s key findings
and suggests possible extensions. The algebraic details and proofs of propositions
are relegated to the Appendix.

11 Jovanovic and Rousseau (2001) documented empirically how technology has affected the U.S.
economy over the past century, using 114 years of U.S. stock market data. Their estimates reveal evidence
that entries to the stock market as a percentage of firms listed in each year, were proportionately largest
between 1915 and 1929, and that these levels were not again approached until the mid-1980s. About
half of American households and most businesses were connected to electricity in 1920, and about one
half of the households and most businesses today own or use computers. Both expansions, therefore,
coincide with periods during which electricity and information technology saw widespread adoption.
During times of rapid technological change, the new entrants of the stock market will grab the most
value from previous entrants because the incumbents will find hard to keep up. The downward trend in
the starting values of the vintages reflects a slowing down in the growth of the stock market.

12 The first OPEC shock may also explain a part of the drop in the stock market in the early 1970s,
as well as a part of the productivity slowdown. Hobijn and Jovanovic (2001) argued that there are
several problems associated with the oil-shock explanation. One problem is that a rise in oil prices
should have lowered current profits more than future profits, because of the greater ease of finding
substitutes for oil in the long-run, perhaps current output more than future output and, therefore, should
have produced a rise in the ratio of market capitalization to GDP, not a fall. This scenario also implies
a constant entry in the stock market, something that contradicts their evidence. Another problem that is
associated with the oil-price-shock explanation for the stock-market drop is that the energy-intensive
sectors did not experience the largest drop in value in 1973–1974. Their evidence supports that the
information-technology-intensive sectors experienced the largest drop in 1973–1974.
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2 The model

2.1 Industry structure

I consider an economy with a continuum of industries, indexed by θ ∈ [0, 1]. In each
industry θ, firms are distinguished by the quality j of the products they produce.
Higher values of j denote higher quality, and j is restricted to taking on integer
values. At time t = 0, the state-of-the-art quality product in each industry is j = 0,
that is, some firm in each industry knows how to produce a j = 0 quality product
and no firm knows how to produce any higher quality product. To learn how to
produce higher quality products, firms in each industry engage in R&D races. In
general, when the state-of-the-art quality in an industry is j, the next winner of an
R&D race becomes the sole producer of a j + 1 quality product. Thus, over time,
products improve as innovations push each industry up its “quality ladder”, as in
Grossman and Helpman (1991).

2.2 Diffusion of a new GPT

The diffusion path of a new GPT is modeled as follows: The economy has achieved
a steady-state equilibrium, manufacturing final consumption goods with an old
GPT. I begin the analysis at time t = t0, when a new GPT arrives unexpectedly.
Firms in each industry start adopting the new GPT at an exogenous rate.13

I use the epidemic model to describe the diffusion of a new GPT across the
continuum of industries.14 Its form can be described by the following differential
equation,

ω̇

ω
= δ(1 − ω), (1)

where ω̇ = ∂ω/∂t denotes the rate of change in the fraction of industries that
use the new GPT and δ > 0 is the rate of diffusion. Equation (1) states that the
number of new adoptions during the time interval dt, ω̇, is equal to the number of
remaining potential adopters, (1 − ω), multiplied by the probability of adoption,
which is the product of the fraction of industries that have already adopted the new
GPT, ω, and the parameter δ, which depends upon factors such as the attractiveness
of the innovation and the frequency of adoption, both of which are assumed to be
exogenous.

13 Aghion and Howitt (1998b) model the spread of GPTs using a continuum of sectors. In their model,
the innovation process involves three stages. First, the GPT is discovered. Then each sector discovers a
“template” on which research can be based. Finally, that sector implements the GPT when its research
results in a successful innovation. They have computed paths of the fraction of sectors experimenting
with the new GPT and the fraction using the new GPT and found that the time path of the later follows
a logistic curve (S-curve).

14 See Thirtly and Ruttan (1987, pp. 77–89) for various applications of the epidemic model to the
diffusion of technology.
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The solution to Equation (1) expresses the measure of industries that have
adopted the new GPT as a function of time and yields the equation of the sigmoid
(S-shaped) logistic curve:

ω =
1

[1 + e−(γ+δt)]
, (2)

where γ is the constant of integration. Notice that for t → ∞, Equation (2) implies
that all industries have adopted the new GPT.15

2.3 Households

The economy is populated by a continuum of identical dynastic families that provide
labor services in exchange for wages, and save by holding assets of firms engaged
in R&D. Each individual member of a household is endowed with one unit of labor,
which is inelastically supplied. The number of members in each family grows over
time at the exogenous rate gN > 0. I normalize the measure of families in the
economy at time 0 to equal unity. Then the population of workers in the economy
at time t is N(t) = egN t.

Each household is modeled as a dynastic family,16 which maximizes the dis-
counted utility

U =
∫ ∞

0
e−(ρ−gN )t log u(t)dt, (3)

where ρ > 0 is the constant subjective discount rate. In order for U to be bounded,
I assume that the effective discount rate is positive (i.e., ρ − gN > 0). Expression
log u(t) captures the per capita utility at time t, which is defined as follows:

log u(t) ≡
∫ 1

0
log[

∑
j

λ(θ)jq(j, θ, t)]dθ . (4)

In Equation (4), q(j, θ, t) denotes the quantity consumed of a final product of
quality j in industry θ ∈ [0, 1] at time t. Parameter λ(θ) measures the size of
quality improvements and is equal to

λ(θ) =




λ1 if θ ∈ [0, ω]

λ0 if θ ∈ [ω, 1],
(5)

15 When t → −∞, then ω = 0. If one assumes that the new GPT arrives at time t = 0, then ω > 0.
That is, the new GPT is introduced in the economy by a given fraction of industries ω (i.e., the industry
or industries that developed this particular GPT).

16 Barro and Sala-i-Martin (1995, Ch.2) provide more details on this formulation of the household’s
behavior within the context of the Ramsey model of growth.
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where λ1 > λ0 > 1. At each point in time t, each household allocates its income
to maximize Equation (4) given the prevailing market prices. Solving this opti-
mal control problem yields a unit elastic demand function for the product in each
industry with the lowest quality-adjusted price

q(j, θ, t) =
c(t)N(t)
p(j, θ, t)

, (6)

where c(t) is per capita consumption expenditure, and p(j, θ, t) is the market price
of the good considered. The quantity demanded of all other goods is zero.

Given this static demand behavior, the intertemporal maximization problem of
the representative household is equivalent to

max
c(t)

∫ ∞

0
e−(ρ−gN )t log c(t)dt , (7)

subject to the intertemporal budget constraint ȧ(t) = r(t)a(t)+w(t)−c(t)−gNa,
where a(t) denotes the per capita financial assets, w(t) is the wage income of the
representative household member, and r(t) is the instantaneous rate of return. The
solution to this maximization problem obeys the well-known differential equation

ċ(t)
c(t)

= r(t) − ρ , (8)

According to Equation (8), per capita consumption expenditure increase over time
if the instantaneous interest rate exceeded the consumer’s subjective discount rate ρ.

2.4 Product markets

Every firm in each industry θ uses labor L(θ, t) as the sole input in its production,
according to the following production function

Q(θ, t) =
L(θ, t)

αQ
, (9)

where αQ is the unit labor requirement. The monopolist engages in limit pricing,
i.e., it charges a price equal to unit cost of manufacturing a product times the quality
increment

P = λ(θ)αQw . (10)

At each instant in time, the incumbent monopolist produces the state-of-the-art
quality product and earns a flow of profits

π(θ, t) =
(

λ(θ) − 1
λ(θ)

)
c(t)N(t) . (11)
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2.5 R&D races

Labor is the only input used to do R&D in any industry. Each firm in each industry
θ produces R&D services by employing labor LR(θ, t) under the constant returns
to scale production function17

R(θ, t) =
µ(θ)
αR

LR(θ, t) , (12)

In Equation (12), αR/µ(θ) is the unit-labor requirement in the production of R&D
services and µ(θ) is equal to

µ(θ) =




µ1 = µ if θ ∈ [0, ω]

µ0 = 1 if θ ∈ [ω, 1],
(13)

where µ > 1. A firm k that engages in R&D discovers the next higher-quality
product with instantaneous probability Ikdt, where dt is an infinitesimal interval
of time and

Ik(θ, t) =
Rk(θ, t)
X(t)

. (14)

Rk(θ, t) is firmk’s R&D outlays andX(t) captures the difficulty of R&D in a typical
industry. I assume that the returns to R&D investments are independently distributed
across challengers, across industries, and over time. Therefore, the industry-wide
probability of innovation can be obtained from Equation (14) by summing up the
levels of R&D across all challengers. That is,

I(θ, t) =
∑

k

Ik(θ, t) =
R(θ, t)
X(t)

, (15)

where and R(θ, t) denotes total R&D services in industry θ. Variable I(θ, t) is the
effective R&D.18 The arrival of innovations follows a memoryless Poisson process
with intensity I1 for the industries that have adopted the new GPT, and I0 for
industries that have not adopted the new GPT.

Early models of Schumpeterian growth considered X(t) to be constant over
time. This implied that the rates of innovation and the long-run growth increase ex-
ponentially as the scale of the economy grows exponentially. This scale-effects
property is inconsistent with post-war time-series evidence presented in Jones
(1995a).

17 The empirical evidence on returns to scale of R&D expenditure is inconclusive. Diminishing returns
would make the analysis of the transitional dynamics more complicated. Segerstrom and Zolnierek
(1999) among others developed a model in which they allow for diminishing returns to R&D effort at
the firm level and industry leaders have R&D cost advantages over follower firms. In their model, when
there are diminishing returns to R&D and the government does not intervene, both industry leaders and
follower firms invest in R&D.

18 The variable I(θ, t) is the intensity of the Poisson process that governs the arrivals of innovations
in industry θ.
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A recent body of theoretical literature has developed models of Schumpeterian
growth without scale effects.19 Two approaches have offered possible solutions to
the scale-effects problem. The first generates exogenous long-run Schumpeterian
growth models.20 The second approach generates models that exhibit endogenous
long-run Schumpeterian growth.21 Here I adopt the second approach and remove the
scale-effects property by assuming that the level of R&D difficulty is proportional
to the market size measured by the level of population,

X(t) = kN(t) , (16)

where k > 0 is a parameter.22

Consumer savings are channeled to firms engaging in R&D through the stock
market. The assumption of a continuum of industries allows consumers to diversify
the industry-specific risk completely and earn the market interest rate. At each
instant in time, each challenger issues a flow of securities that promise to pay
the flow of monopoly profits defined in (11) if the firm wins the R&D race and
zero otherwise. Consider now the stock-market valuation of the incumbent firm
in each industry. Let V (t) denote the expected discounted profits of a successful
innovator at time t when the monopolist charges a price p for the state-of-the-art
quality product. Because each quality leader is targeted by challengers who engage
in R&D to discover the next higher-quality product, a shareholder faces a capital
loss V (t) if further innovation occurs. The event that the next innovation will arrive
occurs with instantaneous probability Idt, whereas the event that no innovation
will arrive occurs with instantaneous probability 1 − Idt. Over a time interval dt,
the shareholder of an incumbent’s stock receives a dividend π(t)dt and the value

of the incumbent appreciates by dV (t) = [∂V (t)
/

∂t]dt = V̇ (t)dt. The absence

of profitable arbitrage opportunities requires the expected rate of return on stock
issued by a successful innovator to be equal to the riskless rate of return r; that is,

V̇ (θ, t)
V (θ, t)

[1 − I(θ, t)dt]dt +
π(θ, t)
V (θ, t)

dt − [V (θ, t) − 0]
V (θ, t)

I(θ, t)dt = rdt . (17)

19 See Dinopoulos and Thompson (1999) and Dinopoulos and Sener (2003) for an overview of these
models.

20 Jones (1995b), and Segerstrom (1998) have removed scale effects by assuming that R&D becomes
more difficult over time because “the most obvious ideas are discovered first.” The model that results
from their specification is called the temporary effects of growth (TEG) model. In these models, the
growth rate does not depend on any measure of scale. Increases in the steady-state level of R&D raise
technology and income per capita at any point in time, but they do not raise the growth rate.

21 Young (1998), Aghion and Howitt (1998a, chapter 12), Dinopoulos and Thompson (1998), Peretto
(1998), and Peretto and Smulders (1998) removed the scale effects property by essentially the same
mechanism as the one developed by exogenous Schumpeterian growth models. They introduced the
concept of localized intertemporal R&D spillovers. Dinopoulos and Syropoulos (2000) proposed a novel
mechanism based on the notion of innovation-blocking activities that removes the scale-effects property
and generates endogenous long-run Schumpeterian growth. This model offers a novel explanation to
the observation that the difficulty of conducting R&D has been increasing over time.

22 Informational, organizational, marketing, and transportation costs can readily account for this dif-
ficulty. Arroyo, et al. (1995) have proposed this specification under the name of the permanent effects
of growth (PEG) model, and have provided time-series evidence for its empirical relevance.
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Taking limits in Equation (17) as dt → 0 and rearranging terms appropriately gives
the following expression for the value of monopoly profits

V (θ, t) =
π(θ, t)

r(t) + I(θ, t) − V̇ (θ,t)
V (θ,t)

. (18)

Consider now the maximization problem of a typical challenger k. This firm chooses
the level of R&D investment Rk(θ, t) to maximize the expected discounted profits

V (θ, t)
Rk(θ, t)
X(t)

dt − w
αR

µ(θ)
Rk(θ, t)dt , (19)

where Ikdt = [Rk(θ, t)/X(t)]dt is the instantaneous probability it will discover the
next higher-quality product and wαRRk(θ, t)/µ(θ) is the R&D cost of challenger
k.

Free entry into each R&D race drives the expected discounted profits of each
challenger down to zero and yields the following equilibrium condition:

V (θ, t) =
wαRkN(t)

µ(θ)
. (20)

2.6 Labor market

All workers are employed by firms in either production or R&D activities. Taking
into account that each industry leader charges the same price p, and that consumers
only buy goods from industry leaders in equilibrium, it follows from (9) that total
employment of labor in production is

∫ 1
0 Q(θ, t)dθ. Solving (12) for each industry

leader’s R&D employment LR(θ, t) and then integrating across industries, total
R&D employment by industry leaders is

∫ 1
0 [R(θ, t)αR/µ(θ)]dθ. Thus, the full

employment of labor condition for the economy at time t is

N(t) =
∫ 1

0
Q(θ, t)αQdθ +

∫ 1

0

αRR(θ, t)
µ(θ)

dθ . (21)

Equation (21) completes the description of the model.

3 Long-run equilibrium

The dynamic behavior of the economy is governed by two equations that determine
the evolution of the per capita consumption expenditure, c, and the number of indus-
tries that adopt the new GPT, ω. To facilitate the interpretation and understanding
of my results, I begin by deriving expressions for long-run per capita real output
and long-run growth. Following the standard practice of Schumpeterian growth
models, one can obtain the following deterministic expression for sub-utility u(t),
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which is appropriately weighted consumption index and corresponds to real per
capita income23

log u(t) = log c − log αQ + I(θ, t)t log λ(θ) − log λ(θ) . (22)

The economy’s long-run Schumpeterian growth rate is defined as the rate of growth
of sub-utility u(t), gu = u̇(t)/u(t). By differentiating Equation (22) with respect
to time, I obtain:

gu =
u̇(t)
u(t)

= I(θ, t) log λ(θ) , (23)

which is a standard expression for long-run growth in quality-ladders growth mod-
els. Because the size of each innovation becomes larger (i.e., λ1 > λ0) after all
industries have adopted the new GPT (i.e., the diffusion process has been com-
pleted), long-run growth, gu, can be affected not only through changes in the rate
of innovation, but also through the diffusion of the new GPT.

At this point it is useful to choose labor as the numeraire of the model and set

w ≡ 1 . (24)

Using Equations (6), (10), (12), (15), (16), and (21), and taking into account (24),
I obtain the resource condition

1 = c

(
ω

λ1
+

(1 − ω)
λ0

)
+ kαR

(
ω

µ
I1 + (1 − ω)I0

)
, (25)

which defines a negative linear relationship between per capita consumption ex-
penditure, c, and the effective R&D, I . The above resource condition holds at each
instant in time because by assumption factor markets clear instantaneously.

I now derive the differential equation that determines the growth rate of per
capita consumption expenditure, ċ/c, as a function of its level and the rate of inno-

vation. Equation (20) holds at each instant in time, and yields V̇ (θ, t)
/

V (θ, t) =

Ẋ(t)
/

X(t) = gN . In other words, the values of expected discounted profits, V (t),
and the level of R&D difficulty, X(t), grow at the constant rate of population
growth, gN . Using Equations (18) and (20), I obtain

c =
λ(θ)αRk

(λ(θ) − 1)µ(θ)
][ρ + I(θ, t) − gN ] , (26)

which defines a positive linear relationship between per capita consumption expen-
diture, c, and the effective R&D, I . It also implies the familiar condition that r = ρ,
which means that the market interest rate must be equal to the subjective discount
rate in the steady-state equilibrium. This property is shared by all Schumpeterian
models in which growth is generated by the introduction of final consumption (as
opposed to intermediate production) goods.

23 See Dinopoulos (1994) for an overview on Schumpeterian growth theory.
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Final Resource Condition 

Final R&D Condition 

N1

A

R0

0

R1

N0

N0

N1

c

I

B

R1

Initial R&D Condition 

R0

Initial Resource Condition 

Fig. 1. Steady-state equilibria: Point A: No industry has adopted the new GPT. Point B: All industries
have adopted the new GPT

Let a hat “ˆ” over variables denote their market value in steady-state equilib-
rium. The resource condition (25) and the equilibrium R&D condition (26) deter-
mine simultaneously the long-run equilibrium values of per capita consumption
expenditure, ĉ, and the rates of innovation, Î0 and Î1. Figure 1 illustrates the two
steady-state equilibria: the initial steady-state (point A) in which no industry has
adopted the new GPT (i.e., ω = 0) and the final steady-state (point B) in which
all industries have adopted the new GPT (i.e., ω = 1). When ω = 0 the balanced-
growth resource condition is

1 =
c

λ0
+ kαRI0 , (27)

and the balanced-growth R&D condition is given by Equation (26) (when ω = 0).
The vertical axis measures consumption expenditure per capita, c, and the horizontal
axis measures the rate of innovation, I . The resource condition is reflected by the
negatively-sloped line N0N0 and the R&D equilibrium condition is represented by
the positively-sloped line R0R0. Their unique intersection at point A determines
the long-run values ĉ(0) and Î0(0), where ĉ(0) denotes the per capita consumption
expenditure evaluated at ω = 0 and Î0(0) denotes the innovation rate for industries
that have adopted the new GPT evaluated at ω = 0. Therefore, I arrive at:

Proposition 1. For a given ω ∈ [0, 1], where ω is the measure of industries
with a new GPT, there exists a unique steady-state equilibrium such that the long-
run Schumpeterian growth, ĝu, is endogenous and does not exhibit scale effects:
it depends positively on policies that affect the size of innovations, λ, the labor
productivity in R&D services, µ(θ)/αR, and the rate of population growth, gN ; it
depends negatively on the consumer’s subjective discount rate, ρ. At each steady-
state equilibrium, consumption expenditure per capita, ĉ, is constant, the interest
rate, r̂(t), is equal to the constant subjective discount rate, ρ, and the aggregate
stock value, V̄ , increases at the same rate as the constant rate of population growth,
gN .
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Proof. See Appendix.

The removal of scale effects from the long-run growth rate, gu, depends on the
assumption that the level of R&D difficulty is proportional to market size. At the
steady-state equilibrium, the level of R&D difficulty, X(t), increases exponentially

at the rate of population growth gN , i.e., Ẋ(t)
/

X(t) = gN , as can be seen from

Equation (16). The absence of a new GPT does not result in zero long-run growth
rate, as in the Helpman and Trajtenberg (1998a) and Aghion and Howitt (1998b)
models. That is, the long-run growth rate depends positively on per capita R&D
and, thus, any policy that affects this variable has long-run growth effects. The
following proposition describes the long-run properties of the economy:

Proposition 2. If ω is governed by S-curve dynamics, there are only two steady-
state equilibria: the initial steady-state equilibrium arises before the adoption of
the new GPT, where ω = 0, and the final steady-state equilibrium is reached after
the diffusion process of the new GPT has been completed, where ω = 1. At the final
steady-state equilibrium: aggregate investment is higher, Î(1) > Î(0), long-run
growth rate is higher, ĝu(1) > ĝu(0), per capita consumption expenditure is lower,
ĉ(1) < ĉ(0), per capita stock market valuation of the incumbent in each industry

is lower, V̂ (1)
/

N < V̂ (0)
/

N , relative to the initial steady-state equilibrium. In

both steady states the market interest rate is equal to the subjective discount rate,
r̂ = ρ.

Proof. See Appendix.

These comparative steady-state properties can be illustrated with the help of
Figure 1. Before the introduction of the new GPT, the economy is in a steady state
(point A), where ω = 0, with per capita consumption expenditure ĉ(0), and with
innovation rate Î0. An increase in the measure of industries that adopt the new
GPT makes the R&D condition in Figure 1 shift downward from R0R0 (where
ω = 0) to R1R1 (where ω = 1) and the resource condition shift upward from
N0N0 to N1N1, resulting in higher long-run rate of innovation and in lower long-
run consumption expenditure per capita. In other words, when all industries have
adopted the new GPT, the long-run Schumpeterian growth rate increases. The new
steady state is at point B, where ω = 1, with per capita consumption expenditure
ĉ(1), and innovation rate Î1.

4 Transitional dynamics

I analyze the transitional dynamics of the model by adapting the time-elimination
method described by Mulligan and Sala-i-Martin (1992).24 The time-elimination
method enables one to construct a system of two differential equations that govern
the evolution of c and ω. Since Equation (26) holds at each instant in time (when
the subjective discount rate, ρ, is replaced by the interest rate, r), I can solve for
the rates of innovation for the two types of industries, I0 and I1. After substituting

24 See also Mulligan and Sala-i-Martin (1991) for more details on this method.
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Fig. 2. Stability of the balanced-growth equilibrium

these rates into the resource condition (25), which holds at each instant in time, I
can solve for the market interest rate along any path and obtain

r =
µ(c − 1)

kαR[µ − ω(µ − 1)]
+ gN . (28)

Substituting (28) into (8) yields the following differential equation:

ċ

c
= r − ρ =

µ(c − 1)
kαR[µ − ω(µ − 1)]

+ gN − ρ . (29)

Equations (29) and (1) determine the evolution of the two endogenous variables
of the model, per capita consumption expenditure, c, and the number of industries
that have adopted the new GPT, ω.

Since the right-hand side of Equation (29) is decreasing in ω, ċ = 0 defines
the downward-sloping curve in Figure 2. Starting from any point on this curve, an
increase in ω leads to ċ > 0 and a decrease in ω leads to ċ < 0. The right-hand side
of Equation (1) is independent of c, and therefore the ω̇ = 0 locus is a vertical line.
Starting from any point on this line, decrease in ω leads to ω̇ > 0. The area to the
left of the vertical line (i.e., locus ω̇ = 0) identifies a region in which the potential
number of adopters is greater than one. Therefore, this region is not feasible. There
exists a downward-sloping saddle path going through the unique balanced-growth
equilibrium point B. Thus, I arrive at:

Proposition 3. Assume that δ > (gN − ρ). Then, there exists a unique negative-
sloping globally stable-saddle-path going through the final unique balanced-growth
equilibrium point B. Along the saddle path, the measure of industries that adopt
the new GPT, ω, increases, the per capita consumption expenditure, c, decreases,
the market interest rate, r, increases, the innovation rate of the industries that have
adopted the new GPT, I1, decreases at a higher rate than that of those that have
not adopted the new GPT, I0. In addition, there exist transitional growth cycles of
per capita GNP.

Proof. See Appendix.
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Fig. 3. Time path of the per captia consumption expenditure after a GPT arrives in the economy

Fig. 4. Time path of the market interest rate after a GPT arrives in the economy

The analysis is predicated on the assumption of perfect foresight.25 When the
new GPT arrives, per capita consumption expenditure, c, jumps down instanta-
neously to c̃ (point A′ in Fig. 2). This per capita consumption expenditure jump
lowers the interest rate to r̃ (Fig. 4) since there are more savings available. The
downward jumps on the per capita consumption expenditure and on the interest
rate imply an upward jump in the innovation rates of both types of industries; those
that have adopted the new GPT and those that have not adopted the new GPT (Ĩ1
and Ĩ0 in Fig. 5).

Figure 1 illustrates that the R&D line R0R0 will shift downwards and the re-
source line N0N0 will shift upwards with the arrival of the new GPT resulting
in lower per capita consumption expenditure. Going back to Figure 2, the instan-
taneous decrease in c is reflected by a movement from point A to point A′. The
decrease in per capita consumption expenditure leads to a decrease in the market
interest rate r (from Eq. (28), which always hold). When the market interest rate r
is lower than the subjective rate ρ, per capita consumption expenditure decreases
even further, until the market interest rate approaches the subjective discount rate
at the new steady state (point B in Figs. 1 and 2). During the transition dynamics
(i.e., as the equilibrium moves from point A′ to point B in Fig. 2), the interest

25 There also exists a degenerate equilibrium at which the adoption of the new GPT is not completed.
Suppose that when a new GPT arrives, every potential consumer expects that no one will decrease
his consumption expenditure in order to finance innovation. As a result, it does not pay to decrease
consumption expenditure of a single consumer, because the new GPT will never be fully adopted. In
this event, the pessimistic expectations are self-fulfilling, and no new GPTs are fully adopted. I do not
discuss these types of equilibria in what follows.
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Fig. 5. Evolution of the aggregate investment during the diffusion path: the initial steady-state equilib-
rium is at point A. There is an upward jump in the aggregate investment with the introduction of the new
GPT. One possible path of the aggregate investment, along the diffusion path, is depicted in the figure
by the dotted curve ĨB

rate increases leading to more savings and a decrease in per capita consumption
expenditure. At point B in Figure 2, all industries have adopted the new GPT.

Along the transition path, the aggregate investment may increase or decrease.
One possible path of the aggregate investment is shown in Figure 5 by the dotted
curve. There is an upward jump in the innovation rate of industries that have not
adopted the new GPT (from point B0 to point B in Fig. 5).

Figures 3 and 4 show the time paths of per capita consumption expenditure and
the market interest rate (where t0 indicates the time when the new GPT arrives in
the economy and t∞ indicates the time when all industries in the economy have
adopted the new GPT). Figure 6 shows the effect of a GPT on the Schumpeterian
growth rate. The adoption of the new GPT entails cyclical growth patterns.26 The
growth rate decreases in the initial stages of the adoption of the new GPT. There
exist transitional growth cycles.

4.1 Stock market behavior

The fact that the adoption of a new GPT affects positively the productivity of
R&D together with free entry into each R&D race is a key factor in explaining
the behavior of the stock market. The probability of discovering the next higher
quality product in each industry increases with the adoption of the new GPT and
so does the probability that the incumbent in each industry will be replaced by a
follower firm (i.e., the hazard rate). This link between the GPT adoption and higher
risk for incumbent firms captures the effects of creative destruction on the stock
market valuation of monopoly profits. In other words, during the diffusion of a
GPT, per capita consumption declines, the market interest rate rises, and the hazard

26 Earlier contributions on this issue include the macroeconomic model of Cheng and Dinopoulos
(1996) in which Schumpeterian waves obtain as a unique non-steady-state equilibrium solution and the
current flow of monopoly profits follows a cyclical evolution.
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rate increases. These changes lower the per capita expected discounted profits of
the successful innovator and drive down its per capita stock market valuation.27

Furthermore, the larger the productivity gains associated with the new GPT, the
larger the slump of the stock market. For example, it may be that the productivity
gains generated by the introduction of the new GPT are large not because the new
GPT is technologically very advanced at that initial stage, but because the previous
GPTs are particularly inadequate for the needs of these sectors.28 However, the size
of the slump in the stock market is more severe, when the new GPT is diffused at
a higher rate.

The aggregate stock value is given by the following equation:

V̄ =
[
ω

V1

N(t)
+ (1 − ω)

V0

N(t)

]
N(t) , (30)

where V1 and V0 are given by Equation (20) after taking account Equation (24).
Thus, the growth rate of the aggregate stock value is given by:

gV =
˙̄V
V̄

= gN − (µ − 1)ωδ(1 − ω)
[ω + (1 − ω)µ]

. (31)

At the initial steady-state, where ω = 0 and at the final steady-state, where ω = 1,
the growth rate of the aggregate stock value is equal to the rate of the population
growth.

That is,

ĝV = gN . (32)

The effects of a GPT on the stock market valuation of monopoly profits are sum-
marized in the following proposition:

Proposition 4. The growth rate of the stock market, gv , depends negatively on
the rate of GPT diffusion process, δ, and the magnitude of the GPT-ridden R&D
productivity gains, µ, and positively on the rate of population growth, gN . It also
follows a U -shaped path relative to the population growth rate during the diffusion
process of the new GPT.

Proof. See Appendix.

These comparative properties, which differentiate the model from several others
in its class, can be illustrated with the help of Figure 7, which shows the growth

27 Hobijn and Jovanovic (2001) argue that U.S. stock market decline in the early 1970s was due to
the arrival of information technology and the fact that the stock-market incumbents were not ready to
implement it. They state “Instead, new firms would bring in the new technology after the mid-1980s.
Investors foresaw this in the early 1970s and stock prices fell right away.” The U.S. stock market value
relative to GDP plummeted to 0.4 in 1973, just after Intel developed the microprocessor in late 1971. The
decrease of the stock market value relative to GDP did not recover until the mid-1980s, and then rose
sharply. Leading OECD countries also experienced similar movements in their stock markets, following
a U -shaped path.

28 This was clearly the case for early computers, where even though valves had been getting smaller
for over a decade prior to the arrival of the transistor, the transistor was still an order of magnitude
smaller.
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Fig. 6. The effects of a GPT on the Schumpeterian growth rate: when all industries have adopted the new
GPT, the economy experiences higher steady-state Schumpeterian growth. There also exist transitional
growth cycles of per capita GNP

Fig. 7. The effects of a GPT on the stock market: The growth rate of the stock market depends on the
rate of GPT diffusion process, the magnitude of the GPT-ridden R&D productivity gains, and the rate
of population growth. It also follows a U -shapepd path relative to the population growth

rate of stock market as a function of the measure of industries that have adopted
the new GPT. The initial adoption of the new GPT decreases the growth rate of
the stock market below the rate of the population growth. In the later stages of the
adoption of the new GPT, the growth rate of the stock market increases. When the
diffusion process of the new GPT has been completed, the growth rate of the stock
market is equal to the rate of the population growth. That is, it follows a U -shaped
path relative to the population growth rate during the diffusion process of the new
GPT.
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This last result can be seen from the second term of the right hand side in
Equation (31).29 The free entry condition in each R&D race (Eq. 20) implies that
the per capita stock value in any industry θ, Vθ/N(t), is constant over time. It
jumps down instantaneously with the adoption of the new GPT, and it remains
constant thereafter. The aggregate stock value, which increases exponentially at the
rate of the population growth, jumps down with the arrival of the new GPT, and
then increases again at the population growth rate. The slump in the aggregate stock
value is due to the realization of the R&D productivity gains associated with the
new GPT. The higher these R&D productivity gains are, the higher is the jump in
the per capita industry and aggregate stock value at the time of the adoption of the
new GPT.30

An increase in the GPT diffusion rate, δ, increases the economywide resources
devoted to R&D. Thus, the probability that the incumbent firm will be replaced
by a follower firm increases. This can be seen from Equation (18), which gives
the value of monopoly profits. In other words, when the GPT diffusion process
accelerates, the decrease in per capita consumption expenditure is more severe, and
the per capita R&D investment increases. In this case, the U -shaped path of the
growth rate of the stock market sags (this is shown by the dotted-shaped curve in
Fig. 7). That is, the slope of the curve representing the growth of the stock market
gets steeper at the initial stages of the diffusion process of the new GPT and gets
flatter at the final stages of the process.31

An increase in the productivity gains generated by the new GPT, µ, lowers
the cost of discovering the next higher quality product. This, in turn, will affect
negatively the stock market valuation of the incumbent firm (see Eq. (20)).

An increase in the rate of population growth, gN , shifts the U -shaped curve in
Figure 7 upwards and increases the growth rate of the stock market.

4.2 Aggregate investment

Proposition 5. The effect of the GPT diffusion on the aggregate investment during
the adoption process is ambiguous.

Proof. See Appendix.

29 The numerator in Equation (31), which is positive and reflects the slope of a truncated S-curve, is
equal to ω̇ times a positive fraction that depends on the magnitude of the GPT-ridden R&D productivity
gains and on the number of the industries that have adopted the new GPT.

30 This can be seen from Equation (31), where the first term on the right-hand side gets smaller when
each industry adopts the new GPT relative to the second term of the right-hand side of the same equation.

31 Hobijn and Jovanovic (2001) provide evidence that the drop in the stock market in the early
1970s was due to the arrival of information technology. Their evidence supports that the information-
technology-intensive sectors experienced the largest drop in 1973–1974, reducing the role of the first
OPEC shock in explaining the decrease in the stock market. This result is also consistent with the
empirical evidence provided by Jovanovic and Rousseau (2001) on how the U.S. economy is affected
by new technologies. They show by using 114 years of U.S. stock market data that the growth of the
stock market slows down due to the fact that the new entrants of the stock market will find hard to keep
up.
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The initial steady-state equilibrium is at point A in Figure 5. There is an upward
jump in the aggregate investment with the introduction of the new GPT (from Î to
Ĩ). Along the diffusion path, both innovation rates (I0 and I1) decrease until the
economy reaches the final steady-state equilibrium point B, where the aggregate
investment is higher relative to the initial steady-state equilibrium point A. There
is an upward jump in the innovation rate of the industries that have not adopted
the new GPT at the final steady state (from point B0 to B). One possible picture
of how the aggregate investment behaves along the diffusion of the new GPT is
shown in Figure 5. Along the transition path, the aggregate investment decreases
and then increases. In the initial stages of the diffusion process, only a limited
number of industries adopt the new GPT (see Eq. (1)). These industries are called
the early adopters. As more industries adopt the new GPT, the aggregate investment
increases.

5 Concluding remarks

Previous models that have analyzed GPTs exhibit the scale effects property. The
present paper analyzed the effects of a GPT on short-run and long-run Schum-
peterian growth without scale effects. The absence of growth scale effects and the
modeling of the diffusion process through S-curve dynamics generate several novel
and interesting results.

First, the long-run growth rate of the economy depends positively on the mag-
nitude of quality innovations. Any policy that affects this magnitude has long-run
growth effects. However, the absence of the arrival of a new GPT in the economy
does not reduce the long-run growth rate to zero, as in the previous GPTs-based
growth models. All the previous R&D-based models that analyze the effects of
GPTs exhibit scale effects.

The assumption that the diffusion of the new GPT follows an S-curve generates
two steady-state equilibria: one is the initial steady-state before the adoption of the
new GPT begins and the other is the final steady-state after the diffusion process
of the new GPT has been completed. At the final steady-state relative to the initial
steady-state the long-run growth rate is higher, the aggregate investment is higher,
the per capita consumption expenditure is lower, and the market interest rate is
equal to the subjective discount rate.

The growth rate of the stock market depends negatively on the rate of GPT
diffusion process and the magnitude of the GPT-ridden R&D productivity gains,
and positively on the rate of population growth. It also follows a U -shaped path
relative to the population growth rate during the diffusion process of the new GPT.
This is consistent with the empirical evidence provided by Jovanovic and Rousseau
(2001), who empirically document that, during times of rapid technological change,
the growth of the stock market slows, since the new entrants will grab the most value
from previous entrants (because the incumbents will find hard to keep up). Hobijn
and Jovanovic (2001) also provide evidence that the drop in the stock market in the
early 1970s was due to the arrival of information technology. Their evidence sup-
ports the notion that the information-technology-intensive sectors experienced the
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largest drop in 1973–1974, reducing the role of the first OPEC shock in explaining
the decrease in the stock market.

One could also develop a dynamic general equilibrium model to study the effects
of a GPT diffusion on a global economy that exhibits endogenous Schumpeterian
growth. As in this model, the adoption of a GPT by a particular industry can gener-
ate an increase in the productivity of R&D workers, and the magnitude of all future
innovations and its diffusion across industries can be governed by S-curve dynam-
ics. The diffusion of the GPT within an industry from one country to the other can
occur with a time lag. Under this framework, it would be interesting to analyze the
long-run and transitional dynamic effects of a new GPT on trade patterns, prod-
uct cycles and (transitional) divergence in per capita growth rates between the two
countries. This is a fruitful direction for future research.

Appendix

A.1. Proposition 1

Equations (25) and (27) define a unique steady-state equilibrium.
The long-run Schumpeterian growth rate is endogenous and does not exhibit

scale effects. This follows from Equation (23).
Solving the expression for I in (25) (by substituting Eq. (25) into Eq. (26) in

the main text), substituting it into (23) and differentiating the resulting expression
with respect to the appropriate parameter.

At each steady-state, per capita consumption expenditure is constant. That is
ˆ̇c = 0. Then Equation (8) implies that the interest rate, r̂, is equal to the subjective
discount rate, ρ.

The aggregate stock value is given by: V̄ = [ω V1
N(t) + (1 − ω) V0

N(t) ]N(t),
where V1 and V0 are given by Equation (20) after taking account Equation (24).
After substitution of these values into the aggregate stock value and taking logs
and derivatives with respect to time, I obtain the growth rate of the aggregate stock
value:

gV =
˙̄V
V̄

= gN − (µ − 1)ωδ(1 − ω)
[ω + (1 − ω)µ]

. (A.1)

At the initial steady-state, where ω = 0 and at the final steady-state, where
ω = 1, the growth rate of the aggregate stock value is equal to the rate of the
population growth. That is ĝV = gN .

This completes the proof of Proposition 1.

A.2. Proposition 2

Equations (1) and (29) define two loci: one where ω = 0 and one where ω = 1.
Evaluating the aggregate investment (which is given by I = I0(1 − ω) + I1ω)

at the two steady-states implies that it is higher at the final steady state relative to
the initial steady state.
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Substituting Equations (6) and (10) into Equation (4) in the main text (after
taking account Eq. (24)), I obtain log u(t) = log c(t)−log αQ+

∫ 1
0 log λ(θ)j(θ)dθ−∫ 1

0 log λ(θ)dθ. I invoke the properties of the Poisson distribution to argue that the
expected number of improvements is I1t (Feller, 1968, p.159) and obtain:

log u(t) = log c(t)− log αQ+ω(I1t−1) log λ1+(1−ω)(I0t−1) log λ0 . (A.2)

The economy’s long-run Schumpeterian growth is defined as the rate of growth
of sub-utility u(t), gu = u̇(t)/u(t). By taking logs and differentiating Equa-
tion (A.2) with respect to time and substituting Equation (29) from the main text,
I obtain:

gu =
µ(c − 1)

kαR[µ − ω(µ − 1)]
+ gN − ρ + ω̇[(I1t − 1) log λ1 − (I0t − 1) log λ0]

+ω(I1 + t İ1) log λ1 + (1 − ω)(I0 + t İ0) log λ0 . (A.3)

Evaluating Equation (A.3) at the two steady-states implies that the long-run
Schumpeterian growth rate is higher at the final steady-state than at the initial
steady-state.

By setting Equation (29) equal to zero, I obtain the per capita consumption
expenditure as a function of the measure of industries that have adopted the new
GPT, c(ω) = (ρ−gN )kαR[µ−ω(µ−1)]

µ + 1. Evaluating the per capita consumption
expenditure at the two steady-states implies that ĉ(1) < ĉ(0).

At each steady-state, per capita consumption expenditure is constant. That is
ˆ̇c = 0. Then Equation (8) implies that the interest rate, r̂, is equal to the subjective
discount rate, ρ.

Equations (20) and (13) in the main text imply that V (1)
N = V1

N < V (0)
N = V0

N .
This completes the proof of Proposition 2.

A.3. Proposition 3

In order to prove that there exists locally a negative sloping saddle path, I use a
polynomial of order one to linearize the nonlinear differential Equations (1) and
(29) around their steady-state values (ĉ = (ρ−gN )kαR

µ + 1, ω̂ = 1). Equations (31)
and (1) in the main text can be written as ċ = a1c+ b1ω and ω̇ = b2ω, respectively
(where a1 = [(ρ−gN )kαR+µ]

kαR
, b1 = [(ρ−gN )kαR+µ][(ρ−gN )kαR(µ−1)]

µkαR
and b2 = −δ).

Suppose c = Aert, ω = Bert are the particular solutions to this homogeneous
system (ċ, ω̇). I can substitute these proposed solutions into this system and I can
write it in matrix notation as follows:[

a1 − r b1
0 b2 − r

] [
A
B

]
=

[
0
0

]
. (A.4)
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In order that the solution to (A.4) be other than A = B = 0, the coefficient
matrix in (A.4) must be singular. Thus, I obtain a quadratic equation in r : r2 −
r(a1 + b2) + a1b2 = 0. Computing the roots of this quadratic equation, I obtain:

r1 =
(a1 + b2) +

√
(a1 + b2)2 − 4a1b2

2

r2 =
(a1 + b2) − √

(a1 + b2)2 − 4a1b2

2
. (A.5)

Since a1 > 0 and b2 < 0, the roots are real. Because the argument of the square
root function exceeds (a1 + b2)2, the smaller of the roots is negative. The larger
root is positive. Hence, the roots are real and of opposite sign; the stationary point
is a saddlepoint.

In order to prove that there exists globally a negative sloping saddle path, I use
the time elimination method. The slope of the policy function can be obtained by
taking the ratio of the two differential equations that govern the dynamic behavior
of the economy:

∂c

∂ω
= c′(ω) =

ċ

ω̇
=

[c2(ω)µ−c(ω)µ]
kαR[µ−ω(µ−1)] + c(ω)(gN − ρ)

δω − δω2 . (A.6)

Time does not appear in the above equation. To solve this equation numerically,
there must be one boundary condition; that is, one point, (c, ω), that lies on the
stable arm. Although the initial pair, [c(0), ω(0)], is unknown, the policy function
goes through the steady state (ĉ, ω̂).

The slope of the policy function at the steady state is c′(ω̂) = ˆ̇c
ˆ̇ω

= 0
0 , which is

indeterminate. Applying the L’Hôpital’s rule to this slope and evaluating it at the
steady state values, I obtain:

c′(ω̂) =
[1 − c(ω̂)](µ − 1)c(ω̂)

{µ[2c(ω̂) − 1] + (δ + gN − ρ)kαR} . (A.7)

From the phase diagram in Figure 2, I can sign the following expressions:
[2c(ω̂) − 1] > 0 and [1 − c(ω̂)] < 0. If δ > (gN − ρ), then the expression in (A.7)
is negative. Thus, if the rate of diffusion is high enough (higher than the effective
discount rate), the slope of the stable arm is negative.

Along the saddle path, the measure of industries that adopt the new GPT evolves
according to Equation (1). As ω increases, Equation (A.7) implies that per capita
consumption expenditure decreases. Along the saddle path, ċ/c < 0, which implies
that the market interest rate, r, is lower than the subjective interest rate, ρ (from
Eq. (8) in the main text). Once the diffusion process is about to complete and the
economy approaches the new steady state, the market interest rate increases to
become equal with the constant subjective interest rate at the new steady state.

In order to analyze the behavior of the two innovation rates along the diffusion
process, I differentiate equations them with respect to ω. By taking the difference
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between these innovation rates, I obtain:

∂I1

∂ω
− ∂I0

∂ω
=

(
µ(λ1 − 1)
kαRλ1

− (λ0 − 1)
kαRλ0

)
∂c

∂ω
< 0 . (A.8)

That is, along the diffusion process, the innovation rate for the industries that
have adopted the new GPT decreases more than that of the industries that have not
adopted the new GPT.

In terms of the growth rate, differentiating Equation (A.3) with respect to time
and taking the limit when the economy approaches the two steady-states, I obtain:
lim[
ω→0

∂gu

∂t ] = ċ
kαR

+Ï0t log λ0+2İ0 log λ0 < 0 and lim[
ω→1

∂gu

∂t ] = µċ
kαR

+Ï1t log λ1+

2İ1 log λ1 < 0. Since the signs of these equations are negative, the growth rate
decreases both in the initial stage and towards the final stage of the diffusion process.
Since the quantity of the first equation is smaller than that of the second equation
in absolute value, the growth rate decreases more towards the final stage than in the
initial stage.

A.4. Proposition 4

The growth rate of the stock market is given by Equation (A.1). From Equa-
tion (A.1), it is obvious that the growth rate of the stock market depends on the rate
of GPT diffusion process, δ, the magnitude of the GPT-ridden R&D productivity
gains, µ, and the rate of population growth, gN .

By differentiating Equation (A.1) with respect to ω, I obtain: ∂gV

∂ω =
δ(1−µ)(kαR)2[(1−ω)2µ−ω2]

[ωkαR+(1−ω)kαRµ]2 . The sing of this expression depends on the sign of the

expression [(1 − ω)2µ − ω2]. When ω <
√

µ
/
(1 +

√
µ), the growth rate of the

aggregate stock value decreases. When ω >
√

µ
/
(1 +

√
µ), the growth rate of the

aggregate stock value increases. That is, along the diffusion process, the growth
rate of the aggregate stock value follows a U -shaped path.

Differentiating Equation (A.1) with respect to the diffusion rate, δ, I obtain:

∂gV

∂δ
=

ω(1 − ω)(1 − µ)
[1 + (1 − ω)µ]

< 0 . (A.9)

Equation (A.9) implies that when the diffusion rate increases, the growth rate
of the aggregate stock market decreases.

Differentiating expression ∂gV

∂ω with respect to the diffusion rate, δ, I obtain the

expression ∂(∂gV /∂ω)
∂δ = (1−µ)[(1−ω)2µ−ω2]

[ω+(1−ω)µ]2 , which sign depends on the sign of the

expression [(1−ω)2µ−ω2]. When the rate of the diffusion process of the new GPT
increases, the slope of the growth of the stock market increases (i.e., gets steeper)
for ω <

√
µ
/
(1 +

√
µ) and decreases (i.e., gets for ω >

√
µ
/
(1 +

√
µ).

By differentiating Equation (A.1) with respect to µ, I obtain:

∂gV

∂µ
= − ωδ(1 − ω)

[ω + (1 − ω)µ]2
< 0 . (A.10)
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The sign of Equation (A.10) implies that the growth rate of the stock market
decreases when the productivity gains from the new GPT are larger.

By differentiating Equation (A.1) with respect to gN , I obtain:

∂gv

∂gN
= 1 > 0 . (A.11)

The sign of Equation (A.11) implies that the growth rate of the stock market
increases at the rate of population growth.

A.5. Proposition 5

Differentiating the equation that expresses the aggregate investment with respect
to the measure of industries that adopt the new GPT, I obtain:

∂I

∂ω
=

∂I0

∂ω
(1 − ω) +

∂I1

∂ω
ω + (I1 − I0) . (A.12)

The first two terms in Equation (A.12) are negative. The third term is posi-
tive. Thus, the aggregate investment will decrease or increase during the diffusion
process depending on the magnitude of these signs.

The first two terms are the slopes of the solid curves depicted in Figure 7. These
slopes depend on the rate of diffusion of the new GPT. By contrast, the third term
of Equation (A.12) does not depend on the rate of diffusion of the new GPT. Thus,
when the rate of diffusion of the new GPT increases and more industries switch
to the new GPT faster, the negative effect dominates the positive effect and the
aggregate investment decreases.

lim
ω→1

I1(ω) =
µ(λ1 − 1)
kαRλ1

c(ω) + gN − ρ . (A.13)

lim
ω→1

I0(ω) =
(λ0 − 1)
kαRλ0

c(ω) + gN − ρ . (A.14)

Equations (A.13) and (A.14) imply that when the measure of industries that
adopt the new GPT approaches the final steady-state, the innovation rates of the
industries that have adopted the new GPT and the innovation rate of industries that
have not adopted the new GPT are not the same. That implies that the innovation
rate of the industries that have not adopted the new GPT jumps upward (i.e., when
the last industry switches to the new GPT, I0 becomes I1).
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