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Abstract. The paper analyses some general dynamic properties of industries char-
acterized by heterogeneous firms and continuing stochastic entry.

After a brief critical assessment of some significant drawbacks of recent contri-
butions to modeling of stochastic industrial dynamics, we propose a novel analyti-
cal apparatus able to derive some generic properties of the underlying competition
process combining persistent technological heterogeneity, differential growth of
individual firms and turnover. The basic model, we suggest, is indeed applicable
with proper modifications to a large class of evolutionary processes, well beyond
industrial dynamics.
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1 Introduction

This paper analyses the properties and outcomes of competitive dynamics in indus-
tries characterized by heterogeneous firms and continuing stochastic entry. In that
setting, aggregate economic variables – such as prices, quantities and indirectly
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distributive shares –, and the structural characteristics of the industry – such as
size distributions – are interpreted as stemming from an explicitly dynamic process
combining persistent technological heterogeneity, differential growth of individual
firms and turnover.

The empirical phenomena on industrial dynamics addressed by our model have
been examined in several streams of scholarly literature1.

There is, first, a substantial body of descriptive work based on longitudinal data
sets with large numbers of firms and establishments: cf., in particular, the U.S.
Census Bureau’s Longitudinal Research Database (Audretsch, 1997; Dunne et al.,
1988; Jensen and McGuckin, 1997), and a broadly similar data set developed at
Statistics Canada (Baldwin, 1995). A great number of specific questions have been
answered by these explorations. What stands out impressionistically, however, is
the diversity of firms and the sense of continuing, highly dynamic, disequilibrium.
The extent of turnover at the low end of the size distribution is particularly notable.
For example, Dunne et al. (1988) summarizing the general picture have remarked
among other things that “entry and exit rates at a point in time are ... highly correlated
across industries so that industries with higher than average entry rates tend also
to have higher than average exit rates” (p. 496); and that “... the market share of
each entering cohort generally declines as the cohort ages. This occurs because
high exit rates, particularly when the cohort is young, overwhelm any increase in
the relative size of the surviving cohort members” (p. 513). Similar properties are
emphasized also by Geroski (1995), who adds among other “stylized results” from
the available evidence that a) “entry seems to be slow to react to high profits” (p.
427); b) “entry rates are hard to explain using conventional measures of profitability
and entry barriers” (p. 430), and c) “prices are not usually used by incumbents to
block entry” (p. 430).

Second, a growing evidence from the economics of innovation suggests
widespread heterogeneity in the technological capabilities of different firms. (For
discussions cf. Dosi, 1988; Freeman, 1994). This evidence intuitively matches that
on quite diverse revealed performances by firm and by plant (Jensen and McGuckin,
1997; Doms et al., 1995).

Third, in the literature on “industry life cycles” (for overviews, cf. Klepper,
1997; Afuah and Utterback, 1997), the principal focus is the unfolding pattern of
industrial evolution over time. Industries and/or product markets are viewed as en-
tities that have historical starting points, that often have broadly similar patterns of
development and ultimately disappear. Levels of entry and exit, degrees of concen-
tration and other phenomena are shown to vary systematically within the historical
time-frame of industry development. Moreover, this longitudinal evidence suggests
that often (but not always) industrial evolution is punctuated by relatively sudden
“shakeouts” which tend to shape the structure of the industry thereafter.

A fourth relevant literature is that of the “population ecology of organizations”
(Hannan and Freeman, 1989; Carroll and Hannan, 1995; Carroll, 1997). Empirical
work in the field is centrally concerned with explaining the variation over time

1 For comprehensive overviews, see the Special Issues of the International Journal of Industrial
Organization, No. 4, 1995 and of Industrial and Corporate Change, No. 1, 1997.
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in the number of organizations undertaking a particular type of activity and their
survival probabilities.

In a nutshell, the model that follows is meant to explore some generic proper-
ties of processes of industrial evolution whereby – in accordance with empirical
“stylized facts” – (i) firms are heterogeneous in their technological capabilities;
(ii) entry as well as exit occurs throughout the history of the industry; (iii) one
observes wide variations in the rates of growth of firms, both cross-sectionally and
over time; (iv) turbulence (in terms of market shares and, ultimately, of the iden-
tity of incumbent firms) is an equally persistent phenomenon; (v) a more or less
prolonged “transitory” phase associated with the birth of an industry is often fol-
lowed by a significantly different “mature” structure, possibly via a rather sudden
endogenously generated shakeout. Moreover, (vi) such dynamic processes gener-
ally display skewed distributions of firms throughout (see discussions in Ijiri and
Simon, 1974; Sutton, 1998; Dosi et al., 1995; among many others); and (vii) supply
shocks do bear effect on aggregate prices, which in turn influence the opportunities
of survival and growth of each firm.2

The model is a “baseline” one in two different senses.
In terms of microeconomic foundations, a number of important issues are re-

solved here by quite simple assumptions. This partly reflects the fact that the paper
is in the evolutionary economics tradition, which generally abjures certain kinds of
behavioral complexity (cf., Nelson and Winter, 1982). For example, imputation to
individual actors of high levels of foresight and knowledge of system structure is
avoided when simpler alternatives are adequate to explain aggregate phenomena,
and there exists no direct empirical support for the more complex assumptions.
This approach stands in sharp contrast to more mainstream economic models of
competition among heterogeneous actors which accept full ex ante rationality of
the individual actors as a fundamental modeling constraint. In our view, added ra-
tionality is added complication, and the model presented here provides a baseline
that will permit an assessment of the incremental explanatory gain from such com-
plications. In any case, as we shall show below, the major qualitative properties of
the model hold also e.g. when one allows more sophisticated responses of potential
entrants to perceived incentives.

Second, we do expect, however, that some of the simple assumptions will require
elaboration and modification in future work if the model is to be brought into
reasonable correspondence with reality: for some explorations in this spirit, cf.
Winter et al. (2000). Hence, the model is a baseline not merely in the sense of a
standard for comparison, but also as a starting point for further work. We anticipate
that many of the results developed here will have at least heuristic value, if not
direct application, in such future work.

In particular, in the following we study the properties of that special case of
evolutionary dynamics whereby technological heterogeneity is bound from the
start to some fixed menu of efficiency levels. One may conclude that this model
is as “evolutionary” in its spirit as “evolutionary games”. An obvious extension,

2 For the purposes of this work, it is not crucial to know whether all price/quantity fluctuations are
due to supply shocks (for an appraisal of the problem, see e.g., Judd and Trehan, 1995). It is enough
that, at least, part of them are, as indeed plausible.
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straight in the evolutionary spirit, is to allow for “open-ended” dynamics whereby
both entrants and incumbents continuously learn and discover along the way novel
techniques.3 This is indeed what we have begun to do in the mentioned companion
paper (Winter et al., 2000; see also Bottazzi et al., 2001) where one studies industry
evolution driven by an expanding set of technological opportunities which entrants
progressively tap.

Indeed, we conjecture, the modeling framework presented here might bear
fruitful applications well beyond industrial dynamics to a few domains – including
some of those currently addressed by evolutionary games – whereby populations of
heterogeneous agents search, adapt and compete in partly unknown environments.

After introducing the spirit of the model with reference to a critical discussion
the existing literature (Sect. 2), we present its basic structure (Sect. 3) and consider
some important generalizations which can be treated with the same technique and
do not affect the main qualitative conclusions (Sect. 4). Next, we develop in Sec-
tion 5 two dynamic settings, namely a first one which analyses the dynamics of
productive capacity associated with different efficiency levels, and a second one
which, conversely, follows the fate of all individual firms appearing throughout the
whole dynamic path.

Our model entails a stochastic system driven by the persistent random arrival
of new firms, on the one hand, and on a systematic selection process linking in-
vestments (and ultimately survival) to realized profitabilities, on the other. Some
properties of this system are analyzed in Sections 6 and 7, with respect to its “laws
of motion” and to the time-averages of aggregate statistics such as the productive
capacities and the numbers of firms in business associated with different efficiency
levels.

These analytical results are followed in Section 8 by a computer simulation of
the model, showing among other things the dynamics in the number, size and age of
firms. The Appendix provides mathematical proofs of the main formal propositions
of this work.

2 A preliminary view

The idea of the competitive process held here in its essence dates back quite a long
time: indeed, it is quite germane to the view of competition retained by classical
economists, and, later, in diverse fashions, by Marshall and Schumpeter. Just think
for example of the classical view of prices and profits as attracted to their “nor-
mal” levels by inflows/outflows of investment, or think of the famous Marshallian
metaphor of industries as “forests” with young, mature and dying trees. However,
the static bias of a lot of contemporary work has also meant the neglect of these
early intuitions. This applies to a good extent to traditional industrial economics too.
For example, while it is true that in the “Structure-Conduct-Performance” (SCP)
paradigm entry and entry barriers play a prominent role, it is equally true that the

3 A model in this perspective, albeit explored only with simulation techniques is in Dosi et al. (1995).
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analysis, if not entirely static is at least ahistorical: dates and sequences of events
have no visible importance.4

Only in recent years, a few formal models have tried to address some of the
dynamic “stylized facts” recalled above. So, for example, Jovanovic (1982) tries
to model industry dynamics whereby heterogeneous agents are initially uncertain
about their own efficiencies. As time goes on, the latter are estimated via stochasti-
cally independent observations. That work looks for a perfect foresight equilibrium
whereby a generic firm adjusts its optimal production plan (including its optimal exit
time) given its revealed performances at any t. Hence, the model is meant to yield
an (equilibrium) path of “noisy selection” whereby above-average firms expand
and below-average ones shrink and eventually die. In a similar spirit, Hopenhayn
(1992) attempts to model firm-specific productivity shocks which follow a Markov
process.

The main interpretative focus of the foregoing two formalizations is the “stylized
fact”, mentioned above, concerning the variability of growth rates and survival
probabilities (empirically observed to be often dependent also on the size and age
of firms themselves).5 The model of Ericson and Pakes (1995) treats the same
phenomena within the setting of a class of Markov-perfect Nash equilibria (in
principle able to account also for persistent turbulence, i.e. “stylized fact (iv)”,
above). Firms are supposed to evolve according to their relative efficiency or “state
of success”, itself dependent upon exogenous drifts in competitive opportunities
and endogenous (resource-expensive) stochastic changes in the ‘pecking-order’ of
both incumbents and entrants.

Although these attempts (and others in a similar spirit) to rationalize some
aspects of the observed dynamics of industries ought to be considered welcome
developments, they do, however, display, in our view, some noticeable drawbacks, to
a large extent due to the self-inflicted burden of rationalizing industrial dynamics as
equilibrium paths of some kind microfounded upon sophisticated forward-looking
agents.All this carries serious problems of both economic plausibility and, together,
of mathematical coherence.

Take the model in Jovanovic (1982) (a similar argument applies to the model
by Hopenhayn, 1992). There is a continuum of firms which are heterogeneous in
that each is an independent realization of a representative firm. Their outputs –
notwithstanding the fact that firms are verbally assumed to be infinitesimal – are
i.i.d. nonnegative random variables. Consequently, the total output of the industry, as
a sum of infinitely many i.i.d. nonnegative shocks, must be infinite with probability
one at every time instant. Thus, the claim of this work of a finite deterministic
equilibrium output, necessary for the model to hold, remains puzzling.6

4 For example, first moves advantages do not appear among the basic determinants of industry
structure in the definitive account of the SCP paradigm, namely Scherer and Ross (1990); this applies
even more so to the treatment of competition in standard textbooks on industrial organization: see, for
example, Carlton and Perloff (1999).

5 Other works addressing similar issues, include Lambson (1991), Jovanovic and MacDonald (1994),
and Klepper (1996) which, in quite different veins, model some interaction between sunk costs and time-
dependent learning also as the cause of ‘shakeouts’ (i.e. ‘stylized facts (v)’ above).

6 In Kaniovski (2000) one identifies the implicit route to get a finite total supply in this setting, i.e.
taking weighted normalizations of individual outputs rather than simple sums. The underlying idea is
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The demands on individual rationality and the corresponding requirements on
ex ante coordination among agents are even more stringent in Ericson and Pakes
(1995). In short, a necessary condition for the model to apply is the collective iden-
tity of expectations about both drifts in competitive opportunities and investment
plans. Unfortunately, this approach does not guarantee the optimality of individual
trajectories. In its essence, the problem is as follows.

The collective dynamics used in the incumbent’s optimization problem keeps
a record of the number of firms occupying each feasible efficiency level. As such,
it is not concerned with what happens to a firm upon exiting the industry. On the
other hand, the law of motion of a firm must explicitly specify how the firm quits
the industry. Ericson and Pakes (1995) states that the optimal path of the industry,
a rational expectations equilibrium, obtains by aggregating the individual trajec-
tories derived by solving the incumbent’s optimization problem. However, as an
aggregate of individual motions, the optimal path must specify what happens to
any one firm quitting the industry. As discussed in much greater detail in Kaniovski
(2001), it turns out that the model does not guarantee the consistency between “opti-
mal” individual trajectories and the industry aggregate, which should, of course, in
equilibrium, sum upon the former. It is a problem rather common amongst models
purportedly nested upon rational expectation agents, but it is particularly demand-
ing in set-ups whereby agents are also allowed to leave the modeled environment.
(In fact, as one shows in Kaniovski, 2001, all “dead entities” are implicitly assumed
to keep evolving alike living ones.)

Here, we take a quite different route and focus upon the properties of competi-
tive processes where no ex ante consistency is assumed among individual expecta-
tions and behaviours. Hence markets ex post select among heterogeneous agents,
whose stochastic entry to the market resembles much more the messy process de-
scribed in the empirical literature.7 In turn, the selection process is itself dependent
on the aggregation of individual decisions, hence closing the feedback loop link-
ing microeconomic heterogeneity, the dynamic path of the industry and individual
growth/survival opportunities. The methodology that we shall follow in the mod-
eling exercise below is somewhat similar in spirit to that advocated by the “bounds
approach” pioneered by Sutton (1998), notwithstanding rather different building
blocks. Both perspectives share the search for “a small number of mechanisms
that appear to operate in a systematic way across the general run of industries
[and whose] operation induces a number of bounds on the set of outcomes that
we expect to observe in empirical data” (Sutton, 1998, p. 5). Hence, for example,
Sutton establishes the lower bound of the skewedness of size distributions simply

germane to the attempts by e.g. Judd (1985) or Feldman and Gilles (1985) to formally validate the
measurability of a total supply stemming from a continuum of independent individual outputs. So, as
Judd (1985) puts it “the law of large numbers with a continuum of random variables is not inconsistent
with basic mathematics” (p. 24.), However, as one argues in Kaniovski (2000), such a use of the law of
large numbers in Jovanovic (1982) turns out to be rather at odds with economics. Moreover, it appears
that Jovanovic (1982) interchangingly uses two notions for the output of a firm. One is a solution of the
optimization problem of a price-taker. (Who, due to unspecified reason, operates with a generic inverse
demand curve, rather then with a horizontal one.) The other is a measure of the index by which the firm
is marked.

7 See, for example, Aldrich and Fiol (1994) and Dosi and Lovallo (1997).
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by isolating the effects of purely statistical independence effects in the growth and
entry process. Here, we follow a similar strategy and try to identify some generic
properties of a stochastic process of entry together with a systematic mechanism of
selection operating via the impact of profit margins upon investment opportunities
and ultimately survival probabilities. However, unlike Sutton we do not constrain
the set of outcomes to those which fulfill some rationality criterion (i.e. entrants
must cover their costs and they are rational enough in this entry decisions for this
to happen), and some non-arbitrage principle (saying more or less that all profit
opportunities are exploited). On the contrary, we shall explore the characteristics
of the dynamic profile of industries wherein these criteria may be systematically
violated.

3 The basic model

Consider an industry evolving in discrete time t = 0, 1, . . . . At time t = 0 there are
no firms ready to manufacture, but a random number of firms is drawn which will
start manufacturing at t = 1. At time t ≥ 1 the industry consists of nt firms which
are involved in manufacturing and new firms which enter at t and will be involved
in manufacturing from t+ 1 onward. Uniformly for the whole industry we have:

m: variable (marginal ≡ average) costs per unit of output, m > 0, which, for
simplicity, we assume for the time being identical across firms;

v: price per unit of physical capital, v > 0;
d: the “physical” depreciation rate, 0 < d ≤ 1.

The competitiveness of a firm represented in the industry is determined by (the
inverse of) its capital per unit of output. Let us designate it by ai for the i-th firm.
The variable ai takes a finite number of values A1 < A2 < . . . < Ak, k ≥ 1. A
particular value is randomly assigned to a firm when it enters the industry.

The productive capacity (which is fully utilized) of the i-th firm is Qi
t =

Ki(t)/ai, where Ki(t) stands for the capital of the i-th firm at time t. The to-
tal productive capacity of the industry involved in manufacturing at time t is

Qt =
nt∑

i=1

Qi
t.

(We set that the sum where the lower index exceeds the upper one equals to zero.)
There is a decreasing continuous inverse demand function p = h(q), mapping
[0,∞) in [0, h(0)] such that h(0) < ∞ and h(q) → 0 as q → ∞. As usual,
p stands for the price and q for the demand. Thus, the market clearing price at
time t is given as h(Qt). The gross profit per unit of output at t is h(Qt) − m.
Hence, the gross investment per unit of output at t reads λmax [h(Qt) −m, 0],
where 0 < λ ≤ 1. The constant λ captures the share of the gross profit which, in
our “partial disequilibrium” model, does not leak out as the interest payments and
shareholders’ dividends. It can be considered as a measure for the propensity to
invest. Then the total gross investment per unit of capital for the i-th firm at time t
is I(Qt)/ai, where for x ≥ 0

I(x) =
λ

v
max [h(x) −m, 0] ≥ 0.
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We shall allow multiple entrants into the industry. Capitals of new entrants take
values from the interval [b, c], 0 < b < c < ∞. A particular value is randomly
assigned to a firm when it enters the industry. We postulate that the initial capitals
are independent realizations of a random variable θ distributed over [b, c]. That
is, the distribution of initial physical capital endowments do not depend upon the
would-be competitiveness of entrants.

At each time t a random number of entrants is allowed for each level of capital
per unit of output. Again, the distribution of the number of entrants does not de-
pend upon their competitiveness (see however the extensions of the model below).
It is given by an independent realization of a random variable γ taking the values
0, 1, . . . , l, where l is a positive integer (P{γ = l} > 0). The number of entrants
at time t that have the j-th level of capital per unit of output is given by the j-th
coordinate Γ t

j of a k-dimensional random vector Γ t. The vectors Γ t are observa-
tions of Γ independent in t. Each coordinate of Γ is an independent realization of
γ. The initial capitals of new entrants at time twith the j-th level of capital per unit
of output are given by Γ t

j independent realizations θt
j,i, 1 ≤ i ≤ Γ t

j , of θ if Γ t
j > 0

and are equal to 0 if Γ t
j = 0.

Set Θt to be a k-dimensional vector such that

Θt
j =

Γ t
j∑

i=1

θt
j,i.

Thus,Θt
j represents the total inflow of capital at t of firms withAj as capital per unit

of output. The random variables Γ t
j and θs

p,i are independent for all possible com-
binations of indexes. Two remarks are in order. First, note that the random variables
Γ and θ can be given a straightforward economic interpretation in terms of techno-
logical opportunities to potential entrants, scale of entry and entry barriers. (Indeed
computer-simulated versions of the model allow experiments with different distri-
butions intuitively corresponding to empirically diverse “entry regimes”.) Second,
for simplicity, we treat here the stochastic entry process as entirely exogenous –
in particular entry does not depend on past or present industry profitability. The
point of this assumption is not the affirmative claim that all entry is independent of
profitability, but that some entry is (possibly more so in the vicinity of that notional
equilibrium where on average firms earn zero net profits). Many models of rational
entry under uncertainty, would have that feature, too. The principal qualitative result
of our analysis are not affected by the addition of a layer of profit-dependent entry,
though the quantitative results certainly are. Moreover, one can easily endogenize
the entry process, and in fact in the next section we shall describe a modification of
the model where the distribution of the number of entrants depends on the current
profit margins.

To complete the description of this competitive environment we need some
death mechanism. A firm is dead at time t and does not participate in the production
process from t+1 onward if its capital at t is less than εb, ε ∈ (0, 1].A setup without
mortality can be thought of as a limit case of this threshold when ε = 0.

Given this setting, all random elements are defined on a probability space
{Ω,F , P}.
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4 Generalizations of the model

Let us consider some generalizations of the basic model presented above, which
can be essentially studied by the same analytic means, without affecting the major
qualitative conclusions.

1. On purpose, in the foregoing basic setting we have kept the behavioral assump-
tions to a minimum. In that vein, we have ruled out also any feedback from prof-
itability to investment rules. However the qualitative properties of the model would
not be affected if one allowed the rate of investment to fall when the price gets close
to variable costs per unit of output. In that case one would just set gross investment
per unit of output at t as

λmax [h(Qt) −m, 0] if h(Qt) −m > δ

and

(λ− η) max [h(Qt) −m, 0] if h(Qt) −m ≤ δ,

where λ ∈ (0, 1], η ∈ [0, λ). Here δ gives a threshold of profitability when the
investment policy changes.

2. The death levels may be different for firms with different efficiencies, say εi for
all firms with Ai as capital per unit of output. At the same time the death criterion
could be dependent on the total productive capacity at time t. That is, the i-th firm
is dead at time t and does not participate in the evolution of the market from t
onward if its productive capacity Qi

t at t is less than εQt, where ε ∈ (0, 1) is some
threshold value.

3. One can allow also variable costs to vary across firms.Assume that there aren > 1
possible levels of variable costs per unit of output mj , j = 1, 2, . . . , n. Assuming
as above multiple entrants, one may postulate that at time t ≥ 0 the number of
newcoming firms which have Ai as output/capital ratio and mj as variable costs is
given by Γ t

n(i−1)+j , that is the n(i− 1) + j-th coordinate of Γ t. Here Γ t, t ≥ 0,
are independent realizations of a n × k dimensional vector Γ whose coordinates
are independent realizations of the random variable γ defined in Section 3. Initial
capital endowments of these firms are given by Γn(i−1)+j independent realizations
of the random variable θ. Moreover, these initial physical capitals for different
time instants are independent and they do not depend either upon the number of
newcoming firms.

4. Initial capitals of newcoming firms may be specific for a class of firms with a
given capital/output ratio and given variable costs. Thus, instead of a single random
variable θ, we may consider a collection of them, θi,j , 1 ≤ i ≤ k, 1 ≤ j ≤ n.
(Each of these variables is assumed to have a bounded support.) Similarly, the
number of entrants can be specific for a class of firms with given capital/output
ratio and variable costs.

5. One can make the distribution of the number of newcomers path dependent. In
particular, it may depend upon how close are the current price and the marginal
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costs of the firm which is deciding whether to enter or not. In fact, let φj(·) be
a decreasing function mapping [0,∞) to (0, 1], j = 1, 2, . . . , n. For example,
φj(x) = Φj exp(−φjx), where Φj and φj are positive constants, Φj ∈ (0, 1].
Given some distribution p(i,j)

s , s = 1, 2, . . . , l(i, j), the random variable γt
i,j(Qt)

governing the number of firms with the output/capital ratio Ai and the variable
costs mj that enter the market at t can be as follows

γt
i,j(x) =

{
0 with probability ψj(x),
s with probability p

(i,j)
s [1 − ψj(x)],

where ψj(x) = φj(max[h(x)−mj , 0]). By l(i,j) we denote the maximum feasible
number of entrants with Ai as the capital per unit of output and mj as variable
costs. The random variables γt

i,j(xj) for any deterministic xj are assumed to be
stochastically independent in each of the indexes.

With this specification,φj(0) = 1 implies that, when production is not profitable
for firms with variable costs mj , they will not enter the industry. Alternatively,
φj(0) < 1 means that, even when production is not profitable for them, some firms
whose costs aremj will be entering the industry. Thus, by assigning different values
to φj(0), one can comply either with the “rational” assumption of no entry when
the profit is nonpositive, or with a more realistic and empirically founded view
that firms may well keep entering even though the instantaneous profitability is not
positive.

In the following we shall study the long run behavior of the simplest variant of
this industry, beginning with a formal description of its evolution.

5 Two dynamical settings

Set QAj

1 = A−1
j Θ0

j for the total productive capacity of those firms having Aj as
capital per unit of output which are involved in manufacturing in the first time
period, j = 1, 2, . . . , k. These firms perform the first cycle of production and new
firms come in the industry. As the result, by the end of the first time period the
productive capacity qAj

1 of firms having Aj as capital per unit of output reads

q
Aj

1 = Q
Aj

1 [1 − d+ I(Q1)A−1
j ] + V j

1 , j = 1, 2, . . . , k,

where

Q1 =
k∑

j=1

Q
Aj

1 , V j
1 = A−1

j Θ1
j .

Conceptually, V j
1 is the total inflow of productive capacity of firms having Aj

as capital per unit of output during the first time period. Q1 stands for the total
productive capacity involved in manufacturing during the first time period. Not
all of the firms which manufactured during the first production cycle remain in the
industry during the second time period. Those that have shrunk below the minimum
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threshold have to leave. Denote by Ej
1 ≥ 0 the total outflow of productive capacity

at time 1 of firms having Aj as capital per unit of output. Then the total productive

capacity QAj

2 of firms which are ready to produce during the second time period
reads

Q
Aj

2 = q
Aj

1 − Ej
1 = Q

Aj

1 [1 − d+ I(Q1)A−1
j ] + V j

1 − Ej
1 .

In the same way we get

Q
Aj

t+1 = Q
Aj

t [1 − d+ I(Qt)A−1
j ] + V j

t − Ej
t , t ≥ 1. (1)

HereQAj

t stands for the total productive capacity of those firms havingAj as capital
per unit of output which manufacture during t-th production cycle. V j

t denotes the
total inflow of productive capacity of firms having Aj as capital per unit of output
at time t, that is, V j

t = A−1
j Θt

j , and Ej
t stands for the total outflow of productive

capacity of such firms at time tdue to mortality. ByQt we denote the total productive
capacity of firms involved in manufacturing at time t, that is,

Qt =
k∑

j=1

Q
Aj

t , t ≥ 1.

Taking into account (1), we see that this value evolves as

Qt+1 = Qt(1 − d) + I(Qt)
k∑

j=1

A−1
j Q

Aj

t + Vt − Et, t ≥ 1, (2)

where Vt represents the total inflow of productive capacity at time t, that is,

Vt =
k∑

j=1

V j
t ,

and Et stands for the total outflow of productive capacity at time t due to mortality,

Et =
k∑

j=1

Ej
t .

The random process given by (1) and (2) is not as such a Markov process. (How-
ever, it turns out to be one, if there is no death rule, and, hence, firms may shrink
indefinitely but do not exit the industry.)

Note also that this setting does not account for the fate of any individual firm.
Let us consider an alternative, explicitly microfounded, representation.

Since only the entry process of the model is stochastic, the state of the industry
at any time t is determined given the detailed history of entry and output through
t − 1 and the stochastic events of t. Further, the output history of the system to
any t can be computed recursively on the basis of prior output history and current
stochastic entry. Although only finitely many firm output levels are relevant up to
any particular t, a full realization of the process involves an infinite number of firm
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histories. At any time, the part of the output history that has not happened yet is
represented by an infinite list of zeroes; zeroes may also appear in the firm-specific
output history because the corresponding firm has died. It is convenient for the
representation to make room for every possible firm that could come into being;
this means that zeroes also appear in the feasible output realizations at any given
time because less than the maximum possible number (l) of firms may have entered
in some previous periods.

With this picture in mind, let us introduce an infinite dimensional space R∞ of
vectors with denumerably many coordinates. It is instructive to split the evolution
of the industry in the dynamics of age cohorts. (Note that this is not necessary.
Formally, the story remains the same regardless of whether one talks about cohorts
or not. However, conceptually, the approach becomes much more transparent by
using the language of cohorts.) By a cohort one means all firms that enter the
industry at the same period. Then R∞ splits in infinitely many identical blocks,
kl-dimensional real vector spaces Rkl

i , corresponding to age cohorts. (Recall that
k denotes the total number of possible levels of capital/output ratios, while l stands
for the maximum number of entrants for each of these levels. Consequently, one
may observe up to kl firms in an age cohort.) Alternatively one may say that R∞

is the Cartesian product of Rkl
i , i ≥ 1. In formal terms,

R∞ = Π∞
i=1R

kl
i .

Thus, for every q ∈ R∞

q = Π∞
i=1q

i,

with qi ∈ Rkl
i . That is, the infinite output history q (which is the history of pro-

ductive capacities as well, because firms fully utilize them) may be regarded as
partitioned into vectors qi of dimension kl, each of which may be be thought of
as output levels (productive capacities) of a specific age cohort, i. (Here, as noted
above, we “make room” in the notation for the outputs of firms that may not ex-
ist in a particular realization because less than the maximum possible number of
entrants appeared in that cohort.) The notational convention adopted is that firms
are numbered within types and within cohorts. Thus, for example, the firms of the
third cohort, that is, those that have produced twice, are numbered from 2kl + 1
to 3kl. In a realization of the process, the deterministic part of the output change
from period to period can be represented as follows.

As a first step in characterizing the evolution of the industry in terms of age
cohorts, we define the transformations Di(·), i ≥ 1, on R∞. In fact, the mapping
Di(·) determines one-step changes of productive capacities of firms involved in the
i-th age cohort. Consequently, Di(·) transforms productive capacities involved in
Rkl

i into productive capacities accommodated byRkl
i+1.According to our production

dynamics, in terms of coordinates, Di(·) is given by the following relations:

Di
(j−1)l+p(q) = qi

(j−1)l+p[1 − d+ I

( ∞∑
i=1

kl∑
s=1

qi
s

)
A−1

j ]χLi
(j−1)l+p

(q).
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Here Di
s(·) stands for the s-th coordinate of Di(·), q is a state of the industry

described by productive capacities of firms involved, 1 ≤ j ≤ k, 1 ≤ p ≤ l,
and i ≥ 1. That is, i denotes the age of a cohort, j accounts for the level of capital
costs, Aj , specific to the firm, and p is the order number assigned to this firm in
the pool of all alive entities in the i-th age cohort whose capital/output ration isAj .
We restrict ourselves to vectors q with nonnegative coordinates and set I(∞) = 0
for the case when the iterated sum involved in the above expression is infinite.
Moreover, Li

(j−1)l+p(q) stands for the relation

qi
(j−1)l+p[1 − d+ I

( ∞∑
i=1

kl∑
s=1

qi
s

)
A−1

j ]Aj ≥ εb.

It represents the condition under which a firm whose productive capacity at time i is
qi
(j−1)l+p survives to period i+1, given that at i the productive capacities involved

in manufacturing are described by the vector q ∈ R∞.
χLi

(j−1)l+p
(q) is the indicator function of the relation Li

(j−1)l+p(q). We set that

for a relation A

χA =

{
1, if A is true,

0, otherwise.

The indicator function involved in the definition of Di
(j−1)l+p(·) serves for the

following purpose. Consider at time (age) i ≥ 1 an alive firm having Aj as capital
per unit of output. Let its productive capacity be qi

(j−1)l+p > 0 (since it is alive).
The question is whether it will be participating in the next production cycle or not.
According to our mortality rule, it depends upon whether its capital at the end of
the current production period is not less than or falls below the death threshold, εb.
The investment rule adopted in the model gives

qi
(j−1)l+p[1 − d+ I

( ∞∑
i=1

kl∑
s=1

qi
s

)
A−1

j ]

for its production capacity at the end of the current production cycle, or, in capital
terms,

qi
(j−1)l+p[1 − d+ I

( ∞∑
i=1

kl∑
s=1

qi
s

)
A−1

j ]Aj .

Hence, the firm survives and continues its production if this expression for capital
is not less than εb. Otherwise, the firm dies and never returns to business.

We set D(·) for the deterministic mapping R∞ in R∞ characterizing the de-
terministic evolution of productive capacities of all manufacturing firms of the
industry. In terms of coordinates, this transformation is given by the following re-
lations: Ds(q) = 0 for s = 1, 2, . . . , kl, Dkli+(j−1)l+p(q) = Di

(j−1)l+p(q) for
i ≥ 1, 1 ≤ j ≤ k, 1 ≤ p ≤ l. Here Dm(q) denotes the m-th coordinate of
D(q). Note that the first kl coordinates equal zero to accommodate newcomers,
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which currently do not produce: thus their productive capacities do not change and,
consequently, they are not a subject to the dynamics captured by D(·). The inflow
process is given in the following way.

Define infinite dimensional random vectors Yt, t ≥ 0, independent in t. Set

Y t
(j−1)l+p = θt

j,pA
−1
j for p = 1, 2, . . . , Γ t

j ,

Y t
(j−1)l+Γ t

j +i = 0 for i = 1, 2, . . . , l − Γ t
j

if Γ t
j > 0 and

Y t
(j−1)l+p = 0 for p = 1, 2, . . . , l

if Γ t
j = 0, also

Y t
s = 0 for s > kl.

Here j = 1, 2, . . . , k (note that in this case, as well as when defining D(·), coordi-
nates are numbered sequentially rather than in terms of cohorts. The coordinates of
the state variable of the industry, q, are numbered in terms of cohorts). The vector
Yt characterizes the inflow of productive capacity into the industry at time t. Now,
the evolution of productive capacities of all firms involved in the economy can be
given as follows

q(t+ 1) = D(q(t)) + Yt, t ≥ 1, q(1) = Y0. (3)

Since Yt are independent in t, this expression defines a Markov process on R∞.
Also, since the deterministic operator D(·) as well as the distribution of Yt do not
depend on time, the process is homogeneous in time. Conceptually, this phase space
is formed by productive capacities of all firms which stay alive. More precisely, if
qi
(j−1)l+p(t) > 0 for some p = 1, 2, . . . , l and t > i ≥ 1, then a firm with Aj as

capital per unit of output which came to the industry at t− i has been alive until t,
that is, has manufactured i− 1 times, and continue to manufacture during the t-th
time period.

Having outlined the specific features of this process of industrial change, let us
proceed to the analysis of some of its properties.

6 Entry, mortality and long run balance relations

Start from the statement that, for any j, in a finite time with probability one there
will be born at least one firm with Aj as capital per unit of output.

Lemma 1. For each j = 1, 2, . . . , k in a finite random time τj with probability
one there appears a firm with Aj as capital per unit of output.

The proof of this lemma is given in the Appendix.
Now let us show that Qt, t ≥ 1, are bounded with certainty.
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Lemma 2. With certainty Qt ≤ Q∗ for t ≥ 1, where Q∗ is a constant depending
upon parameters of the model.

Proof. Dropping the nonpositive term, −Et, in (2), we get

Qt+1 ≤ Qt(1 − d) + I(Qt)
k∑

j=1

A−1
j Q

Aj

t + Vt, t ≥ 1. (4)

Since A−1
j < A−1

1 , j = 2, 3, . . . , k, we conclude that

k∑
j=1

A−1
j Q

Aj

t ≤ A−1
1

k∑
j=1

Q
Aj

t = A−1
1 Qt

and

Vt ≤ lc

k∑
j=1

A−1
j < lckA−1

1 .

Substituting these two estimates in (4), one has

Qt+1 < Qt[1 − d+ I(Qt)A−1
1 ] + lckA−1

1 . (5)

Since I(x) → 0 as x → ∞, there is a finite output level Q̄ such that

Q[I(Q)A−1
1 − d] + lckA−1

1 < 0 for Q ≥ Q̄.

IfQt ≥ Q̄ for some t ≥ 1, thenQt+1 < Qt by (5). Thus, at Q̄ and above this level,
the sequence Qt, t ≥ 1, becomes decreasing. Otherwise, if Qt < Q̄ for some
t ≥ 1, by (5) we get

Qt+1 < Qt[1 − d+ I(0)A−1
1 ] + lckA−1

1 <

Q̄[1 − d+ I(0)A−1
1 ] + lckA−1

1 = Q̂.

(Take into account that I(x) < I(0) for all x > 0.) When Q̂ < Q̄, this inequality
implies that Qt < Q̄ for t ≥ 1. Otherwise, when Q̂ ≥ Q̄, it means that Qt < Q̂
for t ≥ 1. (Indeed, upon upcrossing the level Q̄, this sequence is bounded by
Q̂. But at Q̄ and above this level, it is a decreasing sequence.) Summing up, one
may conclude that there is a finite deterministic upper bound Q∗ of Qt, t ≥ 1.
Moreover, Q∗ < max(Q̄, Q̂).

The lemma is proved.
Let us now show that, if there is a death threshold, then none of the firms

can survive for an infinitely long time. The argument given below is instructive
demonstrating how the selection mechanism in question works.

Theorem 1. If ε > 0 and P{γ = 0} = p0 < 1, then each firm dies in a finite
random time with probability one.
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The theorem is proved in the Appendix. The intuition is the following. For
simplicity let ε < 1 and p0 = 0. (If ε = 1 and/or p0 > 0, we need a more
sophisticated argument.)

Each firm enters with a physical capital which cannot be below b. If it dies,
at the moment when this happens its capital must be less than εb. That is, a firm
living a finite time must shrink during its life at least 1/ε times. The intuitive proof
(by contradiction) of the theorem starts by the observation that at least some firms,
including some of the most efficient ones do die. Consequently, taking into account
that the most efficient firms have the highest investment rate, a notional firm that
would live infinitely long would shrink at least 1/ε times during the life time of a
most efficient one, if the latter dies in a finite time. Hence, to prove that no firm
can live infinitely long, it is enough to show that the capital of every alive firm
is bounded from above by a constant and that there is a long enough (depending
upon the constant) or, better, an infinite chain of the most efficient firms coming
and dying one after another.

The capital of an alive firm is bounded from above by the total physical capital
of the industry which in turn is bounded with certainty by Lemma 2. Moreover, the
capital of an alive firm is bounded from below by the death threshold, εb. Hence,
the total number of alive firms is bounded from above with certainty by Q∗Ak/εb.
Consequently, starting from a finite random time τ every newcoming firm dies in
a finite time. Since p0 = 0, at least one the most efficient firm comes every time
instant. Thus, starting from τ , there is an infinite chain of the most efficient firms
coming and dying one after another. This chain will push below the death threshold
the physical capital of any candidate for living infinitely long.

The theorem is proved.
From (1) we get that

Q
Aj

t+1 −Q
Aj

t = Q
Aj

t [I(Qt)A−1
j − d] + V j

t − Ej
t .

This implies for n ≥ 1

Q
Aj

n+1 −Q
Aj

1 =
n∑

t=1

{
Q

Aj

t [I(Qt)A−1
j − d] + V j

t − Ej
t

}
. (6)

Since QAj

t , t ≥ 1, are bounded with certainty, then by (6) we conclude that (with
certainty)

1
n

n∑
t=1

{
Q

Aj

t [I(Qt)A−1
j − d] + V j

t − Ej
t

}
→ 0 (7)

as n → ∞. Due to the strong law of large numbers, with probability one

1
n

n∑
t=1

V j
t → A−1

j EγEθ (8)

as n → ∞. Here byEγ andEθ we denote the mean values of γ and θ correspond-
ingly. By (7) and (8) we conclude the following.
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Lemma 3. For j = 1, 2, . . . , k with probability one

1
n

n∑
t=1

{
Q

Aj

t [d− I(Qt)A−1
j ] + Ej

t

}
→ aA−1

j (9)

as n → ∞. Here a = EγEθ, j = 1, 2, . . . , k.

Summing up relations (9), we get that with probability one

1
n

n∑
t=1


dQt − I(Qt)

k∑
j=1

Q
Aj

t A−1
j + Et


→ a

k∑
j=1

A−1
j (10)

as n → ∞. Relations (9) and (10) represent the most general long-run balance
equations for the productive capacities involved in the market. They imply that

Q
Aj

t [d− I(Qt)A−1
j ] + Ej

t − aA−1
j , j = 1, 2, . . . , k,

and

dQt − I(Qt)
k∑

j=1

Q
Aj

t A−1
j +

k∑
j=1

Ej
t − a

k∑
j=1

A−1
j

fluctuate through time in such a way that on average positive deviations of these
values from zero are compensated by their negative deviations.

However, the results given by Lemma 3 do not say anything about the limit
behavior of time averages of QAj

t or Qt. To study this issue, let us turn to the
ergodic properties of process (3).

7 Ergodic properties of the industry

Is there any role for “history” in determining the long-run fate of our admittedly
very simple industry? In order to answer the question, let us check its possible
ergodic properties.

Define B∞ the minimal σ-field in R∞ generated by sets of the following form

A = Π∞
j=1A

j , (11)

where Aj denotes a set from the σ-field of Borel sets Bkl
j in Rkl

j . For every such
set A, one step transition probability of process (3) reads

p1(q, A) = P{D(q) + Y ∈ A} = P{Y∗ ∈ A1}χD(q)∈Π∞
i=2Ai . (12)

Here Y∗ stands for the kl-dimensional vector whose coordinates coincide with
first kl coordinates of a generic vector Y having the same distribution as Yt, t ≥
0. Also, χD(q)∈Π∞

i=2Ai is an indicator function. As explained above, it takes on
value 1 or 0 depending whether D(q) ∈ Π∞

i=2A
i or D(q) �∈ Π∞

i=2A
i. The total
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productive capacity is bounded with certainty. Consequently, process (3) belongs
with probability one to

L =


q ∈ R∞ :

∞∑
i=1

kl∑
j=1

qi
j ≤ Q∗, qi

j ≥ 0


 .

To study the ergodic properties of process (3), we need the following condition,
due to Doeblin (see Doob, 1953, p. 192): there is a finite positive measure φ(·) with
φ(L) > 0 and a number δ ∈ (0, 1) such that for all q ∈ L

p1(q, A) ≤ 1 − δ if φ(A) ≤ δ.

For a setA as in (11) letψ(A) = P{Y ∗ ∈ A1}. Then, by (12), we conclude that
p1(q, A) ≤ ψ(A). Hence, restricting ourselves to δ ≤ 1/2, we see that ifψ(A) ≤ δ,
then p1(q, A) ≤ δ ≤ 1 − δ. Thus, Doeblin’s condition holds for φ(·) = ψ(·) and
all positive δ ≤ 1/2. (This argument is copied from Example 3 given in Doob,
1953, p. 193.)

Now, by Theorem 5.7 from Doob (1953), p. 214, we obtain that

π(q, A) = lim
n→∞

1
n

n∑
t=1

pt(q, A) (13)

defines for each q ∈ L a stationary absolute distribution. Here pt(x, ·) stands for
the transition probability in t steps, that is,

pt(q, A) =
∫

L

pt−1(y, A)dp1(q,y), t ≥ 2.

The stationary distribution π(q, ·) turns out to be the same, that is π£(·), for all q
belonging to the same ergodic set £ (Doob, 1953, p. 210). Since φ(L) = 1 and
δ = 1/2, there can be at most two ergodic sets (see Doob, 1953, p. 207). Because
p1(x,£) = 1 for any x ∈ £, it follows that the component of £ belonging to Rkl

1
must contain the support of Y∗. As any ergodic set is unique up to a subset whose
φ measure is zero, we conclude that there is a single ergodic set. Consequently,
the corresponding measure, π(·), is unique as well. It has the following generic
property ∫

L

p1(x, A)dπ(x) = π(A). (14)

In general, it is not possible to find from this relation an explicit expression for π(·).
But, due to the specific structure of the operator D(·), it allows to conclude that the
distribution π(·) nests in a finite dimensional space when ε > 0.

Lemma 4. If ε > 0, then there is a finite N < Q∗Ak/εb such that, for every A as
in (11), π(A) = 0 if Ai �= {0i} for some i > N . In other words, the support of
π(·) belongs to ΠN

i=1R
kl
i . Here 0i denotes the zero vector of Rkl

i .

Proof. Let q∗ be a vector whose distribution is π(·). That is P{q∗ ∈ A} = π(A)
for everyA as in (11). Equations (3) and (14) imply that the vectors D(q∗)+Y and
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q∗ have the same distribution. This observation allows to make two conclusions
concerning q∗.

First, with certainty, nonzero coordinates of q∗ may not fall below εbA−1
k .

Indeed, the first k of them do not fall below bA−1
1 as initial productive capacities of

firms whose capital ratio equalsA1. In general, the coordinates whose numbers are
from (j−1)l to jl do not fall below bA−1

j . AsA−1
j > A−1

k for j �= k, we conclude
that the first kl nonzero coordinates of q∗ do not fall below bA−1

k . The rest do not
fall below εbA−1

k . Again, the productive capacity of a manufacturing firm whose
capital ratio is Aj is bounded from below by εbA−1

j . As A−1
j > A−1

k for j �= k,
we see that εbA−1

j > εbA−1
k .

Second, with certainty,
∑∞

i=1 q
∗
i < Q∗. (This inequality obtains by applying to

D(q∗) + Y an argument similar to the one used in Lemma 2.)
These two properties lead us to conclude that, with probability one, the number

of nonzero coordinates of q∗ falls belowQ∗Ak/εb.Note that a nonzero element of
D(q∗) + Y in a cohort block, say Rkl

i+1, by definition of D(·), requires a nonzero
element of q∗ at the same position in Rkl

i . Consequently, the maximum number
of cohort blocks with at least one nonzero element falls below Q∗Ak/εb and these
have to be subsequent cohort blocks each with a single nonzero element (at the same
position within a cohort). In other words, π(·) nests with certainty in ΠN

i=1R
kl
i for

some N < Q∗Ak/εb.
The lemma is proved.
If there are distinct subsequent cyclically moving subsets, Ci, i ≥ 1, of the

ergodic set in question, then p1(q, Ci+1) = 1 for every q ∈ Ci (see Doob, 1953, p.
210.). Consequently, the component ofCi+1 belonging toRkl

1 must contain a copy
of the support of Y∗. In other words, Ci and Ci+1 coincide up to a subset whose φ
measure is zero. In sum, the Markov process in question does not have cyclically
moving subsets.

Since π(·) does not have cyclically moving subsets, drawing from Case (f) in
Doob (1953, p. 214), we conclude that the limit in (13) exists as an ordinary (rather
than Cesàro) limit. That is, taking into account that the stationary distribution is
unique,

lim
t→∞ pt(q, A) = π(A) for each q ∈ L.

Let ρ(·) be a function measurable with respect to B∞ and integrable with respect
to π(·). By the strong law of large numbers (see Doob, 1953, p. 220), as n → ∞,

1
n

n∑
t=0

ρ(q(t)) →
∫

L

ρ(x)dπ(x)

with probability one. This result shows that all sensible time averages of process
(3) converge with probability one to deterministic limits. Thus, in particular, the
following statement holds.
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Theorem 2. With probability one

1
n

n∑
t=1

Q
Aj

t →
∫

L

∞∑
i=1

l∑
p=1

xi
(j−1)l+pdπ(x), (15)

1
n

n∑
t=1

Q
Aj

t I(Qt) →
∫

L

I

( ∞∑
i=1

kl∑
n=1

xi
n

) ∞∑
s=1

l∑
p=1

xs
(j−1)l+pdπ(x), (16)

and, if ε > 0,

1
n

n∑
t=1

νj(t) →
∫

L

∞∑
i=1

l∑
p=1

χxi
(j−1)l+p

Aj≥εbdπ(x) (17)

as n → ∞. Here j = 1, 2, . . . , k. By νj(t) we denote the number of firms having
Aj as capital per unit of output which are manufacturing at time t.

Proof. The sums involved in (15)–(17) are measurable with respect to B∞ nonneg-
ative functions. Indeed, while for (15) and (17) this is straightforward, concerning
(16) we have to take into account that I(·) is a continuous function by hypothesis.
By definition of L, the sum involved in (15) is uniformly bounded from above by
Q∗. Taking into account the continuity of I(·), we get that the expression in the
right hand side of (16) is bounded from above by

Q∗ max
x∈[0,Q∗]

I(x) < ∞.

Note that the minimal productive capacity of a firm with Aj as capital per unit of
output which is manufacturing is εbA−1

j . Since the total productive capacity of such
firms does not exceedQ∗ for any time instant, we conclude that the iterated sum in
(17) is bounded from above by AjQ∗/εb. Thus, the functions involved in the right
hand sides of (15)–(17) are measurable and uniformly bounded. Consequently, they
are integrable with respect to π(·). Applying the strong law of large numbers quoted
above, we obtain the statement of the theorem.

The theorem is proved.
Relations (15)–(17) entail the following conceptual interpretations. First, the

time average of the total productive capacity of firms that are in business and have
Aj as capital per unit of output converges to a limit which is a deterministic function.
Since

max [h(Qt) −m, 0]QAj

t =
v

λ
I(Qt)Q

Aj

t

represents the gross total profit of all firms having Aj as capital per unit of output
at time t, the second relation says that the time average of this value converges to a
deterministic limit. The third relation means that the average number of firms with
Aj as capital per unit of output that are in business converges to a deterministic
limit as well.
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Remark. Arguing as above, we can derive expressions for the limits of the time
averages of market shares of all firms whose capital ratio is Aj .

From (9), (15) and (16) we get the following result.

Corollary. With probability one

1
n

n∑
t=0

Ej
t , j = 1, 2, . . . , k,

converge as n → ∞ and the corresponding limits, ej , are deterministic satisfying
the following relations

ej = aA−1
j − dqj +

λ

v
rjA−1

j , j = 1, 2, . . . , k,

where qj and rj denote the values in the right hand sides of (15) and (16).

Thus, this corollary gives expressions for the limit average total outflows of
productive capacities of firms via the other ergodic characteristics of the industry
and the parameters of the model.

The foregoing properties shed light on the possible path-dependence of the
dynamics. Indeed, Doeblin’s condition implies that events occuring at t and t+n are
getting more and more independent asn → ∞. This ergodic property means as such
lack of path-dependence. Moreover, the limits for the time averages for productive
capacities, outflows of the latters, numbers of firms in business, etc. do not depend
on the initial state. (A caveat is however in order: such ergodicity properties are
likely to crucially depend on the lack of endogenous technical progress in our
“baseline model” and are likely to be lost whenever one allows for cumulative
forms of learning: see also the remarks in Winter et al., 2000.)

In order to explore some more detailed properties of the dynamics of industry
structure, let us turn to numerical simulations of the model.

8 Some results of computer simulations

As an illustration of some qualitative properties, let us consider on a set of computer
simulations of the model which we performed8 (note that we have tried several
runs, under different parametrizations and the properties discussed below appear
to generally apply: more rigorous test for robustness are forthcoming). The runs
presented below use the following parametrization: k = 4; Ai = {1, 2, 3, 4};
m = 1, v = 1, d = 0.3, λ = 0.6, ε = 0.5. The demand function is h(x) =
4.1667 exp(−0.5x) and the capitals of newcoming firms were uniformly distributed
over [0.02, 0.04]. We set l = 3 and the number of newcoming firms is such that,
in tune with the evidence, “bad” firms are more likely to arrive than “good” ones.
The arrival probabilities are the following:

8 The simulation used a program from the Laboratory for Simulation Development (LSD), a
package providing a user-friendly environment for implementation of simulation models, devel-
oped by M. Valente (see Valente, 1997) at the International Institute for Applied Systems Analy-
sis (IIASA) and subsequently at Ålborg university. It is publicly available via Internet, at http :
//www.business.auc.dk/˜mv/Lsd/lsd.html.
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p0 p1 p2 p3
A1 0.9 0.06 0.03 0.01
A2 0.5 0.25 0.15 0.1
A3 0.1 0.15 0.25 0.5
A4 0.01 0.03 0.06 0.9

Figure 1 shows the dynamic of the price for 1 ≤ t ≤ 50: it tends stabilize
rather quickly around its long term average level, which indeed is below that value
at which everybody shrinks (note that this is a property of the price average, while
the actual price keeps fluctuating around this level).
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Fig. 1. The price h(Qt) for 1 ≤ t ≤ 50
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Fig. 3. Numbers of firms in business for 1 ≤ t ≤ 500
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Underlying that apparent stability of aggregate supply, one observes however
a more messy micro structure with a fringe of productive capacity provided by the
least efficient firms (Fig. 2), which keep entering and quickly die. Note also that
while the total capacity stabilizes rather fast, this is not so for the total number of
firms (cf. Fig. 3). That is to say, for a rather long “transitional dynamic” the “carrying
capacity” of the market is not saturated and the relative aggregate stability of supply
and price is supported by a net inflow of firms. In a sense, during the transitional
dynamic, market selection operates less effectively allowing relatively long survival
time also for less efficient firms and persistent “early mover advantages”.
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Fig. 5. The life time distribution of 98% of firms dead before t = 500 (for sake of visual clarity, the
figure does not include 2% of firms surviving the longest time, i.e. around 100 periods)

Note also what looks like a “shakeout” at some point in the history of the
industry (cf. Fig. 3) corresponding to the time when highest productivity firms start
getting a hold on the market: the number of firms dramatically falls (purely due to an
increase in the mortality rates) and non-best practice firms are relegated thereafter
to a rather marginal, but persistent fringe of the industry.

Skewed size distributions appear from early on and remain thereafter (Fig. 4),
notwithstanding the very simplified assumptions of our model (including the ab-
sence of learning by incumbents)9. Note also that despite size as such does not
provide any specific advantage, one observes the early emergence of one or few
(transient) market leaders (Fig. 4). When both production capacity and number of
firms approach their stationary regimes, the competitive pressure prevents all firms
(including the most efficient ones) from expanding indefinitely. Relatedly, the en-
suing life time distribution, that is the number of production cycles firms perform
before dying (cf. Fig. 5), assures that even the most efficient firms are bound to
disappear in the long term. Indeed, the picture is very similar to the Marshallian
view of the “forest”, mentioned earlier, with a persistent turnover of trees (with, of
course, the marginal fringe having the highest turnover rates).

Note also that the foregoing qualitative properties hold across different
parametrizations of the model, although long-term averages and the length of the
“transitional dynamics” depend of course on the parametrization itself.

9 We are facing here a phenomenon similar to the well known Pareto law (see, for example, Ijiri and
Simon, 1974), which in one of its formulations states that for a set of firms ranked according to their
size, the size s and the rank r of a firm are related as srβ = A, where β and A are positive constants.
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9 Conclusions

In this paper we have developed a formal analytical apparatus able to treat the dy-
namics of industrial evolution and derive some generic properties of the underlying
competition process. The continuing entry flow produces a continuing turnover
in the firm population of the sort observed in real data. The size distribution of
firms emerges as a derivative consequence of the combination of heterogeneity and
turnover. Although “snapshots” of the distribution at different points in time might
be similar (after the industry has approached its long term dynamic path), the firms
occupying particular places in the distribution are generally different. This does not
only apply to the lower end of the distribution, but to the whole universe of firms:
in fact, we proved, under quite general conditions, that all firms are bound to die in
a finite random time with probability one.

Moreover, the long-run proportions of firms of different efficiency levels reflect
the interplay of selection forces and entry rates – indeed, in a fashion roughly
analogous to the analysis of gene frequencies provided by the Hardy – Weinberg
laws of population biology10.

The view of the outcomes of the competition process, in a sense, is a formal
vindication of the intuition of classical economists that conditions of entry and
(heterogeneous) techniques of production determine some sort of “centers of grav-
ity” around which actual prices, quantities and profitabilities persistently fluctuate.
In fact, on the ground of the foregoing model, one is able to establish the limit
properties of those time averages.

As mentioned earlier, the model is suitable to several extensions. An obvious
one is the account of an endogenous process of arrival of new techniques and, hence,
new productivity levels (see Winter et al., 2000). However, even in its “baseline”
version presented here the model is able to account, together, for the “stylized facts”
recalled at the beginning concerning turbulence, “life cycle” properties of industry
evolution, skewed size distributions and persistent fluctuations in output and prices.
The fundamental drivers of the process generating those phenomena are shown to
rest upon an ever-lasting inflow of technologically heterogeneous firms and market
selection.

Finally, note also that hardly any assumption of the foregoing formal apparatus
binds its applications to the domain of industrial dynamics. On the contrary, even as
it stands, it appears particularly suitable to a large ensemble of dynamic processes
– including several of those formalized by evolutionary game theories. Even when
assuming that the domain of notational exploration is finite and given from the
start, the explicit account of random occurrences in heterogeneous populations
subject to systematic selection pressures yields quite rich structures of the emerging
evolutionary processes.

10 The Hardy – Weinberg laws provide a quantitative statement of the fact that “deleterious” genes are
continuously eliminated from the population by natural selection forces, but are replenished by mutation
(see Wilson and Bossert, 1971).
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Appendix

Lemma 1. For each j = 1, 2, . . . , k in a finite random time τj with probability one
there appears a firm with Aj as capital per unit of output.

Proof. Note that, since the variable γ is not deterministic, thenP{γ = 0} = p0 < 1.
Also,

{τj = ∞} =
⋂
n≥0

{τj > n}.

Hence

P{τj = ∞} = P



⋂
n≥0

{τj > n}

 .

Since {τj > n} ⊇ {τj > n+ 1}, we have

P



⋂
n≥0

{τj > n}

 = lim

n→∞P{τj > n}.

But

P{τj > n} = pkn
0 → 0 as n → ∞.

This completes the proof.

Theorem 1. If ε > 0 and P{γ = 0} = p0 < 1, then each firm dies in a finite
random time with probability one.

Proof. The death threshold implies that if a firm lives infinitely long, then its capital
does not drop below εb. Since the total productive capacity of the industry is bounded
with certainty, we conclude that starting from a finite random time τ with probability
one every newcoming firm dies in a finite time. Indeed, otherwise we would have
infinitely many firms living infinitely long. This, by boundness from below of their
physical capitals, would imply that the total productive capacity goes to infinity.

At time t ≥ 1 consider two firms: one with capital ct and capital per unit of
outputAi and the other with capital c′t and capital per unit of outputAj ≤ Ai. Then

ct+1

c′t+1
=
ct[1 − d+ I(Qt)A−1

i ]χct[1−d+I(Qt)A−1
i ]≥εb

c′t[1 − d+ I(Qt)A−1
j ]χc′

t[1−d+I(Qt)A−1
j ]≥εb

. (a1)

Assume that there is a firm living infinitely long with positive probability. Set
ct for its capital at t and Ai for its capital per unit of output. Then

P{ct ≥ εb, t ≥ τ ′} = δ > 0, (a2)

where τ ′ stands for the time instant when it comes to the industry.
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Let us first p0 = 0. Consider a time instant t ≥ τ . There is a most efficient firm
coming at t. Set c′t for its capital. Since we are in the time domain where every
entrant dies in a finite time, also this most efficient firm dies at a finite time instant
t′ > t with probability one. By (a1) we get that

ct′ ≤ ct
c′t′

c′t
≤ ct

εb

b
≤ εct.

Since p0 = 0, at t′ another most efficient firm comes to the industry. Similarly, it
dies at some instant t′′ and we obtain that ct′′ ≤ εct′ or ct′′ ≤ ε2ct.

If ε < 1, we conclude that, since ct is uniformly bounded from above (cf.
Lemma 2), there is a sequence tk, k ≥ 1, of random time instants such that with
certainty ctk

→ 0 as k → ∞. This contradicts (a2). Hence, it is not possible that
there is a firm surviving infinitely long with positive probability.

If ε = 1, we notice that, since θ is not deterministic, there is σ > 0 such that
P{θ ≥ b+σ} > 0. By an argument similar to the one given in the proof of Lemma
1, we conclude that with probability one there is a sequence of random time instants
t′k, k ≥ 1, such that at least one of the most efficient firms born at t′k has initial
capital exceeding b+ σ. Then for tk ≥ τ we have that the capital of the infinitely
long living firm at least does not grow (for the previous argument), but it shrinks at
least 1 + σ/b times during the life time of every new most efficient entrant whose
initial capital is equal or greater than b + σ. Since with probability one there are
infinitely many of the latter firms, this again contradicts the assumption that such
firm can live forever.

Now let us turn to the case when p0 > 0. One accounts for the life cycle of a firm
(living a finite time), entering the market, performing some number of production
cycles, and finally exiting.

First let ε < 1. SetM for the smallest natural number such thatQ∗Akε
M−1 < b.

When at least M subsequent life cycles of the most efficient firms take place, the
physical capital any alive firm in the industry is pushed below the death threshold, εb.
Consequently, if such a chain of life cycles occurs in a finite time with probability
one, there may not be in the industry firms living infinitely long with positive
probability. Let us implement this idea.

The physical capital of any alive firm is bounded from above by the total capital
of the industry. By Lemma 2, the latter is smaller thanQ∗Ak with certainty. Shrink-
ing at least ε−1 times during a single life cycle of a most efficient firm, afterM such
subsequent cycles, this individual physical capital will fall below Q∗Akε

M < εb.
Thus, no firm in the industry may surviveM or more subsequent life cycles of most
efficient firms.

Set S for the smallest natural number such that Sεb ≥ Q∗Ak. As the minimal
capital size of an alive firm is εb, at any given time instant, the industry may not
have S or more alive firms. Consequently, if during a time period, at every time
instant at least one firm enters the industry, every S time instants at least one firm
has to exit.

Let T be the event that during each of SM subsequent time instants at least one
most efficient firm enters the industry. Then T implies at least M subsequent life
cycles of most efficient firms. Indeed, during each of SM subsequent time instants
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at least one of them comes to the market and, thus, every S time instants at least one
of them has to leave. Such life cycles are subsequent because at each time instant
out of those SM at least one most efficient firm enters.

Since the entry decisions are independent across firms, the probability of T is
P0 = (1 − p0)SM > 0. Arguing like in the proof of Lemma 1, we conclude that T
occurs in a finite time with with probability one. This accomplishes the argument
for the case when p0 > 0 and ε < 1. Considering life cycles of the most efficient
firms whose initial capitals do not fall below b + σ for some σ > 0 such that
P{θ ≥ b+σ} > 0, we can adjust the argument given above for the situation when
ε = 1.

The theorem is proved.
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