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Abstract. Socio-economic networks, neural networks and genetic networks de-
scribe collective phenomena through constraints relating actions of several actors,
coalitions of these actors and multilinear connectionist operators acting on the set of
actions of each coalition. We provide a class of control systems governing the evo-
lution of actions, coalitions and multilinear connectionist operators under which the
architecture of the network remains viable. The controls are the “viability multipli-
ers” of the “resource space” in which the constraints are defined. They are involved
as “tensor products” of the actions of the coalitions and the viability multiplier,
allowing us to encapsulate in this dynamical and multilinear framework the con-
cept of Hebbian learning rules in neural networks in the form of “multi-Hebbian”
dynamics in the evolution of connectionist operators. They are also involved in
the evolution of coalitions through the “cost” of the constraints under the viability
multiplier regarded as a price.
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1 Introduction

Collective phenomena deal with the coordination of actions by a finite number n
of actors labelled i = 1, . . . , n using the architecture of a network of actors, such
as socio-economic networks (see, for instance, Ioannides [43], Aubin [6,8], Aubin
and Foray [20], Bonneuil [28,27]), neural networks (see, for instance, Aubin [9,10,
7], Aubin and Burnod [17]) and genetic networks (see, for instance, Bonneuil [31,
30], Bonneuil and Saint-Pierre [32]). This coordinated activity requires a network



96 J.-P. Aubin

of communications or connections of actions xi ∈ Xi ranging over n finite
dimensional vector spaces Xi.

1.1 Definition of the architecture of a network

The simplest general form of a coordination is the requirement that a relation
between actions of the form g(A(x1, . . . , xn)) ∈ M must be satisfied. Here

1. A :
∏n

i=1 Xi �→ Y is a connectionist operator relating the individual actions
in a collective way,

2. M ⊂ Y is the subset of the resource space Y and g is a map, regarded as a
propagation map.

We shall study this coordination problem in a dynamic environment, by al-
lowing actions x(t) and connectionist operators A(t) to evolve1 according to
dynamical systems we shall construct later. In this case, the coordination problem
takes the form

∀ t ≥ 0, g(A(t)(x1(t), . . . , xn(t))) ∈ M

However, in the fields of motivation under investigation, the number n of vari-
ables may be very large. Even though the connectionist operators A(t) defining the
“architecture” of the network are allowed to operate a priori on all variables xi(t),
they actually operate at each instant t on a coalition S(t) ⊂ N := {1, . . . , n} of
such variables, varying naturally with time according to the nature of the coordina-
tion problem (seeAubin [3], Petrosjan [53], Petrosjan and Zenkevitch [54] and Filar
and Petrosjan [40]) for closely related issues in dynamic cooperative game theory).
Therefore, our coordination problem in a dynamic environment is defined in the
following way

Definition 1.1 The architecture of dynamical network involves the evolution

1. of actions x(t) := (x1(t), . . . , xn(t)) ∈∏n
i=1 Xi,

2. of connectionist operators AS(t)(t) :
∏n

i=1 Xi �→ Y ,
3. acting on coalitions S(t) ⊂ N := {1, . . . , n} of the n actors

and requires that

∀ t ≥ 0, g
({AS(t)(x(t))}S⊂N

) ∈ M

where g :
∏

S⊂N YS �→ Y .

So, a network is not only any kind of a relationship between variables, but
involves both connectionist operators operating on coalitions of actors.

1 For simplicity, the setM(t) is assumed to be constant. But they could also evolve through mutational
equations and the following results can be adapted to this case. Curiously, the overall architecture is
not changed when the set of available resources evolves under a mutational equation. See Aubin [4] for
more details on mutational equations.
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1.2 Constructing the dynamics

The question we raise is the following: Assume that we know the intrinsic laws of
evolution of the variables xi (independently of the constraints), of the connectionist
operator AS(t) and of the coalitions S(t). Is the above architecture viable under
these dynamics, in the sense that the collective constraints defining the architecture
of the dynamical network are satisfied at each instant.

There is no reason why let on his own, collective constraints defining the above
architecture are viable under these dynamics. Then the question arises how to
reestablish the viability of the system.

One may

1. either delineate those states (actions, connectionist operators, coalitions) from
which begin viable evolutions

2. or correct the dynamics of the system in order that the architecture of the
dynamical network is viable under the altered dynamical system

The first approach leads to take the viability kernel of the constrained subset
of K of states (xi, AS , S) satisfying the constraints defining the architecture of
the network. We refer to Aubin [6,8] for this approach. We devote this paper to an
exhibition of a class of methods for correcting the dynamics without touching on
the architecture of the network.

One may indeed be able, with a lot of ingeniousness and intimate knowledge
of a given problem, and for “simple constraints”, to derive dynamics under which
the constraints are viable.

However, we can investigate whether there is a kind of mathematical factory
providing classes of dynamics “correcting” the initial (intrinsic) ones in such a way
that the viability of the constraints is guaranteed. One way to achieve this aim is
to use the concept of “viability multipliers” q(t) ranging over the dual Y ∗ of the
resource space Y that can be used as “controls” involved for modifying the initial
dynamics. This allows us to provide an explanation of the formation and the
evolution of the architecture of the network and of the active coalitions as
well as the evolution of the actions themselves.

A few words about viability multipliers are in order here: If a constrained set
K is of the form

K := {x ∈ X such that h(x) ∈ M}
where h : X �→ Z := Rm is the constrained map form the state space X to
the resource space Z and M ⊂ Z is a subset of available resources, we regard
elements u ∈ Z� = Z in the dual of the resource space Z (identified with Z) as
viability multipliers, since they play a role analogous to Lagrange multipliers in
optimization under constraints.

Recall that the minimization of a function x �→ J(x) over a constrained set K
is equivalent to the minimization without constraints of the function

x �→ J(x) +
m∑

k=1

∂hk(x)
∂xj

uk
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for an adequate Lagrange multiplier u ∈ Z� = Z in the dual of the resource space Z
(identified with Z). See, for instance, Aubin [5], Rockafellar and Wets [55] among
many other references on this topic.

In an analogous way, but with unrelated methods, it has been proved that a
closed convex subset K is viable under the control system

x′
j(t) = fj(x(t)) +

m∑
k=1

∂hk(x(t))
∂xj

uk(t)

obtained by adding to the initial dynamics a term involving regulons that belong to
the dual of the same resource space Z. See, for instance, Aubin and Cellina [18]
and Aubin [12,8] and Section 6 below for more details.

Therefore, these viability multipliers used as regulons benefit from the
same economic interpretation of virtual prices as the ones provided for La-
grange multipliers in optimization theory.

1.3 Description of the typical results

The results presented here use this approach in the case of the above specific con-
straints. We show that by correcting dynamical systems with viability multipliers,
the dynamics of the evolution of connectionist operators and coalitions present
some interesting features.

We associate with any coalition S ⊂ N the product XS :=
∏

i∈S Xi and
denote by AS ∈ LS(XS , Y ) the space of S-linear operators AS : XS �→ Y , i.e.,
operators that are linear with respect to each variable xi, (i ∈ S) when the other
ones are fixed. Linear operators Ai ∈ L(Xi, Y ) are obtained when the coalition
S := {i} is reduced to a singleton, and we identify L∅(X∅, Y ) := Y with the
vector space Y . See Section 2.1 for more details.

In order to tackle mathematically this problem, we shall

1. restrict the connectionist operators A :=
∑

S⊂N AS to be multiaffine, i.e., the
sum over all coalitions of S-linear operators2 AS ∈ LS(XS , Y ),

2. allow coalitions S to become fuzzy coalitions so that they can evolve contin-
uously.

Fuzzy coalitions χ = (χ1, . . . , χn) are defined by memberships χi ∈ [0, 1]
between 0 and 1, instead of being equal to either 0 or 1 as in the case of usual
coalitions. The membership γS(χ) :=

∏
i∈S χi is by definition the product of the

memberships of the members i ∈ S of the coalitions. Using fuzzy coalitions allows
us to define their velocities and study their evolution.

The viability multipliers q(t) ∈ Y ∗ can be regarded as regulons, i.e., regulation
controls or parameters, or virtual prices in the language of economists. These are
chosen at each instant in order that the viability constraints describing the network

2 Also called (or regarded as) tensors.They are nothing other than matrices when the operators are
linear instead of multilinear. Tensors are the matrices of multilinear operators, so to speak, and their
“entries” depend upon several indexes instead of the two involved in matrices.
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can be satisfied at each instant. The main theorem of this paper guarantees this
possibility. Another theorem tells us how to choose at each instant such regulons
(the regulation law).

Even though viability multipliers do not provide all the dynamics under which
a constrained set is viable, they do provide important and noticeable classes of
dynamics exhibiting interesting structures that deserve to be investigated and tested
in concrete situations.

1.4 An economic interpretation

Although the theory applies to general networks, the problem we face has an eco-
nomic interpretation that may help the reader in interpreting the main results that
we summarize below.

Actors here are economic agents (producers) i = 1, . . . , n ranging over the
set N := {1, . . . , n}. Each coalition S ⊂ N of economic agents is regarded as a
production unit (a firm) using resources of their agents to produce (or not produce)
commodities. Each agent i ∈ N provides a resource vector (capital, competencies,
etc.) xi ∈ X in a resource space Xi := R

mi used in production processes involving
coalitions S ⊂ N of economic agents (regarded as firms employing economic
agents)

We describe the production process of a firm S ⊂ N by a S-linear operator
AS :

∏n
i=1 Xi �→ Y associating with the resources x := (x1, . . . , xn) provided

by the economic agents a commodity AS(x). The supply constraints are described
by a subset M ⊂ Y of the commodity space, representing the set of commodities
that must be produced by the firms: Condition

∑
S⊂N

AS(t)(x(t)) ∈ M

express that at each instant, the total production must belong to M .
The connectionist operators among economic agents are the input-output pro-

duction processes operating on the resources provided by the economic agents to
the production units described by coalitions of economic agents. The architecture
of the network is then described by the supply constraints requiring that at each
instant, agents supply adequate resources to the firms in order that the production
objectives are fulfilled.

When fuzzy coalitions χi of economic agents3 are involved, the supply con-
straints are described by

∑
S⊂N


∏

j∈S

χj(t)


AS(t)(x(t)) ∈ M (1)

since the production operators are assumed to be multilinear.

3 Whenever the resources involved in production processes are proportional to the intensity of labor,
one could interpret in such specific economic models the rate of participation χi of economic agent i
as (the rate of) labor he uses in the production activity.
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Let us describe the main results in the framework of the economic example we
have presented.

Assume that the dynamical behaviors of the economic agents are described by
differential equations


(i) x′
i(t) = ci(xi(t)), i = 1, . . . , n

describing the evolution of the resources put at the firm’s disposal
(ii) χ′

i(t) = κi(χ(t)), i = 1, . . . , n
describing the evolution of the rates of participation

(iii) A′
S(t) = αS(A(t)), S ⊂ N

describing the evolution of the production processes

The viability multipliers p(t) range over the dual Y � of the commodity space
Y , and can be interpreted economically as a space of shadow (or virtual) prices.

We denote by AS (x−i) ∈ L(Xi, Y ) the linear operator defined by ui �→
AS(x−i)ui := AS(x−i, ui) and by AS (x−i)

∗ ∈ L(Y ∗, X∗
i ) its transpose defined

by

∀ q ∈ Y ∗, ∀ ui ∈ Xi,
〈
AS (x−i)

∗
q, ui〉 = 〈q, AS (x−i) ui

〉
The operator (

⊗
i∈S xi) ⊗ p ∈ LS(XS , Y ) associates with the resources

(xi)i∈S put at the disposal of the coalition S and the multiplier p ∈ X the multilin-
ear operator (called the tensor product of the xi (i ∈ S) and p): it associates with
(qi)i∈S ∈ Y S the element

(⊗
i∈S

xi ⊗ p

)
((qi)i∈S) :=

(∏
i∈S

〈qi, xi〉
)

p

We shall prove that the constrained subset is viable under the above system of
differential equations corrected by prices in the following way


(i) x′
i(t) = ci(xi(t)) +

∑
S�i

(∏
j∈S χj(t)

)
AS(t)(x−i(t))∗p(t),

i = 1, . . . , n describing the evolution of the resources

(ii) χ′
i(t) = κi(χ(t)) +

∑
S�i

(∏
j∈S\i χj(t)

)
〈p(t), AS(t) (x(t))〉 ,

i = 1, . . . , n describing the evolution of the rates of participation

(iii) A′
S(t) = αS(A(t)) +

(∏
j∈S χj(t)

)(⊗
j∈S xj(t)

)
⊗ p(t), S ⊂ N

describing the evolution of the production processes

This means that starting from an initial state ((xi, χi)i∈N , (AS)S⊂N ) satisfying
the constraints, we can find at each instant t ≥ 0 prices p(t) ∈ Y ∗ such that the
evolutions

t �→ ((xi(t), χi(t))i∈N , (AS(t))S⊂N )
governed by the corrected system of differential equations satisfy the supply con-
straints ∑

S⊂N

γS(χ(t))AS(t)(x(t)) ∈ M
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In other words, for economic agents putting resources xi(t) ∈ X at production dis-
posal with a participation rate χi(t) ∈ [0, 1] and for economic processes modifying
the production processes AS(t), they have to

1. increase their resources xi(t) by adding to their intrinsic dynamics ci(xi(t))
the “input prices” made of the sum over the firms S of the prices

γS(χ(t))AS(t)(x−i(t))∗p(t)

weighted by the membership γS(χ(t))AS(t) of the firm S in the fuzzy coalition
χ(t),

2. increase their membership χi(t) by adding to their intrinsic dynamics κi(χ(t))
the sum over the firms S of the costs

γS\i(χ(t)) 〈p(t), AS(t) (x(t))〉
of the production processes weighted by membership γS\i(χ(t)) in the fuzzy
coalition χ(t) of the coalition S\i made of the agents of the coalition S other
than i (mimetic behavior),

3. increase the multilinear operators AS(t) by adding to their intrinsic dynamics

αS(A(t)) the tensor product γS(χ(t))
(⊗

j∈S xj(t)
)

⊗ p(t) (multi-Hebbian

learning rule).

The first rule is familiar in (mathematical) economics. The price is the message
sent to the economic agents for allowing them to (algebraically) increase the re-
sources provided to the firms, without knowing the behavior of the other economic
agents. The second rule needs to be interpreted as an incentive for economic agents
to increase or decrease his participation in the economy in terms of the cost of con-
straints and of the membership of other economic agents, encapsulating a mimetic
– or “herd”, panurgean 4 – behavior.

The third system seems new in the economic literature, but is the backbone of the
investigations on Hebbian learning algorithms in the field of neural networks, where
the connectionist matrices are synaptic matrices. The correction of the velocities
of the connectionist tensors AS is actually a weighted “multi-Hebbian” rule: for
each component of the connectionist tensor, the correction term is the product of
the membership γS(χ(t)) of the coalition S and of the “tensor product” of the
resources of the coalition Z and the price. In other words, the viability multipliers
appear in the regulation of the multiaffine connectionist operators under the form
of tensor products, implementing the Hebbian rule for affine constraints (see
Aubin [9,10,7]), and “multi-Hebbian” rules for the multiaffine ones, as in Aubin
and Burnod [17]. This can be regarded as a learning rule, actually an “adaptation
rule”, “reinforcing” the increase of the production process “proportionally” to the
“product” of the resources put at the disposal of production by economic agents
and the market price.

Let us emphasize that these dynamics are not proposed a priori, as Hebbian
rules were in 1949, but derive from the theorem on viability multipliers

4 From a famous story by François Rabelais (1483-1553), where Panurge sent overboard the head
sheep, followed by the whole herd.
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associated with the supply and demand constraints. Indeed, this rule emerged
naturally from the mathematical properties of viability theorems, as well as the
mimetic law. They were no part of the behavioral assumptions, described only by
the dynamics ci, κi and αS subjected to the supply constraints.

Naturally, this paper being mainly devoted to a general model dealing with
general networks, this is the description of a very simple model that is enriched and
further commented upon in Section 5. The point made in this paper is to show how
the mathematical methods presented in a general way can be useful in designing
other models, as the Lagrange multiplier rule does in the static framework. By
comparison, we see that if we minimize a collective utility function:

n∑
i=1

ui(xi) +
n∑

i=1

vi(χi) +
∑
S⊂N

wS(AS)

under constraints (1), then first-order optimality conditions at a optimum
((xi)i, (χi)i, (AS)S⊂N ) imply the existence of Lagrange multipliers p such that:




∇ui(xi) =
∑
S�i


∏

j∈S

χj


AS(x−i(t))∗p, i = 1, . . . , n

∇vi(χi) =
∑
S�i


 ∏

j∈S\i

χj


 〈p, AS (x)〉 , i = 1, . . . , n

∇wS(AS) =


∏

j∈S

χj




⊗

j∈S

xj


⊗ p, S ⊂ N

1.5 Outline

We shall present examples of network structures in order of increasing difficulty.
We present in this introduction known results obtained for affine constraints (case
of one actor), and expose them when there are only two actors and when bilinear
constraints are involved.

In the first section, we next exhibit the results for n actors for multiaffine con-
straints without evolving coalitions, while in the second section, we introduce fuzzy
coalitions and show how they may evolve to maintain the viability of the architec-
ture of the network. We continue by allowing some nonlinearities in the constraints,
and observing that the mains structures are not fundamentally modified. We thus
present a more sophisticated economic model in which agents are both consumers
and producers. A short review of viability multipliers and the proof of the main
theorem conclude the paper.
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1.6 Case of affine constraints

We summarize the case in which there is only one actor and the operator A : X �→ Y
is affine studied in Aubin [7,8,6]:

∀ x ∈ X, A(x) := Wx + y where W ∈ L(X, Y ) & y ∈ Y

The coordination problem takes the form:

∀ t ≥ 0, W (t)x(t) + y(t) ∈ M

where both the state x, the resource y and the connectionist operator W evolve.
These constraints are not necessarily viable under an arbitrary dynamic system of
the form 


(i) x′(t) = c(x(t))
(ii) y′(t) = d(y(t))
(iii) W ′(t) = α(W (t))

(2)

We can reestablish viability by involving multipliers q ∈ Y ∗ ranging over the dual
Y ∗ := Y of the resource space Y to correct the initial dynamics. We denote by
W ∗ ∈ L(Y ∗, X∗) the transpose of W :

∀ q ∈ Y ∗, ∀ x ∈ X, 〈W ∗q, x〉 := 〈q, Wx〉
by x ⊗ q ∈ L(X, Y ∗) the tensor product defined by

x ⊗ q : p ∈ X∗ := X �→ (x ⊗ q)(p) := 〈p, x〉q
the matrix of which is made of entries (x ⊗ q)j

i = xiq
j .

The contingent cone TM (x) to M ⊂ Y at y ∈ M is the set of directions v ∈ Y
such that there exist sequences hn > 0 converging to 0, and vn converging to v
satisfying y + hnvn ∈ M for every n. The (regular) normal cone to M ⊂ Y at
y ∈ M is defined by

NM (y) := {q ∈ Y ∗ | ∀ v ∈ TM (y), 〈q, v〉 ≤ 0}
(see Aubin and Frankowska [21] and Rockafellar and Wets [55] for more details
on these topics).

We proved that the viability of the constraints can be reestablished when the
initial system (2) is replaced by the control system


(i) x′(t) = c(x(t)) − W ∗(t)q(t)
(ii) y′(t) = d(y(t)) − q(t)
(iii) W ′(t) = α(W (t)) − x(t) ⊗ q(t)

where q(t) ∈ NM (W (t)x(t) + y(t))

where NM (y) ⊂ Y ∗ denotes the normal cone to M at y ∈ M ⊂ Y and x ⊗ q ∈
L(X, Y ∗) denotes the tensor product defined by

x ⊗ q : p ∈ X∗ := X �→ (x ⊗ q)(x) := 〈p, x〉q
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the matrix of which is made of entries (x⊗q)j
i = xiq

j . In other words, the correction
of a dynamical system for reestablishing the viability of constraints of the form
W (t)x(t) + y(t) ∈ M involves the rule proposed by Hebb in his classic book The
organization of behavior in 1949 as the basic learning process of synaptic weight
and called the Hebbian rule: Taking α(W ) = 0, the evolution of the synaptic
matrix W := (wj

i ) obeys the differential equation

d

dt
wj

i (t) = −xi(t)qj(t)

The Hebbian rule states that the velocity of the synaptic weight is the product of pre-
synaptic activity and post-synaptic activity. Such a learning rule “pops up” (or, more
pedantically, emerges) whenever the synaptic matrices are involved in regulating
the system in order to maintain the “homeostatic” constraint W (t)x(t)+y(t) ∈ M .
(See Aubin [9] for more details on the relations between Hebbian rules and tensor
products in the framework of neural networks).

We introduce a coefficient χ(t) ∈ [0, 1] aimed at “tuning” the action x(t),
regarded as a potential action that is not wholly implemented. In this framework,
the constraint becomes

∀ t ≥ 0, W (t)χ(t)x(t) + y(t) ∈ M

Again, one can correct a differential system of the form


(i) x′(t) = c(x(t))
(ii) y′(t) = d(y(t))
(iii) χ′(t) = κ(χ(t))
(iv) W ′(t) = α(W (t))

by introducing viability multipliers as controls in a system of the form


(i) x′(t) = c(x(t)) − W ∗(t)q(t)
(ii) y′(t) = d(y(t)) − q(t)
(iii) χ′(t) = κ(χ(t)) − 〈q(t), W (t)x(t)〉
(iv) W ′(t) = α(W (t)) − x(t) ⊗ q(t)

where q(t) ∈ NM (W (t)χ(t)x(t) + y(t))

The correction term is the “cost of the linear constraint” 〈q(t), W (t)x(t)〉 in the
law of evolution of χ(t).

1.7 Case of bi-affine constraints

Before investigating the general case and confronting notational difficulties, let us
explain how we go from the affine case to the bi-affine case.

Here, we assume that X := X1×X2 is the product of two vector spaces. Affine
constraints take the form

∀ t ≥ 0, A1(t)x1(t) + A2(t)x2(t) + A∅(t) ∈ M
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where Ai ∈ L(Xi, Y ) (i = 1, 2) and A∅ ∈ Y . But we can also involve a bilinear
operator A{1,2} ∈ L2(X1 ×X2, Y ) and consider bi-affine constraints of the form:

∀ t ≥ 0, A{1,2}(t)(x1(t), x2(t)) + A1(t)x1(t) + A2(t)x2(t) + A∅(t) ∈ M

We introduce the linear operators A{1,2}(xi) ∈ L(X−i, Y ) defined by

A{1,2}(x1) : x2 �→ A{1,2}(x1)x2 := A{1,2}(x1, x2)

and

A{1,2}(x2) : x1 �→ A{1,2}(x2)x1 := A{1,2}(x1, x2)

We shall prove that when these constraints are not viable under an arbitrary dynamic
system of the form




(i) x′
i(t) = ci(x(t)), i = 1, 2

(ii) A′
∅(t) = α∅(A∅(t))

(iii) A′
1(t) = α1(A1(t))

(iv) A′
2(t) = α2(A2(t))

(v) A′
{1,2}(t) = α{1,2}(A{1,2}(t))

we can still reestablish viability by involving multipliers q ∈ Y ∗ and correct the
above system by the control system


(i) x′
1(t) = c1(x(t)) − A1(t)∗q(t)−A{1,2}(t)(x2(t))∗q(t)

(ii) x′
2(t) = c2(x(t))−A2(t)∗q(t)−A{1,2}(t)(x1(t))∗q(t)

(iii) A′
∅(t) = α∅(A∅(t))−q(t)

(iv) A′
1(t) = α1(A1(t))−x1(t) ⊗ q(t)

(v) A′
2(t) = α2(A2(t))−x2(t) ⊗ q(t)

(vi) A′
{1,2}(t) = α{1,2}(A{1,2}(t))−x1(t)⊗x2(t)⊗q(t) where

q(t) ∈ NM (A{1,2}(t)(x1(t), x2(t))+A1(t)x1(t)+A2(t)x2(t)+A∅(t))

Hence, the structure of this control system involves the transposes A∗
i (t)q(t) and

A{1,2}(t)(xj(t))∗(t)q(t) (i = 1, 2) in the evolution of the variables xi(t), and the
tensor products xi(t)⊗ q(t) (Hebbian rules) in the evolution of the linear operators
Ai(t), and the tensor product x1(t) ⊗ x2(t) ⊗ q(t) in the evolution of the bilinear
form A{1,2}.

The tensor product x1 ⊗ x2 ⊗ q is a bilinear operator from X∗
1 × X∗

2 to Y ∗

associating with any pair (p1, p2) ∈ X∗
1 × X∗

2 the element

(x1 ⊗ x2 ⊗ q)(p1, p2) := 〈p1, x1〉〈p2, x2〉q
If the vector spaces are supplied with bases, the components of this bilinear form
– the “tensors” – can be written

(x1 ⊗ x2 ⊗ q)j
i1,i2

= x1i1
x2i2

qj

as the products of the components of the three factors of this tensor product. Taking
α1,2(A) = 0, the evolution of the bi-synaptic tensor A{1,2} := (aj

i1,i2
) obeys the

differential equation

d

dt
aj

i1,i2
(t) = − x1i1

(t)x2i2
(t)qj(t)
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This states that the velocity of the synaptic tensor is the product of the presynaptic
activities of the neurons arriving at the synapse (i1, i2, j) and the postsynaptic
activity (see Aubin & Burnod [17]).

We may enrich this problem by introducing coefficients χi(t) ∈ [0, 1] aimed at
tuning the action xi(t) (i = 1, 2) that we shall later regard as the components of a
fuzzy coalition. In this framework, the constraint becomes: ∀ t ≥ 0,

χ1(t)χ2(t)A{1,2}(t)(x1(t), x2(t))+χ1(t)A1(t)x1(t)
+χ2(t)A2(t)x2(t)+A∅(t) ∈ M

If we assume that the evolutions of these χi(t) are governed by differential equations

χ′
i(t) = κi(χi(t)), i = 1, 2

we shall prove that the above constraints are viable under the control system


(i) x′
1(t) = c1(x(t))−χ1(t)A1(t)∗q(t)−χ1(t)χ2(t)A{1,2}(t)(x2(t))∗q(t)

(ii) x′
2(t) = c2(x(t))−χ2(t)A2(t)∗q(t)−χ1(t)χ2(t)A{1,2}(t)(x1(t))∗q(t)

(iii) χ′
1(t) = κ1(χ1(t))−〈q(t), A1(t)x1(t)+χ2(t)A{1,2}(t)(x1(t), x2(t))〉

(iv) χ′
2(t) = κ2(χ2(t))−〈q(t), A2(t)x2(t)+χ1(t)A{1,2}(t)(x1(t), x2(t))〉

(v) A′
∅(t) = α∅(A∅(t))−q(t)

(vi) A′
1(t) = α1(A1(t))−χ1(t)x1(t) ⊗ q(t)

(vii) A′
2(t) = α2(A2(t))−χ2(t)x2(t)⊗q(t)

(viii) A′
{1,2}(t) = α{1,2}(A{1,2}(t))−χ1(t)χ2(t)x1(t)⊗x2(t)⊗q(t) where

q(t) ∈ NM (χ1(t)χ2(t)A{1,2}(t)(x1(t), x2(t))+χ1(t)A1(t)x1(t)
+χ2(t)A2(t)x2(t)+A∅(t))

2 Regulation by connectionist tensors

2.1 Connectionist tensors

In order to handle more explicit and tractable formulas and results, we shall assume
that the connectionist operator A : X :=

∏n
i=1 Xi � Y is multiaffine.

For defining such a multiaffine operator, we associate with any coalitionS ⊂ N
its characteristic function χS : N �→ R associating with any i ∈ N

χS(i) :=
{

1 if i ∈ S
0 if i /∈ S

It defines a linear operator χS◦ ∈ L (
∏n

i=1 Xi,
∏n

i=1 Xi) that associates with any
x = (x1, . . . , xn) ∈∏n

i=1 Xi the sequence χS ◦ x ∈ Rn defined by

∀ i = 1, . . . , n, (χS ◦ x)i :=
{

xi if i ∈ S
0 if i /∈ S

We associate with any coalition S ⊂ N the subspace

XS := xS ◦
n∏

i=1

Xi =

{
x ∈

n∏
i=1

Xi such that ∀ i /∈ S, xi = 0

}
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since xS◦ is nothing other that the canonical projector from
∏n

i=1 Xi onto XS . In
particular, XN :=

∏n
i=1 Xi and X∅ := {0}.

Let Y be another finite dimensional vector space. We associate with any coali-
tion S ⊂ N the space LS(XS , Y ) of S-linear operators AS . We extend such a S-
linear operatorAS to an-linear operator (again denoted by)AS ∈ Ln (

∏n
i=1 Xi, Y )

defined by:

∀ x ∈
n∏

i=1

Xi, AS(x) = AS(x1, . . . , xn) := AS(χS ◦ x)

A multiaffine operator A ∈ An (
∏n

i=1 Xi, Y ) is a sum of S-linear operators
AS ∈ LS(XS , Y ) when S ranges over the family of coalitions:

A(x1, . . . , xn) :=
∑
S⊂N

AS(χS ◦ x) =
∑
S⊂N

AS(x)

We identify A∅ with a constant A∅ ∈ Y .
Hence the collective constraint linking multiaffine operators and actions can be

written in the form

∀ t ≥ 0,
∑
S⊂N

AS(t)(x(t)) ∈ M

For any i ∈ S, we shall denote by (x−i, ui) ∈ XN the sequence y ∈ XN

where yj := xj when j = i and yi = ui when j = i.
We shall denote by AS (x−i) ∈ L(Xi, Y ) the linear operator defined by ui �→

AS(x−i)ui := AS(x−i, ui). We shall use its transpose AS (x−i)
∗ ∈ L(Y ∗, X∗

i )
defined by

∀ q ∈ Y ∗, ∀ ui ∈ Xi,
〈
AS (x−i)

∗
q, ui〉 = 〈q, AS (x−i) ui

〉
We associate with q ∈ Y ∗ and elements xi ∈ Xi the multilinear operator5

x1 ⊗ · · · ⊗ xn ⊗ q ∈ Ln

(
n∏

i=1

X∗
i , Y ∗

)

associating with any p := (p1, . . . , pn) ∈∏n
i=1 X∗

i the element

(
n∏

i=1

〈pi, xi〉
)

q:

x1 ⊗ · · · ⊗ xn ⊗ q : p := (p1, . . . , pn) ∈
n∏

i=1

X∗
i �→ (x1 ⊗ · · · ⊗ xn ⊗ q)(p)

:=

(
n∏

i=1

〈pi, xi〉
)

q ∈ Y ∗

5 We recall that the space Ln
(∏n

i=1 Xi, Y
)

of n-linear operators from
∏n

i=1 Xi to Y is isomet-

ric to the tensor product
n⊗

i=1

X∗
i ⊗ Y , the dual of which is

n⊗

i=1

Xi ⊗ Y ∗, that is isometric with

Ln
(∏n

i=1 X∗
i , Y ∗)

.
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This multilinear operator x1 ⊗ · · · ⊗ xn ⊗ q is called the tensor product of the
xi’s and q.

We recall that the duality product on Ln (
∏n

i=1 X∗
i , Y ∗) × Ln (

∏n
i=1 Xi, Y )

for pairs (x1 ⊗ · · · ⊗ xn ⊗ q, A) can be written in the form:

〈x1 ⊗ · · · ⊗ xn ⊗ q, A〉 := 〈q, A(x1, . . . , xn)〉

2.2 Multi-Hebbian learning process

Assume that we start with intrinsic dynamics of the actions xi, the resources y, the
connectionist matrices W and the fuzzy coalitions χ:{

(i) x′
i(t) = ci(x(t)), i = 1, . . . , n

(ii) A′
S(t) = αS(A(t)), S ⊂ N

Using viability multipliers, we can modify the above dynamics by introducing
regulons that are elements q ∈ Y ∗ of the dual Y ∗ of the space Y :

Theorem 2.1 Assume that the functions ci, κi and αS are continuous and that
M ⊂ Y are closed. Then the constraints

∀ t ≥ 0,
∑
S⊂N

AS(t)(x(t)) ∈ M

are viable under the control system


(i) x′
i(t) = ci(xi(t)) −

∑
S�i

AS(t)(x−i(t))∗q(t), i = 1, . . . , n

(ii) A′
S(t) = αS(A(t)) −


⊗

j∈S

xj(t)


⊗ q(t), S ⊂ N

where q(t) ∈ NM (
∑

S⊂N AS(t)(x(t)))

Remark: Multi-Hebbian Rule – When we regard the multilinear operator AS as
a tensor product of components Aj

SΠi∈Sik
, j = 1, . . . , p, ik = 1, . . . , ni, i ∈ S,

differential equation (ii) can be written in the form: ∀ i ∈ S, j = 1, . . . , p, k =
1, . . . , ni,

d

dt
Aj

SΠi∈Sik
= αSΠi∈Sik

(A(t)) −
(∏

i∈S

xik
(t)

)
qj(t)

The correction term of the component Aj
SΠi∈Sik

of the S-linear operator is the

product of the components xik
(t) actions xi in the coalition S and of the component

qj of the viability multiplier. This can be regarded as a multi-Hebbian rule in neural
network learning algorithms, since for linear operators, we find the product of the
component xk of the pre-synaptic action and the component qj of the post-synaptic
action. �
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Indeed, when the vector spaces Xi := Rni are supplied with basis eik , k =
1, . . . , ni, when we denote by e∗

ik
their dual basis, and when Y := Rp is supplied

with a basis f j , and its dual supplied with the dual basis f∗
j , then the tensor products(⊗

i∈S

eik

)
⊗ f∗

j (j = 1, . . . , p, k = 1, . . . , ni) form a basis of LS

(
XS∗

, Y ∗).
Hence the components of the tensor product

(⊗
i∈S

xi

)
⊗ q in this basis are

the products

(∏
i∈S

xik

)
qj of the components qj of q and xik

of the xi’s, where

qj := 〈q, f j〉 and xik
:= 〈e∗

ik
, xi〉. Indeed, we can write(⊗

i∈S

xi

)
⊗ q =

p∑
j=1

∑
i∈S

ni∑
k=1

(
〈q, f j〉

∏
i∈S

〈e∗
ik

, xi〉
)(

n⊗
i=1

eik

)
⊗ f∗

j

3 Regulation involving fuzzy coalitions

3.1 Fuzzy coalitions

The first definition of a coalition which comes to mind, being that of a subset of
players S ⊂ N , is not adequate for tackling dynamical models of evolution of
coalitions since the 2n coalitions range over a finite set, preventing us from using
analytical techniques.

One way to overcome this difficulty is to embed the family of subsets of a
(discrete) set N of n players to the space Rn through the map χ associating with
any coalition S ∈ P(N) its characteristic function6 χS ∈ {0, 1}n ⊂ Rn, since
Rn can be regarded as the set of functions from N to R.

By definition, the family of fuzzy sets7 is the convex hull [0, 1]n of the power
set {0, 1}n in Rn. Therefore, we can write any fuzzy set in the form

χ =
∑

S∈P(N)

mSχS where mS ≥ 0 &
∑

S∈P(N)

mS = 1

The memberships are then equal to

∀ i ∈ N, χi =
∑
S�i

mS

6 This canonical embedding is more adapted to the nature of the power set P(N) than to the universal
embedding of a discrete set M of m elements to Rm by the Dirac measure associating with any j ∈ M
the jth element of the canonical basis of Rm. The convex hull of the image of M by this embedding is
the probability simplex of Rm. Hence fuzzy sets offer a “dedicated convexification” procedure of
the discrete power set M := P(N) instead of the universal convexification procedure of frequencies,
probabilities, mixed strategies derived from its embedding in Rm = R2n

.
7 This concept of fuzzy set was introduced in 1965 by L. A. Zadeh. Since then, it has been wildly

successful, even in many areas outside mathematics!. We found in “La lutte finale”, Michel Lafon
(1994), p.69 by A. Bercoff the following quotation of the late François Mitterand, president of the
French Republic (1981–1995): “Aujourd’hui, nous nageons dans la poésie pure des sous ensembles
flous” ... (Today, we swim in the pure poetry of fuzzy subsets)!
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Consequently, if mS is regarded as the probability for the set S to be formed,
the membership of player i to the fuzzy set8 χ is the sum of the probabilities of
the coalitions to which player i belongs. Player i participates fully in χ if χi = 1,
does not participate at all if χi = 0 and participates in a fuzzy way if χi ∈]0, 1[.
We associate with a fuzzy coalition χ the set P (χ) := {i ∈ N | χi = 0} ⊂ N of
actors i participating in the fuzzy coalition χ.

We also introduce the membership

γS(χ) :=
∏
j∈S

χj

of a coalition S in the fuzzy coalition χ as the product of the memberships of actors
i in the coalition S. It vanishes whenever the membership of one actor does and
reduces to individual memberships for one actor coalitions. When two coalitions
are disjoint (S ∩T = ∅), then γS∪T (χ) = γS(χ)γT (χ). In particular, for any actor
i ∈ S, γS(χ) = χiγS\i(χ)

Let A ∈ An (
∏n

i=1 Xi, Y ), a sum of S-linear operators AS ∈ LS(XS , Y )
when S ranges over the family of coalitions, be a multiaffine operator.

When χ is a fuzzy coalition, we observe that

A(χ ◦ x) =
∑

S⊂P (χ)

γS(χ)AS(x) =
∑

S⊂P (χ)


∏

j∈S

χj


AS(x)

We wish to encapsulate the idea that at each instant, only a number of fuzzy
coalitions χ are active. Hence the collective constraint linking multiaffine operators,
fuzzy coalitions and actions can be written in the form

∀ t ≥ 0,
∑

S⊂P (χ(t))

γS(χ(t))AS(t)(x(t))

=
∑

S⊂P (χ(t))


∏

j∈S

χj(t)


AS(t)(x(t)) ∈ M

3.2 Constructing viable dynamics

Assume that we start with intrinsic dynamics of the actions xi, the resources y, the
connectionist matrices W and the fuzzy coalitions χ:


(i) x′

i(t) = ci(x(t)), i = 1, . . . , n
(ii) χ′

i(t) = κi(χ(t)), i = 1, . . . , n
(iii) A′

S(t) = αS(A(t)), S ⊂ N
8 Actually, this idea of using fuzzy coalitions has already been used in the framework of cooperative

games with and without side-payments (see Aubin [14,15], Aubin, Chap. 12 [16] and Aubin,
Chap. 13 [5], the books Mares [51] and Mishizaki and Sokawa [52], Basile [24–26], Basile, De Simone
and Graziano [23], Florenzano [41]). Fuzzy coalitions have also been used in dynamical models of
cooperative games in Aubin and Cellina, Chap. 4 [18] and of economic theory in Aubin, Chap. 5 [8].
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Using viability multipliers, we can modify the above dynamics by introducing
regulons that are elements q ∈ Y ∗ of the dual Y ∗ of the space Y :

Theorem 3.1 Assume that the functions ci, κi and αS are continuous and that
M ⊂ Y are closed. Then the constraints

∀ t ≥ 0,
∑

S⊂P (χ(t))

AS(t)(χ(t) ◦ x(t))

=
∑

S⊂P (χ(t))


∏

j∈S

χj(t)


AS(t)(x(t)) ∈ M

are viable under the control system


(i) x′
i(t) = ci(xi(t))−

∑
S�i


∏

j∈S

χj(t)


AS(t)(x−i(t))∗q(t), i=1, . . ., n

(ii) χ′
i(t) = κi(χ(t))−

∑
S�i


 ∏

j∈S\i

χj(t)


 〈q(t), AS(t) (x(t))〉 , i=1, . . ., n

(iii) A′
S(t) = αS(A(t))−


∏

j∈S

χj(t)




⊗

j∈S

xj(t)


⊗q(t), S ⊂ N

where q(t) ∈ NM (
∑

S⊂P (χ(t))

(∏
j∈S χj(t)

)
AS(t)(x(t))))

Let us comment on these formulas. First, the viability multipliers q(t) ∈ Y ∗

can be regarded as regulons, i.e., regulation controls or parameters, or virtual prices
in the language of economists. They are chosen adequately at each instant in order
that the viability constraints describing the network can be satisfied at each instant,
and the above theorem guarantees this possibility. The next section tells us how to
choose at each instant such regulons (the regulation law).

For each actor i, the velocities x′
i(t) of the state and the velocities χ′

i(t) of its
membership in the fuzzy coalition χ(t) are corrected by subtracting

1. the sum over all coalitions S to which he belongs of the AS(t)(x−i(t))∗q(t)
weighted by the membership γS(χ(t)):

x′
i(t) = ci(xi(t)) −

∑
S�i

γS(χ(t))AS(t)(x−i(t))∗q(t)

2. the sum over all coalitions S to which he belongs of the costs
〈q(t), AS(t) (x(t))〉 of the constraints associated with connectionist tensor AS

of the coalition S weighted by the membership γS\i(χ(t)):

χ′
i(t) = κi(χ(t)) −

∑
S�i

γS\i(χ(t)) 〈q(t), AS(t) (x(t))〉
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This type of dynamics describes a mimetic or herd (or panurgean) effect. The
(algebraic) increase of actor i’s membership in the fuzzy coalition aggregates
over all coalitions to which he belongs the cost of their constraints weighted by
the products of memberships of the other actors in the coalition.

As for the correction of the velocities of the connectionist tensors AS , their
correction is a weighted “multi-Hebbian” rule: for each component Aj

SΠi∈Sik
of

AS , the correction term is the product of the membership γS(χ(t)) of the coalition
S, of the components xik

(t) and of the component qj(t) of the regulon:

d

dt
Aj

SΠi∈Sik
= αSΠi∈Sik

(A(t)) − γS(χ(t))

(∏
i∈S

xik
(t)

)
qj(t)

3.3 The regulation map

Actually, the viability multipliers q(t) regulating viable evolutions of the actions
xi(t), the fuzzy coalitions χ(t) and the multiaffine operators A(t) obey the regula-
tion law (an “adjustment law”, in the vocabulary of economists) of the form

∀ t ≥ 0, q(t) ∈ RM (x(t), χ(t), A(t))

where RM : XN × Rn × An(XN , Y ) � Y ∗ is the regulation map RM that we
shall compute.

For this purpose, we introduce the operator h : XN ×Rn×An(XN , Y ) defined
by

h(x, χ, A) :=
∑
S⊂N

AS(χ ◦ x)

and the linear operator H(x, χ, A) : Y ∗ := Y �→ Y defined by:




H(x, χ, A) :=
∑
S⊂N


∏

j∈S

χ2
j‖xj‖2


 I

+
∑

R,S⊂N

∑
i∈R∩S

(γR(χ)γS(χ)AR(x−i)AS(x−i)∗

+γR\i(χ)γS\i(χ)AR(x) ⊗ AS(x)
)

Then the regulation map is defined by


RM (x, χ, A) := H(x, χ, A)−1(∑
S⊂N

(
αS(A)(x) +

∑
i∈S

(
γS(χ)AS(x−i, ci(x)) + γS\i(χ)κi(χ)AS(x)

))

−TM (h(x, χ, A))
)
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Indeed, the regulation map RM associates with any (x, χ, A) the subset
RM (x, χ, A) of q ∈ Y ∗ such that

h′(x, χ, A)((c(x), κ(χ), α(A)) − h′(x, χ, A)∗q) ∈ co (TM (h(x)))

We next observe that

h′(x, χ, A)h′(x, χ, A)∗ = H(x, χ, A)

and that




h′(x, χ, A)(c(x), κ(χ), α(A))

=
∑
S⊂N

(
αS(A)(x) +

∑
i∈S

(
γS(χ)AS(x−i, ci(x)) + γS\i(χ)κi(χ)AS(x)

))

4 Case of nonlinear constraints

We may complicate somewhat the structure of the constraints by introducing finite
dimensional vector spaces YS indexed9 by S ⊂ N , by requiring that the S-linear
operators AS ∈ LS(XS , YS) map XS to the vector space YS and by involving
nonlinearities defined by a map

g :
∏

S⊂N

YS �→ Y

from the product of the vector spaces YS to the resource space Y .

By taking YS := Y for all S ⊂ N and g({yS}S⊂N ) :=
∑
S⊂N

yS , Theorem 3.1

is then a particular case of

Theorem 4.1 Assume that the functions ci, κi and αS are continuous, that M ⊂
Y are sleek and closed and that the map g :

∏
S⊂N YS �→ Y is continuously

differentiable. Then the constraints

∀ t ≥ 0, g
({AS(t)(χ(t) ◦ x(t))}S⊂N

) ∈ M

9 The space YS is not necessarily the product Y S :=
∏

i∈S Yi. They can all be equal to a same
resource space Y for instance.
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are viable under the control system


(i) x′
i(t) = ci(xi(t))−

∑
S�i


∏

j∈S

χj(t)


AS(t)(x−i(t))∗qS(t), i=1, . . ., n

(ii) χ′
i(t) = κi(χ(t))−

∑
S�i


 ∏

j∈S\i

χj(t)


〈qS(t),AS(t) (x(t))

〉
, i=1, . . ., n

(iii) A′
S(t) = αS(A(t))−


∏

j∈S

χj(t)




⊗

j∈S

xj(t)


⊗qS(t), S⊂N

where q(t)∈NM

(
g
({AS(t)(χ(t) ◦ x(t))}S⊂N

))
and where∀S ⊂ N, qS(t) :=

(
∂g

∂yS

({AS(t)(χ(t) ◦ x(t))}S⊂N

))∗
q(t)

We can multiply the examples. For instance, by involving nonlinearities defined
by maps

∀ S ⊂ N, gS : YS � Y

from finite dimensional vector spaces YS indexed by S to the resource space Y and

taking Y :
∏

S⊂N

YS and g ({yS}S⊂N ) := {gS(yS)}, we obtain the following

Corollary 4.2 Assume that the functions ci, κi and αS are continuous, that M ⊂ Y
are sleek and closed and that the maps gS : YS �→ Y are continuously differentiable.
Then the constraints

∀ t ≥ 0,
∑

S⊂P (χ(t))

gS




∏

j∈S

χj(t)


AS(t)(x(t))


 ∈ M

are viable under the control system


(i) x′
i(t) = ci(xi(t))−

∑
S�i


∏

j∈S

χj(t)


AS(t)(x−i(t))∗qS(t), i=1, . . ., n

(ii) χ′
i(t) = κi(χ(t))−

∑
S�i


 ∏

j∈S\i

χj(t)


〈qS(t), AS(t) (x(t))

〉
, i=1, . . ., n

(iii) A′
S(t) = αS(A(t))−


∏

j∈S

χj(t)




⊗

j∈S

xj(t)


⊗qS(t), S ⊂ N

where q(t)∈NM (
∑

S⊂P (χ(t)) gS

(∏
j∈S χj(t)

)
AS(t)(x(t))))

and where ∀S ⊂ N, qS(t) :=
(
g′

S

((∏
j∈S χj(t)

)
AS(t)(x(t))

))∗
q(t)
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5 Example: regulation of the production processes of a dynamical economy

We introduce

1. I economic agents i = 1, . . . , I,
2. K firms k = 1, . . . , K described by a subset Sk ⊂ {1, . . . , I} of agents em-

ployed by firm k.

Agent i

1. consumes commodities xk
i ∈ X produced by firm k in the commodity space

X := R
l

2. whenever he is employed by firm k, i ∈ Sk provides to firm k resources yk
i ∈ Yi

in a resource space Yi := R
mi .

We set
yk := {yk

i }i∈Sk
∈ Y k := Y Sk :=

∏
i∈Sk

Yi

The state (xk
i , yk

i )k=1,... ,K of agent i is made up of his consumptions (xk
i )k=1,... ,K

that he receives and the resources (yk
i )k=1,... ,K that he provides to the K firms.

Production processes of firms k ∈ K are described

1. by multi-affine input-output maps Ak :=
∑

S⊂Sk
ASk

S : Y Sk �→ X associating
a commodity x ∈ X with any resource yk ∈ Y Sk provided to firm k by each
agent. The production process Ak :=

∑
S⊂Sk

ASk

S : Y Sk �→ X aggregates
the commodities produced by all the coalitions S ⊂ Sk of employees of firm
(naturally, we assume that ASk

S = 0 if coalition S does not use the resources
of its members). The case when Ak

∅ ∈ X represents available commodities not
produced by firm k, the case when all the maps Ak

S = 0 for all coalitions having
more than one agent represents affine production maps (linear plus a constant).
We set Y S :=

∏
i∈S Y and denote by LS(Y S , X) the space of S-linear AS :

Y S �→ X maps from the space Y S of resources available to coalition S in the
commodity space. We identify L∅(Y S , X) =: X with the commodity space
X .

2. for each agent i = 1, . . . , I, by a set-valued map Li : X � Yi associating with
its total consumption

∑
K

k=1 xk
i ∈ X the set of resources which he provides to

the firms in which he participates.
3. fuzzy coalitions χ ∈ [0, 1]n that are involved in the production process only.

We describe “competition” among firms k by introducing L pairwise distinct
coalitions Tl ⊂ {1, . . . , K} of firms competing in a same “market” l, (l =
1, . . . , L).

The supply and demand constraints described by


(i) ∀l = 1, . . . , L,
I∑

i=1

∑
k∈Tl

xk
i (t) ≤

∑
k∈Tl

∑
S⊂Sk

γS(χ(t))Ak
S(yk(t))

(ii) ∀i = 1, . . . , I,
∑

{k|Sk�i}
yk

i (t) ∈ Li

(
K∑

k=1

xk
i (t)

) (3)
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cannot be violated.
For instance, we can take

1. One market: We take L := 1 and T1 := {1, . . . , K}. Therefore the supply
constraint (3) (i) can be written

I∑
i=1

K∑
k=1

xk
i (t) ≤

K∑
k=1

∑
S⊂Sk

γS(χ(t))Ak
S(yk(t))

2. One market per firm: We take L:=K and Tl:={l}, l=1, . . . , K.Therefore the
supply constraint (3) (i) can be written

∀k = 1, . . . , K,

I∑
i=1

xk
i (t) ≤

∑
S⊂Sk

γS(χ(t))Ak
S(yk(t))

Individual constraints (3) (ii) involve implicitly feasibility constraints on the
total consumption (

∑
K

k=1 xk
i ∈ Dom(Li)) and provide consumption dependent

constraints on the total resources
∑

K

k=1 xk
i provided by the agent. Preferences

preordering on the consumptions can also be taken into account as in Aubin [8].
Naturally, one can introduce other constraints that we shall not take into account

here for the sake of simplicity. For instance, we can require that

∀ i = 1, . . . , I, k = 1, . . . , K, xk
i ∈ Ak

i ⊂ X & yk
i ∈ Bk

i ⊂ Yi

It is impossible to design, even qualitatively, the structure of such dynamical
systems under which this set K of allocations is viable.

We thus start with initial dynamics describing the dynamical behavior of agents
in the absence of scarcity constraints. This assumption is the dynamic analogue
of the classical assumption describing the static behavior of an economic agent by
its utility function. For instance, in the simplest case, the evolutionary behavior of
agents is described by

1. I · K continuous maps ck
i : X �→ X governing the evolution of consumptions

x;
i bought by the ith agent to firm k,

2. I · K continuous maps dk
i : Yi �→ Yi governing the evolution of resources yk

i

brought to firm k by agent i ∈ Sk,
3. continuous maps ek

S : LS(Y S , X) �→ LS(Y S , X), k = 1, . . . , K, S ⊂ Sk,
governing the evolution of the S-linear input-output maps,

4. I continuous maps κi : [0, 1] �→ R governing the evolution of the fuzzy coalition

by the system of differential equations




(i)
d

dt
xk

i (t) = ck
i (xk

i (t)), (i = 1, . . . , I)

(ii)
d

dt
yk

i (t) = dk
i (yk

i (t)), (i = 1, . . . , I, k = 1, . . . , K)

(iii)
d

dt
χi(t) = κi(χi(t)), (i = 1, . . . , I)

(iv)
d

dt
Ak

S(t) = ek
S(Ak

S(t)), (k = 1, . . . , K, S ⊂ Sk)
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Examples of such dynamics are provided by gradients ck
i (xk

i ) := ∇uk
i (xk

i )
of utility functions uk

i or gradients dk
i (yk

i ) := −∇vk
i (yk

i ) of disutility functions
vk

i , or gradients κi(χi) := ∇si(χi) of utility functions si or gradient ek
S(Ak

S) :=
∇wk

S(Ak
S) of functions wk

S that must increase the consumption or decrease the
resource, the memberships of fuzzy coalitions, the S-linear operators along their
evolutions.

Naturally, there is no reason why the global scarcity constraints are viable under
such a local dynamical system, because the scarcity constraints are collective and
the dynamics of the agents are individual. To assume that these maps ck

i and dk
i

describing the dynamical behavior of the agents depend upon the consumptions
or resources of the other agents would not complicate the mathematics, but to the
contrary, would be totally unrealistic: This is the decentralizing character of prices
which is the main message of general equilibrium models that we choose to keep
in the dynamic and connectionist framework we have chosen.

Since these global constraints are not viable under individual dynamic behav-
iors, we use viability multipliers


(i) pl(t) ∈ X� := X (l = 1, . . . , L)

(ii) ui(t) ∈ � := X (i = 1, . . . , I)

(iii) vi(t) ∈ Y �
i := Yi (i = 1, . . . , I)

to correct the dynamics:


(i)
d

dt
xk

i (t) = ck
i (xk

i (t))−ui(t)−
∑

l|Tl�k

pl(t), (i=1, . . ., I)

(ii)
d

dt
yk

i (t) = dk
i (yk

i (t))+vi(t)

+
∑

{S|i∈S⊂Sk}
γS(χ(t))Ak

S

(
yk

−i(t)
)� ∑

l|Tl�k

pl(t)


,

(i = 1, . . . , I, k = 1, . . . , K)

(iii)
d

dt
χi(t) = κi(χi(t))+

∑
i∈S⊂Sk

γS\{i}(χi(t))

〈 ∑
l|Tl�k

pl(t)


 ,Ak

S(yk(t))

〉
,

(i=1, . . ., I)

(iv)
d

dt
Ak

S(t) = ek
S(Ak

S(t))+γS(χ(t))

(⊗
i∈S

yk
i (t)

)
⊗

 ∑

l|Tl�k

pl(t)


,

(k=1, . . ., K, S ⊂ Sk)

By comparison, we see that if we minimize a collective utility function:

I∑
i=1

ui(xi) +
K∑

k=1

vk
i (yk

i ) +
I∑

i=1

si(χi) +
K∑

k=1

∑
S⊂Sk

wk
S(Ak

S)

under constraints (3)(i) and (ii), then first-order optimality conditions at a optimum
((xi)i, (yk

i )i, k, (χi)i, (Ak
S)k, S⊂Sk

) imply the existence of Lagrange multipliers
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pl, ui, vi such that:


∇ui(xi) = ui +
∑

l|Tl�k

pl

∇vk
i (yk) = −vi −

∑
i∈S⊂Sk

γS(χ)Ak
S

(
yk

−i

)� ∑
l|Tl�k

pl




∇si(xχi) = ui +
∑

i∈S⊂Sk

γS\{i}(χ)

〈 ∑
l|Tl�k

pl


 , Ak

S(yk)

〉

∇wk
S(Ak

S) = −γS(χ)

(⊗
i∈S

yk
i

)
⊗

 ∑

l|Tl�k

pl




6 Viability multipliers and proof of the main theorem

The proof is an application of the basic theorem on viability multipliers. We sum-
marize here the basic facts that can be found in Aubin [12,8].

6.1 Differentiating constraints

Consider the initial – disconnected – dynamical system

x′(t) = f(x(t)) (4)

subject to collective viability constraints of the form

∀ t ≥ 0, h(x(t)) ∈ M (5)

Nagumo’s Invariance Theorem provides a necessary and sufficient condition
for the subset

K := h−1(M) = {x ∈ X such that h(x) ∈ M}
to be viable in the sense that from any initial state x0 ∈ K starts a solution x(·) to
the differential equation x′ = f(x) viable in K in the sense that

∀ t ≥ 0, h(x(t)) ∈ M

For that purpose, we shall need to “differentiate” these viability constraints by
implementing the concept of tangency to any subset. The adequate choice to obtain
viability theorems is the concept of contingent cone10 introduced for the first time
by Georges Bouligand in the thirties (and which happens to be the cornerstone to
set-valued analysis).

10 For a presentation of the ménagerie of tangent cones, we refer to chapter 4 ofAubin and Frankowska
[21] and Rockafellar and Wets [55].
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Definition 6.1 When K is a subset of X and x belongs to K, the contingent
cone TK(x) to K at x is the closed cone of elements v satisfying

lim inf
h→0+

d(x + hv, K)
h

= 0

We observe that

if x ∈ Int(K), then TK(x) = X

and that if K := {x̄} is a singleton, then T{x̄}(x̄) = {0}.
We recall that a differentiable function viable in K satisfies

∀ t ≥ 0, x′(t) ∈ TK(x(t))

Let us mention that the contingent cone coincides with the tangent space TK(x) of
differential geometry when K is a “smooth manifold”. Also, when K is convex,
one can prove that the contingent cone coincides with the tangent cone TK(x) to
K at x ∈ K of convex analysis, which is the closed cone spanned by K − x:

TK(x) =
⋃
h>0

K − x

h

In this case, the tangent cone is convex.
One can prove that the contingent cone TK(x) is convex whenever K “is sleek

at x”, which means that the set-valued map TK(·) is lower semicontinuous at x.
Convex subsets are sleek at every elements.

6.2 Viability multipliers

For differential equations x′ = f(x), the Viability Theorem was proved in 1942 by
Nagumo11, stating that K is viable under x′ = f(x) if and only if for any x ∈ K,
the dynamics and the constraints are linked by the following relation:

f(x) ∈ co(TK(x))

When K is not viable under g, the simple idea is to project f(x) onto the co(TK(x))
and to replace the initial dynamic g by its projection Πco(TK(x))f(x). Hence,
whenever the differential equation

x′(t) = Πco(TK(x(t)))f(x(t))

11 That stated only that the necessary and sufficient condition for viability is

f(x) ∈ TK(x)
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Recalling that the polar cone P− ⊂ X∗ of a subset P ⊂ X is defined by P− :=
{p ∈ X∗ | ∀ x ∈ P, 〈p, x〉 ≤ 0}, we introduce the normal cone NK(x) to K at
x ∈ K defined by

NM (x) := TK(x)− = (co(TK(x)))−

Moreau’s Theorem states that

Πco(TK(x))f(x) = f(x) − ΠNM (f(x))

Therefore, every solution to the differential equation

x′(t) = Πco(TK(x(t)))f(x(t))

(introduced in Henry [42], studied in Cornet [36,37] and also presented in Aubin
and Cellina [18]) is a solution to the control system{

(i) x′(t) = f(x(t)) − p(t)
(ii) p(t) ∈ NK(x(t))

regulated by the controls p(t) ∈ NK(x(t)). This is the reason we call elements
p ∈ NK(x) viability multipliers.

There is a calculus of contingent cones which allows us to “compute them”,
and thus, to “apply” the viability theorems12.

We recall in particular that ifK := h−1(M)whereh : X �→ Y is a continuously
differentiable map such that h′(x) is surjective13 and M is closed and convex (or,
more generally, sleek), then

TK(x) = h′(x)−1TM (h(x))

and

NK(x) = h′(x)∗NM (h(x))

Hence the control system can be written in the form{
(i) x′(t) = f(x(t)) − h′(x)∗q(t)
(ii) q(t) ∈ NM (h(x(t)))

regulated by the controls q(t) ∈ NM (h(x(t))). In this explicit case, we reserve the
word viability multipliers for the elements q ∈ NM (h(x)) ⊂ Y ∗.

Since Πco(TK(x))f(x) = f(x) − ΠNK(x)f(x), we know that the projection

ΠNK(x)f(x) := h′(x)∗�M (x)

12 As well as the “equilibrium theorems under constraints” and “optimization theorems under con-
straints”.

13 A weaker requirement is the “transversality assumption”

Im(h′(x)) + TM (h(x)) = Y
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and that, when h′(x) is surjective,

�M (x) = Π
h′(x)∗

NM (h(x))(h
′(x)h′(x)∗)−1h′(x)f(x)

where Π
h′(x)∗

NM (h(x)) denotes the projection onto the normal cone NM (h(x)) when
Y ∗ is supplied with the scalar product

〈q1, q2〉h′(x)∗ := 〈h′(x)∗q1, h
′(x)∗q2〉

However the open loop control q(t) := �M (x(t)) obtained through this specific
feedback is not the only control regulating viable evolutions of the control system

{
(i) x′(t) = f(x(t)) − h′(x)∗q(t)
(ii) q(t) ∈ ΠM (x(t))

where the regulation map ΠM is defined by

ΠM (x) := {q ∈ Y ∗ | h′(x)h′(x)∗q ∈ h′(x)f(x) − co(TM (h(x)))}

6.3 Proof of the main theorem

We now derive the proof of Theorem 4.1. The constrained set K ⊂ XN × [0, 1]n ×
An(XN , Y ) is of the form h−1(M) where M ⊂ Y and where h is the map defined
by

h(x, χ, A) := g
({AS(χ ◦ x)}S⊂N

)
This is a differentiable map the derivative h′(x, χ, A) of which is defined by



h′(x, χ, A)(dx, dχ, dA)∑
S⊂N

∂g

∂yS

({AS(χ ◦ x)}S⊂N

)

dAS(χ ◦ x)+

∑
i∈S


 ∏

j∈S\i

χj


AS (x−i) (χidxi+dχixi)




Since h′(x, χ, A) is surjective, we know that the normal cone NK(x, χ, A) is equal
to

NK(x, χ, A) = h′(x, χ, A)∗NM (h(x, χ, A))

Setting qS :=
(

∂g
∂yS

({AS(χ ◦ x)}S⊂N

))∗
q, simple algebraic manipulations

show that


〈h′(x, χ, A)∗q, (dx, dχ, dA)〉 = 〈q, h′(x, χ, A)(dx, dχ, dA)〉∑
S⊂N

〈
qS , dAS(χ ◦ x)

〉
+

n∑
i=1

∑
S�i


∏

j∈S

χj


〈AS (x−i)

∗
qS , dxi

〉

+
n∑

i=1

dχi

∑
S�i


 ∏

j∈S\i

χj


〈qS , AS(χS ◦ x)

〉
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Therefore, we conclude that


h′(x, χ, A)∗q =


∑

S�i


∏

j∈S

χj


AS (x−i)

∗
qS




i=1,...n

,


∑

S�i


 ∏

j∈S\i

χj


〈qS , AS(χS ◦ x)

〉
i=1,...n

,




∏

j∈S

χj




⊗

j∈S

xj


⊗ qS




S⊂N




∈
n∏

i=1

X∗
i × Rn ×

∏
S⊂N

LS(XS∗
, Y ∗)

References

1. Allen B (2000) The future of microeconomic theory. Journal of Economic Perspectives 14: 143–
150

2. Arthur WN, Durlauf SN, Lane D (eds) (1997) The economy as an evolving complex system, vol
II. SFI Studies in the Sciences of Complexity, Addison- Wesley, New York

3. Aubin J-P (2002) Dynamic core of fuzzy dynamical cooperative games.Annals of Dynamic Games,
Ninth International Symposium on Dynamical Games and Applications, Adelaide 2000

4. Aubin J-P (1999) Mutational and morphological analysis: tools for shape regulation and morpho-
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