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Abstract. A parameter estimation theory is incomplete
if no rigorous measures are available for describing the
uncertainty of the parameter estimators. Since the
classical theory of linear estimation does not apply to
the integer GPS model, rigorous probabilistic state-
ments cannot be made with reference to the classical
results. The fact that integer parameters are involved in
the estimation process forces a reappraisal of the
propagation of uncertainty. It is with this purpose in
mind that the joint and marginal distributional prop-
erties of both the integer and non-integer parameters of
the GPS model are determined. These joint distribu-
tions can also be used to determine the distribution of
functions of the parameters. As an important example,
the distribution of the vector of ambiguity residuals is
determined.
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1 Introduction

Any GPS model of observation equations which makes
use of carrier phase data and which is based on the use
of two or more receivers, can be parameterized in
integers and non-integers. The integer parameters refer
to the unknown cycle ambiguities of the double-
difference (DD) carrier phase data, while the non-integer
parameters refer to the baseline components and
possibly additional parameters such as atmospheric
delays. When the integerness of the integer parameters
is explicitly taken into account in the parameter
estimation process, we speak of carrier phase ambiguity
resolution. Carrier phase ambiguity resolution applies to
a great variety of GPS models which are currently in use
in navigation, surveying, geodesy and geophysics. An
overview of these models, together with their applica-

tions, can be found in textbooks such as Leick (1995),
Parkinson and Spilker (1996), Hofmann-Wellenhof
et al. (1997), Strang and Borre (1997) and Teunissen
and Kleusberg (1998).

As with any parameter estimation process, it is not
enough to simply estimate the parameters and be done
with it. We also need to have a way of inferring the
uncertainty of the parameter solution. In the classical
theory of linear estimation this is most often done by
means of variance matrices. For the classical theory
this makes sense. After all, when the model is linear
and when the data are normally (Gaussian) distribut-
ed, the linear parameter estimators will be normally
distributed as well. And since the peakedness of a
multivariate normal distribution is completely captured
by its variance matrix, it suffices to use variance ma-
trices as a precision description of the parameters. This
relatively simple approach fails to hold, however, in
the case of integer GPS model. The fact that integer
parameters are involved in the estimation process will
result in non-Gaussian distributions even when the
model is linear and the data are normally distributed.
Hence, in order to obtain a rigorous description of
the parameter uncertainty, we will have to bypass the
use of variance matrices and go directly to the
parameter distributions themselves. It is the purpose
of this contribution to determine these parameter
distributions.

In this contribution we use the term ‘distribution’ in
the usual generic sense. For concrete cases, however, we
describe the way in which the distribution of the random
variate is specified. This is often in the form of a prob-
ability density function (PDF) or in the form of a
probability mass function (PMF). The contribution is
organized as follows. In Sect. 2 we formulate the integer
GPS model and give a brief review of the principles in-
volved in ambiguity resolution. The steps of integer es-
timation together with the class of admissible integer
estimators are described. In Sect. 3 we determine the
various parameter distributions. They hold true for any
choice of integer estimator from the class of admissible
ambiguity estimators. A visualization of the various
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parameter distributions is also given. We first formulate
our starting assumptions and then determine the joint
distribution of the ‘fixed’ and ‘float’” ambiguities. This
joint distribution can then be used to determine the
corresponding marginal and conditional distributions.
We also use it to determine the distribution of the vector
of ambiguity residuals. This distribution is needed in
case we want to test for the integerness of the ambigu-
ities. Following the joint distribution of the ‘fixed’ and
‘float” ambiguities, we determine the joint distributions
of these ambiguities and the ‘float’ and ‘fixed’ baseline
estimators. These distributions allow us to determine the
probabilistic dependence between the baseline solution
and the ambiguities. The joint distribution is then used
to determine the marginal distribution of the ‘fixed’
baseline estimator. This distribution captures the com-
plete probabilistic characteristics of the ‘fixed” baseline.
It is finally shown how this distribution can be used to
construct unconditional confidence regions for the
‘fixed’ baseline.

2 The integer GPS model

Any GPS model can be cast in the following system of
linear(ized) observation equations:

y=Aa+Bb+e (1)

where y is the given GPS data vector of order m, a and b
are the unknown parameter vectors respectively of order
n and p, and e is the noise vector. The data vector y will
usually consist of the ‘observed minus computed’ single-,
dual- or triple-frequency DD phase and/or pseudorange
(code) observations accumulated over all observation
epochs. The entries of vector a are then the DD carrier
phase ambiguities, expressed in units of cycles rather
than range. They are known to be integers, a € Z". The
entries of the vector b will consist of the remaining
unknown parameters, such as for instance baseline
components (coordinates) and possibly atmospheric
delay parameters (troposphere, ionosphere). They are
known to be real-valued, b € RP. Although vector b may
contain other or more real-valued unknown parameters
than only those of the baseline(s), we will in this
contribution, as a matter of terminology, still call its
estimator the baseline estimator.

The procedure which is usually followed for solving
the GPS model of Eq. (1) can be divided into three steps
(Teunissen 1993). In the first step we simply discard the
integer constraints ¢ € Z" on the ambiguities and per-
form a standard adjustment. As a result we obtain the
(real-valued) estimates of a and b, together with their
variance—covariance matrix

a 0 0O AI;}

~ 1, a )
{ b } { O 9 @)
This solution is referred to as the ‘float’ solution. In the

second step the ‘float” ambiguity estimate a is used to
compute the corresponding integer ambiguity estimate

a=S(a) (3)

with S : R"—Z" a mapping from the n-dimensional space
of real numbers to the n-dimensional space of integers.
Once the integer ambiguities are computed, they are
used in the third and final step to correct the ‘float’
estimate of b. As a result we obtain the ambiguity
resolved baseline solution

b=b-0;0:"(a-a) (4)

This solution is usually referred to as the ‘fixed’ baseline.
Both Eq. (3) and Eq. (4) depend on the choice of integer
estimator. Different choices of the map S : R"—Z" will
result in different integer estimators and will thus also
produce differences in the probability distribution of the
estimators.

There exists a whole class of integer estimators from
which we can choose. In order to introduce this class, we
start from the map S : R"—Z". Due to the discrete na-
ture of Z", the map S will not be one-to-one, but instead
a many-to-one map. This implies that different real-
valued ambiguity vectors will be mapped to the same
integer vector. We can therefore assign a subset S, C R”
to each integer vector z € Z"

S,={xeR'z=8kx)}, zeZ" (5)

The subset S, contains all real-valued ambiguity vectors
that will be mapped by S to the same integer vector
z € Z". This subset is referred to as the pull-in region of z
(Jonkman 1998; Teunissen 1998a). It is the region in
which all ambiguity ‘float’ solutions are pulled to the
same ‘fixed” ambiguity vector z. Thus ¢ =z<=a € S,.
By using the indicator function of the pull-in regions, the
integer ambiguity estimator can be expressed as

a= Z zs,(a)

Since the pull-in regions define the integer estimator
completely, we can define classes of integer estimators by
imposing various conditions on the pull-in regions. The
class of admissible integer ambiguity estimators is
defined as follows.

. 1 ifxes
th s;(x) = oz 6
with s:(x) {0 otherwise (6)

Definition (Admissible integer estimators). The integer
estimator @ = ) __,, zs-(a) is said to be admissible when
its pull-in regions S. = {x € R"|z = S(x)}, z € Z", satisfy

(l) L/lzel” Sz =R
(ii) IHtSZ] ﬁIl’ltSZ2 = @, Vzi,z0 € Z", 2 7&22 (7)
(iii) S;=z+ S8y, VzeZ"

where ‘Int’ denotes the interior of the subset. For the
motivation of the above definition we refer to Teunissen
(1999). Examples of integer estimators that belong to the
above class are integer rounding, integer bootstrapping
and integer least-squares (LS). For the material that
follows, it is useful to note that the indicator functions of
admissible pull-in regions fulfil the two basic conditions
of PMFs and PDFs, namely of being non-negative and
having an area of 1. For fixed x € R", s,(x) fulfils the
PMF conditions



(i) s:(x) >0, VzeZ"
(i) 2 oezn 5:(x) = 1
and for fixed z € Z",5,(x) also fulfils the PDF conditions

(i) s:(x) >0, Yx€R"
(it) [onsz(x)dx =1

The last property follows from the fact that the area or
volume of admissible pull-in regions equals 1. This can
be seen as follows. Let Cyp C R" be the origin-centred
unit cube and let S, C R” be an admissible pull-in region.
Since the volume of the unit cube equals 1 and
admissible pull-in regions cover R" without gaps and
overlaps, we have 1 = >__,. [, $.1Co dx. Application of the
change of variable x =y +z gives 1 =3, [¢ - dy.
From this it follows that 1 = fSo dy, since R" is also
covered without gaps and overlaps by the translated
copies of the wunit cube. We therefore have

Jprs:(x)dx = [g dx = [g dx=1.

3 The parameter distributions

In this section we will determine the parameter distri-
butions of the integer GPS model. In order to do so, we
first need to specify our probabilistic assumptions about
the ‘float’ solution. In this contribution we will assume
that the ‘float’ solutions are normally (Gaussian)
distributed as

-~ e %)) ®

This implies that the joint PDF of the ‘float’ solution is
given as

F3a00%) = Fa 0k fa(x) 9)

in which the marginal and conditional PDF are given as

soxp{—4lx—al},}

1
v/det Q; (27[)5’[
|
Sy 1x) = WCXP{_% | y— b ||2Q/;m}

with conditional mean b, = b+ Q;,0; ' (x — a) and con-
ditional variance matrix Q5Iﬁ =0;— QBﬁQ;IQﬁB. Above

we have used the following notation for the weighted

Ja(x) =

1.0 10
L e
LE] oe
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squared norm: | - ||2,= (-)"M~"(-), with matrix M being
positive definite.

3.1 The ambiguities

We are now ready to determine the joint distribution of
the ‘float’ ambiguities, @, and the ‘fixed” ambiguities, a.
This joint distribution can then be used to determine the
corresponding marginal and conditional distributions. It
can also be used to determine the distribution of
functions of the ‘float’ and ‘fixed” ambiguities. As one
such application we will determine the distribution of
the vector of ambiguity residuals. The joint distribution
of @ and a will be denoted as f; 4(x,z).

Theorem 1. Let f;(x) be the PDF of a and let the integer
ambiguity estimator be defined as a =Y., zs:(a), with
s:(x) the indicator function of the pull-in region S, C R",
z € Z". The joint distribution of a and a is then given as

Saa(x,z) = fa(x)s.(x), x€R" zeZ" (10)

Proof: see Appendix.

The joint distribution f;4(x,z) captures the complete
probabilistic properties of the ‘float” and ‘fixed” ambi-
guities. From it the marginal distributions of ¢ and é can
be recovered by integrating or summing over respec-
tively x and z. Hence, the PDF of a can be recovered as
Yocem faalx,z) = fa(x) since Y _,.s:(x) =1 for all
x € R". The distribution of the integer ambiguity
estimator a will not be a PDF, but a PMF. It follows as

R[ faalx,2)dx = / falw)dx = Pla = =] (1)

The probability Pla =z],z € Z", equals the integral of
the PDF of the ambiguity ‘float’ solution over the pull-in
region S, C R". The probability of correct integer
estimation, also referred to as the ambiguity success
rate, is given as Pla = a].

In order to visualize the relationship between the
three distributions f;(x), fa4(x,z) and Pla = z], we have
plotted all three of them in Fig. 1 for the one-dimen-
sional (1-D) case (n = 1). The PDF f;(x) is plotted along
the x-axis (left-hand plot), the PMF P[a = z] is plotted

Fig. 1. The joint and marginal distributions of 4 and a: PDF f;(x) (left); PDF fu(x,z) (centre); and PMF P[a = z] (right)
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along the z-axis (right-hand plot) and the joint distri-
bution f; 4(x,z) is plotted on the xz-plane (centre plot).
This figure clearly shows how the joint distribution can
be constructed once the pull-in regions and the PDF of
the ‘float’ solution are given. In the 1-D case the pull-in
regions take a very simple shape. In that case they are
given as the integer-centred intervals of length 1:
S. ={x € R| |x —z| <1}. For each integer, say w € Z",
the contribution to the joint distribution equals
Jfa(x)sw(x). It is obtained by first slicing out the part of
the ‘float’” distribution which is located at the pull-in
region S, followed by translating this slice parallel to
the z-axis to the position (w, w). The joint distribution is
thus continuous along the x-axis, but discrete along the
z-axis. The marginal distribution f;(x) can then be re-
covered from the joint distribution by summing over z,
while the PMF of a is formed by integrating the joint
distribution over x (see Fig. 1c).

From the joint distribution we can also easily deter-
mine the conditional distributions. As an illustration we
will consider the conditional distribution fj,(z|x). The
conditional distribution of the integer ambiguities, given
the ‘float’ estimate @ = x, follows from dividing the joint
distribution by f;(x)

Saa(zlx) =s.(x), x€R", ze€Z" (12)

It equals the indicator function of the pull-in regions. It
therefore implicitly defines the choice of integer estima-
tor. The conditional distribution fj;(z[x) equals 1 when
x € S, and is zero otherwise. The conditional mean of
the integer ambiguities is given as E{dla =x}
=D e 2faalzlx) = >z xs-(x). From a comparism of
this result with the definition of the integer ambiguity
estimator of Eq. (6), it follows that a = E{ala}. The
integer ambiguity estimator a is thus equal to the
conditional mean in the case that the latter is interpreted
as a function of the random vector a.

3.2 The ambiguity residual

The joint distribution of Eq. (10) can also be used to
determine the distribution of functions of @ and a. An
important example of such a function is the ambiguity
residual. We define it as

E=a—a (13)

We will determine the distribution of € in two steps. We
first determine the joint distribution of € and & and then
determine the marginal distribution f;(x) by means of
summation. In deriving the joint distribution, we make
use of the following transformation law for probability
density functions. Let two random vectors u# and v be
related as v = Tu + ¢, with T and ¢ known, and matrix T
invertible. The PDF of v can then be expressed in the
PDF of u as f,(v) = |det T £, (T~ (v — 1)).
By using the invertible transformation

HN A

A

we can express the joint distribution of é and & in terms
of the joint distribution of & and & This gives
Sfea(x,z) = faalx+2z,z). If we now make use of
Eq. (10), we obtain f;4(x,z) = fa(x + z)so(x), x € R",
z € Z". The PDF of the ambiguity residuals then follows
from summing this joint distribution over all integers

fix) = falx+2)s0(x), x€R", z€Z" (14)

zeZ"

In order to show how the distribution of the ambi-
guity residuals is constructed from the distribution of
the ‘float’ ambiguities, a visualization of the steps in-
volved is given in Fig. 2 for the 1-D case (n = 1). Figure
2 shows the four distributions, f;(x) (top left), fi4(x,z2)
(top right), fza(x,z) (bottom left) and fi(x) (bottom
right). For each integer z € Z" the joint distribution
faa(x,z) is composed of slices from the marginal distri-
bution f;(x) located at (z,z). Translating these slices
parallel to the x-axis to the line x = 0 gives the joint PDF
Sfea(x,2). A further translation along the z-axis to the
origin then finally provides f:(x).

The distribution of the ambiguity residuals is clearly
non-Gaussian. We have f:(x) =0 for all x ¢ Sy. This
implies that the norm of the vector of ambiguity resid-
uals is always bounded irrespective of the values taken
by the ambiguity ‘float’ solution a. For the 1-D case we
have € € [-1/2,+1/2]. For the higher-dimensional case
the bound depends on the shape of the pull-in region
and therefore on the type of integer estimator chosen.
The fact that the ambiguity residuals are bounded has
an important implication. It implies that the difference
between the ‘float’ baseline solution b and the ‘fixed’
baseline solution b is also bounded, irrespective of the
values taken by the ‘float” ambiguities.

The distribution f:;(x) can have different shapes.
There are two extreme cases between which we can
discriminate, namely the uniform distribution and the
impulse function distribution. In order to understand
these two extreme cases, consider what happens when
the precision of the ‘float’ ambiguities, and thereby the
peakedness of f;(x), is varied. When the ‘float’ distri-
bution f;(x) becomes more peaked, which happens when
the ‘float” ambiguities became more precise, the PDF
f(x) becomes more peaked as well. However, since all
the probability mass of f:(x) is located within the pull-in
region Sy, the peakedness of f:;(x) will only start to
manifest itself when f;(x) is sufficiently peaked in rela-
tion to the size of the pull-in region. When this is not the
case, the distribution of the ambiguity residuals will re-
main flat and therefore be close to s¢(x), which is the
uniform distribution for the pull-in region Sy. The ‘float’
distribution f;(x) may be considered peaked in relation
to the size of the pull-in region, when most of its prob-
ability mass is located within Sy. This happens when the
ambiguity success rate is sufficiently close to 1, in which
case the two distributions will also not differ by much.
Further improvement of the precision of the ambiguities
will then in the limit produce an impulse function for
both f;(x) and fz(x).

The distribution of the ambiguity residuals is sym-
metric and independent of the unknown integer ambi-



guity vector a € Z". Its symmetry is inherited from the
‘float’ distribution f;(x), while the independence of

acZz" follows from > _,.filx+a+z) => . .t
(x 4 z). The point of symmetry of the distribution is the
origin. This implies that the mean of the ambiguity re-
sidual equals zero

E{e} =0 (15)

This result, combined with the fact the PDF of ¢ is
completely known once the precision of the ‘float’
ambiguities is given, and once the choice of integer
ambiguity estimator is made, allows us for the first time
to formulate rigorous tests for the integerness of the
parameters.

3.3 The ambiguities and the baseline

In order to understand the probabilistic dependence of
the ‘float” and ‘fixed’ baseline estimators on the ‘float’
and ‘fixed” ambiguities, we will now determine the joint
distributions f; ; ,(u,v,w) and f ; ;(u,v,w).

Theorem 2. Let f; (v, w) = f3(v)s,, () be the joint distri-
bution of (a,a) and let f;;(ulv) be the conditional
distribution of b given a = v. Then
fz?,a,a(“v v,w) = fl;‘d(u|v)fﬁﬁ(v,w)
Tra.a(us0,w) = fa(ulw) faa(v, w)

withu € RP, v € R" and w € Z".

(16)

Proof: see Appendix.

Note that the two expressions of Eq. (16) look very
similar. The two distributions are both equal to zero
when v € S,,. This follows since the indicator function
sw(v) is zero when v & S,,. The two distributions are also
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Fig. 2. The construction of f;(x) from f;(x):
PDF f;(x) (top left); joint PDF f; 4(x,z)
(top right); joint PDF f;;(x,z) (bottom left);
and PDF f;(x) (bottom right)

equal when v = w. This corresponds with the situation
that the ‘float’ ambiguities will be integers. In all other
cases, however, the two distributions will differ. For
v e S, we have

Js.aa(0,w) = fya(ulv)fa(v)
So.aa(,0,w) = fyya(ulw)fa(v)

This shows that f..(u,v,w) is equal to the joint
distribution  f; . (u, ) when veS,, but that
J5.4.4(u;0,w) is not.

Using Eq. (16) we are now in the position to deter-
mine the various types of joint distributions of ambi-
guities and baseline. They read

i alu0) = fyaalo)fo(v)

fialw0) = Fyaub)fav) when v € S,

Sraluw) = [ fyalulo)itopde a7
Sy

fﬁ%@=ﬁﬁ%@/ﬁ@®

The first expression of Egs. (17) follows from using the
definition of a conditional density, the second expression
follows from summing f; ; ;(u, v, w) over w, while the last
two expressions follow from integrating f; ;. (u,v, w)
and fj ;. (u,v,w) respectively over v. Note that the first
two dlstrlbutlons of Egs. (17) are continuous along both
axes, whereas the last two distributions are continuous
along the u-axis, but discrete along the w-axis.
Although all of the above four distributions depend
on both fj:(ulv) and fi(v), they differ in the way the
probability masses are propagated. For instance, when
we compare the joint distribution of the ‘float’ solution,
f3.4(u,v), with the joint distribution of the “fixed” solu-
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tion, f; ,(u,w), we observe in case of the latter that all
the probablhty masses of f;(v) located above the pull-in
region S,, are assigned to the integer vector w.

From Egs. (17) we may also determine the various
type of conditional baseline distributions. We can then
infer how these distributions differ from the conditional
distribution f;(u|v). We have

fb‘|a(”|”) :fg\&(u|w) when v € S,
Foaulw) = fya(ulw)  when fi(v) = o(v —w) (18)
Sia(ulw) = fia(ulv)  when v=w e Z"

The first of Eqgs. (18) reveals an interesting robustness
property of the ‘fixed’ baseline. It shows that the
conditional distribution of the ‘fixed” baseline is insen-
sitive to changes in the values of the ambiguity ‘float’
solution as long as these ‘float’ solutions remain within
the same pull-in region. This property has important
implications for the robustness of the ‘fixed” baseline
against biases in the ambiguity ‘float’ solution. These
implications have been studied in Teunissen (2001).
Practical results on the bias robustness of GPS ambigu-
ity resolution have been reported in Teunissen et al.
(2000).

The second equation shows that a conditioning of the
‘float’ baseline on @ = w is identical to a conditioning on
a = w provided the PDF f;(v) equals the impulse func-
tion centred at w. This result makes sense, because
fa(v) = 6(v — w) implies that all the probability mass of
the ‘float’ solution is centred at w.

3.4 The baseline

Using the above results, we are now in a position to
make a start on the probabilistic evaluation of the
quality of the ‘fixed” baseline estimator. The third of
Eqgs. (18) shows that a conditioning of the ‘fixed’
baseline on the integer estimator & is identical to a
conditioning of the ‘float’ baseline on the ‘float’
ambiguity estimator @, provided the conditioning is
done on the same integer vector w. This result can be
used for computing conditional confidence regions for

the ‘fixed” baseline solution. With £ C R?, we obtain
from using the last of Eqs. (18) that
Plb € Ela =w] = /fbvld(u|w)du
E
= /fl;l&(u|w)du, weZ" (19)
E

Since the condltlonal PDF f;;(u|lw) equals the distribu-
tion N[b + Q;,0; ' (w — a), Qb‘a] it follows that when E

is chosen as the b- centred ellipsoid E ={uecRr|
u—bl3, <F)

Plb € Efj|a = w] = P[¢3, < ] with
o= Q503 w—a) g, weZ' (20)

in which y denotes the noncentral y> distribution with
p degrees of ‘freedom and noncentrality parameter .

The result of Eq. (20) can be used to study the
probabilistic sensitivity of the conditional ‘fixed’ base—
line for different choices of w € Z". The ellipsoid Eb is
centred at the true but unknown baseline b and its size is
governed by f. Hence by choosing ff and w € Z", we can
compute by means of Eq. (20) the conditional proba-
b111ty that the ‘fixed’ baseline solut1on will still reside in
E Since the tail of a noncentral y> distribution becomes
th1cker for larger values of the noncentrality parameter,
the conditional probability of Eq. (20) becomes smaller
when Z,, gets larger.

We can also follow the reverse route. By choosing
w € Z" and by setting the conditional probability of
Eq. (20) at a certain reference value, we can compute the
corresponding value for f§ and thereby the size of the
corresponding conditional confidence region. This size
will increase for increasing values of the noncentrality
parameter. It will therefore increase the more the chosen
integer vector w differs from the true, but unknown,
integer ambiguity vector a € Z".

Since Eq. (20) is a conditional probability, it does not
give a complete description of the quality of the ‘fixed’
baseline. It only describes the quality of the ‘fixed’
baseline under the assumption that the integer ambigu-
ities are known. Hence, it does not take the uncertainty
of the integer ambiguity estimator into account. In order
to obtain a complete description, we need instead of the
conditional distribution the marginal distribution of
the ‘fixed’ baseline, fj(u). Since f3(u) =,/ fi.4(u, W),
the marginal distribution follows from the last expres-
sion of Egs. (17) as

u) =Y fialulw)Pla = w] (21)

wezZn

For the integer LS ambiguity estimator this same result,
using a different derivation, was given in Teunissen,
(1998b). Equation (21) shows that the PDF of the ‘fixed’
baseline is equal to an infinite sum of weighted
conditional baseline distributions. The conditional dis-
tributions fj ,(u|w) are shifted versions of one another,
while the welghts are given by the PMF of a.

In order to visualize the steps involved in construct-
ing f;(u), Fig. 3 shows the 1-D case as an example
(n=1,p=1). In Fig. 3 the unknown means a and b are
taken as zero. Shown are the joint PDF f; .(u,v) of the

‘float” solution (top left), the conditional PDF f; .(u|v)
(top right), the joint PDF fj ,(u, w) of the ‘fixed’ soﬁution
(bottom left) and the marginal PDF fj(u) of the ‘fixed’
baseline (bottom right). The conditional PDF fj;(ulv) is
continuous in both » and v. When v varies, the condi-
tional PDF moves smoothly, without changing shape,
along the line u = dilev (see Fig. 3, top right). The
joint distribution of the ‘fixed’ solution is located along
this same line (see Fig. 3, bottom left). It differs, how-
ever, in two ways from fb‘ (u|v). First, it is not contin-
uous, but discrete along the w-axis. Second, since
fba(u w) = fia(ulw)Pla = w], it is a downweighted ver-
sion of the condltlonal PDF, with the weights P[a = w]



getting smaller the more w differs from zero. The PDF of
the ‘fixed’ baseline is finally obtained from a summation
of f; ;(u,w) along the w-axis (see Fig. 3, bottom right).
This shows that the PDF of the ‘fixed’ baseline is sym-
metric and possibly multimodal. The modes, when pre-
sent, are equidistantly placed. Whether or not the modes
will be present depends on two factors: how fast the
PMF P[a = w] decays as w moves away from the true,
but unknown integer ambiguity vector a € Z", and the
distance between the modes. The first factor depends on
the precision of the ‘float” ambiguities, while the second
factor depends on the correlation between the ‘float’
baseline and the ‘float’ ambiguities.

With Eq. (21) we are now in a position to give a
complete probabilistic evaluation of the ‘fixed’ basehne
Integratlon of Eq. (21) over the b-centred ellipsoid E
gives

[beEﬁ /fb‘ (ulw)du p Pla = w]

weZ"

or

P[B € Eﬂ - ZP[B eEf|d=w}P[d:w]

weZn

By substituting Eq. (20) we finally obtain
P[B € E,ﬂ =3 P[x; L < ﬁz}P[d = w] (22)

weZ"

This result describes the unconditional probability that
the ‘fixed’ baseline estimator resides in the b-centred
ellipsoid Ef of size . Equation (22) contains all the
ingredients that affect the quality of the ‘fixed” baseline
estimator. The choice of integer estimator and the
quality of the ambiguities are contained in the PMF
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Fig. 3. The construction of f;(u) from
J5.4(u,v): joint PDF f; .(u,v) (top left);
conditional PDF Sha (u|v) (top right); joint
PDF f; ,(u,w) (bottom left); marginal PDF
f3(u) (bottom right)

Pla=w] = [; fa(x)dx, while the contribution to the

pI‘Obdblllty of the bdselme of fixing the ambiguities to w
is contained in P[/p) < .

Appendix
Proof of Theorem 1

Let f34(x|z) be the conditional distribution of @ given
a =z. Then

Plae Qla=z) = [ fualole)d (A1)

with Q C R”. This conditional probability can be worked
out as

Pla € Q,a € S.]

PlacQla=z= Pla € S.]

PlaeQ|aes]=
The first equality follows from the equivalence of ¢ =z
and a € S., while the second follows from the definition
of a conditional probability. Since Pla € Q,d € S.]
= Jons, Ja(x)dx, it follows that

fa z
Qla =
Pla € Qla =Z] / aeS

But since Q is arbitrary, it follows from Egs. (Al) and
(A2) that f;4(x,z) = faa(x[z)Pla = z] = fa(x)s:(x). O

(A2)

Proof of Theorem 2

We will only prove

fliﬁ,d(u’ v, W) = fé\a(ulv)fid(va W)
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The proof of fl;’d’d(u,v,w) :fé‘é(u|w)f,;,d(v,w) goes
along similar lines. Use will be made of the following
transformation law for probability density functions.
Let » = Ts + ¢, in which r and s are random vectors, T
and ¢ are known, and matrix 7 is invertible. Then
fr(r) = det T (T (r = 1)).

In order to prove Eq. (A3), we consider the trans-
formation

b I, 0;0;'" 0 b— 0;,0;"' (@ — o)
al =10 1, 0 a—o
a 0 0 1, a
——
r T s
0
+ | (A4)
0
—
t

We first need to determine the PDF of s. Since a is
independent of b — Q;,0;'(a — ), this also holds true
for a. We therefore have f(x,y,z) :fl;lﬁ(x|oc)f&_a7,;(y,z).
Substitution of f;_,4(v,z) = faa(y + o, z) gives

ﬁ(xvyaz) :f[;‘&(xb()fd,d(y + O(7Z)

We can now make use of the transformation law for
probability density functions. Matrix 7T is invertible and
its determinant equals 1. We therefore have
Srlu,o,w) = fi(u — 0;,0;' (v — &), v — o, w). This, com-
bined with Eq. (A5) gives

fE,d,a(u7 v,W) = fé\a(” - QEaQa_l(” — a)ler) fa.a(v, w)

(AS)

(A6)

which is identical to Eq. (A3), since an evaluation of the
arguments of the conditional baseline density function

shows thatf,;‘d(u|u) :f,;‘d(u - Q;;ngl(U — a)or). D
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