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Abstract. One of the most basic and important tools in
optimal spectral gravity field modelling is the method of
Wiener filtering. Originally developed for applications in
analogue signal analysis and communication engineer-
ing, Wiener filtering has become a standard linear
estimation technique of modern operational geodesy,
either as an independent practical tool for data de-
noising in the frequency domain or as an integral
component of a more general signal estimation meth-
odology (input—output systems theory). Its theoretical
framework is based on the Wiener—Kolmogorov linear
prediction theory for stationary random fields in the
presence of additive external noise, and thus it is closely
related to the (more familiar to geodesists) method of
least-squares collocation with random observation er-
rors. The main drawback of Wiener filtering that makes
its use in many geodetic applications problematic stems
from the stationarity assumption for both the signal and
the noise involved in the approximation problem. A
modified Wiener-type linear estimation filter is intro-
duced that can be used with noisy data obtained from an
arbitrary deterministic field under the masking of non-
stationary random observation errors. In addition, the
sampling resolution of the input data is explicitly taken
into account within the estimation algorithm, resulting
in a resolution-dependent optimal noise filter. This
provides a more insightful approach to spectral filtering
techniques for noise reduction, since the data resolution
parameter has not been directly incorporated in previous
formulations of frequency-domain estimation problems
for gravity field signals with discrete noisy data.
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1 Introduction: problem statement

Wiener filtering is a well known and efficient optimal
estimation method that can be used for geodetic data ‘de-
noising’ in the frequency domain. Its theoretical back-
ground is based on the famous Wiener—Kolmogorov
(W-K) linear prediction theory for stationary random
fields in the presence of stationary additive noise
(Kolmogorov 1941; Wiener 1949). For a comprehensive
mathematical exposition of various issues related to
Wiener filtering theory and its extensions, see the review
paper by Kailath (1974) which contains circa 350
additional relevant references on this topic. The appli-
cation of the Wiener filter in geodesy, either as an
independent practical tool for data pre-processing or as
an integral component of a more general linear estima-
tion methodology (input—output systems theory, Sideris
1996), has been mainly focused on problems related to
optimal spectral gravity field modelling. Many studies
have been performed using, implicitly or explicitly, the
Wiener filtering procedure for various physical geodesy
estimation problems, including: de-noising of gravity
anomaly data prior to gravimetric geoid computations
(Li and Sideris 1994); optimal separation of the gravity
anomaly signal from external noise (and other residual)
effects for the identification of certain crustal geological
features (Pawlowski and Hansen 1990); optimal spectral
combination of shipborne gravity and altimetric data for
marine gravity field modelling (Li 1996; Tziavos et al.
1996, 1998); simultaneous optimal noise filtering of
airborne gravity vector data (Wu and Sideris 1995);
and optimal frequency-domain estimation of the anom-
alous potential from airborne gradiometry data (Vassi-
liou 1986). A detailed discussion on the use of the W—K
filtering theory in gravity field estimation, and its
relationship with other linear approximation techniques
traditionally used in geodesy [e.g. least-squares (LS)
collocation], can be found in Sanso and Sideris (1997);
see also Sideris (1996) and Schwarz et al. (1990).
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There are basically two main drawbacks associated
with the usual formulation of the Wiener spectral fil-
tering algorithm that make its use in geodetic applica-
tions problematic. First, the necessary assumption for
noise stationarity can be quite unrealistic in many
practical situations, since the observational errors in the
input data often have significant spatial (or temporal)
variations in their statistical behaviour. A typical ex-
ample of such case arises in gravimetric geoid determi-
nation from a single grid of gravity anomalies that have
been obtained from heterogeneous sources, such as
terrestrial, shipborne and airborne gravity surveys.
Combined gravity anomaly grids for large-scale geoid
computations may also be constructed from terrestrial
gravimetric databases obtained at various epochs with
different instrumentation and reduction procedures, and
thus different accuracy levels. Similar problems are en-
countered in airborne gravimetry/gradiometry, where
the data noise level can change considerably with re-
spect to time, depending on the dynamical behaviour of
the gravity sensors (e.g. acceleration noise is usually
amplified during aircraft turns). In all of the above
cases, the non-stationary nature of the data noise makes
the application of the classic Wiener filter impossible, at
least from a theoretical point of view. Of course, opti-
mal data de-noising and signal estimation with non-
stationary observation errors can always be performed
using the standard space-domain collocation formulae,
which are nevertheless not very efficient (in terms of
both computational speed and numerical stability), es-
pecially for large data sets with high sampling resolu-
tion.

The second problem of geodetic importance in the
Wiener filtering theory originates from the modelling
requirements for the true (unknown) signal, which is
also assumed to represent a stationary stochastic
process, usually uncorrelated with the external additive
noise. In this way, the power spectral density (PSD)
functions of the true signal and noise, both defined
according to the fundamental Wiener—Khinchine
probabilistic relationship (Bendat and Piersol 1993,
pp. 55-56), are the two essential components needed
for the computation of the optimal estimation/de-
noising filter. In physical geodesy applications, how-
ever, a stochastic interpretation of the underlying true
field values as random variables is rather questionable,
to say the least, since repetitive noiseless signal mea-
surements should always give the same result (Moritz
and Sanso 1980). Although the stochastic/non-sto-
chastic modelling dilemma in optimal gravity field
approximation has been successfully resolved by Sanso
(1980) within a noiseless linear estimation framework,
a similar treatment does not currently exist for the
case of spectral filtering methods with noisy input
data. Furthermore, the behaviour of most geodetic
signals is usually far from being uniform across their
domain, thus making the stationarity assumption once
again a poor modelling choice for many practical
applications.

Taking into account the previous discussion and the
important role that fast spectral techniques play in

modern operational geodesy, we feel that a new revised
formulation for the noise filtering problem of geodetic
data is needed, in such a way that the two aforemen-
tioned limitations of the classic Wiener filter can be
overcome. Hence, the aim of this paper is to present a
modified Wiener-type optimal noise filter which can be
used in linear estimation problems with arbitrary de-
terministic signals that are masked by additive non-
stationary observation errors. An important point in our
approach is that the sampling resolution of the input
data will be explicitly taken into account within the
optimization procedure, resulting in a resolution-depen-
dent noise filter. This will help us identify an interesting
interplay between measurement noise and data resolu-
tion in linear signal estimation, and clarify the nature of
their individual contributions to the total output
approximation error.

The structure of the paper is organized as follows.
In Sect. 2, the main mathematical background and the
modelling assumptions associated with our signal esti-
mation methodology are presented in detail. In Sect. 3,
a spectral optimization procedure for the linear noise
filter is developed. The basic properties of our optimal
estimation filter and its informal similarities with the
classic Wiener filter are discussed in Sect. 4, whereas
some additional remarks of both theoretical and
practical interest are given in Sect. 5. A numerical
simulation example has been included in Sect. 6 to
demonstrate the performance of our optimal noise fil-
ter under non-stationary additive noise at different
data resolution levels. Finally, the last section of the
paper contains some conclusions and a brief discussion
on remaining open problems that require further
research.

2 Background

In this section, the main assumptions and the basic
mathematical notation that will be used throughout the
rest of this paper are presented. We have chosen to
follow a relatively simple approximation framework in a
two-dimensional (2-D) planar setting, which neverthe-
less can fit nicely to many spatial estimation problems of
geodetic interest (local gravity field approximation,
digital terrain modelling, etc.), as well as to other
geomatics-related applications with noisy input data
(e.g. digital image processing).

2.1 General formulation

The unknown object of our estimation procedure will be
modelled as a 2-D deterministic signal g¢(x,y) with
compact spatial support over the real plane R2. Its finite
extent along the two orthogonal axes x and y is denoted
by X and Y, respectively. No specific restrictions on the
behaviour of the unknown field will be imposed, apart
from the assumption that it posses a well-defined
Fourier transform
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which essentially means that g(x,y) is a member of the
L (R?) space. In this way, the unknown signal is allowed
to exhibit irregular local variations at any scale level.
The two parameters w, and w, are the spatial circular
frequencies along the x and y axes, respectively. A
regular grid of the signal values will be denoted by
g(nhy,mhy), .., or simply g(nh,,mh,), where the sym-
bols %, and 4, correspond to the sampling intervals
along the x and y directions. Without loss of generality,
we can assume that the compact support of the
unknown field is enclosed by the parallelogram region
0 <x<X and 0 <y <7, and thus the integer
sampling indices can practically be restricted within
the finite range 0 < n < N—land 0 < m < M —1,
where X = (N —1)h, and Y = (M —1)h,. The 2-D
Fourier transform of such a signal grid will be denoted
by G(wy, ®,) and it is given by the summation formula
(Dudgeon and Mersereau 1984)
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where the last part in the above equation expresses the
aliasing effect on the Fourier transform of the original
continuous signal. The overbar symbol will be used to
indicate a periodic function, and the lower case letters n,
m, k and [ are always reserved to denote integer
numbers. Some technical mathematical details regarding
the convergence of the third part in the above equation
(Poisson summation formula) can be found in Gasquet
and Witomski (1999, pp. 344-351).

The input data obtained from the unknown field
g(x,y) is given in a discrete gridded form according to
the linear observation equation

d(nhy, mhy) = g(nhy, mh,) + v(nhy, mh,) (3)

where v(nh,, mh,) is a 2-D random noise sequence that is
generally assumed to be non-stationary. The associated
stochastic model used to describe the behaviour of the
noise, in terms of second-order moment information, is
defined by the equations

E{v(nhy,mhy)} =0 (4a)

E{v*(nhy,mhy)} = o7 (nhy, mh,)
= 0,[(nhy, mhy)(nhy, mh,)] (4b)
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E{v(nhy, mhy)o(khy, lhy)} = o, [(nhe, mhy)(khy, [h,)]
(4¢)

where E is the probabilistic expectation operator. The
symbol ¢2(-) denotes the noise variance at a specific data
point on the real plane, whereas a,[(-)(-)] corresponds to
the noise covariance (CV) between two data points. We
will also use the symbol ¥V (w,,w,) for the 2-D Fourier
transform of the random observation errors, which is
defined as

+o0  +00
V(o o) = Z Z v(nhy, mhy)e g~ {(nhxootmhycy)
n=—00 mM=—00
N—1M-1
— U(}’lhx, mh ) —i(nhywy+mhyo,) (5)
n=0 m=0

Similarly, the 2-D Fourier transform of the gridded data
is given by the equation
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Note that the noise is zero everywhere outside the input
data grid (NM points) because the unknown field has
been assumed to have finite spatial support and thus no
measurements are performed outside this region. In this
way, the existence/convergence of both Fourier trans-
forms in Egs. (5) and (6) is always guaranteed regardless
of the behaviour of the noise (i.e. stationary or non-
stationary), since the sequences v(nhy,mh,) and
d(nhy, mhy) will have only a finite number of non-zero
terms.

2.2 Continuous versus discrete noise

In the previous section we adopted a discrete. Gauss—
Markov stochastic model for the data noise. This is in
contrast to other existing formulations of optimal
estimation problems in spectral gravity field approxi-
mation, where a spatially continuous (and stationary)
stochastic model for the data errors is usually employed
with the help of stationary noise CV functions (Sideris
1996; Tziavos et al. 1996, 1998; Li and Sideris 1997).
The use of continuous noise models is a rather
questionable practice within an estimation framework
utilizing only discrete spatial data. The measurement
noise does not generally exist in a physical sense as a
continuous spatial signal (i.e. we do not ‘sample the
noise’), but originates only because we performed an
observation with an imperfect instrument under certain
external influences at a specific point.

On the other hand, there exist cases of signal ap-
proximation problems with discrete spatial data where it
does make sense to consider continuous noise models.
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For example, a data acquisition device may change its
noise characteristics, as it moves from one spatial point
to another, according to a continuous (time-dependent)
error model. However, since we always collect and
process observations at a discrete network of data points
with finite resolution, the input noise in the estimation
algorithm will still be a discrete signal (in a spatial sense)
with an associated discrete stochastic model. The latter
is actually determined in such cases, at the points of
interest, from a continuous time-dependent error model
and the spatio-temporal ‘path’ of the measuring device.
We may also consider cases of estimation problems with
discrete spatial data where the observational noise, or
some part of it, does indeed exist in a spatially contin-
uous sense (e.g. atmospheric effects in various types of
geodetic measurements).

In any case, the main aspect to be emphasized here is
that we do not strictly need continuous noise models in
estimation schemes with finite-resolution discrete data
(although their use often facilitates the accuracy descrip-
tion of the input data via simple analytical formulae). Asit
will be demonstrated in the next sections, all that is algo-
rithmically necessary for obtaining the signal estimate is
the second-order discrete model given in Egs. (4a), (4b)
and (4c), even if the underlying data noise is generated by
continuous time/spatial phenomena. For the treatment of
noise in continuous fields of measurements, see Sanso and
Sona (1995).

2.3 A priori properties of the estimation algorithm

The main problem that is studied in this paper is the
frequency-domain estimation of the unknown determin-
istic field g(x,y) from its noisy gridded samples
d(nhy, mh,) according to Eq. (3). Two basic properties
will be imposed a priori in the estimation procedure,
namely /linearity and translation-invariance. The reason
for introducing the second property is to obtain a signal
estimate ¢(x,y) that is independent of the reference
system used to describe the position of the data points.
Stated in a simplified way, if we change the origin of the

reference coordinate system xy on the real plane by
arbitrary shifts £, and ¢, (without ‘moving’ the unknown
field or the associated data grid), we want the new
solution to be just a translated version §(x + ,y + t,,) of
the initial estimate in the original reference system (see
Fig. 1). For a general discussion on the translation-
invariance property in linear interpolation/estimation
problems and its importance, see Thévenaz et al. (2000)
and Unser (2000).

At this point, it can be argued that non-shift-in-
variant estimation algorithms may have better perfor-
mance, under certain optimality criteria, than simpler
translation-invariant methods. Indeed, this is the case in
the classic W—K linear prediction theory where the
optimal signal estimate becomes translation-invariant
only if the unknown field and the additive noise are
both stationary. A similar situation exists in semi-sto-
chastic signal approximation schemes with discrete
noisy data, such as the minimum-norm solution ob-
tained from Tikhonov’s quadratic regularization prin-
ciple (Moritz 1980). In this case, the optimal estimate is
shift-invariant only if the signal modelling takes place in
a Hilbert space with a homogeneous reproducing ker-
nel, and the random observation errors follow a
stationary probabilistic model.

Here, on the other hand, we choose to apply a priori
the translation-invariance restriction, in addition to
linearity, in order to ensure that the result of the esti-
mation algorithm is not affected by arbitrary shifts of
the spatial reference system. (Note: for signal approxi-
mation problems on the sphere, instead of translations,
we deal with arbitrary rotations of the spherical coor-
dinate reference systems.) The justification of such a
choice relies basically on simple logic and mathematical
intuition, and it is not affected by the spatio-statistical
properties of the true signal and noise involved in the
approximation problem. If we choose to follow a non
translation-invariant methodology, we should at least
be able to explain physically the dependence of the
output signal estimate on the origin of the coordinate
system used to reference the unknown field and its dis-
crete input data. Note that the translation-invariance

Fig. 1. A graphical explanation
of the concept of translation-
invariant estimation. Regardless
of which reference coordinate

y » system we use (O or O,), the
O, signal estimate §(x,y) obtained
from the data values d(x;, ;)
should always have the same
shape/behaviour



condition has often been applied in the theoretical for-
mulation of optimal estimation methods using errorless
data (Sanso 1980; Kotsakis 2000a), although its justifi-
cation is not altered by the presence of noise in the
observations.

Based on the two assumptions of linearity and
translation-invariance, the signal estimation formula
will have the general convolution-type expression

N-1M-1

g(x,y) = d(nhx,mhy)éh(x — nhy,y — mhy) (7)
n=0 m=0

where &, (x,y) is a 2-D filtering kernel that needs to be
determined in some optimal sense. The subscript / is
used to indicate that the estimation kernel will generally
depend on the specific data resolution levels, /. and #,.
The above equation can be illustrated through the linear
input—output (I/O) system shown in Fig. 2.

Remark. It would be proper at this point to ask
ourselves if the signal approximation model in Eq. (7)
provides the most general choice in the class of linear
and translation-invariant estimators, or whether it is
restricted in some sense in order to simplify the
following derivations. This important question was
raised by Sanso (personal communication 2001), who
pointed out that the use of a single kernel &,(x,y) in
Eq. (7) confines the family of the estimators in which
we will seek an optimal signal solution. In particular,
consider the linear interpolation formula of least-
squares collocation (LSC) which also gives a transla-
tion-invariant estimate (when used with a stationary/
homogeneous covariance function), but it cannot be
exactly reduced to the simpler expression of Eq. (7).
Nevertheless, the usual matrix formula of LSC ignores
the fact that the signal values are zero outside the input
data grid. This additional information comes from the
initial assumptions that were set in Sect. 2.1, i.e. the
unknown object is a finite-support signal over the entire
real plane. Actually, for the case of gridded data with
uniform sampling resolution, it can be shown that the
LSC algorithm can easily be transformed into the linear
expression of Eq. (7), if we expand/augment the input
data vector with an infinite number of zeros that are
taken at the same resolution as the original data values.
We certainly recognize that the above points deserve
further and more detailed discussion which, however, is
not possible to provide in this paper without deviating
from its original aim. Hence, in order to close this
remark and continue with the main scope of our study,
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we should just say that (for the modelling assumptions
set here) Eq. (7) is adopted as the most general choice
of a linear and translation-invariant signal estimator
from discrete gridded data with non-stationary obser-
vation errors. Some interesting details can also be
found in Brovelli et al. (2000).

3 Optimization of the estimation kernel

In order to determine an optimal form for the estimation
kernel &,(x,y), a corresponding optimality criterion
must first be introduced. The signal error produced by
the filtering formula in Eq. (7) can generally be decom-
posed into two components

e(x,y) = g(x,y) = §(x,») = en(x,y) + es(x,y) (8)

where e;(x,y) is the part of the total estimation error
caused from the use of discrete data with finite
resolution (aliasing error), and e,(x,y) is the additional
part due to the noise presence in the signal samples.
Note that the noise-dependent error component e, (x, y)
is not completely unaffected by the data resolution but
actually depends on it strongly, as will be demonstrated
in later sections of this paper.

In the absence of any noise from the input data, the best
we can do is to obtain just an interpolated model §(x, y) for
the unknown field that will depend on the true signal
values at the given sampling resolution. We will assume
that such a signal model is given in terms of a linear and
translation-invariant formula, as follows:

N—1

i

g(nhy, mhy) @, (x — nhe,y —mhy,)  (9a)

Il
=

n=0 m

or, equivalently, in the frequency domain

-1 M-1
G((z)x, (,Oy) q);,, a)x, wy Z Z g I’lhx, mh —i(nhyw,+mhyo,)
n=0 m=
= Dy(ox, 0)G(ox, wy) (9b)

where ¢, (x,y) is some interpolating kernel that generally
depends on the sampling intervals 4, and 4,. The noise-
dependent estimation error in g(x,y) will be measured
with respect to such a noiseless interpolated model for
the unknown field, i.e.

ev(x7y) = g<x7y) - Q(X,y) (103)

Filtering

Sampling Noise

g(x,y) g(nh,, mh,) d(nh,, mh,)

&%) M’

I

Z Z O (x — nhy,y — mh,) w(nhy, mh,)
m

Fig. 2. Linear and translation-invariant
signal estimation from discrete noisy
samples
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whereas the (pure) aliasing error is

—g(x,») (10b)

The specific form of the kernel ¢,(x,y) in Eq. (9a) is
irrelevant for the purpose of this paper. A very popular
choice that covers many different interpolating (or
quasi-interpolating) schemes, including band-limited
(Shannon) interpolation, B-spline interpolation and also
more general wavelet-based approximation models, is
based on the wuse of certain scaling functions
@(x,y) € L,(R?) which adapt to the data resolution
through a dilation operation (Unser and Daubechies
1997; Unser 2000), i.e.

Pp(x,y) = (/)@hyy) (11)

For the purpose of this paper, it is sufficient to consider
@,(x,) as an arbitrarily chosen reference interpolating
kernel with a well-defined Fourier transform @ (w,, w,),
which is used to obtain a continuous signal approxima-
tion in the absence of any noise from the discrete input
data. In addition, it can be assumed that ¢, (x,y) is such
that: (i) the linear expansion in Eq. (9a) is always stable,
and (ii) the aliasing error component e;(x, y) vanishes as
the data resolution increases; for more details, see Blu
and Unser (1999), Kotsakis (2000b) and Unser (2000).

The unknown filtering kernel in Eq. (7) will be de-
termined by minimizing the noise-dependent part of the
total signal error. In this way, the estimation problem is
essentially reduced to a problem of finding an optimal
modification for the reference signal interpolator
@, (x,y) that minimizes the propagated data noise in the
final output field g(x,y). The optimization procedure
will be carried out in the frequency domain using the
familiar mean-square-error (MSE) criterion

en(x,y) = g(x,y)

P, (oy, 0,) = E{|Ev(wx, wy)|2} = minimum (12)
where E,(wy, ®,) is the Fourier transform of e, (x, y), and
P, (o, ®,) is the (noise-dependent) mean error power
spectrum of the output signal. Note that the term ‘mean’
corresponds to its usual probabilistic interpretation, in
contrast to the optimization scheme that is usually
followed for the reference interpolator where the MSE is
defined in a spatio-statistical deterministic sense. In
Kotsakis (2000a, b) the optimal determination of the
interpolation kernel ¢, (x,y) was based on the minimiza-
tion of the spatio-statistical power spectrum of the aliasing
error component ¢;(x,y), whereas here the optimization
of the noise filtering kernel &,(x,y) employs the mean
power spectrum of the random error component e,(x, y).
From Eqgs. (7), (92) and (10a), we have that

N—1M-1
Ev(wxywy) :®h(wx7wy Zzg }’lh,{,mh ) —i(nhywy+mhyw,)
n=0 m=0
N—IM-1
_ Eh(wx7wy Zd nhx,mh ) —i(nhywy+mhyo,)
n=0 m=|

(13a)

where Z,(wy,®,) is the Fourier transform of the
unknown filtering kernel &,(x,y). Using the shorthand
notation according to Egs. (2) and (6), the last equation
takes the form

Ej(wy, 0,) G0y, o))

(13b)

Ey(wx, 0,) = Oy, 0,) Gy, 00y) —

- E (wm wy) (wx> wy)

By multiplying the above expression with its complex
conjugate and taking the expected value, we can finally
obtain

% = 2
P, (0, ) = @p (@, 0y) D) (0, 0y) |G(wx, wy)’

v

Oy, 0y Py( 0, 0y) (14)

where the asterisk * denotes complex conjugation, and
the auxiliary term P,(w, w,) corresponds to the noise
PSD-like function

Py(0r, 0y) = E{V (0, ) V" (03, 0y) } = E{}V(wx,a)y)f}
(15)

For the derivation of the result in Eq. (14) we have
used the fact that E{V(w,,w,)} =0, in accordance
with the zero-mean stochastic model introduced for the
data noise in Eq. (4a). The optimal estimation filter can
now be determined using Eqgs. (12) and (14). The
underlying procedure is straightforward and it gives the
final result

|G(wx, wy) |2

En(or, o) = Dy(wx, 0y)

’G(a)x, wy) ’2 + P,( oy, w,)

= W (o, @) By(0x, ) (16)

The separable Wiener-like form of the above optimal
filter is discussed in the next section.

4 The cascading structure of the optimal estimation filter

The final result in Eq. (16) indicates that the estimation
algorithm can be decomposed into two individual steps
which are connected in a linear cascading manner. The
first step, expressed by the periodic filter component
W (wx, wy), has the role of ‘de-noising’ the discrete input
data using information on the average behaviour of the
noise and the unknown field at the given resolution level.
The second filter component ®;(w,,®,), on the other
hand, is solely used to obtain a continuous representation
for the estimated signal based on an a priori selected
interpolating kernel ¢, (x,y). These two basic procedures
are illustrated in the linear input—output (I/O) system of
Fig. 3. Note that, even though the optimization principle
was applied to the continuous error term e,(x,y), the
noise filtering part of the estimation algorithm always
takes place at a discrete level (i.e. discrete input — discrete



output) and it is not affected by the choice of the
reference interpolating model.

As it can be seen from Fig. 3, it is not necessary to
‘modify’ the interpolating kernel ¢,(x, y) of the refer-
ence signal model in Eq. (9a) when dealing with noisy
input data. The optimization of the noise-dependent
output error adds only an intermediate filter that is
applied to the original data grid d(nh,,mh,), and it
produces a new signal sequence ¢(nh,, mh,) from which
the effect of the random observational errors has been
minimized in a MSE sense. We can then use this ‘de-
noised’ grid as input to the interpolating model of
Eq. (9a) in order to obtain a continuous approximation
of the unknown field at the given resolution level. It
should be noted that the interpolation filter ®;(w,, ®,),
shown in Fig. 3, can be additionally optimized by fol-
lowing a separate MSE approach that takes into ac-
count only the noise-free (aliasing) error component
en(x,y), as is described in Kotsakis (2000a, b).

The structure of the noise filter W (w,, wy) in Eq. (16)
is very similar to the classic Wiener filter, since they are
both defined in terms of a signal-to-noise ratio (SNR)
expression. However, there do exist conceptual differ-
ences between the two filtering schemes because, in our
formulation: (i) the unknown field has been modelled as
a deterministic (instead of stochastic) signal; and (ii) the
additive data noise has not been restricted to being
stationary. Therefore, it is important to clarify the exact
meaning of the two frequency-domain terms that appear
in the SNR algebraic expression of our noise filter. From
Eq. (16), we have that

|G(wy, »y) ‘2

‘G(wx,wy)|2+}5v(wx,wy)

W (wy, wy) =

16wy, 0,)[

. . L
o7 |G(@r, )|+ 37 Py, @)

_ I‘I(wmwy)
Aoy, ) + B(oy, o) (17)

where NM is the total number of points in the input data
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B N=1M—1

a(nhy,mh,,) g(khy,1hy) g ((k+n)hy, (I+m)h,)
M= =

(18a)

and

| N=lm-]

b(nhy,mh,) = oy [ (khy,Ihy) ((k-+n)hy,(I+m)h,)]
M k=0 1=0

(18b)

respectively. The first sequence in Eq. (18a) can easily be
identified as the discrete spatial CV function of the true
deterministic signal at the given data resolution, and
thus the term 4(w,,®,) in Eq. (17) corresponds to the
power spectrum of the true signal values g(nh.,mh,).
Note that the sequence a(nh,, mh,) contains less spatio-
statistical information than the continuous signal CV
function, since it takes into account only the discrete
values of the unknown field at a certain resolution level.
The knowledge of the continuous spatial CV function of
the true signal is only needed in the optimization of the
reference interpolator ¢, (x,y), as explained in Kotsakis
(2000a, b).

The second sequence in Eq. (18b), on the other hand,
does not exactly correspond to the discrete noise CV
function and, as a result, the frequency-domain quantity
B(wy, w,) in Eq. (17) should not generally be viewed as
the data noise PSD. Such an interpretation is possible
only in the special case where the input noise is sta-
tionary. Indeed, in such a situation the noise covariance
g, between two arbitrary data points with coordinates
(khy, Ihy) and ((k + n)hy, (I + m)h,) becomes a function
of their coordinate differences only, which are obviously
equal to (nh,, mh,). Therefore, 6, can be taken outside of
the summation operator in Eq. (18b), leaving the sum-
mation result equal to NM. In the more general case of
non-stationary noise, the sequence b(nhy,mh,) can be
interpreted as a ‘mean’ CV function of the random ob-
servation errors. Its value at the origin gives an average
indication of the noise level at every point of the data
grid, i.e.

2 N—1M-1
grid. The two auxiliary functions, 4(w,,®,) and L o kh W) (khe. Ih
B(wy, wy), in the last equation correspond to the Fourier NM ; ; o[, hy) (K, )]
transforms of two associated sequences, a(nh,, mh,) and M-l
b(nhy,mh,), that have the CV-like expressions (for a _L o2 (khy, 1) (19)
. = v xy L1y
proof, see the Appendix) NM = =
].Vois.e Interpolation
Sampling Noise Filtering Filter
X, hy, mh, h,, mh,) _ 8(nh,, mh,
g(x,y) @ g(nh,, mh,) d(nh,, mh,) e, ) 8(nh,, mh,) D00 ) 2(x,y)

| l

z Z O (x —nhy,y — mh,) v(nhy, mh,)
m

n

Fig. 3. The cascading structure of the optimal linear estimation filter

—~

Elo, »)



654

whereas its values b(nh,, mh,) at other points correspond
to ‘averages’ of the noise covariance over pairs of data
points with coordinate differences (nh,,mh,).

Note that both sequences in Eqgs. (18a) and (18b) are
always symmetric, and they take zero values outside the
range —(N—1)<n<(N—-1) and —-(M—1)<m <
(M — 1) due to the finite support of the input signal
g(x,y). Also, the numerical evaluation of the optimal
noise filter W(wy, w,) in practice can take place only at
discrete frequency values using the discrete Fourier
transforms (DFTs) of the two CV-type sequences,
a(nhy, mhy) and b(nh,, mh,).

5 Additional remarks
5.1 Why not ‘total’ MSE optimization?

A key point in the development of our estimation
procedure was the decomposition of the output signal
error into an aliasing (deterministic) part and a noise-
dependent (stochastic) part; see Sect. 3. The advantage
of such a partition is that it allows us to study and
optimize individually the effects of the finite data
resolution and the input noise on the signal estimate
g(x,y), using appropriate error measures and criteria for
each case. It should be kept in mind that the aliasing
error component e, (x,y) is a purely deterministic signal
whose average behaviour (at a given data resolution
level) can be modelled in a spatio-statistical sense
through the concept of different ‘sampling phases’
(Kotsakis 2000b; Kotsakis and Sideris 2000), whereas
the noise-dependent error term e,(x,y) is a random
signal whose average behaviour is described probabilis-
tically with the notion of different ‘experiment repeti-
tions’ (expectation operator E).

At this point we could naturally ask: why can’t we
just employ a single optimal estimation criterion for the
total signal error produced by the linear approximation
formula in Eq. (7)? We could have used, for example,
the following ‘global’ MSE estimation principle:

110pmay)::E{{Emeabﬂz}::nﬁnhnunl (20)

where E(w,,®,) is the Fourier transform of the total
error e(x,y) given in Eq. (8), and P,(wy, w,) corresponds
to the mean error power spectrum of the signal estimate
g(x,y). In such a case, it is easy to show that the
corresponding optimal estimation kernel will have the
frequency-domain form

Eh(wmwy) _ G(wX7w)))G (wwiy)

’G(wx, w,) 2 + Py (wy, o)

(1)

which is slightly different from the previous optimal
filter solution given in Eq. (16). In fact, if we replace in
the above equation the Fourier transform G(wy, ®,) of
the true unknown signal with the Fourier transform
G(wy, ®,) of a linear and shift-invariant interpolating
model according to Eq. (9b), then we automatically

obtain the separable filter solution of Eq. (16).

The result shown in Eq. (21) is practically useless
since it requires not just the knowledge of the signal
spatial CV function, but the complete pointwise
knowledge of the unknown field g(x, y) beforehand. It is
actually quite instructive to evaluate the performance of
the optimal estimation filter in Eq. (21) when the input
data is noiseless. By applying the Fourier transform to
the general estimation formula in Eq. (7), we obtain

G(wy, wy) = Ep(oy, wy)D(wm wy)

n(0x, 0y) (G0, @) + V(os, @) (22)

[ [1

In the absence of any noise from the data [i.e.
V(wy, wy) =0, Py(wy,®,) = 0] the use of the estimation
filter from Eq. (21) yields

G(a) ) = G(wy, 0,)G* (wy, ®))
Xy Wy |G((1)x,(,0y)‘2+0

= G(wxv wy)

(G(wy, ) +0)

(23a)

which means that, regardless of the sampling resolution
levels h, and h,, the filter given in Eq. (21) can always
recover the full field from its noiseless discrete values!
On the other hand, the use of the separable filter from
Eq. (16) gives a more reasonable signal estimate in the
case of noise-free data, as follows:

G(wy, w,) = W(wx, 0,) Py, 0,)(G(wy, ) +0)
~ 2
_ |Gy, wy)|
|G(a)x,coy)\2 +0

@y (o, wy)G(wm wy)

= (Dh(wxa coy)G(wx, wy) = G((,Ux, wy) (23b)
where  G(wy, ®,) 1is the Fourier transform of the
interpolated signal model §(x,y) according to the
formula given in Eq. (9a).

Thus, it is seen that the partition of the output esti-
mation error e(x,y) into a noise-free and a noise-de-
pendent component is more than an arbitrary modelling
choice. It is actually a reasonable step in order to obtain
meaningful signal estimators that take into account both
the limited data resolution and the external noise effects.
It should be remembered that the reference interpolation
filter @ (wy, w,) can be optimized by following a sepa-
rate approach that takes into account only the noise-free
error component e;(x,y), as described in Kotsakis

(2000a, b).

5.2 Practical realization of the noise filter W(wy, w,)

An important aspect for geodetic applications is the
numerical computation of the optimal noise filter
W(wy, w,) given in Eq. (17). Although the noise ‘PSD’
term P,(wy,®,) can always be determined from the
known noise variances and covariances using fast
Fourier transform (FFT) techniques (see Sect. 4), the
signal ‘PSD’ term |G(cox,a)y)\2 is generally unknown in
practice. In order to overcome this difficulty, we can use
the power spectrum of the available noisy data



d(nhy,nhy) to infer the behaviour of the signal ‘PSD’
function. From Eq. (6), we can express the power
spectrum of the data values as follows:
— 2 — — —
D02 0,) [ = (Gleow.,) + 7 (e20,0,)) (Glng, )
+V (0, 0y))"
— |G(wx,wy)|2+G(a)x,wy)l7*(a)x,wy)
+ G (00, ,)V (00,0,) + |V (0, 00,) | (24a)

and by applying the expectation operator to the above
formula, we finally obtain

E{IDtons '} = [Genon +£{ P on o))

— 2 —
= |G(a)x,a)y)} +P,(wy, 0y) (24b)
The unknown signal term |G(wy,,)|* can now be
determined empirically through the last equation by
taking the available realization |D(w,, cuy)|2 of the data
power spectrum as an estimate of its expected value.

5.3 Higher data resolution leads to noise reduction

The use of the optimal estimation filter Z;(w,wy)
according to Eq. (16) leads to the following expression
for the mean power spectrum of the noise-dependent
signal error e,(x,y):

= 2

‘G(cox,wy)]

|G(ex, )"+ Polw, )

P, (0, wy) =

v

X pv(wx’ wy)|q)h(va (Uy)|2
_ _ 2
= W(wy, w,)Py(wy, a)y)|(l)h(wx, w})‘ (25)

The above formula can easily be derived by substituting
the optimal result of Eq. (16) into Eq. (14). As was
mentioned at the beginning of Sect. 3, the noise-depen-
dent estimation error is additionally affected by the actual
data resolution level. In order to see more clearly this
important implicit relationship, let us first adopt a rather
general model for the reference interpolating kernel
¢, (x,»). In particular, we will consider the case

X
wx) = o(i7) (26)
where ¢(x, y) is some basic scaling interpolator (e.g. sinc
function). Taking into account the fundamental scaling
property of the 2-D Fourier transform (Dudgeon and
Mersereau 1984), the frequency-domain expression in
Eq. (25) can now be written as

P, (0, @) = (hehy)* W (0, )

X B,(y, ) |0y, hyo,)| (27)

v

where ®(w,, w,) is the Fourier transform of the scaling
function ¢(x,y). It is seen from the last equation that the
noise-dependent estimation error will decrease as the
resolution of the input data increases (i.e. smaller
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sampling intervals A, and #,). Such a result is not
surprising and it just confirms the (already well known
from signal analysis theory) fact that oversampling leads
to noise reduction in the final signal estimate; see e.g.
Benedetto (1998) and Cvetkovi¢ and Vetterli (1998). An
additional justification of this interesting property is
given in the next section using simulated numerical data.

6 Numerical example

The purpose of this section is to test numerically the
noise filtering component of the optimal estimation filter
Ejn(owy, wy,) that was derived in Sect. 3; see Eq. (16).
Hence, we will not implement the whole linear I/O
system shown in Fig. 3, but will restrict our attention
only to its first de-noising part that transforms the
original input data into an improved filtered signal
sequence. The second interpolatory step through the use
of a reference modelling kernel ¢, (x,y) will be ignored.

Although our theoretical developments in this paper
have been based on a 2-D planar framework, the nu-
merical results presented in this section refer to the
simpler 1-D-estimation case. This kind of simplification
was chosen only for the sake of easier visualization of
the noise filter performance under non-stationary ob-
servation errors, and it does not restrict the validity of
the conclusions for higher-dimensional problems. For
some 2-D numerical examples, see Kotsakis and Sideris
(2001) and Kotsakis (2001). The various steps and the
results of our simulated numerical experiments are
summarized in the following list.

e A 1-D deterministic signal g(x), assumed to represent
some gravity anomaly profile on the geoid, was ini-
tially synthesized using a truncated Fourier series
expansion with a record length of 200 km (see Fig. 4).

e The above signal was sampled at various resolution
levels (h,) to obtain noiseless gridded values g(nh,).
Four different sampling resolution levels were se-
lected, namely 0.1, 0.5, 1 and 5 km.

e All signal grids g(nh,), at each resolution level, were
partitioned into three equal spatial blocks, labelled as
left (L), central (C) and right (R). The simulated data
noise, which is subsequently added to the true signal
values at the next step, will have different statistical
behaviour in each of the three grid blocks.

e A zero-mean noise sequence v(nh,) was added to the
samples of the true signal in order to create the input
data set, according to the form d(nh,) = g(nhy)
+v(nh,). The noise values originated from a non-
stationary and uncorrelated Gaussian stochastic
process, using the routines for random number gen-
eration from the MaTLAB™ software package. Note
that the noise values v(nh,) were generated separately
at each resolution, instead of simply decimating the
noise sequence with the smaller sampling interval.

e The noise variance o2(nh,) was constant within each
block (L, C, R) of the data grid, with its values set to
20, 3 and 6 mGal?, respectively. The sample statistics
of the total noise sequence v(nh,) at every resolution
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Fig. 4. The original (simulated) signal

level are given in Table 1, whereas the individual
sample statistics of the noise values in the three dif-
ferent parts of the data grids are given in Table 2.

e The optimal noise filter W(w,) was computed, for
each resolution #,, via an FFT algorithm according
to the 1-D counterpart of the SNR expression in
Eq. (17). It was then multiplied by the FFT of the
noisy data d(nh,), and the result was finally trans-
formed back to the space domain as an estimated
(‘de-noised’) signal sequence ¢(nh,). The original
noisy data and the filtered signal values are plotted in
Fig. 5 for some selective sampling resolution levels.
The differences between the true signal samples and
the estimated signal values are also shown in Fig. 6,
whereas their statistics are given in Table 3.

It is interesting to observe that the estimation error of
the filtered signal values §(nh,) decreases as the data
resolution increases. This is evident from the comparison
of the three graphs shown in Fig. 6, as well as from the
root-mean-square (RMS) error values given in Table 3,
and it confirms our earlier theoretical remark at the end

Table 1. Sample statistics of the total additive noise at various data
resolution levels (mGal)

Data resolution 0.1 0.5 1.0 5.0
(km)

Max 14.57 15.34 8.91 8.27
Mean 0.09 0.24 0.27 0.11
Min -15.09 -10.10 -11.98 -8.01
Std 3.15 3.08 3.09 3.01
RMS 3.15 3.09 3.10 3.01

of Sect. 5. Note also that the part of the signal with the
highest noise level (left grid block, ¢? =20 mGal?)
shows consistently larger errors after the data filtering
than the other two grid blocks (see Fig. 6). This is a
reasonable result since we should not expect to have the
same quality level in the final signal estimate when using
data with spatially varying accuracy.

The inhomogeneous character of the output (noise-
dependent) estimation error can also be verified in a
more rigorous analytical way. If the data noise is non-
stationary then the input data values constitute a non-
stationary random sequence as well, as it is easily seen
from Eq. (3). As a result, the signal estimate obtained
through the filtering formula in Eq. (7) becomes a non-
stationary random process, and thus the noise-depen-
dent estimation error e,(x,y) defined by Eq. (10a) will
also correspond to a non-stationary random process.
Note that the values plotted in Fig. 6 are basically the
samples of this continuous (noise-dependent) signal es-
timation error taken at the data points.

7 Conclusions

A modification of the classic Wiener filtering method has
been presented, which allows us to work with arbitrary
deterministic signals that are masked by additive non-
stationary noise at different sampling resolution levels.
This provides a useful tool for many geodetic problems
related to optimal spectral gravity field modelling, as
discussed in the introductory section of this paper. It has
been shown that non-stationary noise filtering using fast
spectral Fourier techniques is possible, if we are willing
to incorporate a simple shift-invariance condition into
our signal approximation algorithm. In contrast to the
W-K linear prediction theory for random fields, where
the optimal estimators are translation-invariant only for
stationary signals and noise, the methodology presented
herein always uses convolution-type estimators, regard-
less of the statistical properties of the unknown quan-
tities. The spatial resolution of the input data was also
taken directly into account within the estimation
algorithm, revealing some interesting aspects about the
structure and the performance of the optimal noise filter
as a function of the data grid density.

The informal algorithmic similarities of our signal
approximation procedure with the Wiener filtering for-
malism stem from the initial assumptions in Eq. (7) of
linearity and translation-invariance. These led to a
convolution-based computational scheme in terms of an
optimal SNR filter that is applied to the discrete input

Table 2. Sample statistics of

the additive noise at various Data 0.1 0.5 1.0 5.0

data resolution levels in the resolution

three different blocks [left (),  (km) L ¢ R L ¢ R L ¢ R L ¢ R

zzrt‘;r‘gri(d?(x‘g:l‘fht (R of the 1457 506 896 1534 412 567 891 558 670 827 2.60 4.0l
Mean 0.22 0.02 0.04 0.79 -0.07 0.01 0.85 0.06 —-0.11 -0.12 -0.16 0.66
Min -15.09 -6.44 -7.58 -10.10 -=3.94 -5.65 -11.98 -3.67 -5.75 -8.01 -2.16 -2.93
Std 453 1.70 2.51 438 1.79 2.34 432 1.74 2.53 431 146 240
RMS 454 170 2.51 445 1.79 234 441 1.74 2.53 431 147 249
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Fig. 5a—c. Noisy and filtered signal values at various sampling
resolution levels. The vertical dashed lines indicate the boundaries
between the three blocks (L, C,R) of the input data grid with the
different noise variances

data. On the other hand, the differences with the classic
Wiener filtering theory are due to the modelling as-
sumptions for the input signal and noise, which are not
generally treated as stationary stochastic processes in
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Fig. 6a—c. Differences between the filtered and the true signal values
at various data resolution levels

our case. The unknown field, in particular, is not asso-
ciated with any stochastic behaviour but is treated as a
finite-energy finite-support deterministic signal. It is
important to keep in mind that when the data noise is
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Table 3. Sample statistics of the differences between the true and
the filtered signal values at various data resolution levels (mGal)

Data resolution 0.1 0.5 1.0 5.0
(km)

Max 1.47 1.28 3.50 6.48
Mean -0.09 -0.24 -0.26 -0.11
Min -2.06 -3.38 -4.15 -6.47
Std 0.54 0.91 1.30 2.53
RMS 0.55 0.94 1.33 2.54

not stationary, the W—K linear prediction theory can no
longer lead to simple filtering/convolution operations. In
such cases, the estimation algorithm is reduced to a
Fredholm equation of the first kind (Wiener—Hopf
equation), whose solution determines the best linear (but
not translation-invariant) signal estimate in a probabi-
listic MSE sense; for more details, see Sanso and Sideris
(1997). In our approach, the a priori imposed condition
of translation-invariance allows us to treat both sta-
tionary and non-stationary noise cases within a unified
linear filtering setting, which can be implemented in
practice very efficiently via FFT techniques.

In terms of future work, our efforts should concen-
trate on extending the 2-D planar algorithms given in
this paper for signal approximation problems on the
sphere and/or on the ellipsoid. Additional modifications
are also needed in order to handle applications that in-
volve more than one type of input data (multiple-input/
single-output systems), and not just the single-input/
single-output case that was studied here. Nevertheless,
the presented methodology can be proven to be a useful
tool for many existing geodetic estimation problems of
regional or local scale. Some examples of such problems
include the optimal spectral geoid determination from
noisy gridded gravity data, and the FFT computation of
various terrain-dependent gravity field quantities (e.g.
terrain correction, indirect effect, isostatic potential, etc.)
from noisy digital elevation models.
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Appendix

We will prove that the 2-D Fourier transforms of the
following sequences:

and
| Nolm-l
b(nhy,mh,)= =N ool (khy,Ihy) ((k+n)hy, (I+m)h,)]
k=0 1=0
(A2)
are given by the terms (NM)71|(7?(a)x,coy)|2 and

(NM) ' P,(wy, wy), respectively, that appear in the SNR
expression of the optimal noise filter in Eq. (17). Let us
recall that the unknown signal g(x, y) is assumed to have
compact support over the real plane, and thus both the
signal values ¢(kh,,lh,) and the measurement noise
values v(khy, Ih,) are always zero outside the input data
grid (NM points); see Sect. 2.1.

The 2-D Fourier transform 4(wy, ®,) of the first se-
quence in Eq. (A1) can be obtained as follows:

+00 +00

Alwg o)=Y > alnhy,mhy)e

n=—00 m=—00

—i(nhywy+mhyo,)

=22

N=—00 Mm=—00

+00 +00 1 N—-1M-1
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0 /=0
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1 -
_—A/[|G(wx,wy)|2
(A3)

In the previous derivations we have used the notation
according to Eq. (2) in Sect. 2.1 of this paper, and the
assumption that the unknown signal is always real.
Similarly, the 2-D Fourier transform B(w,,®,) of the
second sequence given in Eq. (A2) can be expressed as
follows:
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where the frequency-domain quantities ¥ (w,,®,) and

P,(w,, w,) have been defined previously in Egs. (5) and
(15), respectively.
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