Journal of Geodesy (2001) 75: 505-514

Journal of
Geodesy

© Springer-Verlag 2001

High-resolution gravity field modeling with full variance—covariance

matrices

T. Gruber

GeoForschungsZentrum Potsdam, Division 1: Kinematics and Dynamics of the Earth, Telegrafenberg, D-14473 Potsdam,
Germany e-mail: gruber@gfz-potsdam.de; Tel.: +49-8153-281578; Fax: +49-8153-281735

Received: 14 August 2000 / Accepted: 7 May 2001

Abstract. High-resolution gravity field models are cur-
rently computed by a combined least-squares adjust-
ment with the full variance—covariance matrix for the
lower degrees and a simplified approach for the higher
degrees. Simplification for the high degrees means that
numerical quadrature is applied or that the structure of
the covariance matrix is reduced to block diagonals.
Both methods have been used for several years to
compute high-resolution gravity field models. With
recent improvements in algorithms and with the use of
parallel computers, the degree and order for full
variance—covariance matrices could be increased to
180. Several test solutions combining full and block-
diagonal normals were computed and compared to
independent data sets. These comparisons were made in
order to quantify the impact of reducing the normal
structures on the gravity field solution. Results showed
that, particularly in the spectral domain (spherical
harmonic coefficients), the impact cannot be neglected,
while in the space domain (e.g. geoid height grid) the
impact is almost negligible.

Key words: Gravity Field — Least Squares

1 Introduction

In view of the future gravity field missions Challenging
Minisatellite Payload (CHAMP) (Reigber et al. 1999,
2000), Gravity Recovery and Climate Experiment
(GRACE) (Tapley and Reigber 2000) and Gravity Field
and Steady-state ocean circulation mission (GOCE)
(European Space Agency, ESA 1999), the degree and
order of satellite-derived gravity field spherical harmonic
series will increase drastically in the future. It is expected
that static gravity field solutions, containing the full
gravity signal, will be determined up to degree 160 with
GRACE (Stanton 2000, p. 18) and up to degree 300 with

GOCE (ESA 1999, p. 181). This means that the number of
gravity field parameters to be determined by least squares
(LS) will increase from 10 000 at present to about 90 000
in the future. Based on the simulations for GRACE and
GOCE, which have been performed by several groups
(National Research Council, NRC 1997; ESA 1999), it is
clear that high-resolution gravity field models (to degree
180 and above) will in future be based to a large extent on
satellite information [satellite-to-satellite tracking (SST)
data and gradiometer observations from space], while
surface gravimetric and altimetric data will only be
valuable for the determination of the higher frequencies.

The US-German dual-satellite mission GRACE
(Tapley and Reigber 2000), to be launched by the end of
2001 (500-km initial altitude, 89° inclination, 220-km
separation, 5 years’ duration), will provide SST data in
the low—low and high-low modes. The main instruments
for gravity field determination are the K-band ranging
systems (um accuracy), the GPS receivers and the ac-
celerometers on board both satellites. Mission goals are
the determination of the time-variable and medium-
wavelength static gravity field. The ESA mission GOCE
(ESA 1999), planned to be launched in 2005 (initial
altitude 270 km, inclination 96.5°, two 6-month obser-
vation periods with 5 months’ interruption), will provide
gradiometer data and satellite-to-satellite data in the
high-low mode. Acceleration differences between two
accelerometers, which are placed some distance apart,
are the basic gradiometry observables. By using three
pairs of accelerometers, differences in all three spatial
directions will be measured. These differences corre-
spond to the second derivatives of the gravitational po-
tential and represent a direct measurement of the gravity
field from space (Rummel 1997). The goal of the mission
is the determination of the high-resolution static gravity
field. The currently flying German CHAMP mission
(Reigber et al. 1999, 2000) (initial altitude 454 km, in-
clination 87°, 5 years’ duration) provides high-low SST
and accelerometer observations for determination of the
long-wavelength gravity field. Therefore, in future, a
huge number of continuous gravity field observations
will be available. In addition, with the high sensitivity of
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GRACE and GOCE, the spatial resolution of satellite
gravity fields can be increased significantly.

Continuous observations and increased resolution
imply that computational requirements on the data
processing will increase by several magnitudes, if a sys-
tematic processing of gravity field data is to be per-
formed. To quantify this: the computer time for setting
up normal equations for a single gravity anomaly ob-
servation increases by a factor of four if we increase the
spherical harmonic series degree from 120 to 180. Fur-
ther on, with the continuous and multi-satellite mea-
surements, the number of observations also increases by
several magnitudes with respect to current satellite
tracking systems. The computational requirements will
be partly fulfilled in future by using faster computer
processors and with the development of parallel pro-
cessing strategies, and partly by the development of
more efficient algorithms for setting up the normal
equations, as was described by for example, Kim and
Tapley (2000). However, methods for reducing compu-
tational requirements also have to be investigated by
taking advantage of regular matrix structures. Such
regular block-diagonal structures can be reached under
certain conditions with surface gravity data (Colombo
1981) and also with satellite gradiometer data, if small
correlations are neglected (CIGAR 111, 1995).

The following sections of this paper deal with two
specific problems in the frame of solving large linear
systems and reduced normal matrix structures: (1) in-
vestigation of the solution strategy for large gravity field
normal equation systems up to degree 180 with full
variance—covariance matrix on parallel computers and
(2) investigations of reduced block-diagonal normal
equation systems versus full systems and their influence
on the resulting gravity field.

2 Degree 180 gravity field solution

2.1 Set-up of normals up to degree 180
(GRIMYS test case)

Recently, new satellite-only (GRIMS-S1 up to degree 99
and order 95) and combined (GRIMS5-C1 up to degree
and order 120) gravity field models have been computed
by a German-French cooperation between GFZ Pots-
dam and GRGS Toulouse (Biancale et al. 2000; Gruber
et al. 2000b). Based on these experiences the resolution
of the combined gravity field model was extended to
degree and order 180 using the same data sets as for
GRIMS-CI1. These are as follows:

(1) NIMA 30" x 30" terrestrial and airborne mean
gravity anomalies including standard deviations and
topographic heights (Lemoine et al. 1998).

(2) NIMA 1° x 1° mean terrestrial and ship gravity
anomalies including standard deviations and topo-
graphic heights (Lemoine et al. 1998).

(3) NIMA 30" x 30" mean altimetric and sea-ice gravity
anomalies including standard deviations (Lemoine
et al. 1998).

(4) 1° x 1° mean gravity anomalies computed from the
GRIMS5-S1 model for areas not covered by the
above data sets (approximately 10% of the Earth’s
surface).

Each data set was prepared such that gravity field
normal equations could be computed and combined
with the satellite-only normals. Gravity anomalies were
corrected for the ellipsoidal effect on the spherical
definition of gravity anomalies and transformed to the
GRIMS5-S1 reference ellipsoid. In order to reduce the
number of observations, 1° x 1° block means corre-
sponding to degree and order 180 of a spherical
harmonic series were computed from the original data
by applying a mean value operator. In this way, the
number of operations for setting up the normal equa-
tions could be reduced by a factor of 4. To avoid leakage
of higher frequencies into the gravity field solutions, a
low-pass filter was applied prior to the spherical
harmonic analysis, which removes frequencies above
degree 180 (Gruber et al. 2000a). The filter is designed in
the following way. (1) The input data set is analyzed by
numerical quadrature up to degree and order 360. (2)
Residual gravity anomalies are computed from all
coefficients above degree 180 (degree 181-360). (3) The
resulting residual gravity anomalies are subtracted from
the input data set before they are used for gravity field
determination. Overlapping ship gravimetry blocks
along coastlines (5-degree coast mask) were included
to stabilize the altimetry—gravimetry boundary value
problem. The altimetry—gravimetry boundary value
problem is defined as the determination of a geopoten-
tial surface from gravity measurements (gravimetry)
over land and geoid height measurements (altimetry)
over the oceans. Because altimetric gravity anomalies
are derived from altimetric geoid gradients, the combi-
nation with measured gravity can also be regarded as an
altimetry—gravimetry boundary value problem. This
problem has not been solved theoretically to date, but
can be overcome by using the LS estimation technique.
However, along the boundaries (coastlines), uncertain-
ties are introduced due to the different sources of gravity
information. The overlapping method of altimetric and
gravimetric derived information is used in order to try to
minimize this kind of error. Gravity anomalies standard
deviations were prepared in the same way as for
GRIMS5-CI1. For land gravimetry data standard devia-
tions were set in the range between 1.6 and 5.6 mGal, for
altimeter-derived gravity anomalies between 1.0 and
3.8 mGal, and for ship gravimetry between 5.0 and
15.0 mGal. Standard deviations of fill-in gravity anom-
alies from the GRIMS5-S1 model were set to a fixed value
of 3.2 mGal.

For each 1°x 1° block, mean-value full normal
equations up to degree 180 with individual weighting
from the prepared standard deviations were set up.
Computational requirements for normal equation
computation are quite large. The number of spherical
harmonic gravity field coefficients is 32 761. Taking
into account normal matrix symmetries, the file size of
the normal equations becomes about 4.3 Gb if all ele-



ments are stored as 8-byte real numbers. There are two
options for designing the software. First, the normal
matrix is held not in the core but on a hard disk and
the matrix is updated step by step, always reading and
writing the matrix file. Second, the normal matrix is
held in the computer memory all the time and written
once at the end of the job. Both methods have ad-
vantages and disadvantages, which can be summarized
as follows.

(1) The out-of-core method requires high-performance
input—output operations.

(2) The out-of-core method enables easy parallel pro-
cessing by setting up normals for different sub-areas
of the data set, if enough disk space is available. For
final solution, normals are added afterwards. Rela-
tive weighting of normal equation sets can be done
during addition.

(3) The in-core method
memory.

(4) The in-core method enables parallel processing by
setting up normals for observations in parallel and
updating the normal matrix step by step. For this,
tools for sequencing the normal matrix update have
to be implemented (e.g. the message-passing inter-
face library, MPI).

Taking into account the existing software and available
computers, it was decided to apply the out-of-core
method for normal generation. For the computations a
SUN Enterprise 450 with 4 Gb memory, four processors
with 400 MHz each and enough disk space was used.
For computing the normal equations for 1 block, a
mean value of about 100 s computer time is necessary,
which equates to 1800 CPU hours (or 75 CPU days) for
64 800 data points in the case of global coverage. By
using of all four processors the computation time could
be reduced to 450 hours (or about 19 days). Because this
job is done only once, computational resources are
adequate. If we consider GRACE and GOCE satellite
data processing of 5-s-apart range or gradiometry
measurements (17 280 observations per day), we need
about 480 CPU hours per day, if we assume that the
computation time and computer are the same as for the
above case. Using additionally the high—low GPS SST
data, computational requirements show significant fur-
ther increase. This clearly shows that satellite data
processing will be a real challenge for science data
systems and that new approaches for the development of
faster algorithms and parallelization are necessary.
After combination of all gravimetric, altimetric and
fill-in normal equation systems the GRIMS5-S1 normals
without the Kaula regularization were added. No sepa-
rate weighting of individual normal equations was ap-
plied during addition. This means that it is assumed that
the relative weights for all the data sets are correct.
Further on, well-determined GRIM5-S1 low-degree and
low-order satellite model coefficients were selected to be
used as quasi constraints in the combined system. For
these coefficients a diagonal normal equation system with
weights taken from the coefficients’ standard deviations
was generated and added to the overall system (Gruber
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et al. 2000b). After this point the normal equation system
for the 180° gravity field model was complete.

2.2 Large linear system solver

As mentioned above, a normal equation system of
4.3 Gb size (after removal of symmetric elements) has to
be inverted and solved, such that the complete variance—
covariance matrix is available. Because of the huge size,
standard single-processor inversion algorithms are no
longer adequate for this problem. Therefore, parallelized
algorithms have to applied. There are several standard
libraries available, such as LAPACK (Anderson et al.
1999) or PLAPACK (van den Geijn 1997), which can
solve such problems. For our purposes the SUN
Performance Library 3.0 included in the early access
version of SUN Workshop 6 was used. This library is
based on the BLAS, LINPACK, LAPACK and some
other libraries and supports 64-bit code, which is
necessary for addressing the matrix elements. Generally,
there exist two strategies to solve such large linear
systems, depending on the computer architecture. These
are as follows.

(1) Distributed-memory multi-processor machines:
each processor has a fixed size memory. By com-
bining several processors large systems can be
solved. For communication between processors the
message-passing interface library (MPI) has to be
used.

(2) Shared-memory multi-processor machines: each
processor can use the full memory. No MPI has to
be used for communication.

The source code has to be adapted to the machine
architecture, such that optimized computation times can
be reached. As before, a SUN Enterprise 450 shared-
memory machine was used to compute the solution.
Three LAPACK subroutines included in the SUN
performance library were used to perform Cholesky
decomposition, computation of the inverse of the
triangular matrix and matrix multiplication. A draw-
back of all standard libraries is that symmetric matrices
with reduced storage requirements cannot be handled.
This means, in our case, that the full symmetric matrix
of about 8.6 GbD size has to be stored. This is more than
double the available computer memory of 4 Gb. There-
fore, additional swap space on a local hard disk was
assigned in order to be able to hold the full matrix. The
solution, including reading the matrix and writing the
variance—covariance matrix, required about 10 hours of
user time on the SUN Enterprise 450. For testing the
performance degradation due to the additional large
swap space, the same solution was computed on a SUN
Enterprise 3500 with 8 CPUs (336 MHz each) and 8 Gb
memory. On this machine only a small additional swap
space had to be assigned. The solution required,
including all reading and writing operations, about 3.5
hours of user time. About 60% of the computer time
reduction can be assigned to the larger number of CPUs,
while the rest is due to the larger memory. Summarizing,
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it can be stated that by use of parallel libraries, even on
medium-size multi-processor workstations, large linear
systems with full variance—covariance matrices can be
solved relatively easily.

2.3 Gravity field quality analysis

A degree and order 180 solution using identical data as
for the GRIMS5-C1 model (Gruber et al. 2000b) was
computed. In order to quantify the quality of this model
some standard tests were performed. As standard tests,
orbital fits for the long wavelengths and geoid height
comparisons for the full spectrum are usually performed.
Table 1 gives an overview of orbital residuals for some
low-orbiting satellites using the new GRIMS5-C1-180
model compared to GRIMS5-S1 (Biancale et al. 2000) and
EGMO96 (Lemoine et al. 1998). All models are truncated
at degree and order 120, because these satellites have no
sensitivity to higher degrees. Comparing the numbers for
GRIMS5-S1 and the new GRIMS5-C1-180 models, it can
be seen that, except for GFZ-1, no degradation of orbital
fits due to inclusion of surface normals occured. This
means that long wavelengths are properly modeled. For
GFZ-1 an inexplicable degradation is visible. The GFZ-1
satellite is highly sensitive to some resonant orders of the
gravity field series. By inclusion of surface data these
coefficients could change significantly and could cause
the increase of the RMS of orbital fits. In comparison to
EGM96, improvements for nearly all satellites are
apparent. However, also for the EGM96 model, a
relatively large RMS for GFZ-1 is visible, which is
mainly caused by the few GFZ-1 observations included
in the model. This may be a hint as to the problems in
some of the coefficients for the GFZ-1 resonant orders, as
for the GRIMS-C1-180 solution.

Table 2 shows statistics of pointwise geoid height
differences between the GRIMS5-C1-180 and the EGM96
model, which is truncated at degree 180. Numbers show,
for all data sets, slightly better results for EGM96 than
for the GRIM5-C1-180 model (1-2 cm in RMS). This
means that for higher degrees the EGM96 model has
more signal. This also is visible in the degree variances of
both models (not shown here). The larger signal could be
caused by the two-step procedure for determination of
these coefficients in the EGM96 model (first: numerical
quadrature; second: block-diagonal LS for remaining
residuals). For the GRIMS5-C1-180 model, all coefficients
were determined by a one-step LS estimation.

Table 1. Orbital fits

Satellite (arcs, type) GRIMS-S1  GRIMS-C1-180 EGM96
Ajisai (4, L)* 7.5 7.4 7.6
ERS-1 (9, L) 7.2 7.2 8.3

9, X)° 8.79 8.75 10.35
Starlette (5, L) 8.2 8.3 7.9
GFZ-1 (5, L) 22.4 28.5 47.2

L = Laser (cm)
®X = Altimeter crossover (cm)

Table 2. RMS of differences between GPS/leveling-derived geoid
heights and model-derived geoid heights (m)

Area (no. points) GRIMS-C1-180 EGMY96
Europe, north—south (67) 0.447 0.430
USA (5168) 0.632 0.614
Canada (1587) 0.510 0.507
Germany, south-west (125) 0.664 0.652
Germany north (42) 0.252 0.232
Uruguay (16) 0.592 0.578

3 Block-diagonal versus full normal matrices

One way to reduce computational efforts during normal
equation computation is by the use of regular matrix
structures, if possible. In gravity field determination,
there are two cases for which reduced normal equation
structures are possible.

(1) For surface gravity and geoid data the normal ma-
trix becomes block diagonal if the following condi-
tions are fulfilled (Colombo 1981).

e Data on a regular grid with equator symmetry
and equal angular meridians.

e Uniform data type with global coverage (e.g. no
mix of geoid heights and gravity anomalies).

e Longitude independent and equator symmetric
weighting of data.

e Parameter vector is sorted first with respect to
increasing order and second with respect to in-
creasing degree per order.

(2) For gravity gradiometer data the normal matrix
becomes block diagonal if the following assump-
tions are made (CIGAR III 1995).

e Continuous gradiometer observations.

e Equator symmetry of gradiometer data.

e Parameter vector is sorted first with respect to
increasing order and second with respect to in-
creasing degree per order.

e Neglecting small correlations between gravity
coefficients.

It has to be noted that, in the case of gradiometry, the
block-diagonal structure cannot be generated strongly
by applying specific data rules as for the surface data.
Small off-diagonal correlations have to be neglected in
order to obtain a block-diagonal system. The goal of this
investigation is not to quantify the error made by
neglecting some correlations, but simply to show,
through experiences with surface gravity data, what
the implications are for gradiometer data processing.
Therefore, all computations and follow-on investiga-
tions are based on surface gravity anomaly data sets.
However, it should be kept in mind that gradiometry
could be similar to this test case.

3.1 Test scenario

In order to test the implication of full versus block-
diagonal normal equation systems on the resulting



gravity field solution, combinations of different normal
equation systems (full and/or block diagonal) were
formed and solved for a gravity field. Data and data
preparation procedures were the same as described in
Sect. 2.1. From the 1° x 1° data sets over land, oceans,
and for the remaining gaps, a global data set including
standard deviations was generated. From this data set,
which was low-pass filtered for degrees above 180 or for
degrees above 120 for a second test case, the following
normal equation systems were computed.

(1) F180: full system up to degree 180 with individual
weighting of data.

(2) F120: full system up to degree 120 with individual
weighting of data.

(3) BD180: block diagonal system up to degree 180 with
constant weighting.

(4) BD120: block diagonal system up to degree 120 with
constant weighting.

In case of the block-diagonal system, the constant
weighting factor was computed by the mean of all
individual standard deviations. These normal equations
then were combined differently with the GRIMS-S1
satellite-only system (G5-S1) and the diagonal system
for the low-degree satellite coefficients (G5-S1-D) (see
Sect. 2.1). In total, seven different solutions with differ-
ent combinations were computed; these are summarized
in Table 3. Figure 1 shows graphically the combination
schemes for all the test models.
Remarks on the test solutions are as follows.

A-180: degree 180 solution with full variance covariance
matrix and GRIMS5-S1 normal equation systems.
B-180: degree 180 solution composed of full variance
covariance solution up to degree 120 combined
with GRIMS-S1

normal equations and block-

B-180
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diagonal solution for degree 121 to 180. Correla-
tions for coefficients of high degree (=121) with
low-degree coefficients (<120) of the same order are
neglected.

C-180: same as B-180 except that for high-degree block-
diagonal solution all correlations are taken into
account. Low-degree coefficients are identical to the
B-180 model.

A-120: degree 120 solution with full variance—covariance
matrix and GRIMS5-S1 normal equation systems.
B-120: degree 120 solution with block-diagonal vari-
ance—covariance matrix and GRIMS-S1 normal

equation systems.

C-120: degree 120 solution with full variance—covariance
matrix and GRIMS5-S1 low-degree diagonal system.
D-120: degree 120 solution with block-diagonal vari-
ance—covariance matrix and GRIMS5-S1 low-degree

diagonal system.

Comparisons of test models should show the following
effects.

(1) A-180 versus B-180/C-180: effect of full versus
block-diagonal normals on high-degree coefficients
(>120).

Table 3. Combination scheme of test solutions

Model F180 F120 BDI80 BDI120 G5-S1  G5-S1-D
A-180 * * *
B-180 * * * *
C-180 * * * *
A-120 * * *
B-120 * * *
C-120 * *
D-120 * *

C-180

A-120 C-120

2 GRIMS-51 Normals (Full System): G5-S1
= GRIMS-51 Normals (Diagonal System): G5-51-D

B Surface Normals(partly covered by satellite normals): F180, F120, BD180, BD120

D-120

Fig. 1. Normal structures for
combination models
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(2) B-180 versus C-180: effect of neglecting correlations
of high- with low-degree coefficients of same order
on high-degree coefficients (> 120).

(3) A-120 versus B-120: effect of full versus block-di-
agonal normals on low-degree coefficients (£120)
based on full satellite normals.

(4) C-120 versus D-120: effect of full versus block-
diagonal normals on low-degree coefficients (<120)
based on low-degree diagonal satellite normals.

3.2 Test results

In order to test the different models, again orbital fit
residuals and geoid height comparisons were computed
and analyzed (see Sect. 2.3). Table 4 shows the geoid
height comparisons for all models with their full
resolution of degree and order 120 or 180 respectively.

Figure 2 shows RMS values of differences of geoid
height differences (further on called geoid gradient dif-
ferences) between GPS-derived geoid heights and degree
180 model-derived geoid heights for a small network in
south-west Germany. The x-axis shows the distance
between the two points, which is mapped to the spher-
ical harmonic degree of the relevant wavelength. For
each degree the wavelength is determined by the fol-
lowing: wavelength =20 000 km/degree. Range classes
are separated midway between two wavelengths. All
point distances which fall into a specific range class are
then used for performing the statistics of gradient dif-
ferences. By this method, degree-dependent comparisons
on the basis of a huge number of differences can be
made, because the difference between each GPS point
and any other GPS point of the data set is computed.
For the south-west German data set with 125 points, we
obtain about 3400 gradient differences with about 40
samples per class for degree 100 and above. For lower
degrees no samples are available due to the too small
distances between GPS points. The rationale for trans-
ferring the distances into wavelengths and degrees is to
find out if there are any dependencies of the gradient
differences from the wavelengths. It should be noted that
this transformation can only be regarded as an ap-
proximation. Errors in shorter wavelengths are mapped
to longer wavelengths for cases when the longer wave-
length is a multiple of the shorter wavelength. Never-
theless, this information is valuable for the visualization
of possible dependencies between geoid gradient differ-
ences and their distances.

Figure 3 shows geoid gradient differences between
GPS-derived geoid heights and degree 120 model-
derived geoid heights for the Canadian GPS on the
benchmark network with 1587 data points in the same
domain as in Fig. 2. In this case, several hundred
thousand gradient differences are statistically analyzed.
Degrees below 50, which are not plotted, show a similar
behavior to the higher degrees, with much larger resid-
uals for solutions C and D.

Finally, in order to test the long wavelengths in the
spectral domain, orbital fit residuals for the low-degree
solutions up to degree 120 are computed and are sum-
marized in Table 5.

3.3 Interpretation of test results

3.3.1 A-180 versus B-180 (effect of full versus block-
diagonal normals on high-degree coefficients)
High-degree terms can only be tested by geoid and geoid
gradient comparisons with GPS-derived data. Geoid
height comparisons (Table 4) do not show a significant
difference between the two models. There is no system-
atic degradation visible when using the reduced block-
diagonal normal equation structure. The geoid gradient
plot (Fig. 2) shows slightly increased RMS values for the
block-diagonal model (A) compared to the full solution
() over the full spectrum, which is plotted in Fig. 2.
Using other GPS data sets, both RMS values are always
close together over the full spectrum without dominant
larger RMS values for one of the two gravity models. As
a consequence of these comparisons, it can be stated that
block-diagonal and full normal equation systems pro-
vide similar results for the higher frequencies (degree 120
to 180), if they are mapped to geoid heights. In other
words, block-diagonal normals are adequate for the

estimation of high-degree coefficients.

3.3.2 B-180 versus C-180 (effect of high- with low-degree
correlations of same order on high-degree coeffi-
cients)

Statistics of model and GPS geoid height differences

provide roughly the same results for both models

(Table 4). The situation changes if geoid gradient differ-

ences are considered (Fig. 2). In Fig. 2 it can be identified

that solution C-180 (V) has significantly larger RMS

values for the long wavelengths than solution B-180 (A).

For the short wavelengths (> 120), differences become

smaller and finally disappear. This test shows that

Table 4. RMS of differences

between GPS/levelmg-derlved Area A-180 B-180 C-180 A-120 B-120 C-120 D-120

geoid heights or altimetry-

derived geoid heights and gra- Europe 0.451 0.445 0.445 0.666 0.673 0.693 0.731

. : . : USA 0.632 0.631 0.633 0.780 0.793 0.744 0.751

dients with model-derived geoid

heights (m) and gradients Canada 0.511 0.510 0.513 0.651 0.666 1.293 1.259

(cm/km) Germany, south—west 0.664 0.660 0.653 0.742 0.733 0.755 0.755
Germany, north 0.252 0.260 0.274 0.290 0.303 0.318 0.307
Uruguay 0.590 0.565 0.576 0.677 0.663 0.675 0.687
Altimetric height 0.742 0.741 0.742 0.848 0.867 0.842 0.851
Altimetric gradient 1.724 1.726 1.726 1.765 1.769 1.763 1.766




511

130,

e 7 71— 1712
—_ I | | A-180 -
£ i A B-180 i
g 11 v C-180 411
e H ]
2 : v |
E 1k ﬁ v z v 4 1
.S 4 v v x z & } 4 X
S

A
g 09 } vl v . x v z‘; - 0.9
3 i 4 x‘ v I “ -
s | v b . ]
» 08| x 'Y A é x— 0.8
= ! X Ay xx 4 ]
o 34 \{ 1
il v ] L il ] L L il L il ] i il
0.7 90 1(I)0 11I0 1é0 1300'7
Degree
1.216:0 1?0 1?0 1?0 . 1':'0 . ’y 1.2
B 1

E | 1 i |
e 11F x X v | 1 - 1.1
o - ]
: | ' SR LT 4 ¥
£ L P 3B X 4+
S sx 7 M m &
1 i 1 & & L o
g 09 | & x ‘ x L ¥ x m N J oo
T 3 ]
s | o
S ‘ ‘ : A-180| .

08 p B-180 - 0.8
% 1 M i C-180 1

- ‘ ! 1 Fig. 2. RMS of geoid gradient
0.7 - . L A I 1 , [ ] 07 differences for the south-west
130 140 150 160 170 ‘ German GPS geoid height data

Degree

neglecting the correlation of high- with low-degree
coeflicients has positive effects for the long-wavelength
geoid gradients. The reason is that for the test case low-
and high-degree coefficients are mixed and are not
estimated in a common LS solution. Coefficients from
both solutions do not entirely fit together, therefore
neglecting correlations provides better results for the test
case. The situation changes when also low-degree coeffi-
cients are estimated in a single LS process with all
correlations, as was done for another test solution. Then,
the RMS values for all test data sets are close to solution
B-180 or even better. For the high-degree terms only small
differences in RMS values are visible. For some other GPS
networks high-degree RMS values for solution B-180 are
even slightly larger than for C-180. Overall, results show
only small differences between the two models for the
high-degree terms. The following conclusion can be
drawn from this test case. If correlations should be taken
into account, a one-step LS approach, combining full and
block-diagonal normals, for the complete spherical
harmonic series, should be used. If a two-step LS

set with respect to degree (m)

procedure is used (full system solution for low degrees,
block-diagonal solution for high degrees), correlations for
high-degree terms should be neglected, because they could
cause additional long-wavelength problems in the geoid.

3.3.3 A-120 versus B-120 (effect of full versus block-
diagonal normals on low-degree coefficients)
Both models are based on the full GRIMS5-S1 satellite-
only normal equation system and the low-degree
GRIMS-S1 diagonal system. They differ only by the
normal equation structure for the surface data. Several
tests are performed with these models. Geoid height
difference statistics at GPS stations (Table 4) show for
most data sets a slight increase in RMS values when
using the block-diagonal structure. This indicates a
small degradation of geoid height accuracy. Similar
results are visible when looking at the geoid gradient
differences on GPS stations (Fig. 3). The Canadian data
set clearly shows an increase of RMS values for the full
spectrum ([] versus A). This is also true for all other
available test data sets. As an additional test for the long
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wavelengths, orbital fit residuals are computed (Ta-
ble 5). In Table 5, only small differences are visible
between the A-120 and the B-120 model. While for
Starlette a small decrease in the RMS value appears, for
GFZ-1 an increase is visible. This could be a hint as to
the poorer quality of the B-120 model, because GFZ-1 is
more sensitive to higher degrees, which are mainly
determined from surface data. In summary, these tests
indicate a poorer gravity field quality for block-diagonal
models, when mapped to the geoid, and some problems
in the spectral domain (spherical harmonic representa-
tion), which are overlaid by the good performance of the
satellite-only model.

3.3.4 C-120 versus D-120 (effect of full versus block-
diagonal normals on low-degree coefficients)
In order to determine the influence of the satellite-only
normal equations on the long wavelength test results,
alternative solutions with full (C-120) and block-diagonal
(D-120) surface normal equations are computed, which
are based only on the very-long-wavelength satellite-
derived coeflicients, introduced as a diagonal normal
equation system. In this case the effect of full versus
block-diagonal surface normals should be better visible
than before. From the geoid height comparisons on GPS
stations (Table 4), it cannot be identified which of the two
models performs better. From the altimeter comparisons,

Table 5. Orbital fits

Satellite (arcs, type) A-120 B-120 C-120 D-120
Ajisai (4, L)* 7.38 7.38 57.4 58.3
ERS-1 9, L) 7.19 7.19 114.0 148.5
9, X)° 8.75 8.75 95.8 117.3
Starlette (5, L) 8.27 8.22 99.9 105.5
GFZ-1 (5, L) 24.49 29.02 164.3 188.8

L = Laser (cm)
®X = Altimeter crossover (cm)

model D-120 shows a small degradation with respect to
C-120, which is not very significant. Comparing these
solutions with A-120 and B-120, in some cases better
results appear, if not the full satellite-only normal matrix
is used. This shows that this single type of test cannot be
regarded as a quality criterion for a gravity field model.
When looking at the geoid gradient RMS values for the
Canadian data set (Fig. 3), it can be clearly seen that C-
120 and D-120 are significantly above A-120 and B-120.
In particular the long wavelengths are much more poorly
determined (RMS values below degree 50 are further
increased). Comparing C-120 (V) and D-120 (O), it can be
seen that the block-diagonal solution (D-120) is generally
above the full variance—covariance solution (C-120). This
is an indicator that reduced normal equation structures
also imply reduced geoid quality in the space domain. In
order to test the spectral domain, again orbital fit
residuals are computed (Table 5). Because of not using
the full satellite-only normal equation system, RMS
values are significantly increased for this test. It can also
be seen that for all satellites the block-diagonal model
(D-120) has larger RMS values than the model with full
surface normals (C-120). Now, in contrast to the
previous case, a clear degradation in the spectral domain
can be identified if block-diagonal surface normals are
used instead of full normal equation systems.

4 Summary and conclusions

Two specific problems in the frame of high-resolution
gravity-field modeling with LS have been investigated:
(1) the set-up and solution of large gravity field normal
equation systems; and (2) the, influence of reduced block-
diagonal normal equation structure compared to full
variance—covariance matrices on gravity field models.
Experiences gained during the GRIMS5-C1 gravity
field model computation have been used to set up normal



equation systems from altimetry and gravimetry data up
to degree and order 180. In order to run several processes
in parallel, an out-of-core method was used for compu-
tation. This means that computer memory requirements
are small, while disk space and input/output require-
ments are high. On average, 100 s CPU time on a medi-
um-class workstation are required per surface
observation. In the case of a limited surface data set this is
a manageable task, while in the case of satellite-to-satel-
lite tracking data with a huge amount of daily data
points, new approaches and algorithms have to be de-
veloped. The LS solution of the normals can be per-
formed relatively easily by using standard parallel
libraries. On multi-processor workstations, depending on
the number of available processors and memory, between
3.5 and 10 hours of user time were necessary to perform
Cholesky decomposition and triangular matrix inversion.
Using these algorithms an extended GRIM5-C1 model,
complete to degree and order 180, was computed and
compared to GRIMS-S1 for the long wavelengths and to
EGMO96 for the full spectrum. Results show that for the
long wavelengths the new GRIMS5-C1 180 model per-
forms better than EGM96, while for the higher degrees,
corresponding to short wavelengths, EGM96 has more
signal and consequently smaller differences to point geoid
heights. Generally, it could be proved that high-resolu-
tion combined gravity field models to degree and order
180 can be computed with available resources relatively
easily and with numerical stability.

In the second part of the present paper the influence of
reduced block-diagonal normals compared to full nor-
mal equation systems on combined gravity field models
was investigated. This question is important, because
computational efforts could be reduced drastically and
the resolution of gravity field models could be increased
to 360, and even more, if block diagonals are adequate.
Further on, this question could be relevant for data
processing of the GOCE gradiometry data with quasi
block-diagonal normal equation structures. Tests were
performed on the basis of the GRIMS5-CI1 data and the
derived normal equations. Seven solutions with different
degrees and different combinations of full and/or block-
diagonal normals were computed. All solutions were
tested with independent geoid heights on GPS stations
(heights and gradients) as well as orbital fit residuals.
From these tests the following conclusions can be made.

(1) Geoid height and gradient tests show a small de-
gradation for block-diagonal models for short
wavelengths when compared to full variance—
covariance solutions.

(2) Mixing coefficients from full and block-diagonal
solutions is not adequate, if correlations between
low- and high-degree coefficients for the same order
are used in a different way for both solutions.

(3) For long wavelengths, a degradation for block-di-
agonal models is visible in orbital fit residuals, if the
normal equation system is not dominated by the
satellite-only normals.

(4) Geoid gradient comparisons show a degradation for
block-diagonal models. Geoid height comparisons
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are not influenced significantly by normal equation
structure.

Summarizing, it can be stated that block-diagonal
solutions are slightly worse than solutions based on full
variance—covariance matrices. This is especially visible
in the spectral domain, while in the space domain (e.g.
geoid heights) it is difficult to quantify. This indicates
that errors in the spherical harmonic coefficients (spec-
tral domain), which are caused by reduced normal
structures, are in summary not mapped back to the
geoid (space domain). For a consistent gravity field
estimation, full normal equation systems should be used
as much as possible. Higher-degree terms, which exceed
the computational resources, can be determined with the
block-diagonal technique relatively accurately, if we
consider them in the space domain.
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