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Abstract. The topographic and atmospheric effects of
gravimetric geoid determination by the modified Stokes
formula, which combines terrestrial gravity and a global
geopotential model, are presented. Special emphasis is
given to the zero- and first-degree effects. The normal
potential is defined in the traditional way, such that the
disturbing potential in the exterior of the masses
contains no zero- and first-degree harmonics. In con-
trast, it is shown that, as a result of the topographic
masses, the gravimetric geoid includes such harmonics
of the order of several centimetres. In addition, the
atmosphere contributes with a zero-degree harmonic of
magnitude within 1 cm.
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1 Introduction

Today, the estimation of the geoid from gravity typically
relies on the well-known Stokes formula with surface
gravity anomalies and a global gravity model (GGM) or
a combination of the two data sets. Usually the
terrestrial gravity data is corrected for the attraction of
the ‘forbidden’ masses of the topography and the
atmosphere (direct gravity effects) by the removal or
reduction of these masses, and the surface anomaly is
downward continued to sea level prior to the application
of the Stokes integral. Finally, the quasi-geoid so
determined is corrected to the geoid by the indirect
effect, implying the restoration of the masses exterior to
the geoid (i.e. topography and atmosphere). As it is
also of great interest to compare and combine the
gravimetric geoid model with a GPS-levelling-derived
geoid model, information on its absolute position by its
zero- and first-degree harmonics is gaining increased
interest.

This article deals specifically with the zero- and first-
degree effects on the geoid estimation. Discussion of the
higher-degree effects on Stokes formula can, in the case
of topography, be found in, for example, Sjoberg (1997,
2000), and, in the case of the atmosphere, be found in
Sjoberg (1998, 1999a), but these effects are also included
here for completeness. However, the paper does not
treat the small corrections from the spherical to ellip-
soidal shape of the reference surface; such effects can be
found in, for example, Martinec (1998).

2 The modification of Stokes’ formula

The combination of Stokes formula and a GGM can be
represented by the modified Stokes formula originating
with M. S. Molodensky (cf. Molodensky et al. 1962;
Sjoberg 1991)
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where R is the mean surface radius of the Earth, vy is
normal gravity at the reference ellipsoid, gy is the
spherical cap at the unit sphere of geocentric angle
Wy, L is the degree of modification of Stokes’ kernel,
M is the upper limit of degree of the GGM, T and
THare the Helmert disturbing potential harmonics of
degrees zero and one, and JNj is the indirect effect
(i.e. the effect on the geoidal height of restoring the
topography). Furthermore, we use the following
notation:
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which means the Helmert anomaly defined by the
surface gravity anomaly plus its direct effect. Further-
more, ( )* is the function in the bracket ( ) downward
continued to sea level

Ag,' = Ag, + (9Agy,),
which is the geopotential-model-derived gravity anom-

aly harmonic plus its direct effect downward continued
to sea level

c=R/(2y)
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where s, are selected parameters of the modified Stokes
kernel and
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Both Ag!! and Ag!! are corrected for the reductions of
the topography and the atmosphere. Most frequently
the mass of the reference ellipsoid, related to the normal
gravity field, is chosen to be equal to the mass of the
Earth (including the atmosphere), and the origin of the
reference ellipsoid is chosen to be at the gravity centre of
the Earth. In this way both harmonics 7 and 77 vanish
in the exterior space. However, this is not necessarily the
case after the application of the direct topographic and
atmospheric effects, i.e. for Tf' and TM, as will be
considered below.

In the reduction of the exterior masses for
TH, TH, Ag" and Ag!! we will use Helmert’s second
method of condensation (Heiskanen and Moritz 1967,
p. 145), and consequently the indirect effect oN; also
refers to Helmert’s method.

The estimator of Eq. (1) can also be written
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where 0Ny is the total topographic and atmospheric
correction consisting of the sum of the direct, indirect
and downward-continuation effects

5Ntot = 5Ndir + 5NI + 5Ndwc (3)

This formula clearly shows that there are three steps in
correcting Stokes” formula for the influences of the
topography and the atmosphere. Comparing Egs. (1)
and (2), we obtain (cf. Sjoberg 1997)
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Moreover,
SAgair = Ag™ — Ag

is the direct effect on surface gravity anomaly, and
(0Ag3,), is the direct effect on the GGM derived
anomaly (at sea level).

The indirect effect on the geoid (the restoration step)
is nothing but the negative difference of the topographic
potential and the reduction potential, both potentials
computed at sea level and divided by normal gravity at
the reference ellipsoid (see Eq. (18) below).

Alternatively, as

Agt = Ag + 5Agair (5)

we may also replace Egs. (4a) and (4b) by the formulas
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This latter approach will be used in the present study.
The direct and indirect effects and their sum, the
combined effect, will be treated separately for the
topography and the atmosphere.

The present paper does not deal with the corrections
from the spherical to the ellipsoidal shape of the
reference surface, but such effects can be found in, for
example, Martinec (1998).



3 The topographic effects

There are three types of topographic effects to be
considered, namely the direct and indirect effects (or the
effects of reduction and restoration of topography) and
the effect of downward continuation of the surface
gravity anomaly to sea level.

In what follows the topographic density is assumed
to be constant, but all formulas could easily be
extended to a laterally variable topographic density
simply by putting the density under the surface
integral.

3.1 The direct topographic effect (the topographic
reduction step)

The direct topographic effect implies that the topog-
raphy is substituted by a condensed layer at sea level
of surface density pH, where p is the topographic
density and H is the elevation of topography. The
direct effect on potential can be written (for a constant
topographic density u= Gp and G = gravitational
constant)
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where
rs=R+H
rp :R—I—HP

lp = (rf, + 1% = 2rpr cos 1//)1/2

lz0 = (rp + R* — 2rpR cos W)/
and ¢ is the unit sphere.

The first term of Eq. (7) is the effect of removing
the topographic potential, and the second term is
the Helmert layer potential. Formula (7) can be
expanded into Legendre’s polynomials [P,(¢)] as
follows:
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t=-cosy

From Eq. (8) the direct effect on the surface gravity
anomaly is obtained by the fundamental equation
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The result is

0Agqir(P) = ,unio; (n—1) ///( ) drP,(t)do
,LLZ;(n— 1)/0/1{(%)"+ P(H)de  (10)

Equations (8) and (10) yield the zero- and first-degree
direct effects on potential and gravity anomaly

(0 Vair(P))y = —1t //( 3rpR3 f:)da (11a)
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and

(0Ag4ir(P)); =0 (12b)

The corresponding effects on the geoid are obtained
from Egs. (11a) and (11b) by setting 7p = R and using
Bruns’ well-known formula, i.e. dividing the disturbing
potential by normal gravity (y) at the reference ellipsoid.
The result is
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where

v=2,3,4, n=0,1

Hence, the zero- and first-degree effects on the geoid
differ from zero. ~

We now consider the (total) direct effect on N given
by Eq. (6a)
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or, in spectral form
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Inserting Eq. (10) with »p = R, we finally arrive at
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Again, we notice that the zero- and first-degree direct
effects on the geoid are given by Egs. (13a) and (13b),
implying small effects of a few centimetres as the result
of the reduction of the topography to a Helmert layer of
condensation at sea level. Martinec (1998, Chap. 2)
selected a mass-conserving coating for the Helmert
potential, which permits the elimination of the zero-
degree direct effect. Alternatively, we might consider the
modification to eliminate the first-degree effect. Howev-
er, the direct effects alone are not very interesting to
consider; it is the total effect, i.e. the sum of the direct,
indirect and downward continuation effects, that is our
concern. We will therefore return to this question at the
end of Sect. 3.3.

3.2 The indirect effect (the restoration step)

The indirect effect is the result of restoring the topo-
graphic masses. For the potential it is given by the minus
of the direct effect [Eq. (7)]. At sea level (and below) it
can be expanded in an internal-type harmonic series
[Eq. (25)]. In particular, for »» = R the expansion for the
geoid becomes
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3.3 The combined and total effects on the geoid

Adding the direct and indirect effects on the geoid we
obtain the combined effect. If the modified Stokes
formula of Eq. (1) is used for the geoid estimation, the
direct effect is given by Eq. (17) and the indirect effect is
given by Eq. (18). Thus we obtain the combined effect

(5Ncomb) (5Ncomb)1
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- Z (sy + Oun) (0Agg;,), (20a)
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As numerically
H} = 0.445km’
and

= —0.024 Yiy + 0.085 Y1y +0.191 ¥;_; [km’]

where Y, are fully normalized spherical harmonics, we
arrive at



(5]\7comb)0 ~ —5.1cm
and

| (ONeomb),| < 10.3 cm

i.e. the zero- and first-degree terms of dNgomp are each
within 11 cm.
The last sum of Eq. (20a)
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n=M+1

is the direct effect of the bias of the modified Stokes
formula. This bias is caused by the finite M and/or the
limited cap size under Stokes’ integral. Consequently, it
vanishes in the original Stokes formula. As suggested by
Sjoberg (1996), this term is eliminated by applying the
direct effect for the whole anomaly spectrum (M — o0).
The total topographic effect on the geoid estimator
[Eq. (1)] is given by the sum of the combined effect and
the effect of downward continuation of the Helmert
gravity anomaly to sea level under Stokes’ integral

5Ntot = a‘]\7(:0mb + 5Ndwc (21)
where
o —i//S(w)(A*—A)d (22)
dwe — 47_5’)) L g g)do
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If we assume that the normal gravity field is defined in
such a way that Ag contains no zero- and first-degree
harmonics, this will be the case also for Ag* (the
harmonic reduction of Ag to sea level) and, from
Eq. (22), for dN4wc. Consequently, the total topographic
effects of degrees zero and one are given by Egs. (20b)
and (20c).

4 The atmospheric effects

The reduction of the atmospheric masses is most
frequently applied according to the approach of the
International Association of Geodesy (IAG) described
in Moritz (1980, p. 422). An alternative approach was
presented by Sjoberg (1998, 1999a). Following the latter
approach, the potential of the atmosphere at an
arbitrary point P can be written

Va(P) = / / ]O p;Z)drda (23)

where

p» = Gp,; p, = atmospheric density
0y =1p +17 = 2rrcosy

Let us assume that the atmospheric density is radial-
symmetrically layered, i.e.

pa = po(R/r)" (24)

where pj is the density at sea level and v > 2.
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Expanding /,! as an internal-type Legendre series

G = li(”—f’)"“e,(t); o <r (25)

rp =0 r
and inserting Egs. (24) and (25) into Eq. (23), we arrive

at the following series expansion after integration with
respect to r:
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or, after using the first-order expansion
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It should be emphasised that the right-hand side of
Eq. (27) is limited to a first-order approximation of the
topographic impact on the atmospheric effect. Sjoberg
(1999a) showed that the second-order term of the
expansion of Eq. (27) contributes to the atmospheric
effect within 1 mm. Knickmeyer (1984) discussed the
convergence of the expansion of Eq. (27) when insert-
ed into an integral formula such as Eq. (26), and
Sun and Sjoberg (2001) considered the optimum
degree of truncation of the series. However, as the
atmospheric effect of the higher-degree terms is
certainly small, we will not further dwell upon this
question here.

4.1 The direct effects (the reductions)

The direct atmospheric effect on the gravity anomaly at
a point P is given by
o . 2V4(P)

=_—V*P
@rp ( >+ r'p

Agii.(P) (29)
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Inserting Eq. (28a) we arrive at

2R? Xon+2 rp\nl
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Agiy(P) = 4npz;{

This effect
harmonics.

The direct effect on the geoid estimator of Eq. (1)
becomes

5N§ir =—— - 47T///SL )Agy;, do

+¢Y (s)+ Ou) (Ag))" (31)

n=0

includes both zero- and first-degree

g

where (Ag3)® = direct effect of the atmosphere on the
anomaly derived by the GGM.
The spectral form of Eq. (31) becomes
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If the GGM is derived from terrestrial gravity, the
harmonics Ag? and (AgS)" are equal and Eq. (32) can be
simplified to
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Mg = —4npia- 121 Hy(P); n>0 (34)
Also
gt =i (25 - 1 (34b)

If the GGM is derived from satellite data (in practice
above the atmosphere) the atmospheric potential of
Eq. (23) at a point P can be written as the external-type
series

47p*R3 | H © R H (P
Va(P): ﬂpo < __0> _4 3 n( )

v=3 R — T 2+ 1
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which yields the direct anomaly effect according to
Eq. (29)

. dnpsR® (1 H
Agg; (P) = 2 < 0)

2 \v=-3 R
R 2 n—l

Y ey g () (36)

The direct effect on the geoid is given by Eq. (31) with
Vit and V}* given by the first harmonics of Eq. (35) and
Ags given by Eq. (36).

4.2 The indirect (the restoration) and total effects

The indirect effect on the geoid is given by Eq. (28a)
divided by y

. AnpiR* | 1 <. 1 H,(P)
ONj =—2 — 37
! y {v -2 “—=2n+1 R (37)

By adding the direct and indirect effects, we obtain the
combined (or total) effect on the geoid.

If we assume that the GGM is determined from ter-
restrial data, we obtain
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If we assume that V@, Vi and (AgS)" are all derived from
satellite data, we arrive at the total atmospheric effect
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From Egs. (34b) and (36) we obtain

1 2 4np;R(v — 4)

(Agy)* — Agly = 4npiR (v

—3_v—2>:_

(v=3)(v=2)
(41¢)
and from Egs. (34a) and (36)
(AgS)* — Ag® = 4np;H,; n >0 (41d)

From Ecker and Mittermayer (1969) we estimate the
power v to be about 850. Also, using p, = 1.23 - 1073
g/cm® from Ecker and Mittermayer (1969), we obtain
the constant

AnpiR
% — 0.670 m/km
This yields, with R = 6371 km and y = 981 Gal
4mp:R?
ON, —0_—503m
N0 0 =2)
and
SV 1
. ~ —v_3(5N,a)0: —6 mm

The last term agrees well with Moritz (1980, p. 425).
Furthermore
a

1%
(v—4) RO = 0.77 mGal

(Agg)" — Agh =

Hence the zero-degree effect on the geoid (6VF/y) is
within 1 cm and the first-degree effect (6¥;*/7) vanishes.
In addition, the possible truncation errors of degrees zero
and one of Eq. (40) are usually small. If all data are
determined from terrestrial gravity, Eq. (39) shows that
both the zero- and first-degree atmospheric effects vanish.

5 Corrections to a harmonic representation of the geoid

This section includes an alternative derivation of the
combined effect on the geoid in the case of an external-
type harmonic representation of the disturbing potential
of the Earth. Considering Egs. (7) and (23) we obtain
the topographic—atmospheric potential by the formula

e ff [

At satellite level most of the atmosphere is below that
level. Hence the potential at such a level can in practice
be expanded in an exterior-type harmonic series

=25 ] () o
e

2 drde

dr Py(t)do (43)
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including the zero- and first-degree harmonics

2 Zdr
V. 0 3 rS+Rr5+R Hda+
P

(44)

and
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o o rs

Usually geodetic reference systems, such as GRSS80,
are defined in such a way that the normal potential
includes the zero- and first-degree harmonics of
Egs. (44) and (45), implying that the disturbing
potential in the exterior space lacks these harmonics.
However, this is not necessarily the case at the
continental geoid inside the topographic masses. A
correct representation of the topographic potential
between sea level and the bounding sphere including
all topographic masses was given by, for example,
Sjoberg (1999b, p. 218). In particular, at the geoid
(with rp = R) the internal-type series representation
becomes

B O e

rs

drtdo (45)

dr 3B, (t)do

(40)

Hence, in view of the series of Eq. (46) the external-type
representation 7* needs a correction

5Vta — V;ta _ V'e[a

corr

(47)

when applied at the geoid. This correction becomes
explicitly

i3 ] /{( ) _)”}rzdrpn@da
Sl

including the zero- and first-degree terms

(6V20), = —27w(H2+—> / / / pa(r——>drdo'
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}r2 dr P,(t)do (48)

P
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and



(49b)

Again, assuming that the atmospheric density distribu-
tion is given by Eq. (24) and expanding the atmospheric
effect to first order of elevation, we arrive at the geoid
corrections

5Nggrr: / / / {( )Hl %)n}rzdrPn(t)da

4 R2 R
S . ”0 Y)Hde  (50a)
(v =2)(v=3)
with the zero- and first-degree terms
277:,u 20 4rpiR?
5Ntd _ H Z0) o TRPor
o= (B + ) )
(50b)
and
(ON2.), = A (3 +Iil3+ H (50¢c)
corr y 2 1 R 4R2

where we have divided the potential correction by y
(Bruns’ formula) to obtain the geoid correction. These
formulas are the same as the combined topographic
effect (Sect. 3) and the atmospheric effect (Sect. 4) in the
case of no truncation of Stokes’ integral; see Eqgs. (20a),
(40), (41a) and (41b).

6 Conclusions

Primarily, the topographic effects on the gravimetric
geoid are of order two of topographic height, while the
atmospheric effect is of order one. Considering the
combined effect on the geoid (i.e. the sum of the direct
and indirect effects), the topographic effect is of the
order

2npu

5Ncomb ~ - H2

reaching several metres and including the zero- and first-
degree effects

(0Ncomb)y = —5.1cm
and

|(5Ncomb)1 | < 10.3cm

The combined atmospheric effect on the geoid is given
by Eq. (39) (implying no effects of degrees zero and one)

in the case of pure terrestrial data, and Eq. (40) in the
case of a satellite-derived GGM, including a small zero-
degree effect of the order of —6 mm. The resulting zero-
and first-degree effects on the geoid cannot be eliminated
by changing the Helmert-layer coating, as this harmonic
potential implies merely an intermediate step that is
added in the direct effect and subtracted in the indirect
effect. In conclusion, in defining the normal potential
such that the disturbing potential outside the topogra-
phy and the atmosphere has vanishing harmonics of
degrees zero and one, the geoidal undulation will still
have such harmonics of the order of several centimetres.

Recently Nahavandchi and Sjéberg (2001) computed
a mean difference of 10.1 cm between the gravimetric
geoid model KTH98 for Sweden and the GPS-derived
geoidal heights at 23 permanent SWEPOS GPS sites
spread over Sweden. As the model KTH98 does not
include the above zero- and first-degree effects, the zero-
degree effect alone of —5.1 cm could explain half of the
discrepancy.
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