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Abstract. Based on the current best estimates of funda-
mental geodetic parameters {Wy, GM,J>,Q} the form
parameters of a Somigliana-Pizzetti level ellipsoid,
namely the semi-major axis a and semi-minor axis b
(or equivalently the linear eccentricity & = Va2 — b?) are
computed and proposed as a new World Geodetic
Datum 2000. There are six parameters namely the four
fundamental geodetic parameters {Wy, GM,J,,Q} and
the two form parameters {a,b} or {a,e}, which deter-
mine the ellipsoidal reference gravity field of Somigli-
ana-Pizzetti type constraint to two nonlinear condition
equations. Their iterative solution leads to best estimates
a= (6378 136.572 £ 0.053)m, b= (6 356 751.920 +
0.052)m, &= (521 853.580 + 0.013)m for the tide-free
geoide of reference and a = (6 378 136.602 £ 0.053)m,
b= (6356 751.860 £+ 0.052)m, &= (521 854.674 +
0.015)m for the zero-frequency tide geoid of reference.
The best estimates of the form parameters of a
Somigliana-Pizzetti level ellipsoid, {a,b}, differ signifi-
cantly by —0.39 m, —0.454 m, respectively, from the
data of the Geodetic Reference System 1980.

Key words. Form parameters of Somigliana-Pizzetti
level ellipsoid - Somigliana-Pizzetti gravity field -
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Introduction

The recent years have seen a tremendous progress in the
high resolution of the terrestrial gravity field which
demands an update of the form parameters of the
Somigliana-Pizzetti level ellipsoid, in particular its
semi-major axis a and its semi-minor axis b (or,
equivalently the linear eccentricity ¢ = vVa> — b?) from
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current best estimates of fundamental geodetic parame-
ters { Wy, GM, J», Q}, as a fundamental reference ellipsoid
approximating the physical surface of the Earth, namely
the Gauss-Listing geoid. Such a new parameter set will
be proposed here as World Geodetic Datum 2000.

Here we intend to compute a new data set of the
form parameters {a,b} of the Somigliana-Pizzetti level
ellipsoid based on current best estimates of the funda-
mental geodetic parameters {Wy, GM,J,, Q}. Section 1
provides directly with such a data set of optimal form
parameters {a,b} by solving the two nonlinear condi-
tion equations (47'), (48) by Newton iteration, e.g.
following Saupe (1988). The best estimate off those
form parameters {a, b} is completed by nonlinear error
propagation, namely by computing the variance-
covariance matrix of optimal form parameters {a,b}
from the variance of the pseudo-observations of type
{Wy, GM, J»,Q}. In contrast, Sect. 2 reviews in all detail
the Somigliana-Pizzetti gravity field of a level ellipsoid.
As a transplant of functional analysis we emphasise the
genesis of scalar-valued harmonic functions which are
orthonormal on an ellipsoid-of-revolution. In particular
we succeed to constrain the spheroidal harmonic coef-
ficients of a harmonic gravitational potential, namely of
degree/order zero/zero and two/zero, to produce a level
ellipsoid-of-revolution. In contrast to previous repre-
sentation of the Somigliana-Pizzetti gravity field we
express the radial dependence by base functions of type
Legendre polynomials of the first kind P;,,(u/¢) as being
postulated by functional analysis, namely the separation
solution of the three dimensional Laplace equation in
spheroidal coordinates {1, ¢,u} following Thong and
Grafarend (1989). Section 3 on spherical coordinates
and spherical gravity field is preparatory in order to
succeed to transforming spheroidal harmonic coeffi-
cients into spherical harmonic coefficients (degree/order
of type zero/zero and two/zero and vice versa within
Sect. 4, e.g. Hotine (1969, page 194, (22.59)). Such a
chapter has to be placed in a contribution of spheroidal
gravity field of Somigliana-Pizzetti type since it is
common practice to present the spheroidal gravity field
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not in scalar-valued spheroidal harmonics (the natural
choice when dealing with spheroidal geometry), but in-
stead in scalar-valued spherical harmonics. One argu-
ment for such a surprising representation may be given
by the fact the physical geodesists as well as satellite
geodesists have developed high resolution Standard
Gravity Field Earth Models of coefficients of a spherical
harmonic expansion of the gravitational potential, e.g.
up to degree 1800 (Wenzel 1998). Here, the impact of the
gauge R = a (the identity of the average Earth radius R
and of semi-major axis of the International Reference
Ellipsoid) as well as wg = W, o = Q within the above
quoted transformation is finally highlighted. As histori-
cal references for spheroidal geometry and spheroidal
gravity we finally quote Heiskanen (1951), Hirvonen
(1960) and Lambert (1961) among others and our pre-
sentation in Sects. 2—4 should be compared with Vermeer
and Poutanen (1997) already studied the influence of the
permanent tide and the atmosphere on a geodetic refer-
ence system we are dealing with.

1 Best estimates of the form parameters {a, b}
of a Somigliana-Pizzetti related level ellipsoid

By means of (47), (48) we shall establish the conditional
equations of spheroidal harmonic coefficients of degree/
order (0,0) and (2,0) in case of a level ellipsoid of the
Somigliana-Pizzetti gravity field. As soon as we take
advantage of the transformation of spheroidal harmonic
coefficients into spherical harmonic coefficients we arrive
at (47'), (48') as the conditional equations, now in terms
of the spherical harmonic coefficients GM and J,,
namely for the conventional datum R =a as well as
wy = Wy, w = Q. These final conditional equations (47'),
(48’) are nonlinearly relating those six parameters of the
Somigliana-Pizzetti gravity field a, b, Wy, GM,J,, Q.
Given the four parameters {W,GM,J;,Q} =
{»1,2,3, 4} called pseudo-observations the conditional
equations (47'), (48') are linearized with respect to the
semi-major axis a and semi-minor axis b of the level
ellipsoid, {a,b} = {x,x,}, namely

fl (x1>x23y17y2ay37y4)

X 1
=2 arccot| ——2— | 4= yixi =y =0
2_ 2 2 _ 2 3

X —X% 1%
(1)
fﬁ(X17X27YIayzaY3aY4)
1 2
LI <15y3 - 2+\f5>
4 ¥ — 3 X{ — X3
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A Taylor expansion of f(x,y) is
1
1(x,) = f(x0,¥) + 11 (50) (x = x0)

+ %f”(xo)(x —Xg) ® (X — Xp)

+ O3((x = X0) ® (X = Xp) ® (X — X))
=fy + Jo(x — x) +%H0(X—Xo) ® (x —xg) + O3

(3)

with respect to the Jacobi-Matrix Jy of the first order
partial derivatives at the approximation point x; as
well as the Hesse matrix Hy = [vec H;;vec Hy] of
second order partial derivatives at the approximation
point xo. H; denotes the Hesse matrix of f; while H,
the Hesse matrix of f,. Newton iteration starts with the
linearized Taylor expansion (for details we refer to
Saupe (1988))

Af:=1(x,y) — f(x0,¥) = J(x0) (x = Xo) = JoAx (4)
subject to
o Ui
6x1 6x1
J:= >
o (5)
6x1 a)CQ

where the partials of the Jacobi matrix are collected in
Table 1.

x—xg = Ax = Jy ' (f—fo) = (J(x0)) ' (= fo) (6)

holds. Newton iteration updates are generated by the
n-sequence

X — X :Jal(f—fo)

= X] =X —I—Jal(f—fo) (7)
= X2=X1+Jf1(f—f1) (8)
= = X, =X, 9)

and stops at the reproducing point (“fix-point”)
X, = X,,_1. Here we needed » = 1 Newton iteration step.
Next we implement the error propagation from the
pseudo-observations {y, s, 3,14} to the derived para-
meters {x;,x>} namely characterised by the first mo-
ments, the expectation E{x} = ¢ and E{y} = #, as well
as by the second moments, the variance-covariance-
matrices/dispersion matrices D{x} = X, and D{y} = Z,
following Grafarend and Schaffrin (1993 pages 470-
471). Up to nonlinear terms we derive
D{x} = Zx = J;' 3, D{y}J, (J5")

:J;lJyZleyU;l)’ (10)

where J¢, J,,, respectively, represent the Jacobi matrices
of partial derivatives of the function f(x,y) with respect
to x, y, respectively, at the evaluation point (&, 7).
Jx ~ J¢, is given by Table 1, Jy ~ J, is given by (11)
and Table 2.
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Table 1. Jacobian matrix of two constraints of the Somigliana-Pizzetti gravity field, partial derivatives with respect to the unknowns (x;,x3)
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Table 2. Jacobi matrix of the two constraints of the Somigliana-Pizzetti gravity field, partial derivatives with respect to the pseudo-

observations (y1,2,3,4)

X2
arccot()

2 _ 2
ofi X=X

% =1 % — % — % y4x2

oy Dy B2 s Ay, 37!
oy o 0fs V30 —x3) + 1580 af  15n 9 —26w

a7 »o 4(x% —x%)3/2 0ys 4(x% —x%)% Oyy 35

2
X { —3x2 + <1 + 23x§ 2) arccot(x;)} {i—&- (1 + 23x2 2)arccot<x72>}
X —x3 TTh X —x3 X —x e X —x3
ofi 9fi 94 Ofi {Wo, GM,J5,Q} is unknown, building up the argument
d dy» Oy; O why they have been neglected.

Jy= . (o5 10) (11) In the following, based upon current best estimates
9h 0p 0f Of of the four fundamental parameters { W, GM,.J,, Q} we
1 O 6y3 04 will obtain numerical values of the form parameters
) {a,b} of > a5 Of the level ellipsoid of Somigliana-Pizzetti
D{x} =3, = o1 o1 7 type by Newton iteration of the linearized two condi-
o1 03 tional equations (47), (48'), in particular dependent of
the way that the indirect permanent tide is being im-
D{y} = X, = Diag(o7, 03, 03, 03) (12)  plemented. Table 3 refers to the data {W, GM,.J»,Q} to

Indeed for the error propagation in linearized form,
namely (10), we have assumed that the variance-
covariance-matrix/dispersion  matrix/D{y} of the
pseudo-observations contains only variances: The cor-
relation of the pseudo-observations {yi,»,y3,4} =

be applied within our computation. For instance, the
zero-frequency-tide reference system is contained in the
spherical harmonics coefficients J,, while in the tide-free
reference system .J, is reduced for the effect of the indi-
rect tide. Note that in both cases J, is free of direct tidal
effects.
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Table 3. Best estimates of pseudo-observations { W, GM,J;, Q}

Author Parameter Value

Sources

(62636855.72 + 0.5) m?/s*
(62636855.80 + 0.5) m?/s*
(62636855.80 + 3.6) m?/s*

Bursa et al., 1997a Wy
Bursa et al., 1997b W
Grafarend and W,

Ardalan, 1997
Ries et al., 1992 GM

Ries et al., 1992 GM

Tapley et al., 1996 J3
Lemoine et al., 1996  J3

Rapp et al., 1991 J;
Groten, 1997 Q

(398600.4418 + 0.0008) km?/s>
(398600.4415 + 0.0008) km?/s*
—4.8416954845647 x 107 + 4.66 x 107"
—4.84165371736 x 107* £ 3.56 x 107!

—4.84165532804 x 107 + 4.47 x 107!
(7.292115 x 107 4+ 107'3) rad/s

Satellite altimetric data, gauge stations values
Satellite altimetric data, gauge stations values
Gauge station data, GPS, Baltic Sea Level Project

Satellite Laser Ranging, satellite altimetric data;

in SI units, including mass of earth’s atmosphere
Satellite Laser Ranging, satellite altimetric data;

in TDT units, including mass of earth’s atmosphere
JGM3 geopotential model; in zero frequency

tide system
EGMO96 geopotential model; in tide-free system
OSU91A geopotential model; in tide-free system

Our calculations of the two form parameters {a, b} of
[Egﬁb of the level ellipsoid of Somigliana-Pizzetti type in
the zero-frequency-tide reference system are collected in
Table 4 while Table 5 is devoted to the results {a,b}
in the tide-free reference system. In both the reference
systems different values of ¥, from Bursa et al. (1997a),
Bursa et al. (1997b) as well as Grafarend and Ardalan
(1997) and of GM from Ries et al. (1992) in SI and TDT
units are tested. The effect of various J, values from
JGM3 (Tapley et al., 1996), EGM96 (Lemoine et al.,
1996) and OSU91A (Rapp et al., 1991) on the form
parameters {a,b} of E2, of the level ellipsoid of So-
migliana-Pizzetti type is evaluated. In addition based
upon error propagation the variance-covariance matrix
of {a,b} with respect to the best estimates of
{Wy, GM , J,,Q} is outlined in Table 6.

From the Tables 3 and 4 the following conclusions
can be made: The change of the GM value from TDT to
SI units produces a millimeter variation in the form
parameters {a,b} of E2, which is below the level of the
calculated root-mean-square error values. J; data from
the geopotential models JGM3, EGM96 and OSU91A
result in almost the same values of the form parameters
{a,b} of E2,. The root-mean-square errors of the form
parameters {a, b} of [Efl‘b are directly proportional to the
root-mean-square error of the gauge value of the po-
tential W, the ruling parameter for the variance budget.

Indeed, we have documented that the tidal potential
which is constant in time in its indirect effect with a
properly chosen secular Love number (‘‘zero-frequency
tidal reference system”) flattens the reference ellipsoid as
a level ellipsoid of Somigliana-Pizzetti type. The abstract
contains the final data set of the form parameters {a, b}
of level ellipsoid-of-revolution of Somigliana-Pizzetti
type (tide-free as well as zero-frequency tide reference).

2 Spheroidal coordinates, spheroidal gravity field

In order to derive the two conditions (47), (48) which
characterise the Somigliana-Pizzetti gravity potential of
a level Spheroid-of-revolution we focus here on sphe-
roidal coordinates as well as spheroidal harmonics.
Thong and Grafarend (1989) have given an extensive
review of different types of spheroidal coordinates and
the spheroidal eigenvalues/eigenfunctions which span
the spheroidal solution space of the three-dimensional
Laplace partial differential equation for the external
gravity field of the Earth. Here we have chosen the
variant {2, ¢,u} of spheroidal coordinates which are
generated as elliptic coordinates by the intersection of a
family of confocal oblate spheroids, a family of confocal
half hyperboloids, and a family of half planes according
to the following definition

Table 4. Best estimates of the form parameters {a, b} of the Somigliana-Pizzetti level ellipsoid in zero frequency tide system, compared to

H. Moritz (1992)

a (m) b (m) a = agrsso (M) b = barsso (m) Wy (m?/s%) GM (km’/s®)  J;

6378136.610 6356751.868 -0.390 -0.446 62636855.72"  398600.4418"  —4.8416954845647 x 107"
£ 0.053 + 0.052 £05 £ 0.0008 + 4.66 x 107" _

6378136.605 6356751.863 -0.395 -0.451 62636855.72"  398600.4415"  —4.8416954845647 x 107"
+ 0.053 + 0.052 £05 £ 0.0008 + 4.66 x 107" _

6378136.602 6356751.860 -0.398 —0.454 62636855.80"  398600.4418"  —4.8416954845647 x 107V
+ 0.053 + 0.052 £05 £ 0.0008 + 4.66 x 107" ‘

6378136.602 6356751.860 -0.398 —0.454 62636855.80™  398600.4418"  —4.8416954845647 x 107"
+ 0.369 + 0.366 + 36 £ 0.0008 + 4.66 x 107"

"Bursa et al., 1997a
"Bursa et al., 1997b

"' Grafarend and Ardalan, 1997
Y Ries et al., 1992 (in SI units)

YRies et al., 1992 (in TDT units)

YiTapley et al., 1996
Q = 7.292115 x 107> + 107'2 (rad/s) (Groten, 1997)
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Table 5. Best estimates of the form parameters {a, b} of the Somigliana-Pizzetti level ellipsoid in tide-free system, compared to H. Moritz

(1992)
a (m) b (m) a~agrsso (M) b= bgrsso (M) Wy (m?/s?) GM (km’/s’)  J;
6378136.580 6356751.928 -0.420 -0.386 62636855.72! 398600.4418™ —8416537 x 1074V
£ 0.053 £ 0.052 £05 £ 0.0008 £ 3.561 x 107"
6378136.575 6356751.923 -0.425 -0.391 62636855.72" 398600.4415" —4.8416537 x 107*"
+ 0.053 £ 0.052 £05 £ 0.0008 £ 3.561 x 107"
6378136.572 6356751.920 -0.428 -0.394 62636855.80' 398600.4418™ —4.8416537 x 107*"
+ 0.053 £ 0.052 £05 £ 0.0008 £ 3.561 x 107"
6378136.572 6356751.920 -0.428 -0.394 62636855.80™  398600.4418" —4.8416537 x 107*"
+ 0.369 + 0.366 +36 £ 0.0008 £ 3.561 x 107"
6378136.581 6356751.926 -0.419 -0.388 62636855.72' 398600.4418Y  —4.8416553 x 10740
+ 0.053 £ 0.052 +£05 £ 0.0008 £ 4472 x 107"
6378136.573 6356751.917 -0.427 -0.397 62636855.80"  398600.4418™ —4.8416553 x 107*Vi
+ 0.369 + 0.366 + 3.6 £ 0.0008 + 4472 x 107"

'Bursa et al., 1997a

"Bursa et al., 1997b

" Grafarend and Ardalan, 1997
“Ries et al., 1992 (in SI units)

2

Y Ries et al., 1992 (in TDT units)

V' Tapley et al., 1996

Y'Rapp et al., 1991

Q = 7.292115 x 107 + 107'2 (rad/s) (Groten, 1997)

Table 6. Variance-covariance matrix of optimal {a,b} of E,,, of Somigliana-Pizzetti type, via error propagation from variances of the

pseudo-observations { W, GM,J;,Q}

o, (m?/s?) oy (km?/s?) o o (rad/s)

Gaby

6, (m) P =56

G (m) Gab

0.5 0.0008 4.5 x 1071 10712

0.053 0.052 2738 x 1073 0.99984 (%99.98)

Definition 1. (spheroidal coordinates {1, ¢, u})

The mixed elliptic-trigonometric elliptic coordinates
generated by the intersection of

(1) the family of confocal, oblate spheroids

2 2 2
2 L 3x +y zZ -
[E’—uersz,u = {XGR u2—|—82+;_17
u € (0,+00),& = az—bz} (13)

(i1) the family of confocal half hyperboloids
242 2
2cos? ¢ g2sin’p

2 L 3
Hscos¢7ssind) T {X €eR

dinates of type spheroidal, a minimal atlas of the three-
dimensional Euclidean space is established by three
charts. Accordingly, the following corollary generates
only one chart of {R?, g;;} due to the demanded domain
Le{leR0<A<2n}, ¢ e{d € Rl—n/2 < ¢ <+m/2},
u€{u e Rlu>0} by avoiding singularities at the
North-pole as well as at the South-pole of the confocal
oblate spheroids.

Corollary 1. (conversion of Cartesian coordinates
{x,y,z} into spheroidal coordinates {4, ¢,u})

The forward transformation of spheroidal coordi-
nates {,¢,u} into Cartesian coordinates {x,y,z},
namely

T
b€ [—575}(157&0} (14)  x=+/u?+¢£2cos¢pcosi
(iii) the family of half planes y = Vu? + &2 cos ¢sin i (16)
Piosisinz = {Xx € R’ly=xtan A, 2 € [0,2n]} (15) 2= usin¢

are called spheroidal. The longitude A gives orientation
to the half planes; the latitude ¢ relates to the inclination
of the asymptotes of confocal half hyperboloids; the
elliptic coordinate u coincides with the semi-minor axis
of confocal oblate spheroids (confocal, oblate ellipsoids
of revolution). O

In addition, let us assume that the pre-relativistic
space near the Earth is three-dimensional Euclidean
{R® gi} with the matrix of the metric [gy]. If R® is
covered by Cartesian coordinates, the three-dimensional
Euclidean space {R?, &/} is completely covered by one
chart. In contrast, if R?® is covered by curvilinear coor-

can be uniquely inverted into the backward transfor-
mation of Cartesian coordinates {x, y,z} into spheroidal
coordinates {/, ¢, u}, namely

'y 1 1
A= arctan()—() + —Esgny—isgnysgnx+ 1)-=

. 1
¢ = (Sgnz)arcsm{2_F2 { 2 _ (x2 -|-y2 +Zz)

12
+\/(x2+y2+zz —82)2+48222]} (17)
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1
u:{z {xz—kyz—i—zz—az

12
+\/(x2 13242 -2+ 48222] }

if
Le{leR0< 1< 2n}

¢e{¢eR|g<¢<+f} (18)

u € {ueRlu>0}
holds. O

Spheroidal coordinates enjoy the property to de-
composing the three-dimensional Laplace partial dif-
ferential equation into separable functions. We collect
this basic result in

Lemma 1. (spheroidal eigenspace of the three-dimen-
sional Laplace partial differential equation, external
gravity field of the Earth)

For a static, uniformly rotating Earth the gravity
potential field W (4, ¢,u) can be additively decomposed
into the gravitational potential field U(/, ¢,u) and the
centrifugal potential field V(2, ¢, u), namely

W, p,u) =U(A ¢ u) + V(4,d,u) (19)

The multiplicative decomposition of the gravitational
potential field into separable functions U(4,¢,u) =
A(2)®(¢)U(u) generates the solution of the three
dimensional Laplace partial differential equation

i’:z “ n|m\(u>

n=0 m=—n n|m\(_) oo

in terms of surface spheroidal harmonics

U(4, ¢, u) (4, ¢) (20)

cosml Vm>0
sin|m|lA Vm <0

el §) = Pl (sin §) [ 1)

in the space {R*/E2,} which is external to the ellipsoid
of reference (x? +y2)/(b2 + &%) +2%2/b> = 1. The eigen-
functions e, (4, ¢) are orthonormal on the ellipsoid of
reference with a proper choice of a weighting function.

A representation of the centrifugal potential in (i)
Cartesian coordinates, (ii) spheroidal coordinates and
(ii1) surface spheroidal harmonics is

Vipu) =1 o’ +)%) =1 o? (W + &) cos® ¢
; (P20< ) +e ) cos® ¢ (22)
cos’ ¢ = % (Pgo(sm o) — \/Lng*o(sin ¢)> , o
2

V(d,¢) = (P20< ) t+e ) Foo(sin )

- ﬁaf (P (%) +22) Pao(sin )
3o

- 9—\5 ? <P2*0 (%) + 82) ex (24)
O

So far we have not defined the normalised associated
Legendre functions of the first kind as well as of the
second kind as they appear in (20)—(24).

Definition 2. (normalised associated Legendre functions
of the first and second kind)

The fully normalised associated Legendre functions
of the first kind are defined by means of recurrence re-
lations of type

nn(S1n ¢)) f;l%_ 1COS¢P;—17n71<Sin d)) (25)
Pipeilsing) = Sl e0sg P, alsing) (06

(snld)) \/f’nlsnld) n— lm<Sin¢)

VCen+1)(n+m—1)(n—m—1)
v/ (n? —m?)(2n - 3)
X By p(sing) (27)

subject to
Vne[3,00) and m € [0,n—2]

with starting values

Pj(sing) =1 (28)
Piy(sin ¢) = V3sin ¢ (29)
Pi,(sin ¢) = V3 cos ¢ (30)
P3,(sin ¢) :? (3sin® ¢ — 1) (31)
P;,(sin ¢p) = V15 sin ¢ cos ¢ (32)
P, (sin¢p) = @cos2 0] (33)

If i is the imaginary root of minus unity, the associated
Legendre functions of the second kind are defined by an
integral relation of type

() =101 o0



"o m/2
Qnm(z‘%) _ (ED"2"(n + m)lm! (1§+ 1)

" (n—m)!(2m)!

o sinh®” tdz
| w09
0 (?—&— w/;‘—zz—i— lcoshr)
with starting values for n = 0,1,2 and m = 0,
(Y _ u
0 <E) = arccot(g) (36)
e u u
1(;) =1- garccot (E) (37)
L (U 1 u? u u
0; (Z) = Ksb—z + 1>arccot(g) - 3;} (38)
The reader may wonder about the ratio
v, (u/€)] 05, (b/e) of normalised associated Legendre

functions of the second kind as they appear in the series
expansion of the gravitational potential field U(4, ¢,u)
of type (20) with respect to spheroidal coordinates.
Indeed this ratio is motivated by the definition of
“weighted orthonormality” of the base functions or
eigenfunctions on the ellipsoid of revolution uy = b.
Corollary 2 is a résumé of the global area element of the
reference ellipsoid of revolution 2, which enables us in
Corollary 3 to formulate “weighted orthonormality” as
well as the reproducing property of the “weighted scalar
product™.

Corollary 2. (local and global area element of the
reference ellipsoid of revolution [F2 »)

The local area element of the spheroid [F> 25 1S given by

dS = d{area (E,)} = /G949 dp di (39)
dS = d{area (E,)} = a - \/b? +&*sin’ ¢ cos p did¢

(40)

while the global area element of the spheroid of the
spheroid E2, amounts to

(41)

O

2 4dac a-—c¢

1 15
S = area(E, ) = 4na - { +-—1In a+s}

The proof of Corollary 2 follows from straight
forward integration of dS.

Corollary 3. (“weighted orthonormality”, ‘‘weighted
scalar product” with respect to the reference ellipsoid
of revolution [Eib)

The base functions or eigenfunctions e, (4, ¢) are
orthonormal with respect to the weighted scalar product

{epq (4: @)lewn (4, D)),

= é/v dSW(Qs)epCI(;% ¢)emn (2, ¢) = OpnOgm (42)
B
Vi +
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and the “quantum numbers”
p,n=0,1,... 5 00;

q:_p’_p+17"'7
m=-n—n+1,...,

_1707+]7"'7p_ 17[97

—-1,0,+1,....,.n—1,n .

The weighting function is defined by

1 18
a <+b-lna+8) (43)
\/b? + &2sin’ ¢ 2 daz a—s

The weighted scalar product
(U4, &,u = b)lewn(%; ¢)),,

2 -1
= [4na(l+lb— lna+8>]
a a—ée

2n +7/2
X / dJ dpay/b? + €2 sin® ¢ cos ¢ w(¢p)
0

—n/2

X U2y pyu = b)eum(2, ¢)

= io: Z upq e,,q )|enm(/la ¢)>w

0 g=

=> Z UpgOpnOgm = Upm (44)
p=0

=0 g=—m

w(¢) :=

":

has the reproducing property. O

3 The Somigliana-Pizzetti gravity of a level ellipsoid,
the two constraints

The idea of generating the gravity field of a rotating level
ellipsoid according to Somigliana (1930) and Pizzetti
(1894) is the following. Given the general representation
of the gravity field (19), (20), (22), (24) in terms of
surface spheroidal harmonics, namely normalised asso-
ciated Legendre functions of the first and second kind.
Find the gravity field in terms of spheroidal coordinates
which is specified to a particular ellipsoid of revolution
E2, of semi-major axis a = v/b? + ¢2, and semi-minor
axis b = u which is at the same time a level ellipsoid of
revolution gauged to the gravity potential value wy = W
of the geoid. The solution of this problem in eigenspace
of surface spheroidal harmonics is presented in

Lemma 2. (the gravity field of a level ellipsoid, gauge to
the geoid)

If the spheroidal gravity potential field (19), (20),
(22), (24) is specified to the level ellipsoid (i) © = b and
(i) wy = Wy constant, the eigenfunctions of the three
dimensional Laplace partial differential equation are
restricted according to

00 +n
/“d)b Zzunmenm)(p
n=0 m=—n
frotdey - — (1.9)
w-a e ——CO a e
3 00 3\/3 20
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1 1
W}v b _ S22 s 2.2 /1
(Z,¢,b) <M00+3w a>€oo+<uzo 3\/50) a-|ex(4, )

+Z Z Unm€m (4, P)

n=1 m=-n

(n,m)#(2,0)
= wp = const. (46)
Ugo + 10)2(12 =Wy (47)
15,
Uy ———=wa =0 48
w37 (48)
Uy =0 Vn>1, (n,m)#(2,0) (49)

Since only the first term on the left-hand side is a
constant, the constant w, of the level ellipsoid is
balanced by (47). The terms of degree/order (2,0), as
well as (n,m) # (2,0),n > 1 are not constant. Accord-
ingly by means of (48), (49) they have to vanish. O

The proof of Lemma 2 is straight-forward.

In order to identify the terms of degree/order (0,0),
(2,0) ugo and uy respectively, we introduce the Newton
gravitational potential field in terms of spheroidal co-
ordinates — namely its spheroidal harmonic expansion —
generated by the mass density field p(4, ¢, u).

Corollary 4. (spheroidal harmonic expansion of the
inverse distance function in the domain u’' < u)

If the inverse distance function, represented in Car-
tesian coordinates as well as in spheroidal coordinates,

1 1
—x'll
[[x—x'] \/(X—x’)2+(y—y’)2+(z—z’)2
2
:{[\/uz—&-szcosqﬁcosi—\/u’z—i-szcosd)’cosi'}

2
+ {\/ u? +e2cospsind — v/ u'2 +SZCOS¢/Sin/1/:|

+[usin¢—u’sind>’]2}7l/2 (50)

is expanded in the domain «’ > u into surface spheroidal
harmonics, we receive

L )| sing)sing0, () (1)

[x—=x[| e
+2) (-
m=1
X Py (sin ') O (ig)an (zu?/) cosm(A— /1’)]

" ({28 Pusin)

(51)
subject to
(s 8) = P (sin )| St Y2 0 (52
P;(sin¢) = V2n + 1P,(sin ¢) (53)

P, (sing) = \/ 22n+1) %an(sin ®) (54)

Pon (%) = iR (i%) (55)

O (3) ="' 0m(i7) (56)
such that
S (1= ]!
R 2
< B () Qo (£ .8 et
(57)
holds. ]

For the proof of Corollary 4 we refer to Neumann
(1848) or Hobson (1965, pp. 424-430).

Lemma 3. (spheroidal harmonic expansion of the New-
ton gravitational potential)

With respect to the spheroidal harmonic expansion of
the inverse distance function in the domain «' < u the
Newton gravitational potential field can be represented

by
2n
Ui, ,u) / a / RIS

x/o d’(

x p(X, ¢ )

+ &% sin ¢)

1
IX(, b, u) — x(7, ¢ )] (58)

2n
/ di’/ d¢’ cos ¢’
—n/2
x/ d '(u?
0

x i Z %}Z:;i&*m (%)

n=0 m=—n

U(4, ¢, u)

+esin® ¢)p(i, ¢ i)

% Oy () mnl @ )eun (4 9) (59)

namely with uniform convergence of the spheriodal
harmonic expansion of the inverse distance function such
that summation and integration can be interchanged.

o +n |m|)| 2n i
)= 7523 (- n+|m|>!{/ 4

/_n/2 d¢’cos ¢’ /
xp(/, ' u n|m< )enm (V¢ /}

X Q:,\m\ enm ) d) :| (60)

2 4 ¢%sin® )



The spheriodal harmonic coefficients of (20) amount

to
2n +n/2
n|m< )/ d)’/ d¢’cos ¢’
-n/2

(#4)
X / du' (u* + &% sin* ¢')
0

Unm ::(_;(_1>m( ‘m‘
e (n+[m])!

(P (4 e

n=0,1,...,00
V[ (61)

m=—-n,—n+1,....n—1,n

Here is a sketch of the proof. The Newton gravitational
potential (58) contains four factorial elements. (1) G
denotes the Newton gravitational constant, also called
coupling constant between the inertial force and the
gravitational force. (i1) The volume in spheroidal
coordinates is generated by det G, G € R*3, the
square-rooted determinant of the matrix G of the metric.
In partlcular g =9 =W +e )cos (p, g = g¢¢ =
R RS g, g = g = (7 + 2 sin’ 9)/( +2),
gk/—OVk;«éﬁ k,t€{1,2,3}, +/det G=cos(u®+
& sin” ¢) holds. The volume of the terrestrial body is
bounded by its surface, here represented by the function
u(2,¢). Accordingly, the integration over the third
spheroidal coordinate u extends from zero to u(4,¢).
(i) p(4, ¢,u) denotes mass density field, expressed in
terms of the spheroidal coordinates {A,¢,u}. (iv)
1/]|x(4, ¢, u) — x(Z,¢',4/)| denotes the inverse of the
Euclidean distance between the points x = x(4, ¢, u) and
x = x(A, ¢ u). Next, (59) is generated by implement-
ing the inverse distance function as the spheroidal
harmonic expansion with respect to the domain ' < u
from (57) into the kernel of the Newton gravitational
potential integral. In the external domain u' < u the
series expansion of the Newton kernel is uniformly
convergent, a prerequisite in order to interchange
integration and summation. Accordingly (60) is gener-
ated by this operation. Finally, if we compare the
external solution of the three-dimensional Laplace
partial differential equation in terms of spheroidal
coordinates, (20), and the spheroidal harmonic expan-
sion of the Newton integral we are led to the spheroidal
harmonic coefficients (61).

These spheroidal harmonic coefficients, also called
spheroidal multipoles, are now specified for (degree/or-
der) (0,0) and (2,0), respectively, since they appear in
two constraints (47), (48) of the Somigliana-Pizzetti
gravity field.

Corollary 5. (spheroidal multipoles of degree/order (0, 0)
and (2,0), respectively)

By means of (28)—(33), (34)—(38) the spheroidal har-
monic coefficients/spheroidal multiploes ugy and uy, are
represented by
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G b 2n +m/2
ugo =— O (—) / di’/ d¢’ cos ¢’
e ¢/ Jo —n/2
(4.9
X / du/ (u* + & sin” ¢)
0

o8By () el ) ©)

2n +n/2
U0 :—Q20< >/ dl’/ » d¢’cos ¢’

£ ()
></ du' (u* + &* sin’ )
0

<ol (e, ()

or

G b 2n +mr/2
gy =—arc cot <—> / d/l’/ d¢’ cos ¢’
& €/ Jo —n/2
u/(/l/,d)/
“J
0

< o ¢ )Pl ()u #) (64)

)
du/ (u* + & sin” ¢)

GM b
ug) = Tarccot <E> (65)

1 2 b 2n
Uy = Gl [(3 b— 1) arccot <é> -3 —} dx
g2 € el Jo

+m/2 u' ()
X / d¢’ cos ¢’ / du' (u” + &% sin” )
- 0

n/2

p(, ¢, L/)% <3Z—f + 1) ?(3 sin ¢’ — 1) (66)

2
20 —\fci [<3b2+ 1)arccot(b> - 3[1
& € € €
2n +m/2
/ dA / d¢’ cos ¢’
—n/2
x/ d '(u”
0

x (9u?sin® ¢’ 4 3¢%sin® ¢’ — 3u’ — &%) (67)

2
U0 :ﬁg 3b—+ 1 )arccot -3-= / dy’
8 & &2
» ()
< [Ca [t )
» 21 (x'y)

x [=3(x% +)%) + 627 + 2¢7] (68)

o 8]  Jon(2) ]

x [6{3(" +17%) — 1P} + 2M¢7] (69)

+ &7 sin” ¢)p (¥, ¢/, )
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subject to

2n +n/2
M : / d}'/ d¢’ cos ¢’
—n/2

/ d "(u? + & sin® ¢ p(X, ¢’ i)

}/

=/ /dy/ a2 p(, @'l (70)
» 2 (¥
/ dxl/ d // dz/p(;{/, (,Z’)/,u/) . (y/z +Z/2)
»n EACING
(71)
X V2 YY)
7= / ' [ d / dZp(X, @' ) - (2% +x7)
X1 BJ (X/sy,)
(72)
33 . " / 7 ! 20 ) / Pl ” 72
re= [ & [ dy dZp(X, @', u) - (X" +)7)
X1 »n 7 (')
(73)
94 sin® ¢’ + 3% sin® ¢’ — 3u' — &’
= —3(x"? + ) + 627 + 2¢ (74)

as the moment of zero order (70), called the mass of the
body, and moments of second order (71)—(73) with
respect to Cartesian coordinates. (74) generates the
transformation of the spheroidal kernel of uyy into its
Cartesian kernel. O

The proof of Corollary 5 is straight-forward. If we
substitute (16) into right-hand side of (67), namely,

u’sin® ¢ = 22,
P4y =W+ cosPp=u’+& — (P +¢

&sin’ ¢ = u® + &

?)sin’ ¢,
—u?sin® ¢ — (u* + &%) cos’ ¢,

we arrive at the right-hand side of (68). In summarising,
we have succeeded to represent the spheroidal harmonic
coefficients (ugo, u20) as they appear in the Somigliana-
Pizzetti gravity potential field (47), (48) in terms of the
mass of the terrestrial body and the spheroidal/Carte-
sian mass moments of second order. Why did we bother
you with the Cartesian moment representation of the
spheroidal harmonic coefficient of second order u»? The
reason is to finally bridge the gap to the conventional
spherical harmonic expansion of the terrestrial gravita-
tional potential.

4 Spherical coordinates, spherical gravity field

Spherical coordinates as well as spherical harmonics are
modern standard, in particular to represent the general
reference gravity field. “Standard Earth Models” in
terms of spherical harmonics are available to a high
degree/order. In Lemma 4 we accordingly summarise the

spherical eigenspace of the three-dimensional Laplace
partial differential equation, namely the external gravity
field of the Earth. Corollary 6 introduces the spherical
harmonic expansion of the inverse distance function
which is used in Lemma 5 for the external spherical
harmonic expansion of the Newton gravitational poten-
tial. Of special importance is again the definition of
orthonormality of spherlcal elgenfunctlons with respect
to the reference sphere S of radius R given in Corollary
9 as well as the representatlon of spherical multipoles of
degree/order (0,0) and (2,0), respectively, of Corollary 7.

Let us note that spherical coordinates {4, ¢,,7} can
be generated by the intersection of the family of spheres
82 the family of mrcular cones C2 and the
famlly of half planes P?

cos ¢,,8in ¢ >

cos A,sin A*

Lemma 4. (spherical eigenspace of the three-dimensional
Laplace partial differential equation, external gravity
field of the Earth)

For a static, uniformly rotating Earth the gravity
potential field W (4, ¢,,r) with respect to spherical co-
ordinates {4, ¢, 7} can be additively decomposed into
the gravitational potential field U(4, ¢,,r) and the cen-
trifugal potential field V' (4, ¢, r), namely

W(h ¢gor) = Ul 5,7) + V(4 ¢5,7) (75)

The multiplicative decomposition of the gravitational
potential field into separable functions U(4, ¢,,r) =
A(A)DP(p)R(r) generates the solution of the three-dimen-
sional Laplace partial differential equation

o +n n+1
U()“a ¢s:r> = Z Z u;m rn.»,.] e”m(;“a d) ) (76)
n=0 m=—n

in terms of surface spherical harmonics in the space
{R?/S2} which is external to the Brillouin sphere S2.
A representation of the centrifugal potential in (1)
Cartesian coordinates, (ii) spherical coordinates and
(iii) surface spherical harmonics is

V(g r) =1’ (x* + %) = Lwr? cos® ¢,

1 1
—602}’2800 — 6027’2620 (77)

3 3\/5
O

Corollary 6. (spherical harmonic expansion of the
inverse distance function in the domain » < r)

If the inverse distance function represented in
Cartesian coordinates as well as in spherical coordinates,

1 1
[ N e

= {[rcos ¢, cos i — 1 cos ¢ cos X]?

+ [rcos ¢y, sin A — ' cos ¢ sin 2]

+ [rsin g, — # sin ¢}/ (78)



is expanded in the domain /' < r into surface spherical
harmonics, we receive

1SS () et e )

HX—X’II "0 m=n

(79)
O

Lemma 5. (spherical harmonic expansion of the Newton
gravitational potential)

With respect to the spherical harmonic expansion of
the inverse distance function in the domain » < r the
Newton gravitational potential field can be represented

by
2n +7r/2
U(Zy s,7) / d)'/ d¢! cos ¢,
-n/2
1
X dr'r/2 - ;
/0 1X(2, b, 7) = X' (X, g, )|
x p(A, ¢l 7) (80)
2n +n/2 7 (2P
U4, g, 7 / d)'/ d¢! cos qbi/ dr/r?
—n/2 0

xiiZOM

n=0 m=—n
X enm (2, (]f)s)enm(/l’,d);)p(i’,qﬁ;,r’) (81)

namely with uniform convergence of the spherical
harmonic expansion of the inverse distance function
such that summation and integration can be inter-
changed. The spherical harmonic coefficients of (76)
amount to

2n +n/2
S 4/ / /
Upm = 2}’! + IR,H_] / /'_TL/2 dd)s CoS qss

<

n=0,1,...,00
l (82)

m=-n—-n+1,....n—1,n

Y a4 e 8)

Corollary 7. (spherical multipoles of degree/order (0,0)
and (2,0), respectively)

By means of (28)—(33) the spherical harmonic co-
efficients/spherical multipoles (), and u}, are presented
by

G 2n +7r/2
us, :E/ di’/ d¢! cos ¢!
0 —n/2

r’(i’
< /0 A2 p(2, ¢l " eoo (X ) (83)
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2n +m/2
Wy = R31/ / d¢! cos ¢!
(245

" dl"l 14 )» /
x /0 (L, 8,7 en (7 ) (84)
or
G
ity = o (85)

s G 2n , +m/2 , )
1 :W/ di /—n/z d¢ cos ¢,

N

x/or(/y )dr’ “o(2, ¢, /)\/75(3Si1’12¢s_1) (86)

V2
Wy, = fG/ dx’ dy

10 R3
/ & p(, 5 2) [~ (0 +?) + 227 (87)
1 G |1
1y = fm{ (1“+122)—133} (88)
|

The reader may wonder about the ratio R"*! /r"*! of
radii as they appear in the series expansion of the
gravitational potential field U(4, ¢, r) of type (76) with
respect to spherical coordinates. Indeed, this ratio is
motivated by the definition of “orthonormality” of the
base functions or eigenfunctions on the sphere ry = R.
Corollary 8 is a resume of the global area element of the
reference sphere § which enables us in Corollary 9 to
formulate * orthonormahty as well as the reproducing
property of the “‘scalar product”.

Corollary 8. (local and global area element of the
reference sphere S R)

The local area element of sphere SIZQ is given by

dS = d{area(S3)} = \/G1194.9.d7 d¢, (89)

ds = d{area(S3)} = R*cos ¢, dLde, (90)

while the global area element of S amounts to

S = area(S3) = 4nR> (91)
0

LEINT3

Corollary 9. (“orthonormality”, “‘scalar product” with
respect to the reference sphere S R)

The base functions or eigenfunctions e, (4, ¢,) are
orthonormal with respect to the scalar product

(epa (i b5l 8)) / dSep (7 b, )emn (i )
= OpnOgm (92)

and the “quantum numbers”
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p,n=0,1,... 00;
q::<_p7_p<+1a'“a

m=—-n,—n+1,...,

_170f+15“'ap'_1,p;

~1,0,4+1,....n—1,n .

The scalar product

<U(/“7 Gy 1 = R)|enm(j'a ¢v)>

1 2n
= (1A
4nR2 0 &

n/
></+ quﬁ R*cos ¢ U(2, g, r

n/2

R)en(2, §5)

o]

-3 St §leun (i b))

p=0 g=—m

o +m
= Z Z UpgOpnOgm = Unm (93)

p:0 q=—m

has the reproducing property. O

5 Transformation between spheroidal and spherical
multipoles of degree/order (0,0) and (2,0), respectively

The two constraints of the Somigliana-Pizzetti gravity
field of type (47), (48) contain the spheroidal multi-
poles of degree/order (0,0) and (2,0), respectively.
{ugo,uz0} has been expressed by means of (65), (66) in
terms of a spherodial series expansion of the Newton
gravitational field. Finally, we succeeded to represent
uy in terms of Cartesian mass multipoles I'!, /?? and
133 as well as M by means of (69). In contrast, the
spherical multipoles of degree/order (0,0) and (2,0),
namely {uf,,u},} within (83), (84) have been expres-
sed in terms of a spherical series expansion of the
Newton gravitational field. At the end we could
represent u5, in terms of Cartesian mass multipoles
I'', 1?2, and I3 by means of (88). These results enable
us now to represent spheroidal and spherical multi-
poles of degree/order (0,0) and (2,0), respectively, with
respect to each other. Corollary 10 is a collection of
the results.

Corollary 10. (transformation between spheroidal and
spherical multipoles of degree/order (0,0) and (2,0),
respectively)

Spheroidal and spherical multipoles of degree/order
(0,0) and (2,0), respectively, are related by

arccot (2
2 f(l)Ruf)O (94)
<
¢
A — 95
00 = R arceot &) oo (95)

2
Uy = Vs KSb——i— 1>arccot(é> — 39]
8e e e

x [6ﬂ ?uio + 2Ruf)0] (96)
=
AT/ B b b1 'e
0 =715 [(38—2 + l)arccot <E> - 32} 23420
1 &
L 97
34/5 R3arccot (2) oo (97)
O

For the proof, we depart from (85) ”00 and (65) ugy
which dlrectly leads to (94). Similarly 1 (7' +1?) — 1%
from (88) u3, is used in (69) uyy which together with (85)
leads to (96). The inverse relations (95), (97) follow from
direct inversion and substitution of u{, by means of ug
of type (95).

Obviously the transformation between spheroidal
and spherical multipoles, namely, of degree/order (0,0)
and (2,0), respectively, depend on the linear eccentricity
&= — b2 the semi-minor axis b of the reference el-
11p501d of revolutlon E2, as well as on the radius R of the
reference sphere S The spheroidal zonal coefficient of
order two depends on the spherical zonal coefficients of
order two and zero, as well-known result (Jekeli 1981,
1988). Similarly, spherical zonal coefficient of order two
depends on the spheroidal zonal coefficient of order two
and zero.

From “Standard Earth Models” the spherical zonal
harmonic coefficients

GM = Ruj, (98)

1
=55 = = (5(1” +17) —133>
= \/— GM g (99)
are given.

In terms of {Wy, GM,J>,Q} the two constraints (47),
(48) of the Somigliana-Pizzetti gravity field can accord-
ingly be represented by

Lemma 6. (the gravity field of a level ellipsoid, gauge to
the geiod)

The gravity field of a level ellipsoid of type Somig-
liana-Pizzetti subject to the two constraints

GM b |
——arccot <—> — -’ =W, (47"
g I 3
2

ﬁ% 3b—+1 arccoté —3é

4 ¢ &2 P g

X 3“—2J IR [ LY N (48")

&2’ 35 B

gauged to wy =
sented by

Wo, 0 =Q,GM,J, and R = a is repre-



O3 (4) 05 (%)
U4, p,u) = oo — €00 + 20— €20(P) (100)
050 (%) 03(?)
subject to
Ugy = %arccot (b) =W — %Qzaz (101)
& &

SGM [ (. 1> b b .
> :i— [(3—2+ l>arccot(—> -3 ] . {3a—2Jz+1]
g e g &

4 ¢
1
= 102
WG (102)
or
GM u 5GM [ a*
U4, ¢ u) = Tarccot(;) +§T <38—2J2 + 1)
M2 u u .
X {(38—24— 1>arccot(g) — 3;} (3sin” ¢ — 1)
(103)
U

The two constraints (47'), (48') are generated by means of
(47), (48) as soon as we represent the spheroidal zonal
coeflicients of order two and zero by the spherical zonal
coefficients (98), (99), namely J, and J,, respectively,
within (94), (96). In addition, we have fixed the
fundamental parameters (i) of the level ellipsoid potential
value wy to the Gauss-Listing geoid potential value W,
(i1) of the rotational velocity w of the level ellipsoid to the
rotational velocity Q of the Earth at some reference
epoch, (iii) of the “‘gravitational mass” gm of the level
ellipsoid to the “gravitational mass” GM of the Earth,
(iv) of the spherical zonal coefficient J, and (v) of the
semi-major axis « to the raius R of the Brillouin sphere.
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