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Abstract. A probabilistic justi®cation is given for using
the integer least-squares (LS) estimator. The class of
admissible integer estimators is introduced and classical
adjustment theory is extended by proving that the
integer LS estimator is best in the sense of maximizing
the probability of correct integer estimation. For global
positioning system ambiguity resolution, this implies
that the success rate of any other integer estimator of the
carrier phase ambiguities will be smaller than or at the
most equal to the ambiguity success rate of the integer
LS estimator. The success rates of any one of these
estimators may therefore be used to provide lower
bounds for the LS success rate. This is particularly
useful in case of the bootstrapped estimator.
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1 Introduction

Ambiguity resolution applies to a great variety of global
positioning system (GPS) models currently in use. These
range from single-baseline models used for kinematic
positioning to multi-baseline models used as a tool for
studying geodynamic phenomena. An overview of these
and other GPS models, together with their application
in surveying, navigation and geodesy, can be found in
textbooks such as those of Leick (1995), Parkinson and
Spilker (1996), Hofmann-Wellenhof et al. (1997), Strang
and Borre (1997) and Teunissen and Kleusberg (1998).
Despite the di�erences in application of the various GPS
models, it is important to understand that their ambi-
guity resolution problems are intrinsically the same.
That is, the GPS models on which ambiguity resolution
is based can all be cast in the following conceptual frame
of linear(ized) observation equations

y � Aa� Bb� e �1�

where y is the given GPS data vector of order m, a and
b are the unknown parameter vectors respectively of
order n and o, and e is the noise vector. The matrices A
and B are the corresponding design matrices. The data
vector y will usually consist of the `observed minus
computed' single- or dual-frequency double-di�erence
(DD) phase and/or pseudorange (code) observations
accumulated over all observation epochs. The entries of
vector a are then the DD carrier phase ambiguities,
expressed in units of cycles rather than range. They are
known to be integers, a 2 Zn. The entries of the vector
b will consist of the remaining unknown parameters,
such as for instance baseline components (coordinates)
and possibly atmospheric delay parameters (tropo-
sphere, ionosphere). They are known to be real-valued,
b 2 Ro.

The procedure which is usually followed for solving
the GPS model of Eq. (1) can be divided into three steps
(for more details we refer to e.g. Teunissen 1993 or de
Jonge and Tiberius 1996). In the ®rst step we simply
disregard the integer constraints a 2 Zn on the ambigu-
ities and perform a standard adjustment. As a result we
obtain the (real-valued) estimates of a and b, together
with their variance±covariance matrix

â

b̂

24 35 ; Qâ Qâb̂

Qb̂â Qb̂

24 35 �2�

This solution is referred to as the `¯oat' solution. In the
second step the `¯oat' ambiguity estimate â is used to
compute the corresponding integer ambiguity estimate
�a. This implies that a mapping F : Rn 7!Zn, from the n-
dimensional space of real numbers to the n-dimensional
space of integers, is introduced such that

�a � F �â� �3�
Once the integer ambiguities are computed, they are
used in the third step to ®nally correct the ¯oat estimate
of b. As a result we obtain the `®xed' solution

�b � b̂ÿ Qb̂âQÿ1â �âÿ �a� �4�
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The ambiguity residual �âÿ �a� is thus used to adjust the
¯oat solution so as to obtain the ®xed solution.

It is of course not enough to compute the ®xed so-
lution and be done with it. We can always compute such
a solution, whether it is of good quality or not. We
therefore still need to address the question whether we
have enough con®dence in the computed integer ambi-
guity solution. After all, unsuccessful ambiguity resolu-
tion, when passed unnoticed, will all too often lead to
unacceptable errors in the positioning results. We
therefore need to have a way of knowing how often we
can expect the computed ambiguity solution to coincide
with the correct, but unknown, solution. Is this 9 out of
10 times, 99 out of a 100, or a higher percentage? It will
certainly never equal 100%. After all, the integer am-
biguities are computed from the data: they are therefore
subject to uncertainty just like the data are.

In order to obtain such a description, we require the
probability distribution of the integer ambiguities
(Teunissen 1997). This distribution will be a probability
mass function, due to the integer nature of the ambi-
guities. Of this probability mass function, the proba-
bility of correct integer ambiguity estimation is of
particular interest. This probability will be denoted as
P ��a � a�. It describes the frequency with which one can
expect to have a successful ambiguity resolution. It
equals the expected ambiguity success rate. This prob-
ability depends on three contributing factors: the
functional model (the observation equations), the sto-
chastic model (the distribution and precision of the
observables) and the chosen method of integer ambi-
guity estimation. Changes in any one of these will a�ect
the success rate.

In this contribution the choice of integer ambiguity
estimator will be considered. In general, we would like to
have the highest success rate possible. We therefore
would like to know which integer ambiguity estimator
maximizes P ��a � a�. For this purpose we ®rst need to
introduce a class of candidate integer estimators. Such a
class of admissible integer estimators is introduced in
Sect. 2. In constructing this class, we are led by practical
considerations such as the following: the estimator
should map any ¯oat solution to a unique integer so-
lution and when the ¯oat solution is perturbed by an
integer amount, the integer solution should be perturbed
by the same integer amount. In Sect. 3 we give three
examples of integer estimators which belong to this class
of admissible estimators. They are the `rounding' esti-
mator, the `bootstrapped' estimator and the integer
least-squares (LS) estimator.

Section 4 contains the main result of this contribu-
tion. It is proven that the integer LS estimator has the
largest ambiguity success rate of all admissible estima-
tors. The integer LS estimator is therefore the best es-
timator in the sense of maximizing the probability of
correct integer estimation. Any other integer ambiguity
estimator, such as for instance the `rounding' estimator
or the `bootstrapped' estimator, will have a smaller
success rate. GPS ambiguity resolution will therefore be
less successful when integer estimators other than the LS
estimator are used.

2 A class of integer estimators

There are many ways of computing an integer ambiguity
vector �a from its real-valued counterpart â. To each such
method belongs a mapping F : Rn 7! Zn from the n-
dimensional space of real numbers to the n-dimensional
space of integers. Once this map has been de®ned, the
integer ambiguity vector follows from its real-valued
counterpart as �a � F �â�. Due to the discrete nature of
Zn, the map F will not be one-to-one, but instead a
many-to-one map. This implies that di�erent real-valued
ambiguity vectors may be mapped to the same integer
vector. We can therefore assign a subset Sz � Rn to each
integer vector z 2 Zn:

Sz � fx 2 Rn j z � F �x�g; z 2 Zn �5�
The subset Sz contains all real-valued ambiguity vectors
that will be mapped by F to the same integer vector
z 2 Zn. This subset is referred to as the pull-in region of z
(Jonkman 1998; Teunissen 1998a). It is the region in
which all ambiguity ¯oat solutions are pulled to the
same ®xed ambiguity vector z.

Having de®ned the pull-in regions, we are now in a
position to give an explicit expression for the corre-
sponding integer ambiguity estimator. It reads

�a �
X
z2Zn

zsz�â� with sz�â� � 1 if â 2 Sz

0 otherwise

�
�6�

Since the pull-in regions de®ne the integer estimator
completely, we can de®ne a class of integer estimators by
listing properties of these pull-in regions. In this section
we introduce three properties for which it seems
reasonable that they are possessed by the pull-in regions.

It seems reasonable to ask of the pull-in regions that
their union covers the n-dimensional space completely[
z2Zn

Sz � Rn �7�

Otherwise we would have gaps, in which case not every
â 2 Rn could be assigned to a corresponding integer
ambiguity vector.

Another property that we require of the pull-in-re-
gions is that any two distinct regions should not have an
overlap. Otherwise we could end up in a situation where
a ¯oat solution â 2 Rn cannot be assigned uniquely to
a single integer vector. For the interior points of two
distinct pull-in regions we therefore require

Sz1

\
Sz2 � ;; 8 z1; z2 2 Zn; z1 6� z2 �8�

We allow the pull-in regions to have common bound-
aries, however. This is permitted if we assume zero
probability that â lies on one of the boundaries. This will
be the case when the probability density function (pdf)
of â is continuous.

The third and last property asked is that the integer
map F possesses the property that F �x� z� �
F �x� � z; 8 x 2 Rn; z 2 Zn. This property is also a
reasonable one to request. It states that when the ¯oat
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solution is moved by an integer amount z, the corre-
sponding integer solution is moved by the same integer
amount. This property allows one to use the `integer
remove±restore' technique: F �âÿ z� � z � F �â�. It
therefore allows us to work with the fractional parts of
the entries of â, instead of with its complete entries,
which may sometimes be large numbers.

The integer remove±restore property implies that

Sz1�z2 � fx 2 Rn j z1 � z2 � F �x�g
� fx 2 Rn j z1 � F �x� ÿ z2 � F �xÿ z2�g
� fx 2 Rn j z1 � F �y�; x � y � z2g
� Sz1 � z2; 8 z1; z2 2 Zn:

Hence, it means that the pull-in regions are translated
copies of one another. This third property may therefore
also be stated as

Sz � z� S0; 8 z 2 Zn �9�
with S0 being the pull-in region of the origin of Zn.

Integer ambiguity estimators that possess all three of
the above stated properties form a class. This class will
be referred to as the class of admissible integer ambi-
guity estimators. It is de®ned as follows.

De®nition. The integer estimator �a �Pz2Zn zsz�â� is said
to be admissible if

1.
S

z2Zn Sz � Rn

2. Sz1

T
Sz2 � ;; 8 z1; z2 2 Zn; z1 6� z2

3. Sz � z� S0; 8 z 2 Zn

Various integer estimators exist that belong to this class.
As the de®nition shows, one way of constructing
admissible estimators is to choose a subset S0 such that
its translated copies cover Rn without gaps and overlaps.
In two dimensions this can be achieved, for instance,
by choosing S0 as the unit square centred at the origin.

3 Examples of admissible estimators

In this section three di�erent admissible integer estima-
tors are considered. All three of them have been in use,
in one way or another, for GPS ambiguity resolution.
They are the `rounding' estimator, the `bootstrapped'
estimator and the LS estimator.

3.1 Integer rounding

The simplest way to obtain an integer vector from the
real-valued ¯oat solution is to round each of the entries
of â to its nearest integer. The corresponding integer
estimator reads therefore

�aR � ��â1�; . . . ; �ân��T �10�
where `[�]' denotes rounding to the nearest integer. This
estimator is clearly admissible. The ®rst two conditions

of the de®nition are satis®ed, since ± apart from ties in
rounding ± any ¯oat solution â 2 Rn gets mapped to
a unique integer vector. The third condition is also
satis®ed since rounding admits the integer remove±
restore technique, that is, �xÿ z� � z � �x�; 8 x 2 R; z 2 Z.

Since componentwise rounding implies that each
real-valued ambiguity estimate âi; i � 1; . . . ; n, is map-
ped to its nearest integer, the absolute value of the
di�erence between the two is at most 1/2. The pull-in
regions SR;z that belong to this integer estimator are
therefore given as

SR;z � \n
i�1
�

x 2 Rn j j xi ÿ zi j � 1
2g ; 8 z 2 Zn �11�

They are n-dimensional cubes, centred at z 2 Zn, all
having sides of length one.

3.2 Integer bootstrapping

Another relatively simple integer ambiguity estimator is
the bootstrapped estimator (Blewitt 1989; Dong and
Bock 1989). The bootstrapped estimator can be seen as a
generalization of the previous estimator. It still makes
use of integer rounding, but it also takes some of the
correlation between the ambiguities into account. The
bootstrapped estimator follows from a sequential con-
ditional LS adjustment and it is computed as follows.
If n ambiguities are available, we start with the ®rst
ambiguity â1, and round its value to the nearest integer.
Having obtained the integer value of this ®rst ambiguity,
the real-valued estimates of all remaining ambiguities
are then corrected by virtue of their correlation with the
®rst ambiguity. Then the second, but now corrected,
real-valued ambiguity estimate is rounded to its nearest
integer. Having obtained the integer value of the second
ambiguity, the real-valued estimates of all remaining
nÿ 2 ambiguities are then again corrected, but now by
virtue of their correlation with the second ambiguity.
This process is continued until all ambiguities are
considered. The components of the bootstrapped esti-
mator �aB are given as

�aB;1 � �â1�
�aB;2 � �â2j1� � �â2 ÿ râ2â1r

ÿ2
â1 �â1 ÿ �aB;1��

..

.

�aB;n � �ânjN � �
h
ân ÿ

Xnÿ1
i�1

rânâijI r
ÿ2
âijI �âijI ÿ �aB;i�

i
�12�

where the shorthand notation âijI stands for the ith LS
ambiguity obtained through a conditioning on the
previous I � f1; . . . ; �iÿ 1�g sequentially rounded am-
biguities.

The bootstrapped estimator is admissible. The ®rst
two conditions of the de®nition are satis®ed, since ±
apart from ties in rounding ± any ¯oat solution gets
mapped to a unique integer ambiguity vector. The in-
teger remove±restore technique again applies. To see
this, let �a0B be the bootstrapped estimator which corre-
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sponds with â0 � âÿ z. It then follows from Eq. (12)
that �aB � �a0B � z.

The real-valued sequential conditional LS solution
can be obtained by means of the triangular decompo-
sition of the ambiguity variance±covariance matrix. Let
the LDU decomposition of the variance±covariance
matrix be given as Qâ � LDLT , with L a unit lower tri-
angular matrix and D a diagonal matrix. Then
�âÿ z� � L�âc ÿ z�, where âc denotes the conditional LS
solution obtained from a sequential conditioning on the
entries of z. The variance±covariance matrix of âc is
given by the diagonal matrix D. This shows, when a
componentwise rounding is applied to âc, that z is the
integer solution of the bootstrapped method. Thus �aB
satis®es �Lÿ1�âÿ �aB�� � 0. Hence, if ci denotes the ith
canonical unit vector having a 1 as its ith entry, the pull-
in regions SB;z that belong to the bootstrapped estimator
follow as

SB;z � \n
i�1 x 2 Rn j j cT

i Lÿ1�xÿ z� j� 1
2

� 	
; 8 z 2 Zn

�13�

Note that these subsets reduce to the ones of Eq. (11)
when L becomes diagonal. This is the case when the
ambiguity variance±covariance matrix is diagonal. In
that case the two integer estimators �aR and �aB are
identical.

3.3 Integer LS

The integer LS estimator is de®ned as

�aLS � argmin
z2Zn
k âÿ z k2Qâ

�14�

where k � k2Qâ
� ���T Qÿ1â ���. This ambiguity estimator was

introduced for the ®rst time in Teunissen (1993). This
estimator is also admissible. Apart from boundary ties,
it produces a unique integer vector for any ¯oat solution
â 2 Rn. And since �aLS � argminz2Znk âÿ uÿ z k2Qâ

� u
holds true for any integer u, the integer remove±restore
technique again applies.

It follows from Eq. (14) that the ¯oat solutions â 2 Rn

which are mapped to the same integer vector �aLS are
those that lie closer to this integer vector than to any
other integer vector z 2 Zn. This shows that the LS pull-
in regions SLS;z consist of intersecting half-spaces, each
one of which is bounded by the plane orthogonal to
�cÿ z�; c 2 Zn and passing through the mid-point
1
2 �z� c�. Here, orthogonality is taken with respect to the
metric as de®ned by the ambiguity variance±covariance
matrix. Since â lies in one of these half-spaces when the
length of the orthogonal projection of �âÿ z� onto
�cÿ z� is less than or equal to half the distance between
c and z, it follows that

SLS;z � \c2Zn x 2 Rn j j wc�x� j� 1
2 k c kQâ

� 	
; 8 z 2 Zn

�15�

with

wc�x� � cT Qÿ1â �xÿ z����������������
cT Qÿ1â c

q
Note that �cÿ z� has been replaced by c in Eq. (15). This
is permitted since the intersection is taken with respect to
all c 2 Zn. Also note that wc is an example of the
well-known w-test statistic for testing one-dimensional
alternative hypotheses (Baarda 1968; Teunissen 1985).
The absolute values of wc are thus required to be no
larger than the `critical values' 1

2 k c kQâ .
In our comparison of �aR and �aB, we noted that the

two estimators became identical in the case that the unit
triangular matrix L reduced to the identity matrix. The
same holds true in the case of �aLS. Hence, all three es-
timators become identical in the case that the ambiguity
variance±covariance matrix is diagonal. This condition
can be relaxed, however, when comparing �aB with �aLS.
These two estimators will already have become identical
when all matrix entries of L are integer. This is the case
when L is an admissible ambiguity transformation
(Teunissen 1995). Thus, �aLS � �aB � L�Lÿ1â�.

4 Maximizing the ambiguity success rate

In this section the main result of this contribution is
discussed. So far, we have introduced a class of
admissible integer estimators and discussed some of its
members. We thus have now a variety of reasonable
integer estimators available. The question which arises
next is which of these estimators to choose? Does an
estimator exist which one can single out as being the
`best'? And how do we want to de®ne the quali®cation
`best'? The approach that will be followed here is a
probabilistic one. That is, we will use the probability
distribution of the integer estimator in order to decide
which estimator to choose. Since the integer estimator �a
is by de®nition of the discrete type, its distribution will
be a probability mass function (pmf). It will be denoted
as P ��a � z�, with z 2 Zn. In order to determine this
distribution, we ®rst need the pdf of â. The pdf of â will
be denoted as pa�x�, with x 2 Rn. The subscript is used
to show that the pdf still depends on the unknown
parameter vector a 2 Zn.

The pmf of �a can now be obtained as follows. Since
the integer estimator is de®ned as

�a � z , â 2 Sz �16�
it follows that P��a � z� � P �â 2 Sz�. The pmf of �a
therefore follows as

P ��a � z� �
Z

Sz

pa�x�dx ; 8 z 2 Zn �17�

The probability that �a coincides with z is therefore given
by the integral of the pdf pa�x� over the pull-in region
Sz � Rn.
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The pmf of �a can now be used to study various
properties of the integer estimator. In Teunissen
(1998b), for instance, the ®rst moments of the integer
ambiguity estimators were studied. It was shown that �a
is an unbiased estimator if pa�x� is symmetric about a
and Sz re¯ection-symmetric about z. All three estimators
�aR, �aB and �aLS are therefore unbiased in the case that the
pdf possesses the necessary property of symmetry. This
is the case, for instance, when pa�x� is a member of the
family of multivariate normal distributions. Note that
the re¯ection-symmetric property of the pull-in region is
not necessary for an integer estimator to be admissible.
Hence, the unbiased estimators are admissible, but ad-
missible estimators need not be unbiased.

Having the problem of GPS ambiguity resolution in
mind, we focus our attention in this contribution to the
chance of successful ambiguity resolution. That is, we
consider the probability of correct integer estimation.
This is given as

P ��a � a� � probability of correct integer estimation �18�

and it describes the reliability of ambiguity resolution in
terms of its expected success rate. Since unsuccessful
ambiguity resolution, when passed unnoticed, will all
too often lead to unacceptable errors in the positioning
results, we desire high success rates and therefore a
large value for P ��a � a�. It is therefore not only of
theoretical interest, but also of practical interest, to
know which integer estimator maximizes the ambiguity
success rate. It will be proven, for a general family of
pdfs, that of all admissible estimators it is the integer
LS estimator which maximizes Eq. (18). The pdfs that
we will consider all belong to the family of elliptically
contoured distributions. They are de®ned as follows
(Chmielewsky 1981).

De®nition. The random vector â 2 Rn is said to have an
elliptically contoured distribution if its pdf is of the form

pa�x� �
�������������������
det�Qÿ1â �

q
G�k xÿ a k2Qâ

� �19�

where G : R 7! �0;1� is decreasing and Qâ is positive-
de®nite.

Several important distributions belong to this family.
The multivariate normal distribution can be shown to be
a member of this family by choosing

G�x� � �2p�ÿn
2 exp ÿ 1

2 x
ÿ �

; x 2 R

Another member is the multivariate t-distribution.
Since we can formulate the LS pull-in regions for all

members of the family of elliptically contoured distri-
butions as SLS;z � fx 2 Rn j pz�x� � pu�x� ; 8 u 2 Zng,
it follows that

pa�x� �
X
z2Zn

sz�x�pz�x� ; 8 x 2 SLS;a �20�

with the indicator function

sz�x� � 1 x 2 Sz

0 otherwise

�
where Sz are the pull-in regions of an arbitrary
admissible integer estimator. When taking the integral
of Eq. (20) over SLS;a, we obtainZ

SLS;a
pa�x�dx �

X
z2Zn

Z
SLS;a\Sz

pz�x�dx �21�

We now apply the change of variable y � x� aÿ z and
obtain the following replacements: pz�x� ! pz�y ÿ a� z�
� pa�y�, SLS;a ! SLS;2aÿz and Sz ! Sa. HenceZ

SLS;a
pa�x�dx �

X
z2Zn

Z
SLS;2aÿz\Sa

pa�y�dy �
Z

Sa

pa�y�dy

�22�
where the last equality is a consequence of
[z2Zn SLS;2aÿz � Rn. On the left side of Eq. (22) we
recognize the probability of correct integer estimation of
the LS estimator and on the right side the probability of
correct integer estimation of any arbitrary admissible
integer estimator. This concludes the proof that the
integer LS estimator indeed maximizes the ambiguity
success rate. This result is summarized in the following
theorem.

Theorem. Let the integer LS estimator be given as

�aLS � argmin
z2Zn
k âÿ z k2Qâ

and the pdf of â as

pa�x� �
�������������������
det�Qÿ1â �

q
G�k xÿ a k2Qâ

�
where G : R 7! �0;1� is decreasing and Qâ is positive-
de®nite. Then

P ��aLS � a� � P ��a � a� �23�
for any admissible estimator �a.

With this theorem and a result of Teunissen (1998c)
we are now also in a position to order the three admis-
sible estimators �aR, �aB and �aLS in terms of their success
rates. From the theorem it follows that �aLS is better than
both �aR and �aB, and in Teunissen (1998c) it was shown
that �aB is again better than �aR. We thus have the or-
dering

P ��aR � a� � P ��aB � a� � P ��aLS � a� �24�
A very useful application of this result is that it shows
how one can lower-bound the probability of correct
integer LS estimation. This is particularly useful when
P ��aB � a� is used as lower bound. This probability can
be computed exactly and rather easily in case that the
pdf pa�x� is normal. As was shown in Teunissen (1997),
it can be computed as

P ��aB � a� �
Yn

i�1
2U

1

2râijI

 !
ÿ 1

 !
�25�
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with

U�x� �
Z x

ÿ1

1������
2p
p exp ÿ 1

2
y2

� �
dy

Such an easy way of evaluating the success rate is
usually not possible in case of the LS estimator.

When using Eq. (25) as the lower bound for
P ��aLS � a�, there is one important point to be recog-
nized. Since Eq. (25) depends only on the sequential
conditional standard deviations of â, it is generally not
invariant for the class of admissible ambiguity trans-
formations (Teunissen 1995). On the other hand, the
probability of correct integer LS estimation is invariant
for the class of admissible ambiguity transformations.
The lack of invariance in P ��aB � a� implies that we still
have some degrees of freedom for improving this prob-
ability so as to make it a sharper lower bound of
P ��aLS � a�.

The lower bound is usually particularly poor when
applied to the DD ambiguities. The lower bound be-
comes much sharper, however, when it is applied to
ambiguities which are almost decorrelated. Such ambi-
guities can be obtained by means of the decorrelating
ambiguity transformation of the LAMBDA method (see
e.g. Teunissen 1993; de Jonge and Tiberius 1996). Since
the transformed ambiguities obtained by this method
are far more precise than the original DD ambiguities,
the lower bound becomes sharper due to its increase
in value. Although other type of lower bounds for
P ��aLS � a� can be given, it is our experience that
P ��aB � a�, when applied to the decorrelated ambiguities,
is usually the best lower bound we obtain and very sharp
indeed. Finally, note that the additional computations
required for evaluating the lower bound are minimal.
Since the LAMBDA method is already used for e�-
ciently solving the integer LS problem, the sequential
conditional standard deviations of the transformed
ambiguities are available at no extra cost.

5 Summary

In this contribution a probabilistic justi®cation for using
the integer LS estimator has been given. It was shown
that when the pdf of the ambiguity ¯oat solution is a
member of the elliptically contoured distributions, the
integer LS estimator will have the largest success rate of
all admissible ambiguity estimators. The class of admis-
sible estimators was de®ned by means of the following
three properties of their pull-in regions:

1.
S

z2Zn Sz � Rn

2. Sz1
T

Sz2 � 0=; 8 z1; z2 2 Zn; z1 6� z2

3. Sz � z� S0; 8 z 2 Zn

The ®rst condition states that the pull-in regions should
not leave any gaps, the second that they should not
overlap and the third that the integer estimators should
admit the `integer remove±restore' technique. Various
admissible estimators exist, three of which are as
follows:

1. �aR � ��â1�; . . . ; �ân��T

2. �aB � ��â1�; . . . ; �ânjN ��T

3. �aLS � argminz2Zn k âÿ z k2Qâ

Their pull-in regions are shaped as the n-dimensional
versions of a square, a parallelogram and a convex
polygon respectively. The theorem given in this contri-
bution shows that

P ��aLS � a� � P ��a � a� for all admissible �a

In maximizing the success of GPS ambiguity resolution
we are thus better o� when using the integer LS
estimator than any other admissible ambiguity estima-
tor. As a direct consequence of the theorem we have

P ��aLS � a� � P ��aB � a� �
Yn

i�1

�
2U
� 1

2râijI

�
ÿ 1
�

where the last equality follows from Teunissen (1997).
This shows how the easily computed success rate of the
bootstrapped estimator can be used as the lower bound.
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