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Abstract. Three methods to construct positive de®nite
functions with compact support for the approximation
of general geophysical harmonic covariance functions
are presented. The theoretical background is given and
simulations carried out, for three types of covariance
functions associated with the determination of the
anomalous gravity potential from gravity anomalies.
The results are compared with those of the ®nite
covariance function of SansoÁ and Schuh (1987).
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1 Introduction

Spherical splines have been used in many branches of
geodesy to interpolate and to predict data discretely
given on the sphere (Freeden 1981, 1987; Wahba 1981,
1982; Schneider 1996). However, a spline problem
requires the solution of a positive de®nite system where
the left-hand-side matrix is a Gram matrix of a
harmonic kernel (covariance function). Because this
kernel is harmonic, its support covers the whole sphere
and so the matrix has in general no zero entries. But at
the same time and in most applications, there is an
appropriate angle of separation beyond which the kernel
values are negligibly small. Rygaard-Hjalsted et al.
(1997) showed that the Gram matrix of the truncated
covariance function is still positive de®nite in the case of
a geomagnetic ®eld and that the solution of this sparse
system is a good approximation to that of the full
system.

SansoÁ and Schuh (1987) built a so-called ®nite co-
variance function to approximate the real one in order
to substitute for the full positive de®nite linear system
a sparse one. Arabelos and Tscherning (1996) used
this ®nite covariance function for gravity modelling
and noticed reasonable results depending on di�eren-
tiation (gravity gradients from gravity) or integration
(geoid and gravity from gravity gradients). Neverthe-
less, as regards the model of SansoÁ and Schuh, the
results were encouraging enough for research to con-
tinue, i.e. to ®nd a ®nite approximation of the co-
variance function.

Schreiner (1997) built locally supported basis func-
tions for the spherical spline function, and found that
the Gram matrix associated with the reproducing kernel
is also sparse.

Both these methods have the main advantage of
generating sparse positive de®nite matrices which for a
grid with N � N values would contain about N3 non-
zero elements, while the full matrices would contain
about N 4=2 entries. Moreover, e�cient solvers can be
successfully used for such large sparse symmetric and
positive de®nite systems (George and Liu 1981).

In this paper, we present three techniques to ap-
proximate geophysical harmonic covariance functions
by ®nite supported positive de®nite functions. Because
each covariance function related to the anomalous po-
tential of the earth (Tscherning 1972) can be seen as the
spherical convolution of a so-called original function
with itself and because the convolution of a ®nite sup-
ported function with itself gives a ®nite positive de®nite
function with twice the support of the original one,
we approximate the covariance functions by the self-
spherical convolution of a ®nite supported approxima-
tion of the original function.

Our ®rst method is based on the simplest way to
approximate a function by a ®nite one, which is to cut it
after a given distance; for the second method we ap-
proximate the original function by a piecewise polyno-
mial which is also zero after a certain distance, whereas
in the third technique we approximate the self-convo-Correspondence to: G. Moreaux
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lution of the truncated original function by a summation
over the sphere.

In order to clarify the equations we decided to pres-
ent only the case where the measured points are on the
same sphere; nevertheless, our methods can be easily
generalized to any distribution of points.

The article is organized as follows: after some pre-
liminary facts given at the beginning of Sect. 2, we
present in Sects. 2.1, 2.2 and 2.3 the theoretical aspects
of our three methods; since the proofs of the di�erent
propositions of these sections are rather technical, they
are given an Appendix. Then, in Sect. 3.1, we apply the
three techniques to the approximation of three covari-
ance functions which occur in the determination of the
anomalous gravity potential from gravity anomalies,
and compare our results with the ones obtained by the
®nite covariance function of SansoÁ and Schuh (1987). In
Sect. 3.2 we show the impact of solving the sparse sys-
tem instead of the full one for the third covariance
function and with the ®rst technique. Conclusions are
drawn in Sect. 4.

2 Mathematical theory

For any point P 2 R3 di�erent from the origin we
may write P � rP nP , where nP 2 X1 � fP 2 R3jrP � 1g
(unit sphere). To be consistent we de®ne XR �
fP 2 R3jrP � Rg to be the sphere of radius R centered
at the origin and denote by Xe

R � fP 2 R3jrP > Rg the
outer space of XR.

As usual, D� denotes the Beltrami operator and
Ynm : X1 ! R are the spherical harmonics which are the
only eigenfunctions of D� corresponding to the eigen-
value kn � ÿn�n� 1�, i.e.
D�Ynm � knYnm n � 0; 1; . . . ; m � ÿn; . . . ;�n :

Furthermore, the set fYnmgm�ÿn;...;n
n�0;1;... is known to be

orthonormal and complete in L2�X1� with respect to
h�j�iL2�X1�.

The Legendre polynomials Pn : �ÿ1; 1� ! R are the
only everywhere on �ÿ1; 1� in®nitely di�erentiable
eigenfunctions of the Legendre operator
�1ÿ t2� d2=dt2 ÿ 2t d=dt corresponding to the eigenvalue
kn which satisfy Pn�1� � 1. We give below some of the
well-known properties of the Legendre polynomials
which we are going to use repeatedly. They can be found
in any standard mathematical handbook (e.g. Spiegel
1968; Heiskanen and Moritz 1967).

P0�t� � 1 �1�
P1�t� � t �2�

�n� 1�Pn�1�t� � �2n� 1�tPn�t� ÿ nPnÿ1�t� n � 1 �3�

�2n� 1�Pn�t� � P 0n�1�t� ÿ P 0nÿ1�t� n � 1 �4�
Z 1

ÿ1
Pn�t�Pm�t�dt � 2

2n� 1
dnm n;m � 0 : �5�

Moreover, the spherical harmonics and the Legendre
polynomials are connected by the addition theorem
(MuÈ ller 1966)

X�n

m�ÿn

Ynm�nP �Ynm�nQ� �
2n� 1

4p
Pn�nP � nQ�

� 2n� 1

4p
Pn�cosw�P ;Q�� ; �6�

where nP � nQ is the inner product of nP and nQ in R3 and
where w�P ;Q� denotes the spherical distance between
P and Q.

From the completeness of the spherical harmonics
and the addition theorem it follows that the ``Fourier''
expansion of F 2 L2�X1� can be written as

F �n� �
X�1
n�0

2n� 1

4p

Z
X1

F �g�Pn�n � g�dw�g� : �7�

De®nition. A function F : Xe
R � Xe

R ! R is called strictly
positive de®nite, if

XN

i�1

XN

j�1
mimjF �Pi; Pj� > 0 �8�

for all choices of pairwise distinct points
Pi�i � 1; 2; . . . ;N� and all non-zero vectors
�m1; m2; . . . ; mN �T 2 RN , and then its Gram matrix
F � �F �Pi; Pj��i;j is called positive de®nite. If equality
with zero is also allowed in Eq. (8), function F is called
positive de®nite and its Gram matrix F is called non-
negative de®nite.

Let N � N � f0; 1; 2; 3; . . . ; g and frngn be a se-
quence of real numbers such that for all q 2�0; 1�
X
n2N

2n� 1

4p
jrnjqn�1 <1 �9�

X
n2N

2n� 1

4p
r2

nq
n�1 <1 �10�

The subject of this study is the approximation of the
positive de®nite function K de®ned of Xe

R � Xe
R by

K�P ;Q� �
X
n2N

X�n

m�ÿn

r2
n

R2

rP rQ

� �n�1
Ynm�nP �Ynm�nQ�

�
X
n2N

2n� 1

4p
r2

nq�P ;Q�n�1Pn�cosw�P ;Q��

� K�q�P ;Q�;w�P ;Q�� �11�

The next proposition give the expression of the so-called
original function G associated with the positive de®nite
function K of Eq. (11). In terms of Freeden and
Schreiner (1998), the function K is also called the
iterated kernel of G.
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Proposition 1. For P ;Q 2 Xe
R, the function G de®ned on

Xe
R � XR by

G�P ;M� � 1

R

X
n2N

2n� 1

4p
rnq�P ;M�n�1Pn�cosw�P ;M��

� G�q�P ;M�;w�P ;M�� �12�
which satis®es

K�P ;Q� �
Z

XR

G�P ;M�G�Q;M�dw�M� �13�

is called the original function G associated with the
function K.

In order to simplify the next equations, we will only
consider the case where Xe

R � XR�h with h > 0 and thus,
for convenience, we introduce the real parameter q:

q � q�P ;M� � R
R� h

for P 2 XR�h and M 2 XR.
Therefore, the functions K [Eq. (11)] and G [Eq. (12)]

are now dependent on only the spherical distance, i.e.

K�P ;Q� � K�w�P ;Q��
�
X
n2N

2n� 1

4p
r2

nq
2�n�1�Pn�cosw�P ;Q�� �14�

G�P ;M� � G�w�P ;M��
� 1

R

X
n2N

2n� 1

4p
rnq

n�1Pn�cosw�P ;M�� �15�

2.1 Method 1

With this method, the so-called original function G
[Eq. (15)] is approximated by the function G1 which is its
truncation after a given angular distance a, and then the
iterated kernel K1 of G1, which is a positive de®nite
approximation of K [Eq. (14)], is by construction zero
for any angular distance larger than 2a.

Let us consider the new function G1 : XR�h � XR ! R
de®ned by

G1�P ;M� � G�P ;M� for w�P ;M� � a
0 else

�
�16�

as well as its so-called iterated kernel K1 : XR�h �
XR�h ! R

K1�P ;Q� �
Z

XR

G1�P ;M�G1�Q;M�dw�M�

�
Z

C�P�\C�Q�
G�P ;M�G�Q;M�dw�M� ; �17�

where

C�P � � fM 2 XRjw�P ;M� � ag

Proposition 2. The function K1 is strictly positive de®nite
on XR�h � XR�h.

Expanding G1 in terms of Legendre polynomials,
we have

G1�P ;M� � 1

R

X�1
n�0

2n� 1

4p
g1;n�a�Pn�cosw�P ;M�� �18�

and thus from Eq. (17) we arrive at

K1�P ;Q� �
X�1
n�0

2n� 1

4p
g21;n�a�Pn�cosw�P ;Q�� �19�

The Legendre coe�cients g1;n�a� of Eq. (18) are given
by

g1;n�a� � 2p
R

Z
XR

G1�P ;M�Pn�cosw�P ;M��dw�M�

�
X
k2N

2k � 1

2
rkq

k�1
Z 1

cos a
Pk�t�Pn�t�dt

�
X
k2N

2k � 1

2
rkq

k�1Ik;n�cos a; 1� ; �20�

where

Ik;n�t1; t2� �
Z t2

t1
Pk�t�Pn�t�dt

is de®ned for t1; t2 2 �ÿ1; 1�.
Expressions of Ik;n�ÿ1; t2� are available in Paul

(1973b). Meanwhile, as for k 6� n Ik;n�ÿ1; t2� depends on
Pk�t2� and Pn�t2�, and as the computation In;n�ÿ1; t2�
requires the evaluation In�1;nÿ1�ÿ1; t2�, we decided to
show some new relations on Ik;n�t1; t2� involving only
Legendre polynomial di�erences, which can be obtained
very quickly and with very good accuracy by the Clen-
shaw technique (Tscherning and Poder 1982), and where
only some Il;p�t1; t2� appear for l � k; p � n.

Because Ik;n � In;k we only have to compute these
quantities for n � k � 0.

From Eqs. (1) and (3) we obtain for n � 1

I0;0�t1; t2� � t2 ÿ t1 �21�

�2n� 1�I0;n�t1; t2� � �Pn�1�t� ÿ Pnÿ1�t��t2t1 �22�
A straightforward integration of Eq. (4) yields for n � 1

�2n� 1�I1;n�t1; t2�
� �n� 1� I0;n�1�t1; t2� � nI0;nÿ1�t1; t2� �23�

and for k � 2; n � 1 we ®nd from Eq. (3) that

k�2n� 1�Ik;n�t1; t2�
� �2k ÿ 1��n� 1�Ikÿ1;n�1�t1; t2�
� �2k ÿ 1�nIkÿ1;nÿ1�t1; t2�
ÿ �k ÿ 1��2n� 1�Ikÿ2;n�t1; t2� �24�

Furthermore, we also obtain from Eq. (4) for k � 2 and
n � 1
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�2k ÿ 1�Ikÿ1;n�1�t1; t2�
� ��Pk�t� ÿ Pkÿ2�t���Pn�1�t� ÿ Pnÿ1�t���t2t1
ÿ �2n� 1�Ik;n�t1; t2� � �2n� 1�Ikÿ2;n�t1; t2�
� �2k ÿ 1�Ikÿ1;nÿ1�t1; t2� : �25�

Combining Eqs. (24) and (25) we arrive at �k; n � 2�
�k � n� 1�Ik;n�t1; t2�
� n� 1

2n� 1
��Pk�t� ÿ Pkÿ2�t���Pn�1�t� ÿ Pnÿ1�t���t2t1 �26�

� �nÿ k � 2�Ikÿ2;n�t1; t2�
� �2k ÿ 1�Ikÿ1;nÿ1�t1; t2� �27�

and for t2 � 1, because Pn�1� � 1; n � 0, we have for
k � 2 and n � 1

�Pn�1�t� ÿ Pnÿ1�t��1t1 � Pnÿ1�t1� ÿ Pn�1�t1� �28�
��Pk�t� ÿ Pkÿ2�t���Pn�1�t� ÿ Pnÿ1�t���1t1
� ÿ�Pk�t1� ÿ Pkÿ2�t1���Pn�1�t1� ÿ Pnÿ1�t1��
� ÿ�2k ÿ 1��2n� 1�I0;kÿ1�t1; 1�I0;n�t1; 1� : �29�

The next proposition gives an estimation of the di�er-
ence between the positive de®nite functions K and K1.

Proposition 3. Let a � 0 and P ;Q 2 XR�h. If w�P ;Q� >
2a, then

jK�P ;Q� ÿ K1�P ;Q�j � jK�P ;Q�j
else

jK�P ;Q� ÿ K1�P ;Q�j � c�P ;Q�G�0�max
w>a
jG�w�j ;

where

c�P ;Q� �
Z

XRn C�P�\C�Q�� �
dw�M�

2.2 Method 2

In this section, we approximate the function G of Eq. (15)
by a piecewise polynomial G2 which is zero after a given
angular distance a and build its iterated kernel K2 to
approximate the positive de®nite function K of Eq. (14).

For the following discretization of the interval �0; a�:
0 � a0 < a1 < � � � < al � a

aiÿ1 � ai0 < ai1 < � � � < aid � ai

i � 1; 2; . . . ; l; d 2 Nnf0g
we de®ne the function pd by

pd�cosw� �
p1d�cosw� for a0 � w � a1

..

. ..
. ..

.

pld�cosw� for alÿ1 � w � al ;

8><>: �30�

where the polynomials pid de®ned on [ÿ1; 1] given by

pid�t� �
Pd

k�0 aiktk�i � 1; 2; . . . ; l� satisfy
pid�cos aij� � G�aij� j � 0; . . . ; d :

Let us now introduce the new function G2 : XR�h �
XR ! R de®ned by

G2�P ;M� � pd�cosw�P ;M�� for cosw�P ;M� � a
0 otherwise

�
�31�

as well as its so-called iterated kernel K2 : XR�h �
XR�h ! R

K2�P ;Q� �
Z

XR

G2�P ;M�G2�Q;M�dw�M� �32�

Lemma. The function K2 is strictly positive de®nite on
XR�h � XR�h.

G2 can be expressed in term of Legendre polynomials
by

G2�P ;M� � 1

R

X�1
n�0

2n� 1

4p
g2;n�a�Pn�cosw�P ;M�� �33�

and thus

K2�P ;Q� �
X�1
n�0

2n� 1

4p
g22;n�a�Pn�cosw�P ;Q�� : �34�

The Legendre coe�cients g2;n�a� of Eq. (33) are given by

g2;n�a� � 2p
R

Z
XR

G2�P ;M�Pn�cosw�P ;M��dw�M�

� 2pR
Xl

i�1

Xd

k�0
aik

Z cos aiÿ1

cos ai

tkPn�t�dt

� 2pR
Xl

i�1

Xd

k�0
aikJk;n�cos ai; cos aiÿ1� ; �35�

where the integrals Jk;n are de®ned by

Jk;n�t1; t2� �
Z t2

t1
tkPn�t�dt

for t1; t2 2 �ÿ1; 1�.
Straightforward integrations yield

�k � 1�Jk;0�t1; t2� � tk�1
2 ÿ tk�1

1 k � 0 �36�

�k � 2�Jk;1�t1; t2� � tk�2
2 ÿ tk�2

1 k � 0 �37�

�2n� 1�J0;n�t1; t2� � �Pn�1�t� ÿ Pnÿ1�t��t2t1 n � 1 �38�
From the recurrence formula of Eq. (3) we have for
k � 0; n � 1

�2n� 1�Jk�1;n�t1; t2�
� �n� 1�Jk;n�1�t1; t2� � nJk;nÿ1�t1; t2� : �39�
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Furthermore, multiplying Eq. (4) by tk and by partial
integration, we obtain for k; n � 1

�2n� 1�Jk;n�t1; t2�
� k�Jkÿ1;nÿ1�t1; t2� ÿ Jkÿ1;n�1�t1; t2��
� �tk�Pn�1�t� ÿ Pnÿ1�t���t2t1 : �40�

Combining Eqs. (39) and (40), we arrive at the following
formulas �k � 0; n � 1�:
�k � n� 2�Jk;n�1�t1; t2�
� �k ÿ n� 1�Jk;nÿ1�t1; t2� � �tk�1�Pn�1�t� ÿ Pnÿ1�t���t2t1

�41�

�k � n� 2��2n� 1�Jk�1;n�t1; t2�
� �k � 1��2n� 1�Jk;nÿ1�t1; t2�
� �n� 1��tk�1�Pn�1�t� ÿ Pnÿ1�t���t2t1 : �42�

Proposition 4. Let a � 0 and P ;Q 2 XR�h. If w�P ;Q� >
2a then

jK�P ;Q� ÿ K2�P ;Q�j � jK�P ;Q�j
else

jK�P ;Q� ÿ K2�P ;Q�j � W W�
����������
K�0�

ph i
where

W2 �
Xl

i�1
max

aiÿ1<h<ai

jg�d�1��cos h�j
�d � 1�!

� �2

�
Z ai

aiÿ1

Yd

k�0
�coswÿ cos aik�2 sinw dw

�
Z p

a
G2�w� sinw dw

g�cosw� � G�w� :

2.3 Method 3

Because the simplest expression of a positive de®nite
function F on Xe

R � Xe
R is given by

F �P ;Q� �
X

i

Fi�P �Fi�Q�

in this section, we approximate the positive de®nite
function K of Eq. (14) by a function K3 which has the
same expression as F where the equivalents of the
function Fi are obtained by discretization of the integral
of Eq. (13).

We introduce the subsets Xi
R � XR; i 2 I, such that[

i2I

XR
i � XR

_XR
i \ _Xj

R � ; for i 6� j ;

where _Xi
R is the interior of Xi

R and we associate to the
subsets Xi

R the points Mi 2 Xi
R. We denote the area of Xi

R
by c2i .

For i 2 I we de®ne the functions G3;i : XR�h ! R by

G3;i�P� � G�P ;Mi� for w�P ;Mi� � a
0 else

�
�43�

and thus, the positive de®nite function K can be
approximated by the function K3, with ®nite support
�0; 2a�, de®ned on XR�h � XR�h by

K3�P ;Q� �
X
i2I

c2i G3;i�P �G3;i�Q�

�
X

i2C3�P�\C3�Q�
c2i G3;i�P�G3;i�Q� �44�

with

C3�P � � fi 2 Ijw�P ;Mi� � ag :
Lemma. The function K3 is strictly positive de®nite on
XR�h � XR�h.

Remarks. By construction, the function K3 is non-
isotropic.

Let P1; . . . ; Pn be n points in XR�h, and denote by K3 and
by G3 the following Gram matrices:

G3�i; j� � cjG3;j�Pi�
K3�i; j� � K3�Pi; Pj�
Then we have

K3 � G3G
T
3 :

Because the matrix G3 is not necessarily lower triangular,
it cannot necessarily be the Cholesky factor of the
matrix K3 (

Proposition 5. Let a � 0 and P ;Q 2 XR�h. If w�P ;Q� >
2a then

jK�P ;Q� ÿ K3�P ;Q�j � jK�P ;Q�j
else

jK�P ;Q� ÿ K3�P ;Q�j
� W�P �W�Q� �

����������
K�0�

p
�W�P � �W�Q��

where

W2�P � � max
0<h<a

�g0�cos h��2

�
X

i2C3�P�

Z
Xi

R

�cosw�P ;M� ÿ cosw�P ;Mi��2dw�M�

�
X

i2InC3�P�

Z
Xi

R

G�P ;M�2dw�M�

g�cosw� � G�w� :
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3 Numerical examples

In this section we will apply the three techniques
described in Sect. 2 to the approximation of the
covariance functions associated with the determination
of the anomalous potential from gravity anomalies, for
which N � f2; 3; . . . ; 360g, q � R=�R� h� with
R � 6371 km and h � 200 km, i.e.

K�P ;Q� � k2q2
X360
n�2

�2n� 1��nÿ 1�2
4p

� r2
nq

2�n�1�Pn�cosw�P ;Q��
� K�w�P ;Q�� ; �45�

where

1. rn � 1
2. rn � nÿ 1
3. rn � �nÿ 1�2 ;

and where the scale factor k is such that K�0� � 100.
Therefore, from Eq. (12), the original function G

associated with K is given by

G�P ;M� � k
R

X360
n�2

�2n� 1��nÿ 1�
4p

rnq
�n�2�Pn�cosw�P ;M��

� G�w�P ;M�� : �46�

3.1 Functions K, K1, K2, K3 and Ks

The ®nite covariance function Ks of SansoÁ and Schuh
(1987) will be used as a reference and so our results will be
comparedwith the ones obtain with this function given by

where the scale factor ks is such that

Ks�0� � K�0� � 100 :

As in Arabelos and Tscherning (1996), the real para-
meter b is chosen such that

Ks�w1� �
1

2
Ks�0� ;

where w1 satis®es

K�w1� �
1

2
K�0� :

The subroutines computing the correlation distance w1,
the value of b (Table 1) as well as the ®nite covariance
function Ks itself were extracted from the program
GEOCOL, version 12 (Tscherning 1997).

For each function r, we computed Kj�P1; Pi�,
j � 1; 2; 3, for the 500 points Pi 2 XR�h, given by

ri � 6571 km

hi � p=2

/i � �iÿ 1�=499a
such that w�P1; Pi� � a.

Only the ®rst 361 (n � 0; . . . ; 360) terms of expression
(17) of K1 were computed.

We only have implemented the simplest application
of the second method in using polynomials pid of degree
d � 1 for i � 1; . . . ; 50 to construct the positive de®nite
function K2.

For the computations of K3 [Eq. (44)] we opted for:

Mi � R; h�Mi�;/�Mi�� �
Xi

R � M 2 XRjjhÿ h�Mi�j � p=720f ;

j/ÿ /�Mi�j � p=720g ;
where

h�Mi� � �2��iÿ 1�=720� � 1� � p=720

/�Mi� � 2�iÿ 720� ���iÿ 1�=720� � 1� ÿ 1� � � p=720 :

The real variables a associated with these three functions
K, taken such that

G�w� � ÿ 1

100
G�0� �48�

are shown in Table 1.
The positive de®nite function K3 is not by de®nition

isotropic, as are the functions K, K1, K2 and Ks, but
nevertheless similar results as the ones which will be
shown were obtained for di�erent con®gurations of
points Pi.

In Fig. 1a (resp. Fig. 1b, c, d) the covariance function
K of gravity anomalies associated with rn � 1, the cor-
responding ®nite one K1 (resp. K2, K3, Ks), as well as
their di�erences, are shown. The statistics of K ÿ Ki
(i � 1; 2; 3; s) are available in Table 2.

Ks�w� � ks

1
3 b6pÿ 1

2 b4w2p� 1
3 b4w� 4

3 b2w3 ÿ 1
12w5

ÿ ����������������������
b2 ÿ w

2

� �2r
� b4w2 ÿ 2

3 b6
ÿ �

arcsin w
2b for w � 2b

0 otherwise ;

8>>>><>>>>: �47�

Table 1. Angles a;b and maximum in absolute value of K asso-
ciated with the three functions r

rn

1 n ) 1 (n ) 1)2

a 5.8227° 4.1730° 3.0265°
b 1.7401° 1.1640° 0.8770°
max
w�2a
jK�q;w�j 0.2228 0.1126 0.0837
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Figure 2 and Table 3 (resp. Fig. 3, Table 4) are the
corresponding ones for rn � nÿ 1 [resp. rn � �nÿ 1�2].

Because the shapes of the curves representing the
Legendre coe�cients g1;n�a� and g2;n�a�, for
n � 0; 1; . . . ; 360, are analogous for each choice of r, we
show only the ®rst ones in Figs. 1e, 2e and 3e.

3.2 System solutions involving K and K1

In the last section, we saw that our ®nite positive de®nite
functions Ki (i � 1; 2; 3) give good approximations of the
positive de®nite functions K for the three choices of r.

Fig. 1. a Functions K (solid), K1 (long dashes) and K ÿ K1 (dashed)
associated with rn � 1. b Functions K (solid), K2 (long dashes) and
K ÿ K2 (dashed) associated with rn � 1. c Functions K (solid), K3

(long dashes) and K ÿ K3 (dashed) associated with rn � 1. d Functions
K (solid), Ks (long dashes) and K ÿ Ks (dashed) associated with rn � 1.
e Coe�cients g1;n�a� associated with rn � 1

Table 2. Statistics of the di�erences between K, K1, K2, K3 and Ks

associated with rn � 1 in �P1; Pi�. Unit: mGal2

K ÿ K1 K ÿ K2 K ÿ K3 K ÿ Ks

Min )1.9261 )1.9223 )1.9155 )5.7340
Max 0.6619 0.6663 0.6607 0.7344
Mean )0.3316 )0.3936 )0.3119 )1.7180
SD 0.8668 0.8144 0.8494 1.9091
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However, as the main idea of building such ®nite
functions is to replace a time-consuming system

K� x � b �49�
by a sparse one, i.e.

Ki � xi � b ; �50�
where K (resp. Ki) is the Gram matrix associated with
the function K (resp. Ki), it is now interesting to see the
error generated by this substitution.

Because the results obtained in Sect. 3.1 by our three
methods are very close, we decided to do this test with
only the ®rst method, where the upper limit of the
summation is still 360, and for the last choice of r
(rn � �nÿ 1�2�.

Let b � �100; . . . ; 100� 2 R1681 and b1 be given by

b1 � K� �K1�ÿ1 � b : �51�
For these tests we used the 1681 points of XR�h shown
by Fig. 4 for which the matrices K and K1 are positive
de®nite.

Fig. 2. a Functions K (solid), K1 (long dashes) and K ÿ K1 (dashed)
associated with rn � nÿ 1. b Functions K (solid), K2 (long dashes)
and K ÿ K2 (dashed) associated with rn � nÿ 1. c Functions K
(solid), K3 (long dashes) and K ÿ K3 (dashed) associated with

rn � nÿ 1. d Functions K (solid), Ks (long dashes) and K ÿ Ks
(dashed) associated with rn � nÿ 1. e Coe�cients g1;n�a� associated
with rn � nÿ 1
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Table 3. Statistics of the di�erences between K;K1;K2;K3 and Ks
associated with rn � nÿ 1 in �P1; Pi�. Unit: mGal2

K ÿ K1 K ÿ K2 K ÿ K3 K ÿ Ks

Min )1.2550 )1.2493 )1.5363 )11.7296
Max 0.6410 0.6835 0.6469 1.4968
Mean )0.0314 )0.0751 )0.0601 )2.5124
SD 0.5458 0.5328 0.5863 3.9512

Fig. 3. a Functions K (solid), K1 (long dashes) and K ÿ K1 (dashed)
associated with rn � �nÿ 1�2. b Functions K (solid), K2 (long dashes)
and K ÿ K2 (dashed) associated with rn � �nÿ 1�2. c Functions K
(solid), K3 (long dashes) and K ÿ K3 (dashed) associated with

rn � �nÿ 1�2. d Functions K (solid), Ks (long dashes) and K ÿ Ks
(dashed) associated with rn � �nÿ 1�2. e Coe�cients g1;n�a� associ-
ated with rn � �nÿ 1�2

Table 4. Statistics of the di�ferences between K;K1;K2;K3 and Ks
associated with rn � �nÿ 1�2 in �P1; Pi�. Unit: mGal2

K ÿ K1 K ÿ K2 K ÿ K3 K ÿ Ks

Min )0.7930 )0.7847 )1.1033 )16.1764
Max 0.4191 0.4618 0.4348 1.8896
Mean 0.0236 )0.0057 0.0054 )2.9910
SD 0.3423 0.3397 0.3479 5.5917
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Figure 5 represents a plot of the di�erence bÿ b1
associated with the function rn � �nÿ 1�2 as a function
of longitude and latitude; statistics are shown in Table 5.

The multi-banded matrix K1 (Fig. 6) with 49 177 non-
zero elements is 1.74% full, while its banded (bandwidth
= 124) Cholesky factor (Fig. 7.) with 196 990 non-
zero elements is 6.97% full.

4 Conclusions

The ®rst experiments (Sect. 3.1) proved that our three
functions K1, K2 and K3 are a better ®nite approximation

of the covariance function K than the ®nite covariance
function Ks, independently of the choice of the function
r. We can also note that the results of K1, K2 and K3 are
very close, and the larger the absolute value of the
minimum of K is the larger is the ratio between the
means of K ÿ Ks and K ÿ Ki (i � 1; 2; 3), due to the fact
that the ®nite covariance function Ks is always positive.
Our results could be improved with a better choice of the
parameter a; the best one should be the second root of
the original function G, but as this root was close to 20�
for the three samples, we only worked with an approx-
imation of it [Eq. (48)]. We also think that it should be
better to use a cubic spline for the approximation of the
second method, with points Mi (Sect. 3) equally spaced
with respect to the angular distance, other than the one
we used for the numerical tests (Sect. 3.1) associated
with the third technique or points Mi associated with
equal-area blocks Xi

R (Paul 1973a).
Nevertheless, our three methods require both more

storage and more CPU time than the method of SansoÁ
and Schuh. There are two main reasons for this: the ®rst
one is that the functions K1, K2 and K3 do not have a
®nite expression as Ks, and the second reason is that the

Fig. 4. Data coverage

Fig. 5. Di�erence between the vectors b and b1 (mGal)

Table 5. Statistics of the di�erence between b and b1 associated
with rn � �nÿ 1�2. Unit: mGal

bÿ b1

Min )3.7521
Max 0.1259
Mean )2.9160
SD 0.8623

Fig. 6. Positions of non-zero entries in the Gram matrix K1

Fig. 7. Positions of non-zero entries in the Cholesky factor of K1
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supports of our three functions are bigger than those of
Ks (Table 1) so our Gram matrices Ki (i � 1; 2; 3) are less
sparse than Ks. Moreover, in the case of a covariance
function K with ®nite expression, its Gram matrix is
built in less time than the time used by our three
methods, especially the third one, but this di�erence in
time is largely compensated for in solving the system
because the solution of a full positive de®nite linear
system is attained in about n3=3� 2n2 ¯ops (¯oating
point operations per second) for a Cholesky decompo-
sition instead of the np2 � 7np � 2n ¯ops for a sparse
one with bandwidth p. The above ¯ops ratings are from
Golub and Van Loan (1996).

In Sect. 3.2 we showed the error generated by the use
of a sparse system associated with our ®rst technique
instead of the full original one, and from Fig. 8 and
Table 5 we see that this error is less than 4%. Because
the points (Fig. 7) used for this test were separated by 2�
and because the support of the ®nite covariance function
Ks of SansoÁ and Schuh was about 1:8�, the results with
this function were not good enough to be shown.

As a practical conclusion, our ®rst method seems to be
themost relevantmethod, compared to our other two and
also to the method of SansoÁ and Schuh. Because we only
worked with simple covariance functions and without
noisy data, we will test this ®rst method on more realistic
cases as was done in Arabelos and Tscherning (1996) for
the ®nite covariance function of SansoÁ and Schuh (1987),
which will be the subject of a following study.
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Appendix

1 Proof of proposition 1

By the summation theorem of Eq. (6), we have

G�P ;M� � 1

R

X
n2N

X�n

m�ÿn

rnq�P ;M�n�1Ynm�nP �Ynm�nM � :

Because the normalized spherical harmonics Ynm satisfyZ
XR

Ynm�nM �Yn0m0 �nM �dw�M� � R2dnn0dmm0

we obtainZ
XR

G�P ;M�G�Q;M�dw�M�

�
X
n2N

X�n

m�ÿn

r2
nq�P ;M�n�1q�Q;M�n�1Ynm�nP �Ynm�nQ�

�
X
n2N

2n� 1

4p
r2

nq�P ;Q�n�1Pn�cosw�P ;Q��

� K�P ;Q� :

2 Proof of proposition 2

Let Q1; . . . ;QI 2 Xe
R be pairwisely distinct. It is obvious

that the function K1 is positive de®nite, so we shall prove
that the functions eGi � eG1�Qi; �� are linearly indepen-
dent. Assume therefore that m1; . . . ; mI 2 R satisfy

Ĝ �PI
i�1 mieGi � 0. Since the function eGi is obtained

from G�Qi; �� by truncation, there exists an integer ci

such that eG�ci�
i is not continuous. Suppose now that a mi

(without loss of generality, say m1) is di�erent from zero.

In this case, the function Ĝ�c1� � m1eG�c1�1 � 0 is continu-
ous, but not eG�c1�1 , and so m1 � 0.

3 Proof of proposition 3

The expression of the error is obvious in the case
w�P ;Q� > 2a because there exists no point M such that
w�P ;M�;w�Q;M� � a and due to the fact that
G1�P ;M� � 0 for w > a.

For P ;Q 2 XR�h such that w�P ;Q� � 2a, we have

jK�P ;Q� ÿ K1�P ;Q�j

�
���� Z

XR

G�P ;M�G�Q;M�dw�M�

ÿ
Z

XR

G1�P ;M�G1�Q;M�dw�M�
����

�
���� Z

XRn�C�P�\C�Q��
G�P ;M�G�Q;M�dw�M�

����
� G�0�max

w>a
jG�w�j

Z
XRn�C�P�\C�Q��

dw�M� :

4 Proof of proposition 4

Due to the fact that G2�w� � 0 for a > a and because
for w�P ;Q� > 2a there exists no point M such that
w�P ;M�;w�Q;M� � a, then for w�P ;Q� > 2a we obvi-
ously have K�P ;Q� ÿ K2�P ;Q� � K�P ;Q�.

By de®nition of pid and by a well-known result on
Taylor expansion, for all w 2 �aiÿ1; ai� there exists
n 2 �aiÿ1; ai� such that

G�w� ÿ pid�cosw� � g�d�1��cos n�
�d � 1�!

Yd

k�0
�coswÿ cos aik�

and thus

jG�w� ÿ G2�w�j

� max
aiÿ1<h<ai

jg�d�1��cos h�j
�d � 1�!

Yd

k�0
j coswÿ cos aikj

Because
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G2�P ;M�G2�Q;M� ÿ G�P ;M�G�Q;M�
� �G�P ;M� ÿ G2�P ;M���G�Q;M� ÿ G2�Q;M��
ÿ G�P ;M��G�Q;M� ÿ G2�Q;M��
ÿ G�Q;M��G�P ;M� ÿ G2�P ;M�� ; �A1�

and with the triangle inequality, we have

jK�P ;Q� ÿ K2�P ;Q�j

�
���� Z

XR

G�P ;M� ÿ G2�P ;M�� � G�Q;M��

ÿG2�Q;M��dw�M�
����

�
���� Z

XR

G�P ;M� G�Q;M� ÿ G2�Q;M�� �dw�M�
����

�
���� Z

XR

G�Q;M� G�P ;M� ÿ G2�P ;M�� �dw�M�
���� :

By the Cauchy±Schwarz inequality we obtain

jK�P ;Q� ÿ K2�P ;Q�j

�
Z

XR

G�P ;M� ÿ G2�P ;M�� �2dw�M�
� �1=2

�
Z

XR

G�Q;M� ÿ G2�Q;M�� �2dw�M�
� �1=2

�
Z

XR

G�P ;M�2dw�M�
� �1=2

�
Z

XR

G�Q;M� ÿ G2�Q;M�� �2dw�M�
� �1=2

�
Z

XR

G�Q;M�2dw�M�
� �1=2

�
Z

XR

G�P ;M� ÿ G2�P ;M�� �2dw�M�
� �1=2

:

As the functions G and G2 are isotropic and as by
de®nitionZ

XR

G�P ;M�2dw�M� � K�P ; P � � K�0� ;

we obtain

jK�P ;Q� ÿ K2�P ;Q�j

�
Z

XR

G�P ;M� ÿ G2�P ;M�� �2dw�M�
� �1=2

�
Z

XR

G�P ;M� ÿ G2�P ;M�� �2dw�M�
� �1=2
"

�2
����������
K�0�

p #
:

The proof is completed by noting that

Z
XR

G�P ;M� ÿ G2�P ;M�� �2dw�M�

�
Z

C�P�
G�P ;M� ÿ G2�P ;M�� �2dw�M�

�
Z

XRnC�P�
G�P ;M�2dw�M�

�
Xl

i�1
max

aiÿ1<h<ai

jg�d�1��cos h�j
�d � 1�!

� �2

�
Z ai

aiÿ1

Yd

k�0
�coswÿ cos aik�2 sinwdw

�
Z p

a
G2�w� sinwdw :

5 Proof of proposition 5

Because for w�P ;Q� > 2a there exists no point M such
that w�P ;M�;w�Q;M� � a, then for w�P ;Q� > 2a we
obviously have K�P ;Q� ÿ K3�P ;Q� � K�P ;Q�.

From the Taylor theorem (Johnson and Riess 1982),
for all w 2 �0; a� there exists n 2 �0; a� such that

G�w� ÿ G�w0� � g0�cos n��coswÿ cosw0�
and thus

jG�q;w� ÿ G�q;w0�j � max
0<h<a

jg0�cos h�jj coswÿ cosw0j :

By de®nition of K and K3 we have

K�P ;Q� �
Z

XR

G�P ;M�G�Q;M�dw�M�

�
X
i2I

Z
Xi

R

G�P ;M�G�Q;M�dw�M�

K3�P ;Q� �
X
i2I

c2i G3;i�P �G3;i�Q�

�
X
i2I

Z
Xi

R

G3;i�P�G3;i�Q�dw�M� :

From Eq. (A1) and by the triangle inequality, we obtain

jK�P ;Q� ÿ K3�P ;Q�j

�
����X

i2I

Z
Xi

R

�G�P ;M� ÿ G3;i�P��

� �G�Q;M� ÿ G3;i�Q��dw�M�
����

�
����X

i2I

Z
Xi

R

G�P ;M��G�Q;M� ÿ G3;i�Q��dw�M�
����

�
����X

i2I

Z
Xi

R

G�Q;M��G�P ;M� ÿ G3;i�P ��dw�M�
���� ;
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and by the Cauchy±Schwarz inequality we obtain

jK�P ;Q� ÿ K3�P ;Q�j

�
X
i2I

Z
Xi

R

�G�P ;M� ÿ G3;i�P��2dw�M�
 !1=2

�
X
i2I

Z
Xi

R

�G�Q;M� ÿ G3;i�Q��2dw�M�
 !1=2

�
X
i2I

Z
Xi

R

G�P ;M�2dw�M�
 !1=2

�
X
i2I

Z
Xi

R

�G�Q;M� ÿ G3;i�Q��2dw�M�
 !1=2

�
X
i2I

Z
Xi

R

G�Q;M�2dw�M�
 !1=2

�
X
i2I

Z
Xi

R

�G�P ;M� ÿ G3;i�P ��2dw�M�
 !1=2

;

whereX
i2I

Z
Xi

R

G�P ;M�2dw�M� �
Z

XR

G�P ;M�2dw�M�

� K�P ; P�
� K�0� :

The proof is achieved with the next majorisation.X
i2I

Z
Xi

R

�G�P ;M� ÿ G3;i�P��2dw�M�

�
X

i2C3�P�

Z
Xi

R

�G�P ;M� ÿ G�P ;Mi��2dw�M�

�
X

i2InC3�P�

Z
Xi

R

G�P ;M�2dw�M�

�
X

i2C3�P�

Z
Xi

R

cosw�P ;M� ÿ cosw�P ;Mi�� �2dw�M�

� max
0<h<a

g0�cos h�� �2 �
X

i2InC3�P�

Z
Xi

R

G�P ;M�2dw�M� :
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