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Abstract. The de®nition of the mean Helmert anomaly
is reviewed and the theoretically correct procedure for
computing this quantity on the Earth's surface and on
the Helmert co-geoid is suggested. This includes a
discussion of the role of the direct topographical and
atmospherical e�ects, primary and secondary indirect
topographical and atmospherical e�ects, ellipsoidal
corrections to the gravity anomaly, its downward
continuation and other e�ects. For the rigorous deriva-
tions it was found necessary to treat the gravity anomaly
systematically as a point function, de®ned by means of
the fundamental gravimetric equation. It is this treat-
ment that allows one to formulate the corrections
necessary for computing the `one-centimetre geoid'.
Compared to the standard treatment, it is shown that
a `correction for the quasigeoid-to-geoid separation',
amounting to about 3 cm for our area of interest, has to
be considered. It is also shown that the `secondary
indirect e�ect' has to be evaluated at the topography
rather than at the geoid level. This results in another
di�erence of the order of several centimetres in the area
of interest. An approach is then proposed for determin-
ing the mean Helmert anomalies from gravity data
observed on the Earth's surface. This approach is based
on the widely-held belief that complete Bouguer anom-
alies are generally fairly smooth and thus particularly
useful for interpolation, approximation and averaging.
Numerical results from the Canadian Rocky Mountains
for all the corrections as well as the downward contin-
uation are shown.

Key words. Precise geoid determinations �Gravity
anomaly �Geodetic boundary value problem �
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1 Introduction

The investigation described in this contribution repre-
sents a continuation of the e�ort to come up with
su�ciently accurate boundary values on Helmert's co-
geoid for the solution of the Stokes±Helmert boundary
value problem. This problem can be formulated as the
determination of the geoid by means of a transformation
of the Stokes boundary value problem into Helmert's
space, where the Stokes problem represents the standard
free boundary value problem of geodesy. The term
`su�ciently accurate' is to be interpreted to mean such
boundary values that, given accurate and su�ciently
dense observed values of gravity, heights and topo-
graphical density, would guarantee a solution, the geoid,
accurate to one centimetre, notwithstanding the inaccu-
rate knowledge of the Earth's mass and thus the zero-
degree term. The working tool adopted in this contri-
bution is the spherical Stokes's theory (Stokes 1849).
The boundary values will thus be formulated for the
spherical model. The basic theory of the Stokes±Helmert
scheme was described by VanõÂ cÏ ek and Martinec (1994)
and used, in its embryonic form, in a geoid evaluation
for western Canada (VanõÂ cÏ ek et al. 1995).

This contribution will be working with quantities
from the real and Helmert spaces; the latter will be de-
noted by a superscript `h'. For the sake of brevity,
wherever possible, this superscript will be omitted. Not
all the derived formulae are original; there are other
investigators who have derived either identical, or very
similar expressions for some of the quantities discussed
here. The fact that their contributions are not cited here
should not be taken as a lack of respect: we refer to our
own publications only to demonstrate that all the for-
mulae used here were derived by us from ®rst principles.

2 Gravity disturbance

Let us begin with the known de®nition of the disturbing
(real, Helmert or other) potential
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T �r;X� � W �r;X� ÿ U�r;X� �1�
where W is the gravity (real, Helmert or other) potential,
U is the normal potential of Somigliana±Pizzetti type, r
is the geocentric distance, and X is the geocentric angle
denoting the pair �#; k�, the spherical co-latitude and
longitude. In the sequel, the arguments �r;X�, that is the
position in three dimensions, will sometimes be omitted
also for the sake of brevity, if there is no danger of
misinterpretation. Next, the radial derivative of the
disturbing potential is constructed as

oT
or
� oW

or
ÿ oU

or
�2�

Realizing that for any scalar S it can be written as

oS
or
� jgrad S j cos�grad S; er� �3�

where er is the unit vector in the radial direction, the
radial derivatives can be expressed as follows:

oW
or
� jgrad W j cos�grad W ; er� � g cos�grad W ; er�

�4�

oU
or
� jgrad U j cos�grad U ; er� � c cos�grad U ; er�

�5�
In Eqs. (4) and (5) g stands for gravity (real, Helmert or
other) and c stands for normal gravity generated by the
Somigliana±Pizzetti ®eld. Let us now denote the angle
between ÿg and er by bg, and the angle between ÿc and
er by bc. As these two angles will be su�ciently small, in
both real and Helmert spaces, they can be written to a
su�cient accuracy

cos�ÿgrad W ; er��: 1ÿ
b2

g

2
�6�

cos�ÿgrad U ; er��: 1ÿ
b2

c

2
�7�

Substituting Eqs. (4) and (5) back into Eq. (2) yields

oT
or
�: ÿg� c� g

2
b2

g ÿ
c
2

b2
c �8�

Here, it is recognized that the ®rst di�erence on the
right-hand side of Eq. (8) is the negative gravity
disturbance dg and the second di�erence is the ellipsoidal
correction to the gravity disturbance, i.e.

oT
or
�: ÿdg� �dg �9�

This correction was deemed too small to be signi®cant
by VanõÂ cÏ ek and Martinec (1994) in the original paper
describing the Stokes±Helmert technique. However, in
view of the adopted more stringent accuracy require-
ments it is now appropriate to revisit and re-evaluate

this ellipsoidal correction. Figure 1 shows the intersec-
tions of vectors er, ÿg, and ÿc at the point of interest,
with a unit sphere drawn around the point of interest,
where all vectors are projected onto a tangent plane to
the sphere at point er. These projected intersections are
denoted by the same symbols as the vectors. As the
angles of interest are very small, less than three minutes
of arc, to a su�cient accuracy they equal to the distances
between the projected intersections. Note that the angles
n and g are nothing other than the meridian and prime
vertical components of the de¯ection of the vertical
(VanõÂ cÏ ek and Krakiwsky 1986, Fig. 6.20). Referring to
Eq. (8) and Fig. 1, the ellipsoidal correction to the
gravity disturbance can be written as

�dg � g
2

h
�bc � n�2 � g2

i
ÿ c
2

b2
c �10�

which can also be written as

�dg � dg
b2

c

2
� gbcn�

g
2
�n2 � g2� �11�

The angle bc is simply the di�erence between geodetic
latitude u and geocentric latitude �p=2ÿ #�, and is given
by Bomford [1971, Eq. (A.48)]

bc � f sin 2u �12�
where f is the geometrical ¯attening of the reference
ellipsoid, and can reach a value of 3:35� 10ÿ3. Hence,
the ®rst term in Eq. (11) is less than 5:63� 10ÿ6 � dg.
Even for a very large value of dg, this will amount only
to a few lGal, and the ®rst term can thus be safely
neglected.

It can be seen that the expression in the brackets in
the third term of Eq. (11) is the square of the de¯ection
of the vertical h (real, Helmert or other), which, in turn,
is unlikely to be larger than 0:50 (it is assumed that
Helmert's de¯ections of the vertical are probably
smoother than the real de¯ections of the vertical ±
therefore, 0:50 may be too large an estimate of their
maximum value). Hence, the third term in Eq. (11) may
reach at most a magnitude of 10 lGal, and can be also
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Fig. 1. Angles involved in derivation of the ellipsoidal correction to
Helmert gravity disturbance

181



neglected. Thus, to an accuracy of 10lGal, the ellip-
soidal correction to the gravity disturbance may be
written as

�dg�r;X��: g�r;X�bc�X�n�r;X� �13�
and this quantity may reach a magnitude of up to
500 lGal.

For the test area in the Canadian Rocky Mountains
(43� � u � 60�N, 224� � k � 258�E), the ellipsoidal
correction to the gravity disturbance, estimated at the
geoid from the global geopotential model GFZ93a
(Gruber and Anzenhofer 1993), is between )118 and
�157 lGal. This quantity has been computed from Eq.
(13) for the test area and is shown in Fig. 2. This
translates approximately into an e�ect on the geoid of
between )0.7 and �1:4 cm as determined from Stokes'
integration of the ellipsoidal correction to the gravity
disturbance. A use of a di�erent geopotential model may
change these values slightly.

3 Gravity anomaly

The gravity disturbance dg is usually not considered a
`measurable' quantity on the surface of the Earth:
normal gravity c�rt;X� cannot routinely be evaluated on
the surface of the Earth �rt;X� as this requires the
knowledge of the geodetic height h of the point �rt;X�
above the reference ellipsoid. This height is, of course,
available from space-based techniques, but still only
very few gravity observations have a geodetic height
associated with them. Therefore, dg is transformed to a
more commonly available quantity, the gravity anomaly
Dg (real, Helmert or other).

The transformation of dg to Dg is usually achieved by
adding a term C�r;X� to the gravity disturbance. This
term accounts for the change in normal gravity due to
the di�erence between the geodetic height h and the
commonly available orthometric height Ho. More cor-
rectly, the term C�r;X� should account for the change in
normal gravity due to a (vertical) displacement ± let us
call this displacement Z�r;X� ± of the actual equipo-
tential surface (real, Helmert or other) with respect to
the equivalent normal equipotential surface at point
�r;X�. Here, it is assumed once again that the normal
gravity is generated by a ®eld the potential of which on
the reference ellipsoid is equal to the value of the actual
potential on the geoid.

In the previous paragraph, the term `more correctly'
is used to mean: to satisfy the so-called fundamental
gravimetric equation, Eq. (18). It is argued that the
fundamental gravimetric equation for the disturbing
potential (real, Helmert or other) should really be re-
garded as the de®ning equation for the corresponding
(real, Helmert or other) gravity anomaly. This is the way
in which this equation will be used here, and this is the
main motivation for the approach to the derivation of
the boundary values chosen here. Clearly, it does not
quite conform to the de®nition commonly used in the
geodetic literature.

It should be pointed out that the displacement Z�r;X�
has been employed in geodesy in di�erent contexts.
Thus, for instance, considered at points �rg;X� on the
Helmert co-geoid, Zh�rg;X� is the height Nh�X� of Hel-
mert's co-geoid above the reference ellipsoid. Consid-
ered at points �rt;X� on the Earth's surface in the real
space, Z�rt;X� is the height anomaly f�X� used in Mo-
lodenskij's approach (Molodenskij et al. 1960). As this
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displacement would be in absolute value at most 100m,
it can be written as

C�r;X� � jgrad cj Z�r;X��: oc�r;X�
on

Z�r;X� �14�

where, with a su�cient accuracy, the derivative of
normal gravity is taken with respect to the normal n to
the reference ellipsoid.

Using Bruns's formula [VanõÂ cÏ ek and Krakiwsky
1986, Eq. (21.4)], Eq. (14) can be rewritten to a su�cient
accuracy (VanõÂ cÏ ek and Martinec 1994) as

C�r;X� � T �r;X�
c�r;X�

oc�r;X�
on

�15�

In solving the boundary value problem of geodesy, it is
convenient to introduce into Eq. (15) the following
approximation:

1

c�r;X�
oc�r;X�

on
�: ÿ2

R
�16�

This is called the `spherical approximation' and the error
committed by this replacement requires another correc-
tion, called in the geodetic literature the ellipsoidal
correction for the spherical approximation; let us denote
this correction by �n. VanõÂ cÏ ek and Martinec [1994, Eq.
(29)] and others have shown that this correction has the
following form:

�n�r;X��: 2 m� f cos 2uÿ 1

3

� �� �
T �r;X�

R
�17�

where m is the `geodetic parameter', also called the
`Clairaut constant'. This correction may reach up to a
few hundreds of lGal, and must therefore be considered

in precise geoid determination. For the test area in the
Canadian Rocky Mountains, the correction, as estimat-
ed at the geoid from the global geopotential model
GFZ93a, is somewhat smaller, between )10 and
�18 lGal (see Fig. 3). This translates approximately
into an e�ect of up to 0:2 cm on the geoid as computed
from Stokes's integral. This correction is very small in
this area because the term in the square brackets in Eq.
(17) happens to tend to zero for the geodetic latitude of
about 55�.

Now, Eqs. (9) and (15) are combined to yield

oT �r;X�
or

� 2

R
T �r;X��: ÿdg�r;X� ÿ C�r;X� ÿ �n�r;X�

��dg�r;X� �18�
which is valid for the real, Helmert or any other
meaningful gravity ®eld. In Eq. (18), C�r;X� represents
the change in normal gravity when moving from point
�r;X� to the `corresponding' point �r ÿ Z;X� at which U
has the same value as W has at the original point �r;X�,
i.e.

U �r ÿ Z�r;X�;X� � W �r;X� �19�
Thus, the ®rst two terms on the right-hand side of Eq.
(18) can be written as

ÿdg�r;X� ÿ C�r;X� � ÿg�r;X� � c�r ÿ Z�r;X�;X� �20�
which is, by common understanding, nothing other than
the negative gravity anomaly Dg (real, Helmert or other)
at the point �r;X�. It has to be emphasized that the
argument developed above is valid for any point �r;X�.

Equation (18) can be rewritten in the form in which it
is usually presented, i.e.
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ÿ oT �r;X�
or

ÿ 2

R
T �r;X��: Dg�r;X� � �n�r;X� ÿ �dg�r;X�

�21�
where Dg�r;X� is a quantity that can be and has been
measured on the Earth's surface, and the two `ellipsoidal
correction terms' are given by Eqs. (13) and (17). It is the
quantity described by Eq. (21) on the Helmert co-geoid
that is used as the boundary value in the (spherical)
Stokes±Helmert formulation.

Note that �n�r;X� in Eq. (21) is a linear function of
the disturbing potential T �r;X�, the unknown quantity
in the boundary value problem of geodesy. Thus, this
ellipsoidal correction cannot be evaluated ahead of the
solution of the boundary value problem. However, it
can be evaluated iteratively, if such iterations converge
to the correct solution. It is normally assumed that since
these corrections are fairly small, one can use the exist-
ing knowledge of the Earth's gravity ®eld (in terms of a
global geopotential model) to obtain su�ciently accu-
rate estimates of their real values. This approach allows
them to be treated as a priori quantities so they can
remain on the right-hand side of Eq. (21). However, the
validity of this assumption has not yet been proved.
Alternatively, the ellipsoidal corrections may be added
to the left-hand side of Eq. (21) so they become part of
the boundary operator (i.e. one which transforms T into
the boundary values).

The second ellipsoidal correction, �dg�r;X�, is a linear
function of the meridian component n�r;X� of the de-
¯ection of the vertical and of gravity g. As n�r;X� is not
generally known, it can be evaluated from the disturbing
potential T �r;X�. It can be written, to a su�cient accu-
racy [VanõÂ cÏ ek and Krakiwsky 1986, Eq. (21.18)], as

n�r;X��: ÿ 1

R
oZ�r;X�

ou
�22�

and applying Bruns's formula gives

n�r;X��: ÿ 1

Rg�r;X�
oT �r;X�

ou
�23�

Substitution of Eq. (23) in Eq. (13) then yields

�dg�r;X��: ÿ
bc�X�

R
oT �r;X�

ou
�24�

giving �dg�r;X� also as a function of T . In this case,
�dg�r;X� can once again be evaluated from a global
geopotential model, or has to be added to the left-hand
side of Eq. (21) and treated in the same way as the ®rst
ellipsoidal correction (i.e. to be made part of the
boundary operator).

4 Evaluation of the Helmert gravity anomaly
on the surface of the Earth

Let us now concentrate on the evaluation of Helmert's
gravity anomaly on the Earth's surface from Eq. (20).

After inserting a superscript h to denote the quantities in
Helmert's space, the Helmert gravity anomaly is de®ned
as

Dgh�rt;X� � gh�rt;X� ÿ c�rt ÿ Zh�rt;X�;X� �25�
where �rt;X� denotes a point on the Earth's surface, and
�rt ÿ Zh�rt;X�;X� denotes the corresponding point (point
in the same direction X) on the telluroid (Molodenskij
et al. 1960) in Helmert space. Helmert's gravity gh�rt;X�
on the Earth's surface is obtained from the observed
gravity g�rt;X� on the Earth's surface, by adding to it
the direct topographical e�ect dAt�rt;X� and the direct
atmospherical e�ect dAa�rt;X�
gh�rt;X� � g�rt;X� � dAt�rt;X� � dAa�rt;X�

� g�rt;X� � odV t�r;X�
or

����
rt

�odV a�r;X�
or

����
rt

�26�

where the residual topographical potential dV t being
de®ned as a di�erence between the Newton potential
generated by the topographical masses and the potential
of the condensed layer [Martinec and VanõÂ cÏ ek 1994a,
Eq. (2)]

dV t�r;X� � V t�r;X� ÿ V ct�r;X� �27�
and similarly de®ned residual atmospherical potential
dV a

dV a�r;X� � V a�r;X� ÿ V ca�r;X� �28�
can easily be recognized. For details on the direct
topographical e�ect (DTE), see Martinec and VanõÂ cÏ ek
(1994b). The direct atmospherical e�ect will not be
discussed here either. Su�ce it to state that it can be
approximated by the atmospherical gravity correction
recommended by I.A.G. (1971).

It must be noted at this point that the DTE term is
also a function of topographical mass density. In the
®rst approximation, it is su�cient to replace the density
by its approximate mean value .0 � 2670 kg mÿ3. For
an accurate result, however, the actual topographical
mass density must be used (Martinec 1993), but this
problem is considered outside our interests in this paper.

Normal gravity on the telluroid in the Helmert space
is obtained by developing the Somigliana±Pizzetti for-
mula for normal gravity into a Taylor series. This is
carried out at the corresponding point on the reference
ellipsoid (VanõÂ cÏ ek and Martinec 1994) for the height of
the Helmert telluroid above the reference ellipsoid, i.e.
for the normal height �HN�h. This is shown in Fig. 4. In
practice, however, heights of gravity observations taken
on the Earth's surface are given in the orthometric
height system, i.e. as Ho, and the upward continuation
of normal gravity from the reference ellipsoid is com-
puted for Ho, instead of �HN�h. This is indeed the case in
Canada. The di�erence between the correct value of
normal gravity reckoned on the Helmert telluroid

c�rt ÿ Zh�rt;X�;X� � c�r0 � �HN�h�X�;X� �29�
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and the usually computed value c�r0 � Ho�X�;X� at the
height Ho above the reference ellipsoid can be expressed
as yet another correction. This will be called the
correction for orthometric height, which is to be added
to the standard computed value c�r0 � Ho�X�;X�. This
correction now has to be evaluated.

Recalling the de®nition of the normal height (Mo-
lodenskij et al. 1960)

HN�X� � Wo ÿ W �rt;X�
c�X� �30�

where Wo is the potential on the geoid and c�X� is the
mean value, in the integral sense, of normal gravity
between the reference ellipsoid and the telluroid. To
ensure that the Helmert normal height behaves in the
Helmert space in the same way as the normal height
behaves in the real space, the former is de®ned the same
way as the latter, i.e. as

�HN�h�X� � Wo ÿ W h�rt;X�
ch�X� �31�

where ch�X� is the mean value of normal gravity between
the reference ellipsoid and the Helmert telluroid. Note
that the co-geoid in the Helmert space has the same
gravitational potential as the geoid in the real space,
thus the term Wo is the same in both Eqs. (30) and (31).

In Eq. (31), ch�X� can be approximated by c�X�,
which results in an error in �HN�h�X� of much less than
1mm. Thus

�HN�h�X� ÿ HN�X��: W �rt;X� ÿ W h�rt;X�
c�X� �32�

where the di�erence W �rt;X� ÿ W h�rt;X� is easily
recognized to be the sum of the residual topographical
potential [see Eq. (27)] and the residual atmospherical
potential [see Eq. (28)]. Therefore

�HN�h�X��: HN�X� � dV t�rt;X�
c�rt;X� �

dV a�rt;X�
c�rt;X� �33�

where c�X� has been replaced by c�rt;X� with an asso-
ciated error of less than 1mm.

As it is intended to evaluate the correction to
c�ro � Ho�X�;X�, it is still necessary to relate the normal
height HN�X� in Eq. (33) to the orthometric height
Ho�X�. According to Heiskanen and Moritz [1967, Eq.
(8-103)], the di�erence in these two heights is, to a suf-
®cient accuracy, equal to

HN�X� ÿ Ho�X��: Ho�X�DgB�X�
c0�X�

�34�

where DgB�X� is the simple Bouguer anomaly [which will
be de®ned in Eq. (38)] and c0�X� is the value of normal
gravity on the reference ellipsoid. Note that Eq. (34) also
provides an estimate of the separation between the geoid
and quasigeoid (Molodenskij et al. 1960).

The correction for the orthometric height can now be
evaluated from Eqs. (33) and (34)

oc�X�
on

����
0

��HN�h�X� ÿ Ho�X�� �: oc�X�
on

����
0

� Ho�X� DgB�X�
c0�X�

� dV t�X�
c�rt;X� �

dV a�X�
c�rt;X�

� �
�35�

where the subscript 0 denotes that the quantity is
evaluated on the reference ellipsoid. This expression can
then be simpli®ed, with a su�cient accuracy, to

oc�X�
on

����
0

��HN�h�X� ÿ Ho�X�� �: ÿ 2

R
Ho�X� DgB�X�

ÿ 2

R
dV t�rt;X� ÿ 2

R
dV a�rt;X� �36�

Closer inspection of Eq. (36) reveals that the correction
for the orthometric height is nothing other than a sum of
a correction for the di�erence between the quasigeoid and
the geoid plus the correction for the secondary indirect
topographical (and atmospherical) e�ects on gravity at
the Earth's surface, SITE(rt;X) and SIAE(rt;X),
denoted by dct�rt;X� and dca�rt;X�. The mathematical
expression for the ®rst of these two e�ects on the geoid
under a spherical approximation was derived by
VanõÂ cÏ ek and Martinec [1994, Eq. (40)]. (It is acknowl-
edged that the ®rst term in Eq. (36) was neglected in the
cited paper.) The expression for the dct�rt;X� term on
the Earth's surface under a planar approximation is
derived in Appendix 1, Eq. (A9).

The values of the quasigeoid to geoid separation
correction for the test areas are plotted in Fig. 5, using
simple Bouguer anomalies and orthometric heights
available from the Geodetic Survey Division of Canada.
These values are between )189 and �23 lGal, which
translates approximately to a geoid correction between
)2.9 and )0.8, as obtained again from the Stokes inte-
gral. It is of interest to compare Fig. 5 with the topo-
graphical map of the area of interest, shown in Fig. 6.

The values of the secondary indirect topographical
e�ect (SITE) on Helmert gravity on the Earth's surface
for our area of interest range between )20 and
�17 lGal, and its e�ect on the geoid is in absolute
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value smaller than 0:1 cm. Clearly, only the ®rst cor-
rection is signi®cant at the accuracy level we are in-
terested in, and has to be considered in any
computation of the geoid at the one-centimetre level of
accuracy. As the maximum value of dca�rt;X� in our
area of interest is in absolute value smaller than 2lGal,
it does not have to be considered and is not going to be
shown here.

Finally, Eq. (25) can be rewritten as follows:

Dgh�rt;X� � gh�rt;X� ÿ c�rt ÿ Zh�rt;X�;X�
� g�rt;X� ÿ c�ro � Ho�X�;X�
� 2

R
Ho�X�DgB�X� � dct�rt;X� � dca�rt;X�

� dAt�rt;X� � dAa�rt;X� �37�
where the di�erence in the ®rst two terms on the right-
hand side is easily recognized as the standard free-air
gravity anomaly. Note that we neither need, nor want to
specify just which surface the free-air anomaly is
`referred to'. Based on the understanding of the
fundamental gravimetric equation employed here, this
is considered to be a contentious point and is not
addressed here. The direct e�ects originate in the
transformation of the observed gravity from the real
space to the Helmert space, while the quasigeoid-to-
geoid correction and the secondary indirect e�ects result
from the evaluation of normal gravity on the Helmert
telluroid.

The upward continuation of normal gravity from the
reference ellipsoid to c�ro � Ho�X�;X�, which is needed
in the evaluation of the free-air gravity anomaly, is
sometimes carried out by means of the simple `free-air
gradient', which is really just the ®rst term of the Taylor

expansion of normal gravity. This simpli®cation does
not give accurate enough results for this application, and
a higher-order approximation is required. As shown by
VanõÂ cÏ ek and Martinec (1994), at least the latitude and
the altitude e�ects have to be considered. We shall not
discuss this topic here; for a detailed discussion and
numerical results, see VanõÂ cÏ ek et al. (1995).

5 Making use of the complete Bouguer gravity anomaly

It is widely believed that the complete Bouguer anomaly
is the smoothest of all gravity anomalies and, as such,
the best suited for interpolation or averaging. This is
why it is quite popular in practice to use it for gravity
interpolation, prediction and averaging. The complete
Bouguer anomaly is usually de®ned (as it is indeed the
case in Canada) by the following equation:

DgCB�X� � DgB�X� � dgtc�rt;X�
� g�rt;X� ÿ c�ro � Ho�X�;X�
ÿ 2p.0GHo�X� � dgtc�rt;X� �38�

where dgtc is the gravimetric terrain correction, i.e. a
correction for the attraction of the Earth's topography
taken relative to the height of the evaluation point
�rt;X�. The small curvature e�ect, 8p.0 GHo�X�2=R
[VanõÂ cÏ ek and Krakiwsky 1986, Eq. (21.43)], is usually
not considered. As for the free-air gravity anomaly, the
potentially contentious issue of which surface the
simple Bouguer or complete Bouguer anomaly refers
to is not considered. This is the reason why only the
direction X is used as an independent argument in the
expressions.
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In practice, it is easy to obtain the complete Bouguer
anomalies, either in a point form, or as mean values for
the cells used in the numerical integration. The latter is
what we wish to use in numerical geoid computations.
The question then arises: how can these complete Bou-
guer anomalies be best transformed to Helmert anom-
alies on the surface of the Earth? Equations (37) and (38)
provide the answer, which is

Dgh�rt;X� � DgCB�X� � 2p.0GHo�X� ÿ dgtc�rt;X�
� 2

R
Ho�X�DgB�X� � dct�rt;X� � dca�rt;X�

� dAt�rt;X� � dAa�rt;X� �39�
In Eq. (39), the dominant term to be added to the
complete Bouguer anomaly is the Bouguer plate e�ect,
2p.0GHo�X�. The direct topographical and atmospher-
ical e�ects, and the terrain correction are much smaller
(typically by one order of magnitude), and the other
terms are smaller still.

It is interesting to realize that the terrain correction is
in fact embedded in the DTE. The DTE can be thought
of as the negative di�erence between the attraction of
the whole topography (which is a very large e�ect) and
the attraction of topography when condensed onto the
geoid (which is also a very large e�ect) according to
some condensation scheme (Martinec 1993).

It has been shown by Martinec [1993, Eq. (4.21)] that
when using a condensation scheme that preserves the
mass of the Earth in the Helmert space, the di�erence is
exactly equal to the di�erence between the attraction of
the terrain (topography referred to the height of the
point of evaluation, or equivalently, attraction of the
whole topography minus the attraction of the Bouguer
shell) and the attraction of the terrain condensed on the
geoid. The ®rst term is nothing other than the negative

terrain correction, ÿdgtc�rt;X�; the second term is the
condensed terrain e�ect (CTE) dAcr�rt;X�, called by
Martinec and VanõÂ cÏ ek (1994b) the `topographical
roughness' term. Thus, we obtain

dAt�rt;X� ÿ dgtc�rt;X� � dAcr�rt;X� �40�
The mathematical expression for dAcr�rt;X� is derived in
Appendix 2, Eq. (A12), and numerical results for the test
area are shown in Fig. 8. These results were compiled
from a combination of Canadian and US elevation data.
The e�ect, computed from Eq. (A12), ranges between
)25.136 and �92:776 mGal. Its in¯uence on the geoid,
computed from the Stokes integral, is between �0:127
and �1:787m.

Insertion of Eq. (40) into Eq. (39) gives the ®nal ex-
pression for the Helmert gravity anomaly on the Earth's
surface, namely

Dgh�rt;X� � DgCB�X� � 2p.0GHo�X� � 2

R
Ho�X�DgB�X�

� dct�rt;X� � dca�rt;X� � dAa�rt;X�
� dAcr�rt;X� �41�

It is Eq. (41) from which the mean Helmert gravity
anomalies on the topography can be evaluated in
practice, when mean values of the individual terms are
considered. These mean integral values are approximat-
ed by arithmetic means of as many values in each
compartment as are available.

6 Downward continuation of mean Helmert
gravity anomalies onto the Helmert co-geoid

Once the mean Helmert gravity anomaly is assembled
on the surface of the Earth ± Eq. (41) ± it has to be
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transferred to the real boundary, the Helmert co-geoid,
where it is needed for the solution, T h�r;X�, of the
Stokes±Helmert boundary value problem. This process
is known as the downward continuation of the Helmert
gravity anomaly. The Helmert disturbing potential
T h�r;X� is a harmonic function above the geoid and
hence also above the Helmert co-geoid in the Helmert
space, since the Helmert co-geoid is always above the

geoid (VanõÂ cÏ ek et al. 1995). Thus, Poisson's solution to
the Dirichlet problem of upward continuation of a
harmonic function (Kellogg 1929) can be employed in
seeking the downward continuation to the geoid in the
®rst instance. The application of this process was
described in detail by VanõÂ cÏ ek et al. (1996), for mean
Helmert gravity anomalies, and the description will not
be repeated here. A few remarks, however, are in order.
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First, Eq. (21) is rewritten in a clearer form as fol-
lows:

ÿ oT h�r;X�
or

ÿ 2

R
T h�r;X��:

Dgh�r;X� � 2

R

(
m� f cos 2uÿ 1

3

� �� �
T h�r;X�

� f
2
sin 2u

oT h�r;X�
ou

)
�42�

where the ®rst term on the right-hand side is given by
Eq. (41). It is the left-hand side of Eq. (42) that can be
continued downward. The downward continuation is a
non-linear problem: di�erent spatial wavelengths prop-
agate di�erently. Therefore, the estimates given earlier
of the in¯uence of the individual e�ects evaluated on the
Earth's surface, presented as the in¯uence on the geoid,
may be in error and should be interpreted only as ®rst-
order estimates and nothing else.

The Poisson downward continuation is also known
to be an unstable problem. The stability of the formu-
lation for the mean Helmert gravity anomalies has been
investigated by Martinec (1996). It was proved that even
in fairly high mountains (mean Ho � 4 km), the stability
is good for mean anomalies representing geographical
cells larger than 2� 20 (approximately 3:2� 3:2 km).

Thus, we encounter no stability problem when deal-
ing with the mean Helmert gravity anomalies of 5� 50
(approximately 9� 9 km), which is what has been done
in the computations described herein. In the unlikely
case that the mean Helmert gravity anomalies are
known on a signi®cantly denser grid in the high moun-
tains, the downward-continued anomalies in this area
will be burdened with larger errors than their counter-
parts in lower-lying areas of the Earth's surface.

The change of the 5� 50 mean Helmert anomalies
(corrected for the two estimated ellipsoidal corrections)
in the test area due to the Poisson downward continu-
ation to the geoid has been computed. The e�ect of this
change on the geoid was obtained from the Stokes in-
tegration; it is shown in Fig. 7. The e�ect ranges between
ÿ0:163 and 1:037m. It should be noted that the values
within a few-degree strip along the eastern border of the
area are a�ected by the edge e�ect on the downward
continuation (Sun and VanõÂ cÏ ek 1996) and should not be
fully trusted.

As the heights used in the Poisson kernel are the
orthometric heights (above the geoid), the results of the
downward continuation are the Helmert gravity anom-
alies on the geoid, as already discussed above. However,
the boundary values are required on the Helmert co-
geoid. The further reduction from the geoid onto the
Helmert co-geoid is achieved by adding to the Helmert
gravity anomalies on the geoid the upward continuation
(recalling that the co-geoid is everywhere above the ge-
oid) of the Helmert gravity anomalies from the geoid to
the co-geoid. Let the upward continuation of the Hel-
mert gravity anomaly from the geoid to the topography
be denoted by DDgh

DDgh�X� � Dgh�rg;X� ÿ Dgh�rt;X� �43�
Then the average vertical gradient of the Helmert
gravity anomaly between the geoid and the surface of
the Earth is equal to

8Ho�X� 6� 0 : grad�Dgh�X�� � DDgh�X�
Ho�X� �44�

and the upward continuation dDDgh, from the geoid to
the Helmert co-geoid, can be estimated from the follow-
ing expression:

8Ho�X� 6� 0 : dDDgh�X� � ÿDDgh�X�dNp�X�
Ho�X� �45�

where dNp stands for the sum of the primary indirect
topographical e�ect (PITE) and the primary indirect
atmospherical e�ect (PIAE). The latter e�ect for our
area of interest is in absolute value equal at most to
0:6 cm. The former (PITE) was discussed by Martinec
and VanõÂ cÏ ek [1994a, Eq. (50)], and the discussion will
not be repeated here. (As the PIE terms represent the
transformation of the co-geoid from the Helmert space
to the geoid in the real space, it is irrelevant to the
derivation of boundary values discussed in this paper
and will not be addressed any further here.) In the test
area, the term dDDgh�X� was found to be between )11
and �31 lGal and its e�ect on the geoid is smaller than
0:1 cm. It can thus be safely neglected even for
mountains as high as the Canadian Rockies.

7 Conclusions

A process has been formulated which yields the required
boundary values on the Helmert co-geoid to an accuracy
that would allow the determination of the geoid accurate
to one centimetre. The actual accuracy will, of course,
depend on the available data, their accuracy and their
spatial distribution. At present, the density and the
quality of the necessary data in Canada appear good
enough for at best a one-decimetre solution. This
situation is somewhat similar in other parts of the
world. This fact, however, should not preclude the
theory of calculations to a one-order-of-magnitude
better accuracy.

The starting point of our formulation has been the
`fundamental gravimetric equation', which we have ta-
ken as a de®ning equation for a gravity anomaly as a
function of disturbing potential. In contrast with stan-
dard practice, this de®nition leads to an interpretation of
gravity anomaly as a function of the position �r;X� of
the gravity value g�r;X�. Normal gravity, which is to be
subtracted from g�r;X�, is then evaluated at a point
�r ÿ Z;X� at which the value of normal potential U is
the same as the value of actual potential W at �r;X�.
Rigorous application of this de®nition in the Helmert
space then leads to an expression for the Helmert gravity
anomaly on the Earth's surface that can be evaluated to
a desired accuracy. This expression includes two small
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corrections to normal gravity for quasigeoid±geoid
separation and for the secondary indirect e�ect evalu-
ated at the surface of the earth. These two corrections
are not considered in standard practice.

In the formulation, use is made of complete Bouguer
gravity anomalies, which are easy to compute, interpo-
late and predict. This approach gives rise to a correction
for the CTE that replaces the DTE. This CTE correction
has the same order of magnitude as the DTE, and as
such is about two orders of magnitude larger than the
two corrections mentioned above. Only approximate
values of this correction are presented here as the e�ect
of actual topographical density and the e�ect of limited
integration area have not yet been considered.

The e�ect of actual topographical density reaches a
few decimetres in the Canadian Rockies (Martinec
1993), and the e�ect of limited integration is now being
investigating by the authors. It is pointed out that the
CTE is akin to the routinely-used downward continua-
tion approximation, the g1 term. Finally, the case is
made for using the rigorous Poisson theory for the
downward continuation to the geoid in the Helmert
space. Numerical results for the test area in the Cana-
dian Rocky Mountains are also presented. It is shown
that, for the selected test area, the upward continuation
from the geoid to the Helmert co-geoid, where the
boundary values are needed, yields negligible values and
can be safely neglected.
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Appendix 1

Derivation of the SITE on the Earth's surface

The SITE which is needed for the proper upward
continuation of the normal gravity from the ellipsoid to
the telluroid in the Helmert space can be written simply
from Eqs. (27) and (36)

dct�rt;X� � 2

R
V t�rt;X� ÿ V ct�rt;X�
� � �A1�

As the Bouguer shell contributions to both these
potentials are the same, they cancel in the di�erence
(Martinec 1993) and we can rewrite Eq. (A1) as

dct�rt;X� � 2

R
V r�rt;X� ÿ V cr�rt;X�� � �A2�

where V r stands for the terrain (topography referred to
the height of the point of interest) potential, and V cr

stands for the potential of condensed terrain.
In planar approximation, the terrain potential can be

written as a Newton integral

V r�rt;X� � GR2.0

ZZ
X
0

Z Ho�X0�ÿHo�X�

0

1

L�rt;w; r0 � dz0dX0

�A3�
where we have taken the topographical density to be
constant and equal to .0. In Eq. (A3), L stands for the
straight distance between the point of interest �rr;X� and
the integration point �rt � z;X

0 �, and the outside inte-
gration is carried over the whole Earth in a spherical
approximation.

To evaluate the potential V cr, we ®rst have to select
the way we want the topography condensed onto the
geoid. Assuming the following condensation scheme:

r�X0 � � .0
R2

Z rt�X0�

R
r02 dr0

� .0Ho�X0� 1� Ho�X0�
R

� Ho2�X0 �
3R2

" #
�A4�

which preserves the mass of the Earth (Wichiencharoen
1982), the potential of the condensed terrain layer V cr

experienced at the surface of the Earth �rt;X� is given by
the following Newton integral:

V cr�rt;X� � GR2

ZZ
X0

r�X0� ÿ r�X�
L�rt;w;R� dX0 �A5�

where L�rt;w;R� is the straight distance between the
point of interest �rt;X� and the integration point �R;X0�,
and the integration is carried over the whole Earth in a
spherical approximation. Substituting Eq. (A4) into
Eq. (A5), taking the topographical density .�X� to equal
to .0, and neglecting terms of the order Ho=R and higher
(compared to 1), we obtain

V cr�rt;X� � GR2.0

ZZ
X
0

Ho�X0� ÿ Ho�X�
L�rt;w;R� dX0 �A6�

Now, Eqs. (A3) and (A6) can be substituted into
Eq. (A1) to give us the ®nal result. However, before
we do this, we can evaluate the inside integral in Eq.
(A3) to simplify the ®nal expression. We obtainZ Ho�X0 �ÿHo�X�

0

1

L�rt;w; r0 � dz0

� ln
Ho�X0 � ÿ Ho�X� �

������������������������������������������������������
R2w2 � �Ho�X0 � ÿ Ho�X��2

q
Rw

�A7�
where w � w�X;X0 � is the spherical distance between the
point of interest �rt;X� and the integration point �R;X0 �
in the outside integration. This solution is only a planar
approximation since we have approximated the distance
L by

L�rt;X; rt � z;X
0 ��:������������������������������������������������������

R2w2 � �Ho�X0 � ÿ Ho�X��2
q

�A8�
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where we have taken Rw as a planar approximation of
the horizontal distance between the point of interest and
the integration point. The ®nal result can now be written
in the following form:

dct�rt;X��: 2GR.0ZZ
X
0
ln

Ho�X0 �ÿHo�X��
���������������������������������������������������
R2w2��Ho�X0 �ÿHo�X��2

q
Rw

dX
0

ÿ 2GR.0

ZZ
X
0

Ho�X0 � ÿ Ho�X�����������������������������������
R2w2 � �Ho�X��2

q dX
0 �A9�

where we use the same order of approximation for ` as
we have used for the distance L in Eq. (A8), namely

`�rt;X; R;X
0 ��:

����������������������������������
R2w2 � �Ho�X��2

q
�A10�

To conclude, we note that the e�ect derived here is very
small indeed, so that an accuracy of 1% is all we need.
Thus the approximations used in the derivations above
are justi®ed. For the same reason, the integration in
Eq. (A9) does not have to be extended over the whole
globe. Accurate enough results are obtained when the
integration is con®ned to a cap of a radius of 3�.

Appendix 2

Derivation of the CTE

The CTE is the attraction of the terrain condensed on
the geoid experienced on the Earth's surface, i.e. it is the
negative radial derivative of the potential of the
condensed topographical roughness which is de®ned in
Eq. (A6) at r � rt. Assuming again the constant density
.0, and neglecting terms of the ®rst and higher orders of
Ho=R in Eq. (A4)

rt�X0� �: .to Ho�X0 � ÿ Ho�X�
h i

�A11�

Having derived the radial derivative of Eq. (A6), we
obtain

Acr�rt;X� �
ÿ GR2.0

ZZ
X
0

Ho�X0 � ÿ Ho�X�
h i

K�rt;w;R�dX0 �A12�

The integration kernel, K, a function of the orthometric
height of the point of interest and a spherical distance w
between points X and X

0
, is de®ned as the following

function [Martinec 1993, Eq. (2.21)]:

K�rt;w;R� � oLÿ1�rt;w;R�
or

����
rt

� R coswÿ rt�X�
L3�rt;w;R� �A13�

The integral (A12) de®ning the CTE is regular for
Ho�X� 6� 0, and the kernel given by Eq. (A13) tends to
zero very rapidly with growing distance w. Therefore,
the integration does not have to be taken over the entire

Earth even for large orthometric heights. Following
Martinec's (1993) recommendation, it has been decided
to integrate over a cap of a radius of 3�, corresponding
to a linear distance of about 330 km. For the numerical
integration, this cap was divided into two zones: the
inner zone of a rectangle of 1� 1� and the rest of the
cap. Within the inner zone, the densest available
elevation data (30� 6000) in Canada were used. In the
rest of the cap, the 5� 50 mean heights proved to give
su�ciently accurate results. A word of caution is in
order here: numerical tests have shown that even for a 3�
cap, the contribution from the rest of the world can be
signi®cant. It may thus be necessary to evaluate the
`truncation e�ect' correction to the limited integration.
This is currently under investigation.

The numerical results for the testing area are shown
in Fig. A1. These results were compiled from a combi-
nation of Canadian and US elevation data. The e�ect
ranges between ÿ25:136 and �92:776mGal. Its in¯u-
ence on the geoid is between �0:127 and �1:787m. In-
terestingly, the numerical results for the CTE are
somewhat similar to those for the so called `downward
continuation correction' g1

g1�X� � ÿGR2Ho�X�.0
ZZ

X
0

Ho�X0 � ÿ Ho�X�
L3�rt;w;R� dX

0

�A14�
as given by Moritz [1980, Eq. (48-14)].

References

Bomford G (1971) Geodesy, 3rd edn. Clarendon Press, Oxford
Gruber T, Anzenhofer M (1993) The GFZ 360 gravity ®eld model.

The European Geoid Determination, Proc Sess G3, European
Geophysical Society XVIII, General Assembly, Wiesbaden, 3±7
May. Geodetic Division of KMS, Copenhagen

Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman, San
Francisco

I.A.G. (1971) Geodetic reference system 1967. Bull GeÂ od 3: 116
Kellogg OD (1929) Foundations of potential theory. Springer,

Berlin Heidelberg New York
Martinec Z (1993) E�ect of lateral density variations of topo-

graphical masses in view of improving geoid model accuracy
over Canada. Contract Report for Geodetic Survey of Canada,
Ottawa

Martinec Z (1996) Stability investigations of a discrete downward
continuation problem for geoid determination in the Canadian
Rocky Mountains. J Geod 70: 805±828

Martinec Z, VanõÂ cÏ ek P (1994a) Indirect e�ect of topography in the
Stokes±Helmert technique for a spherical approximation of the
geoid. Manuscr geod 19: 213±219

Martinec Z, VanõÂ cÏ ek P (1994b) Direct topographical e�ect of
Helmert's condensation for a spherical approximation of the
geoid. Manusc Geod 19: 257±268

Molodenskij MS, Eremeev VF, Yurkina MI (1960) Methods for
study of the external gravitational ®eld and ®gure of the Earth.
Transl from Russian by Israel Program for Scienti®c Transla-
tions, O�ce of Technical Services, Department of Commerce,
Washington, DC 1962

Moritz H (1980) Advanced physical geodesy. Wichmann, Karls-
ruhe

Stokes GG (1849) On the Variation of gravity on the surface of the
Earth. Trans Camb Phil Soc 8: 672±696

191



Sun W, VanõÂ cÏ ek P (1996) On the discrete problem of downward
Helmert's gravity continuation. Proc Sess G7 (Techniques for
local geoid determination), Annu Meet Eur Geophys Soc, The
Hague, 6±10 May 1996. Rep Finnish Geod Inst 96(2): 29±34

VanõÂ cÏ ek P, Krakiwsky EJ (1986) Geodesy: the concepts, 2nd cor-
rected edn. North Holland, Amsterdam

VanõÂ cÏ ek P, Martinec Z (1994) The Stokes±Helmert scheme for the
evaluation of a precise geoid. Manuscr Geod 19: 119±128

VanõÂ cÏ ek P, Kleusberg A, Martinec Z, Sun W, Ong P, Naja® M,
Vajda P, Harrie L, TomaÂ sÏ ek P, Ter Horst B (1995) Compilation

of a precise regional geoid. Final rep for Geodetic Survey Di-
vision, Geomatics Sector, Natural Resources of Canada, Otta-
wa (DSS contract 23244-1-4405/01-SS)

VanõÂ cÏ ek P, Sun W, Ong P, Martinec Z, Naja® M, Vajda P, Ter
Horst B (1996) Downward continuation of Helmert's gravity.
J Geod 71: 21±34

Wichiencharoen C (1982) The indirect e�ects on the computation
of geoid undulations. Rep 336, Department of Geodetic Science
and Surveying, The Ohio State University, Columbus

192


