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Abstract. In modern approximation methods, linear
combinations in terms of (space localizing) radial basis
functions play an essential role. Areas of application are
numerical integration formulae on the unit sphere X
corresponding to prescribed nodes, spherical spline
interpolation and spherical wavelet approximation.
The evaluation of such a linear combination is a time-
consuming task, since a certain number of summations,
multiplications and the calculation of scalar products
are required. A generalization of the panel clustering
method in a spherical setup is presented. The economy
and e�ciency of panel clustering are demonstrated for
three ®elds of interest, namely upward continuation of
the Earth's gravitational potential, geoid computation
by spherical splines and wavelet reconstruction of the
gravitational potential.

Key words. Panel clustering � Numerical integration �
Spline and wavelet-based determination of the geoid and
the gravitational potential

1 Introduction

Modern satellites provide us with a huge amount of
observational data. This requires powerful algorithms
for the preparation and interpretation of the observa-
tions. Since there is a demand on ®ne local resolutions in
the Earth's gravitational ®eld determination, new ap-
proximation methods using space-localizing radial basis
functions such as spherical splines (cf. the survey article
by Freeden et al. 1997) or spherical wavelets (cf. Freeden
and Windheuser 1997; Freeden and Schreiner 1998)
have been developed (see also the monograph of

Freeden et al. 1998). Both mathematical techniques
have in common that they lead to the evaluation of
linear combinations of spherical radial basis functions of
type

F �n� �
XN

i�1
aiK�n � gi�; ai 2 R; n 2 X �1�

where K is a (space-localizing) radial basis function and
g1; . . . ; gN are locations on the unit sphere X, at which
the measurements are taken. Since the satellite experi-
ments provide us with large data sets and many
observations over a period of a few years, such an
evaluation may become a very time-consuming task that
has to be repeated for each data set. That is the reason
why we are concerned with the development of a fast
algorithm for the evaluation of Eq. (1). The presented
algorithm is based on the idea of the panel clustering
method for the fast evaluation of radial basis functions
on the unit square in the two-dimensional Euclidean
space R2 (cf. Beatson and Newsam 1992). We essentially
take advantage of the fact that a radial basis function
only depends on the spherical distance of two locations
(unit vectors), i.e. it can be handled simply as function of
one variable over the interval �ÿ1;�1�. Furthermore, the
contribution of the nodal points gi to the total value of F
decreases with an increasing distance. Thus the panel
clustering method calculates the most in¯uencing part,
i.e. the contribution of the close environment, explicitly,
and gives a fast approximation for the remaining part.
This leads to a separation of the entire sphere into a
near- and a far-®eld, respectively; the partition is
performed by a hierarchical subdivision mechanism.
We start by dividing the sphere X, for example in the
case of the icosahedron, into 20 di�erent spherical
triangles. Every triangle is repeatedly subdivided into
four di�erent daughter triangles down to a certain level.
The given data points g1; . . . ; gN are sorted into the
triangles and are combined to clusters of points. Due to
the fact that a radial basis function can be considered as
a univariate function on the interval �ÿ1;�1�, we are
able to interpolate it in one dimension with the help ofCorrespondence to: W. Freeden
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the Legendre polynomials, for which an immediate
connection to the spherical harmonics can be established
via the well-known addition theorem. This fact enables
us to calculate the so-called far-®eld coe�cients for each
triangle.

It should be pointed out that the preliminary work
presented up to now can be completed before the actual
evaluation starts. After deciding which triangles belong
to the near- or far-®eld, respectively, the evaluation of
the sum F at a single point n 2 X reduces to explicitly
calculating the near-®eld contribution and to adding the
contributions of all far-®eld triangles, represented by the
far-®eld coe�cients. A desirable feature of our algo-
rithm is that it can be applied to an iterative solution of
a system of linear equations occurring in spherical spline
interpolation since a matrix±vector multiplication leads
to a sum representation of the considered type so that
many iterative solvers can be e�ciently implemented.
While we have been restricted to handling only a few
thousand linear equations until now, e.g. in spherical
spline interpolation, the presented algorithm now allows
us to solve linear systems with 80 000 equations in 80
000 unknowns or even more.

Remark. A traditional method for the evaluation of
geodetic integral formulae is the subdivision of the
integration domain into a near-zone and a far-zone. Due
to the rapid decay of the kernels occurring in the
formulae, the contribution of the near-zone has to be
computed very accurately, whereas the contribution of
the far-zone may be approximated coarsely (see e.g.
Heiskanen and Moritz 1967). From our comments given
above it is obvious that this paper addresses a related
task: the e�cient evaluation of a spherical function by
linear combinations of space-localizing base functions in
the form of a hierarchical panel clustering of the sphere.
The relevance of the work is caused by the fact that
multi-resolution methods (by splines, wavelets) for the
treatment of very large sets of data points on the sphere
will command more and more attention in the near
future.

2 The panel clustering method

Let K : t 7!K�t�; t 2 �ÿ1;�1� be a continuous (space-
localizing) function [for a discussion of space and
frequency localization on the sphere in terms of
expectation value and variance and the development of
the uncertainty relation the reader is referred to the
article by Freeden and Windheuser (1997)]. In the
approach presented here, however, space localization
may be understood in the sense that, for every
n 2 X;K�n � n� is essentially larger than K�n � g� for all
g 2 X outside a ®xed spherical cap around the centre n.
Evaluating the expression F of Eq. (1) at a certain point
n 2 X takes advantage of the fact that K�� g� only
depends on the spherical distance from g 2 X. The
in¯uence of nearby nodes (near-®eld) is calculated
explicitly, but only an approximation is used to deter-
mine the contribution of faraway nodes (far-®eld). In the

following, n is said to be far away from g if n � g is
smaller than a certain t� 2 �ÿ1;�1�, i.e. if the spherical
distance between n and g is greater than arccos �t��. A
simple illustration of this idea is given in Fig. 1. The
blank area represents the near-®eld of n1, and the
remaining area represents the far-®eld. Fundamental to
our algorithm is that, for example, all nodes in the black
area Q belong to the far-®eld of n1 as well as that of n2
and n3. This gives rise to the accumulation of the nodes
into clusters of points, which can be treated as parts of
the far-®eld of a large number of points. For the purpose
of accumulation, a subdivision of the entire sphere is
performed. Later on it will be shown that a hierarchical
subdivision scheme is very useful for our purpose. The
complete algorithm consists of two stages, a setup stage
and an evaluation stage. In the setup stage the
hierarchical subdivision is performed and the so-called
far-®eld coe�cients are calculated to render a rapid
computation in the evaluation stage.

Furthermore, in the case of spline interpolation, the
equations F �gi� � yi; i � 1; . . . ;N associated to a pre-
scribed data set �g1; y1�; . . . ; �gN ; yN � must be ful®lled
and, therefore, the following system of linear equations
must be solved somehow:XN

i�1
aiK�gi � gj� � yj; j � 1; . . . ;N �2�

A problem is that the matrix C � �ci;j�i;j�1;...;N ,
ci;j � K�gi � gj� is full-sized for a large number of
(space-localizing) kernels K. If the matrix C is positive
de®nite and symmetric (e.g. in the case of a reproducing
kernel K of a suitable Hilbert space), the Cholesky
algorithm would be suitable to solve the linear Eq. (1),
provided that N is not too large. However, for a large N ,
direct solution of the system is unpractical and iterative
methods like the conjugate-gradient method require at
least one matrix±vector multiplication in each iteration
step. For this reason, fast algorithms that take advan-
tage of the special structure of the matrix C should be
developed. Since the appearance of a matrix±vector
product Cp � q;

PN
i�1 piK�gi � gj� � qj; j � 1; . . . ;N ;

Q

.
. .

Q

.
. .ξ2

ξ1 ξ3

Fig. 1. Idea of the algorithm
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corresponds to an N -times evaluation of a function of
the type of Eq. (1), an algorithm for solving the linear
Eq. (2) can be constructed from a method for the fast
evaluation of the function of Eq. (1).

This paper is organized as follows. Section 2.1 in-
troduces an approach to subdivide the sphere hierar-
chically, followed by the approximation of the far-®eld
contribution in Sect. 2.2. In Sect. 2.3 we summarize the
algorithm for the fast evaluation of a linear combination
of the type of Eq. (1). Finally, in Sect. 2.4 our method is
applied to the conjugate-gradient method for the solu-
tion of linear equations of the type of Eq. (2). The paper
ends with some test examples.

2.1 Triangulation of the sphere

First of all a suitable subdivision of the unit sphere has
to be developed. As mentioned before, this subdividing
process should be done hierarchically. Due to this fact a
partition of the sphere by circular panels (spherical caps)
as shown in Fig. 1 is not appropriate for our purpose.
The idea of using a rectangular partition in the polar
coordinate plane may arise, but this method is not
advisable, because it would lead to very long and narrow
panels near the poles. Thus, the subdivision is started by
an icosahedron (Fig. 2) (or an octahedron, Fig. 3)) with
20 (or eight) spherical triangles, respectively. Henceforth
the starting level is called the root or the zeroth level of
subdivision.

In the following levels the triangles are repeatedly
subdivided into four new spherical triangles, called the
daughter triangles. The triangles of a certain level are
disjoint and form a partition of the entire sphere, i.e.

Dk1
l \ Dk2

l � ; for k1 6� k2[Nl

k�1
Dk

l � X ;

where Dk
l denotes the kth triangle in the lth level and Nl

denotes the number of triangles in level l. In this case,

disjoint is understood in the sense that each point
belongs to one triangle, i.e. a point lying on the
boundary of two neighbouring triangles is not related
to both triangles. Furthermore, if Dk

l ; k � 1; . . . ; 4; are the
daughter panels of Dm

lÿ1; the following equation is valid:[4
k�1

Dk
l � Dm

lÿ1 :

The subdividing process is stopped at some level L.
Figures 4±7 show the subdivision levels 1, 2, 3 and 4

with an icosahedron as root level. We note that there are

Fig. 2. Icosahedron

Fig. 3. Octahedron

Fig. 4. Subdivision level 1

Fig. 5. Subdivision level 2
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2� 5 � 2l�1 nodes and Nl � 5 � 22l�2 triangles, in the lth
re®nement (subdivision level).

Subsequently, the nodes must be sorted into the tri-
angles. The veri®cation as to whether a point belongs to
a spherical triangle or not is done by a spherical angle-
sum test (see Appendix).

2.2 Far-®eld approximation

In this section we discuss how to ®nd an appropriate
approximation of the far-®eld of a linear combination F
de®ned by Eq. (1). To be more precise, the term
``appropriate'' means that the approximation admits a
fast evaluation of F in combination with a su�cient
accuracy. Let a1; . . . ; aN 2 R be the coe�cients of Eq. (1)
corresponding to the nodes g1; . . . ; gN 2 X. Using the
partition of the sphere introduced in Sect. 2.1, the
function F can be written as follows:

F �n� �
XNl

k�1

X
gi2Dl

k

aiK�n � gi�; n 2 X �3�

for each subdivision level l � 1; . . . ; L; where L denotes
the ®nest level, Nl denotes the number of triangles in
level l and Dk

l is the kth triangle in the lth level. The
second sum in Eq. (3) is understood to be taken over all
indices i for which the point gi belongs to the triangle Dk

l .

Separation of the triangles into near- and far-®eld panels
leads to the following representation:

F �n� � FNF �n� � FFF �n� ; �4�
where FNF �n� contains the contribution of the near-®eld
of n, and FFF �n� represents the far-®eld contribution of n.

Our strategy is as follows. First, a technique to ap-
proximate the particular contributions of any triangle is
developed. Then we have to decide which triangles be-
long to the far- and the near-®eld. Finally, the approx-
imations of the far-®eld panels and the contribution of
the exact near-®eld are put together to an approximation
of the function F .

Our procedure starts with a de®nition.

De®nition 2.1. Let F be given as in Eq. (1) with
K : t 7!K�t�; t 2 �ÿ1;�1�; a continuous function. Then
F �n; Dk

l � �
X
gi2Dk

l

aiK�n � gi� �5�

is called the contribution of the triangle Dk
l to F at n 2 X:

Now we consider the problem of approximating a
spherical radial basis function by spherical harmonics.
To this end, remember that K�n � g� only depends on the
spherical distance, i.e. the inner product of n and g, and
can therefore be treated as a one-dimensional function
over the interval �ÿ1;�1�. A relation between functions
on �ÿ1;�1� (here Legendre polynomials) and functions
on the unit sphere X (here spherical harmonics) is
guaranteed via the addition theorem. Hence, an ap-
proximation of F �n; Dk

l � by polynomial interpolation
with Legendre polynomials Pn in one dimension is sug-
gested. As it is well known, the error occurring in
polynomial interpolation due to the choice of the nodes
is minimized by the zeros of the Tschebysche� polyno-
mials (cf. e.g. �Uberhuber 1995). Motivated by this result
we only use these Tschebysche� nodes. Therefore
G�n; Dk

l � de®ned by

G�n; Dk
l � �

X
gi2Dl

k

ai

XM
n�0

bnPn�n � gi� ; n 2 X �6�

represents an approximation of F �n; Dk
l �, where

t 7! PM
n�0 bnPn�t�; t 2 �ÿ1; 1� is a polynomial of degree

M and the coe�cients b0; . . . ; bM are obtained by solving
the linear interpolating equationsXM
n�0

bnPn�tj� � K�tj�; j � 0; . . . ;M �7�

with the Tschebysche� nodes t0; . . . ; tM corresponding to
the interval �ÿ1; t��. Due to the fact that all nodes gi
satisfying t� � n � gi � 1 belong to the near-®eld of n and
we only want to approximate the far-®eld, K�t� has to be
interpolated just in the interval ÿ1 � t < t�. Figure 8
shows the relation between the distance on the sphere
and the radial basis function on the interval �ÿ1;�1�.
The counterpart of a spherical cap of extension
arccos �t�� is the interval �t�;�1�:

Fig. 6. Subdivision level 3

Fig. 7. Subdivision level 4
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Applying the addition theorem to Eq. (6) yields

G�n; Dk
l � �

XM
n�0

bn
4p

2n� 1

X2n�1

j�1

X
gi2Dl

k

aiYn;j�gi�Yn;j�n� �8�

n 2 X; where fYn;jgj�1;...;2n�1 forms an orthonormal basis
of the class Harmn�X� of spherical harmonics of order
n and fYn;jg n�0;...;M

j�1;...;2n�1
is an orthonormal basis of the

set Harm0;...;M of spherical harmonics of orders � M .
Setting

Vn;j�Dk
l � � bn

4p
2n� 1

X
gi2Dl

k

aiYn;j�gi� �9�

we obtain for Eq. (8)

G�n; Dk
l � �

XM
n�0

X2n�1

j�1
Vn;j�Dk

l �Yn;j�n� : �10�

The quantities Vn;j�Dk
l � in Eq. (10), henceforth called the

far-®eld coe�cients of the triangle Dk
l , are calculated

explicitly and stored for any triangle in the ®nest level L.

The hierarchical subdivision scheme enables us to
calculate the far-®eld coe�cients of triangles in coarser
levels recursively from the coe�cients of the daughter
triangles in the following way. If Dk

l ; k � 1; . . . ; 4, are
the daughter panels of Dm

lÿ1, the far-®eld coe�cients
Vn;j�Dm

lÿ1� can be obtained by

Vn;j�Dm
lÿ1� �

X4
k�1

Vn;j�Dk
l � ; �11�

n � 0; . . . ;M ; j � 1; . . . ; 2n� 1. This recursive method is
illustrated in Fig. 9. While the subdivision process is
performed forwardly from the parent to the daughter
triangles (from level 0 to level L), we determine the far-
®eld coe�cients in the opposite direction (from level L to
level 0).

The next step in the setup stage is to establish a cri-
terion for the membership of a panel in the near- or far-
®eld. At this point it should be mentioned that we
specify near- and far-®eld for any panel in the ®nest level
L instead of specifying them for any evaluation point n.
This has the advantages that it can be performed com-
pletely in the setup stage and the matrix
C � �K�gi � gj��i;j�1;...;N retains its symmetry. Later we
just have to locate the ®nest level panel containing n. For
the decision as to which ®eld a panel belongs to, the
following criteria apply. A triangle Dm

l , regardless of what
level, is said to be in the far-®eld of a triangle Dk

L of level L,
if the spherical distance between these two triangles is
greater than arccos�t�� for a prescribed t� (see Fig. 8). If
we ®nd that a parent triangle is far away, then the
daughter triangles are no longer considered and do not
belong to the far-®eld. Then all nodes in Dm

l are far away
from any point in Dk

L. A triangle Dm
L is said to be in the

near-®eld of Dk
L, if it is of the ®nest level L and the

spherical distance between Dk
L and Dm

L is equal to or less
than arccos�t��. Consequently the near-®eld only con-
sists of ®nest-level panels, while the far-®eld may contain
panels of any level. In practice, the determination of
near- and far-®eld for a ®nest-level triangle Dk

L works as
follows. For each triangle Di

0 in the coarsest level, set
D � Di

0 and goto (i)

.
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Fig. 8. Relation between spherical distance and one-dimensional level
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Fig. 9. Recursive calculation of the far-®eld coe�cients
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(i) check the spherical distance between Dk
L and D

(ii) if the distance is greater than arccos�t�� ) D belongs
to the far-®eld of Dk

L
else if the distance is equal to or less than arccos�t��
and D is in the ®nest level ) triangle belongs to the
near-®eld of Dk

L
else for any daughter triangle Dÿ1 of D set D � Dÿ1
and goto (i).

Such a ®eld construction with maximum subdivision
level three is presented in Fig. 10. The far-®eld of the
black, ®nest level triangle is shaded, while the near-®eld,
consisting only of panels in the third level, is left blank.
It is obvious that the near-®eld is somewhat larger than
the spherical cap indicated by the circle.

In conclusion, it is not necessary to sum up the far-
®eld coe�cients of all triangles in the ®nest level, but in
most cases it is possible to deal with lower-level trian-
gles, leading to a reduction in computational costs.

For convenience we introduce the following sets.
NF �Dm

L � is the set of all triangles Dk
L; k � 1; . . . ;NL

such that Dk
L is in the near-®eld on Dm

L .
FF �Dm

L � is the set of all triangles Dk
l ; l � 0; . . . ; L; k �

1; . . . ;Nl; such that Dk
l is in the far-®eld of Dm

L .
Furthermore, let

Nm
L � fi j gi 2 Dk

L; Dk
L 2 NF �Dm

L �g
Fm

L � fi j gi 2 Dk
l ; Dk

l 2 FF �Dm
L �g

for m � 1; . . . ;NL. Thus, the following relations are valid
for m � 1; . . . ;NL:[
Dk

L2NF �Dm
L �

Dk
L [

[
Dk

l2FF �Dm
L �

Dk
l � X

Dk
l \ Dq

p � ;; if l 6� p or k 6� q

Dk
l ; Dq

p 2 NF �Dm
L � [ FF �Dm

L �
An approximation GFF �n� of the far-®eld term FFF �n� in
Eq. (4) can be derived from the considerations above for
each evaluation point n 2 Dm

L � X:

GFF �n� �
X

Dk
l2FF �Dm

L �
G�n; Dk

l �

�
X

Dk
l2FF �Dm

L �

XM
n�0

X2n�1

j�1
Vn;j�Dk

l �Yn;j�n�

Changing the order of summations leads to

GFF �n� �
XM
n�0

X2n�1

j�1

X
Dk

l2FF �Dm
L �

Vn;j�Dk
l �

0@ 1AYn;j�n�

The third summation, over the triangles, depends only
on the panel Dm

L containing n and is independent of the
particular point n 2 Dk

L. This enables us to calculate the
magnitudes

Wn;j�Dm
L � �

X
Dk

l2FF �Dm
L �

Yn;j�Dk
l � �12�

n � 0; . . . ;M ; j � 1; . . . ; 2n� 1, in the setup stage for
any panel in the ®nest level and to store them. The
coe�cients Vn;j�Dk

l � are no longer needed, so they can be
deleted at this point. After locating the panel Dm

L
containing n, the far-®eld contribution can be calculated
with a computational cost of

PM
n�0 2n� 1 � �M � 1�2

multiplications and additions.

2.3 Fast evaluation in terms of radial basis functions

Let us summarize the results of the previous sec-
tions. The near-®eld term FNF �n� in Eq. (4) can be
written as

FNF �n� � GNF �n� �
X

i2Nm
L

aiK�n � gi�; n 2 Dm
L � X �13�

and GFF �n� takes the following form:

GFF �n� �
XM
n�0

X2n�1

j�1
Wn;j�Dm

L �Yn;j�n�; n 2 Dm
L � X �14�

so we obtain for G�n� as an approximation of F �n�
G�n� � GNF �n� � GFF �n�

�
X

i2Nm
L

aiK�n � gi� �
XM
n�0

X2n�1

j�1
Wn;j�Dm

L �Yn;j�n� �15�

if n 2 Dm
L � X:

Now we are able to summarize our algorithm for the
evaluation of functions of the type of Eq. (1).

Algorithm 2.2

Setup stage

Step 1. Performance of the hierarchical subdivision of
the sphere introduced in Sect. 2.1 down to a
certain level L and distribution of the nodes into
the triangles.Fig. 10. Far- (shaded) and near-®eld (unshaded) panels
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Step 2. Approximation of the radial basis function K by
polynomial interpolation of a certain degree M
in one variable.

Step 3. Determination of near- and far-®eld panels for
each ®nest-level panel.

Step 4. Calculation of the far-®eld coe�cients Vn;j�Dk
L�

for every ®nest-level triangle Dk
L via Eq. (9).

Step 5. Recursive calculation of the far-®eld coe�cients
Vn;j�Dk

l � for levels Lÿ 1; . . . ; 0 via Eq. (11).
Step 6. Summation of the far-®eld coe�cients to obtain

the values Wn;j�Dk
L� for all triangles in level L via

Eq. (12) and deletion of the far-®eld coe�cients
Vn;j�Dk

l �.

Evaluation stage

For any evaluation point n we have to perform two
steps:

Step 1. Location of the ®nest level panel containing n.
Step 2. Evaluation of G�n� as an approximation of F �n�

by direct calculation of the near-®eld of n via
Eq. (13) and using Eq. (14) to approximate the
far-®eld contribution of n.

Since the reduction of computational costs is the
main subject of the algorithm, ranges for the number of
operations are now given. One operation consists of one
multiplication and one summation. Before we start
treating the particular steps, some abbreviations are in-
troduced. The number of operations required by a single
angle-sum test (see Appendix) is denoted by cip; the
number of operations needed for the evaluation of an
orthonormal system of spherical harmonics fYn;jg n�0;...;M

j�1;...;2n�1
at a single point n 2 X is denoted by cYn;j ; and cDD de-
notes the number of operations to check the distance
between two triangles. With these constants we can now
start our considerations.

Setup stage

Step 1. The complexity of the tree construction only
depends on the depth of the subdivision scheme.
The sorting requires for any nodal point mini-
mum one angle-sum test at each level and
maximum N0 tests at the root level plus maxi-
mum four tests at each other level. This
yields for the number of operations ] OpS1 for
step 1

�L� 1�Ncip � ]OpS1 � �N0 � 4L�Ncip

i.e. it is of order O�N�:
Step 2. Direct solution of a system of M linear equa-

tions requires O�M3��]OpS2 �̂ cint� operations
and is therefore independent of N . Since M can
be chosen to be small, this step is indeed negli-
gible.

Step 3. For every ®nest-level panel we have to check the
distance to maximum

PL
l�0 Nl triangles, if the

far-®eld consists only of triangles in the ®nest
level. ]OpS3 is independent of N and can be es-
timated by

]OpS3 �
XL

l�0
NlcDD

Step 4. Every node corresponds to one triangle in the
®nest level. The number of operations in step 4
is

]OpS4 � NcYn;j � N�M � 1�2

and is therefore O�N�:
Step 5. The overall number of panels in levels

0; . . . ; Lÿ 1 isXLÿ1
l�0

Nl �
XLÿ1
l�0
�N04

l�; N0 2 f8; 20g

and we have to sum up the far-®eld coe�cients
fVn;jg n�0;...;M

j�1;...;2n�1
of four daughter triangles for each

panel in levels 0; . . . ; Lÿ 1. Consequently, the
number of summations in step 5 holds

]SumS5 �
XLÿ1
l�0

Nl

 !
4�M � 1�2

Step 6. The number of triangles in the far-®eld is uni-
formly bounded to ]FF; and we have to apply
Eq. (12) to NL triangles, so that ]SumS6 ful®ls

]SumS6 � NL�M � 1�2]FF

Evaluation stage

Step 1. Locating the ®nest-level triangle containing the
evaluation point n 2 X takes the same amount
of numerical complexity as sorting one node in
step 1 of the setup stage.

�L� 1�cip � ]OpE1 � �N0 � 4L�cip

Step 2. Let ]NNF be the maximum number of nodes in
the near-®eld and cK the number of operations
to evaluate K�n �� at a single point. Then the
evaluation of Eq. (14) requires

cYn;j � �M � 1�2

operations and Eq. (13) requires less than

]NNF cK � ]NNF

operations.

Summarizing these results, we obtain that

]OpSetup � ]OpS1 � ]OpS2 � ]OpS3 � ]OpS4

� ��N0 � 4L�cip � cYn;j

� �M � 1�2�N

� cint �
XL

l�0
Nl

 !
cDD

operations, and additionally

592



]SumSetup � ]SumS5 � ]SumS6

� �M � 1�2 4
XLÿ1
l�0

Nl � NL]FF

 !
summations have to be done in the setup stage. In the
evaluation stage we have to perform an overall number
of

]OpEval � ]OpE1 � ]OpE2

� �N0 � 4L�cip � cYn;j � �M � 1�2
� ]NNF �cK � 1�

operations for the evaluation at a single point n 2 X.
It should be noted that most steps (steps 2, 3, 5 and 6

of the setup stage and step 1 of the evaluation stage) are
independent of N . Thus, the larger the number of the
nodes, the more e�cient are these steps in comparison to
the ordinary method of evaluation. Besides, the com-
plete setup stage has to be performed only once in the
algorithm. Indeed, the number of nodes in the near-®eld
depends on N , but it can be kept small in comparison to
the overall number of nodes. In the case of the matrix±
vector product, the numerical e�ort of the evaluation
stage is reduced to

]OpEval � N]OpE2

� N��M � 1�2 � cYn;j � ]NNF �
operations for the computation of the vector q, since
evaluation is only required at the nodes and therefore
the location is already done in step 1 of the setup stage.
Furthermore, the value of K�gi � gj� can be stored,
provided that it belongs to the near-®eld.

As mentioned previously, the panel clustering meth-
od can be applied to an iterative solution of a system of
linear equations ®tted by interpolation. An algorithm
for this task is presented in Sect. 2.4.

2.4 Iterative solution of the spline interpolation problem

If we consider the spherical spline interpolation problem
described in Sect. 2, the system of linear Eq. (2) is to be
solved to obtain the coe�cients a1; . . . ; aN 2 R: Direct
methods for the solution are impractical for a large N
since they require at least O�N 3� operations and O�N 2�
storage. The error estimates for the spline interpolation
on the sphere contain terms depending on the nodal
width and the maximum value of the function. For
example, the nodal width of a ``Reuter grid''(see Fig. 11)
with 12 500 grid points is about 200 km and for 50 000
grid points the width is still about 100 km if we assume a
spherical earth with radius R = 6378.137 km. Due to
this fact, a large number of grid points is required to
obtain tolerable results. The limits of today's computers
in storage and computational resources are rapidly
reached.

Observing the shape of a spherical radial basis func-
tion, one might consider setting all entries K�gi � gj�
equal to zero for gj with ÿ1 � �gi � gj� < t� for

i � 1; . . . ;N in order to obtain a sparse band matrix (cf.
Schneider 1996). Then the linear equations could be
solved iteratively; however, only localizing kernel func-
tions K being ``numerically zero'' outside a certain cap
allow this treatment. Iterative methods like the conju-
gate gradient method require one matrix±vector product
in each iteration step, which is similar to the N -times
evaluation of the considered functions. We take up the
idea of cutting o� the matrix at a certain t�, but we
approximate the entries for the case ÿ1 � �gi � gj� < t�,
i; j � 1; . . . ;N , instead of setting them equal to zero.
To be more speci®c, consider a matrix±vector multipli-
cation

qj �
XN

i�1
piK�gi � gj�; j � 1; . . . ;N �16�

occurring in any iteration step. For the calculation of q
in Eq. (16), we use Algorithm 2.2 with some modi®ca-
tions:

� Steps 1, 2, and 3 of the setup stage must be per-
formed only once before the iterative procedure
starts.

� Since the coe�cients pi are changed in each iteration
step, we have to perform steps 4, 5 and 6 in any
iteration step.

� Evaluation is only required at the nodes g1; . . . ; gN :
Hence, we are able to identify the ®nest-level panel
containing gi; i � 1; . . . ;N , in the setup procedure
and, in addition, we may store K�gi � gj� if it is a
near-®eld term.

The conjugate gradient method to solve the system of
linear Eq. (2) corresponding to the prescribed data set
f�g1; y1�; . . . ; �gN ; yN �g has the following form.

Algorithm 2.3

Setup stage

Step 1. Hierarchical subdivision of the sphere (Sect. 2.1)
down to a certain level L and distribution of the
nodes into the triangles (includes location of the
®nest level triangles containing g1; . . . ; gN �.

Step 2. Approximation of the kernel function
K : t 7!K�t� by interpolating it with a univariate
polynomial of a certain degree M .

Step 3. Determination of far- and near-®eld panels for
any ®nest-level panel.

Conjugate gradient method

� Choose a0 2 RN as starting vector:
set p0 � r0 � y ÿ Ca0 I � 0; e > 0

� Iteration:
while �jrj > e�
± Calculation of the far-®eld coe�cients Vn;j�Dk

L� for
each ®nest-level triangle Dk

L via formula (9) with
the current coe�cients pI

1; . . . ; pI
N :

± Recursive computation of the far-®eld coe�cients
Vn;j�Dk

l � for coarser-level triangles via Eq. (11).
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± Calculation of the values Wn;j�Dk
L� for any triangle

in level L via Eq. (12) and deletion of the far-®eld
coe�cients Vn;j�Dk

l �.
± Performance of the matrix±vector product

qI � CpI : use Eq. (13) to compute the near-®eld
and Eq. (14) to compute the far-®eld of qi � G�gi�
with the current coe�cients pI

1; . . . ; pI
N for every

gi; i � 1; . . . ;N .
± Set

a � �rI ; rI�=�pI ; qI�
aI�1 � aI � apI

rI�1 � rI ÿ aqI

b � �rI�1; rI�1�=�rI ; rI�
pI�1 � rI�1 � bpI

I � I � 1

Finally the iteration is left with an approximate solution
a1; . . . ; aN of Ca � y: A perturbation analysis is present-
ed by Glockner (1997).

3 Numerical tests

All the calculations in this section are based on the
OSU91A model (cf. Rapp et al. 1991) restricted to
expansion coe�cients U^�n; j� from n � 3 to n � 180,
i.e.

U�x� � GM
R

X180
n�3

X2n�1

j�1
U^�n; j� R

jxj
� �n�1

Yn;j
x
jxj
� �

x � jxjn; jxj > R, where GM � 0:39860044 � 1015 m3 sÿ2
is the product of the gravitational constant and the mass
of the earth and R � 6378:137 km is the spherical radius
of the earth. In Sect. 3.1 the CPU times required by
Algorithm 2.2 compared with those taken by an explicit
evaluation are shown via the problem of upward
continuation of the gravitational potential U . In Sect.
3.2, Algorithm 2.3 is applied to spherical spline inter-
polation; Algorithm 2.2 is used for the reconstruction of
U by spherical wavelets in Sect. 3.3.

3.1 Numerical integration (upward continuation)

If the gravitational potential U is assumed to be known
on the Earth's surface (i.e. jxj � R), upward continua-
tion means nothing other than convolution of U against
the Abel±Poisson kernel

Qh�n � g� � 1

4p
1ÿ h2

�1ÿ 2h�n � g� � h2�3=2

To be more speci®c

U�x� �
Z

X
QR

r
�n � g�U�Rg� dx�g�; x � rn

is the gravitational potential at height r � jxj. The low
discrepancy method (cf. e.g. Cui and Freeden 1997)
enables us to express U�x� approximately by the sum

UN �x� � 4p
N

XN

i�1
U�Rgi�QR

r
�n � gi�; x � rn

This is an expression of the type of Eq. (11) with
ai � �4p=N�U�Rgi�; i � 1; . . . ;N :

We compare accuracy and CPU time (the calcula-
tions have been performed on a HP 9000 Series 700
workstation) for examples where the grid points
g1; . . . ; gN are located at di�erent circles of latitude.
More precisely, in terms of polar coordinates with a
given c 2N, we let

#0 � 0; u01 � 0 (North Pole)

#i � iD#; 1 � i � cÿ 1; D# � p=c

ci � �2p=arccos��cosD#ÿ cos2 #i�= sin2 #i��;
1 � i � cÿ 1

uij � �jÿ 1=2� 2p
ci
; 1 � j � ci

#c � p; uc1 � 0 �South Pole�
Consequently, every point g1; . . . ; gN 2 X is determined
by �#i;uij�; 0 � i � c; 1 � j � ci, and N is controlled by
c via N�c� � 2� 4=pc2. A graphical impression of this
lattice, known as a Reuter grid, is shown in Fig. 11.

Tables 1 and 2 show the ®rst results for Algorithm 2.2
concerning accuracy and CPU times. The second and
the third columns show the maximum and the mean
errors for variational values of the degree in the poly-
nomial interpolation. As expected, we observe smaller
errors with an increasing degree M . Furthermore, we

Fig. 11. Reuter grid for c � 30;N � 1129

Table 1. Parameter studies for c � 150, N�c� � 28 568;K � Qh,
h � 0:99; L � 3; t� � 0:95) averaged 1486 points in the near-®eld

M Max error
�m2 sÿ2�

Mean error
�m2 sÿ2�

Time far ®eld
coe� (s)

Total
time (s)

10 1:871 � 10ÿ1 3:916 � 10ÿ2 7.92 290.09
15 2:327 � 10ÿ2 6:050 � 10ÿ3 17.04 301.05
20 5:125 � 10ÿ3 8:936 � 10ÿ4 29.78 315.57
25 6:799 � 10ÿ4 1:399 � 10ÿ4 46.40 338.33
30 1:117 � 10ÿ4 2:209 � 10ÿ5 66.26 370.71
35 2:478 � 10ÿ5 3:612 � 10ÿ6 89.51 398.70
40 3:474 � 10ÿ6 6:142 � 10ÿ7 117.24 431.67
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only present the CPU times for the calculation of the
far-®eld coe�cients in columns 4 and the total time re-
quirement of the algorithm in columns 5, because the
in¯uence of a varying degree is negligible for the re-
maining steps. In the current example, the error between
an explicit calculation of UN �x�; jxj � r and an ap-
proximation of UN �x� made by the panel clustering al-
gorithm is evaluated at 11 400 points. The CPU times in
Tables 1 and 2 are given for an 11 400-times evaluation
via Algorithm 2.2. An explicit calculation of UN at these
points takes about 3911 s. Thus by the application of
our method we obtain an excellent reduction of the
computational costs, even for such small numbers of
points.

Now we deal with the more interesting cases of in-
creasing numbers of nodes N and evaluation points.
Table 3 shows our considerations for di�erent numbers
of nodes and a ®xed number �11 400� of evaluation

points, while Table 4 presents some results for the in-
verse case. The given ratios point out that we obtain a
better e�ciency of the algorithm if we have to deal with
large numbers of nodes or evaluation points. While the
factor of time reduction is just 4.32 for 12 684 nodes, it
reaches a value of nearly 18 for 114 444 nodes, which
means that the new method is 18 times faster than an
explicit calculation. A similar behaviour is recognizable
if we increase the number of evaluation points. It de-
velops from a factor of 11.88 for 11 400 points to 31.98
for 125 500 points.

3.2 Spline interpolation

On the basis of global data sets we investigate the
behaviour of spline interpolation via Algorithm 2.3. The
data sets contain the global geoid undulations according
to the OSU91A model. The locations of the interpolat-
ion nodes are again given by the Reuter grid (Fig. 11).
The geoid undulations as references for the calculations
of this section are visualized in Fig. 12. The picture is
given in the ranges of latitude 90�N to 90�S and
longitude 170�W to 190�E. As trial function for
interpolation we use the Abel± Poisson kernel Qh.

We present two examples of spline interpolation. The
®rst one is based on 12 684 nodes, the second one on 50
832 nodes. In order to illustrate the e�ect of a grid of
greater density, we show an intersection curve at one
latitude (viz. #= const = 0.012272) and an error plot in
both cases. The results show that the original signal can

Table 2. Parameter studies for c � 150; N�c� � 28 568; K � Qh,
h � 0:99, L � 4, t� � 0:98) averaged 522 points in the near-®eld

M Max error
�m2 sÿ2�

Mean error
�m2 sÿ2�

Time far ®eld
coe� (s)

Total
time (s)

10 2:041 � 100 6:153 � 10ÿ1 24.56 278.71
15 4:853 � 10ÿ1 1:156 � 10ÿ1 53.80 309.41
20 1:126 � 10ÿ1 2:133 � 10ÿ1 95.54 352.55
25 4:277 � 10ÿ2 1:170 � 10ÿ2 148.47 408.59
30 1:337 � 10ÿ2 3:018 � 10ÿ3 214.39 478.11
35 2:986 � 10ÿ3 6:463 � 10ÿ4 291.25 557.83
40 1:222 � 10ÿ3 2:372 � 10ÿ4 381.61 653.50

Table 3. Time requirements and time ratios for di�erent N with
K � Qh; h � 0:99; M � 30; L � 4; t� � 0:98

N Time expl
calc (s)

Time
alg (s)

timealg

timeexpl

timeexpl

timealg

12 684 1733.89 401.13 0.231 4.32
28 568 3911.53 478.31 0.122 8.18
50 832 6959.91 603.89 0.084 11.88
114 444 15669.66 875.92 0.056 17.89

Table 4. Time requirements and time ratios for di�erent numbers
of evaluation of points with K � Qh, h � 0:99, M � 30, L � 4,
t� � 0:98, c � 200, N�c� � 50832

Neval Time expl
calc (s)

Time
alg (s)

timealg

timeexpl

timeexpl

timealg

11 400 6959.9 586.01 0.084 11.88
20 200 12332.5 742.11 0.060 16.62
45 300 27656.5 1136.35 0.041 24.34
125 500 76620.1 2396.04 0.031 31.98

Fig. 12. Reference data: geoid
undulations
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be recovered only coarsely by a spline interpolant with
12 684 nodes (Fig. 13 and 14). Since it is known that the
error occurring depends strongly on the nodal width of
the given grid and convergence to the original function is
reached if the nodal width tends to zero (cf. Freeden and
Windheuser 1997; Freeden et al. 1998), we have to re®ne
the nodal grid to obtain also the ®ne structures of the
signal. As already mentioned, ordinary methods for the
solution of systems of linear equations are inappropriate
for this task, but our panel clustering method enables us
to obtain better results by processing large sets of ob-
servations. This assumption is con®rmed by the results
we obtained from the interpolation of 50 832 nodes. In
so doing we reach a strong improvement of the error
(Fig. 16), so that even the ®ne structures of the function
can be received. There is no visible di�erence between
the signal and the interpolant in Fig. 15.

3.3 Wavelet reconstruction

According to Freeden and Schreiner (1998) and
Glockner (1997), the gravitational potential U at the
spherical Earth's surface admits a resolution in terms of
spherical wavelets as follows:

U�Rn� �
X1
k�0

Rk�U��n�; n 2 X

where Rk�U� denotes the wavelet resolution of U at
level k

Rk�U��n� �
XAk

i�0
xk

i �WT �W0
�U��k; gk

i �Wk�n � gk
i �

and �WT �W0
�U� is the wavelet transform at scale k

corresponding to the cubic polynomial wavelet (CP
wavelet) given by
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Fig. 13. Intersection of the signal (line) and the spline interpolant,
Abel±Poisson kernel, h � 0:97 (broken line); 12 684 interpolation
nodes at # � 0:012272
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Fig. 14. Error surface plot of the spline interpolant, Abel±Poisson
kernel h � 0:97; 12 684 interpolation nodes
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Fig. 15. Intersection of the signal (line) and the spline interpolant,
Abel±Poisson kernel, h � 0:96 (broken line); 50 832 interpolation
nodes at # � 0:012272
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Fig. 16. Error surface plot of the spline interpolant, Abel±Poisson
kernel, h � 0:96; 50 832 interpolation nodes
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Wk�n � g� �
Xak

n�0

2n� 1

4p
wk�n�Pn�n � g�; �n; g� 2 X2

with

�wk�x��2 � �uk�1�x��2 ÿ �uk�x��2; x 2 �0;1�
and

uk�x� � �1ÿ 2ÿkx2��1� 2ÿk�1x�; x 2 �0; 2k�
0; x 2 �2k;1�

�
Ak � �2mk � 1�2; ak � 2k�1 ÿ 1; k � 0; 1; . . . : Figure 17
shows the CP wavelet Wk for k � 1; . . . ; 4.

The weights xk
1; . . . ;xk

Nk
and the wavelet coe�cients

�WT �W0
�F ��k :� are derived by the pyramid scheme de-

scribed by Schreiner (1997). The lower scales are not of
special interest here, because they require only a small
number of nodes gk

1; . . . ; gk
Nk
2 X: We present results for

the reconstruction of U at the scales 5, 6 and 7. If the
sets Xj are chosen as by Discroll and Healy (1994), exact
integrations require 16 384 nodes (scale 5), 65 536 nodes
(scale 6) and 262 144 nodes (scale 7).

Figures 18±20 show polynomials of degree 35 ap-
proximating the CP wavelets W5�t�;W6�t� and W7�t� in
the interval �ÿ1; 0:95�. For each scale we ®nally show two
®gures. In Figs. 21±23, the ®gure on the left-hand side (a)
contains the detailed behaviour of the signal obtained
from an exact reconstruction and the right-hand picture
(b) results from a reconstruction via Algorithm 2.2 in
each case. It is remarkable that even the ®ne structures in
the ®gures of the exact reconstruction can be recognized
in the ®gures resulting from our algorithm.

Appendix

Angle sum test

During the execution of our algorithm, points must be
related to spherical triangles several times, e.g. sorting
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Fig. 17. CP wavelets Wk�cos#� for k � 1; . . . ; 4
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Fig. 18. Interpolation of the CP wavelet W5�t� in the interval
�ÿ1; 0:95�

Fig. 19. Interpolation of the CP wavelet W5�t� in the interval
�ÿ1; 0:95�

Fig. 20. Interpolation of the CP wavelet W�t� in the interval
�ÿ1; 0:95�
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the nodes in the beginning of the setup stage and
location of the ®nest-level triangle containing the
evaluation point in the evaluation stage. We decide
whether or not a point is lying in a triangle via an angle
sum test introduced here.

We are given a point P on the sphere and the three
vertices V1; V2; V3 of a spherical triangle. We want to
check if the point P in Fig. 24 belongs to the triangle
with the vertices V1; V2; V3.

We start by setting

A � �V1 � V2�
B � �V2 � V3�
C � �V3 � V1�
a � arccos��V1 � P��
b � arccos��V2 � P��
c � arccos��V3 � P��

Fig. 21. R5�U�, reconstructed (a) explicitly and (b) by Algorithm 2.2

Fig. 22. R6�U�, reconstructed (a) explicitly and (b) by Algorithm 2.2

Fig. 23. R7�U�, reconstructed (a) explicitly and (b) by Algorithm 2.2

Fig. 24. Angle sum test
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From spherical trignometry we know theorems for the
calculation of spherical triangles. From the so-called
side-cosine theorem we ®nd

a � arccos
Aÿ cos a cos b
sin a sin b

� �
b � arccos

Bÿ cos b cos c
sin b sin c

� �
c � arccos

C ÿ cos a cos c
sin a sin c

� �
Now we have a criterion for the desired decision. If one
of the three angles a; b; c is equal to 180�, then P lies on
one side of the triangle. In addition, if the sum of the
angles a� b� c is equal to 360� then P is in the interior
of the triangle. In both cases P belongs to the triangle.
Otherwise, if a 6� 180�, b 6� 180�, c 6� 180� and
a� b� c 6� 360�, then P is outside the triangle.

Remark. More details, demonstrating the economy and
e�ciency of the spherical panel clustering method
presented above, can be found in the diploma thesis of
Glockner (1997).
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