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Abstract. Starting from the analytical theory of
perturbed circular motions presented in Celestial Me-
chanics (Bois 1994) and from specific extended formula-
tions of the perturbations in a uniformly rotating plane
of constant inclination, this paper presents an extended
formulation of the solution. The actual gain made
through this extension is the establishment of a first-
order predictive theory written in spherical coordinates
and thus free of singularities, whose perturbations are
directly expressed in the local orbital frame generally
used in satellite geodesy. This new formulation improves
the generality, the precision and the field of applications
of the theory. It is particularly devoted to the analysis of
satellite position perturbations for satellites in low
eccentricity orbits usually used for many Earth observa-
tion applications. An application to the TOPEX/
Poseidon (T/P) orbit is performed. In particular,
contour maps are provided which show the geographical
location of orbit differences coming from geopotential
coefficient differences of two recent gravity field models.
Comparison of predicted radial and along-track orbit
differences with respect to numerical results provided by
the French group (CNES, in Toulouse) in charge of the
T/P orbit are convincing.

Key words. satellite theory – circular motion – spherical
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1. Introduction

The a priori analysis of satellite orbit perturbations
induced by the Earth’s gravity field (static part) is
usually required for planning space missions. In this

field, the representation of orbital perturbations has
been given traditionally by different satellite theories in
terms of geometrical elements (Brouwer 1959; Kaula
1966). However, in many applications, it is necessary
that the perturbations be expressed in coordinate
variables rather than in element variables. In most
cases, the requirement is actually imposed by the nature
of the satellite mission, as in the case of satellite
altimetry. Recently, interest in this problem has been
notably augmented by the high precision requirements
for the TOPEX/Poseidon orbit (Rosborough 1986;
Melvin 1987; Balmino 1992). A recall of previous
analyses of satellite position perturbations due to the
complete geopotential can be found in Rosborough and
Tapley (1987). In this last case, as it is the case more
recently in Casotto (1993), the authors have expressed
the solutions thanks to a transformation of the orbital
element perturbations to the coordinate perturbations.
The results available for various orbits contain however
singularities for zero eccentricity and inclination. Since
satellites in low eccentricity orbits are usually used for
many Earth observation applications, it may be
judicious to expand predictive theories directly in
coordinate representations free of singularities (e � 0
and/or I � 0) rather than in orbital elements. The
interest in Space Geodesy is obvious. As an example,
Hill equations have been used to derive the radial
perturbations on a satellite orbit due to the geopotential
(Schrama 1989). And, more recently, Balmino et al.
(1996) showed the compatibility of the classical linear
perturbation theory based on Lagrange’s planetary
equations with Hill approach. Following the linear
orbit perturbation technique, as developed by Kaula
(1966), we show that it is possible to adopt spherical
coordinates instead of Kepler elements. The theory is
thus based on second order differential equations with
respect to time, as given by Brouwer and Clemence
(1961), describing the motion in a global geocentric
reference frame. These equations are more general than
the linearized Hill equations, which describe motion in a
local Cartesian reference frame, co-moving along a
strictly circular orbit. In addition, the set of sphericalCorrespondence to: P. Exertier
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coordinates is more suited than local Cartesian co-
ordinates to express most of the gravitational perturba-
tions. The circular motion is a particular solution of the
zero-order equations of motion written in spherical
coordinates. It has been adopted here as mean motion
allowing for the linearization to be carried out with
respect to this particular reference orbit. But in order to
describe weakly eccentric orbital motion, it is also
possible to adopt an approximate elliptical Keplerian
solution of undisturbed motion, as showed by Breiter
and Bois (1994).

The construction and the expansion of a new
predictive analytical theory have been motivated by
these above considerations. The demonstration of the
theory and the whole formulation of the method of
resolution can be found in Bois (1994). The main
advantage of the first-order literal solution, expanded in
Fourier series and non-singular variables, is the presence
of iterative formation laws for its coefficients. The
theory is then particularly accurate and suitable what-
ever the conservative forces, see (Exertier and Bois
1995), these forces being also expanded in Fourier series.
As a consequence, this predictive analytical theory
whose solution is given in a simple and compact form
is very efficient to describe perturbed circular and quasi-
circular motions. Now, the aim of the present paper is to
extend the formulation of this previous solution to more
possibilities of applications, particularly in the field of
satellite geodesy. Given the secular effects that affect
notably the ascending node of an inclined satellite orbit,
it may be judicious to expand and to solve the equations
of motion written in spherical coordinates in the
precessing mean orbital plane. The actual gain made
through our extension is the introduction of a uniformly
rotating plane of constant inclination (I) as a new
reference plane of the theory. From a geometrical point
of view, this extension allows to connect permanently
the spherical coordinate system used in this theory with
the orbital frame usually used in satellite geodesy, whose
coordinate axes are along the radial (R), the transverse
(T) and the normal (N) directions. The advantage is two-
fold. First, the first-order literal relations given in
section 4 between the terms of the perturbation and
the solution are directly expressed in the local orbital
frame using geocentric coordinate variables; the com-
pact form which has been adopted in addition facilitates
implementation and interpretation. Second, the present
new formulation improves generality, field of validity,
and precision of the predictive solution notably valid for
e � 0, or very faint values, and for 0 � I � p:

In order to explicit the field of the present extension,
we briefly recall in section 2 some characteristics about
the initial theory (Bois 1994). Section 3 contains the
extension of the first-order equations of motion permit-
ting to adopt a precessing plane of constant inclination
as reference plane. Section 4 shows an application of the
method of resolution in case of an extended central
potential: the static geopotential. It leads to the
complete solution permitting to give different physical
descriptions of its terms. In section 5, a practical and
concrete application is performed in the case of the

TOPEX/Poseidon (T/P) orbit in order to show the
validity of the analytical solution and its interest in
satellite geodesy. Comparisons of the analytical solution
with the numerical integration are certainly efficient for
qualifying the first-order literal relations (see, e.g., Fig. 1
in Bois (ibid)). However, in order to make our
application different and original, we focus on the
description of radial and along-track orbit differences
expressed in geographical coordinates. Actually, the
Centre National d’Etudes Spatiales (CNES) precise
orbit determination system computed T/P 10 day orbits
twice using JGM-2 and JGM-3 models (Nouel et al.
1994). As a consequence, this has formed a very
interesting basis of orbit differences which are only
caused by different gravitational models. And this has
lead us to compare, in the spatial domain – along theT/P
ground tracks –, the mean part of these orbit differences
with the coordinate perturbations given by our analyt-
ical theory using difference coefficients between JGM-2
and JGM-3 (Nerem et al. 1994; Tapley et al. 1994). After
eliminating the frequencies very close to once per
revolution in the analytical solution, comparisons of
predicted orbit differences with those resulting from the
numerical integrations show the satisfactory level of
consistency of the analytical solution, always at the first-
order.

The characteristics of the radial orbit errors for near
circular satellite trajectories caused by uncertainties of
geopotential coefficients have been discussed by many
authors (e.g., Rosborough 1986; Balmino 1992; Schra-
ma 1992). For information only, these errors may be
evaluated grossly by applying the analytical formulas
for the radial orbit perturbations to difference coeffi-
cients between two different geopotential models. This is
certainly a too crude approximation, the evaluation of
the actual radial orbit errors from geopotential coeffi-

Fig. 1. Reference frames and associated spherical coordinate systems

150



cient covariances (if calibrated) being more realistic
(Balmino 1992). Thus, prediction of orbit errors by
means of difference coefficients in first-order analytical
theories is certainly a good estimate, but it is not
absolute. However, on a practical point of view it gives
easily a general idea of the positive improvements seen
in the Earth’s gravity field models. As an example, the
geopotential coefficient differences between JGM-2 and
JGM-3 have been used again in order to predict the
radial orbit differences to be expected along the ERS-1
ground tracks. We used intentionally the same condi-
tions and gravity fields than in the case of T/P where the
analytical solution proved to be an efficient tool for
representing orbit errors; this has especially permitted to
show the effects of the altitude difference between both
satellites. Results show that the main part of the radial
orbit differences are due to difference coefficients of
degree and order higher than fifty at least for the altitude
and inclination of ERS-1. On the other hand, gravity
model differences that one gets between JGM-3 and
GRIM4-C4 have been used also to derive geographically
correlated radial orbit differences. In this last case,
results have been compared to the ERS-1 radial orbit
error propagated from the calibrated covariance matrix
of GRIM4-C4 (Schwintzer et al. 1996).

2. Recall of the basic frame

Let us recall some characteristics about the initial theory
developed by Bois (1994). Let OXYZ be a fixed
reference frame and let r;u; k be some spherical
coordinates referred to it. Using this set of coordinates,
and in the fixed frame, the Lagrangian of the motion of
the center of mass of a body, submitted to any
perturbation W �r;u; k� is written as follows:

L �

1
2

_r2
� r2

_u2
� r2 cos2 u _k

2
h i

� W �r;u; k� �1�

The classical general equations of the motion written in
OXYZ are then obtained by application of the algorithm
of Lagrange (see, e.g., (Brouwer and Clemence 1961)).
Starting from these equations, the components of the
disturbing force and the solution are expanded,
according to the Poincaré theorem, in powers of a small
parameter e reflecting the order of magnitude of the
disturbing force. The principle of the method consists in
exactly solving the successive differential sub-systems
obtained at the zero order, first order, and so on. The
circular motion, as a particular case of the classical
Keplerian solution, is choosen as the zero-order
solution. Then, the disturbing force and the solution
are expanded in the form of Fourier series. The solution
series �r�1;u

�

1; k
�

1� representing the periodic perturbations
are written as follows:

r�1 �
X

i>0;in

asiin sin Wiin � aciin cos Wiin
_Wiin

u�

1 �
X

i>0;in

bsiin sin Wiin � bciin cos Wiin
_Wiin

k�1 �
X

i>0;in

csiin sin Wiin � cciin cos Wiin

_Wiin

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�2�

with Wiin � ik0 �
P

n inan; where an are time dependent
functions, and _Wiin � i n �

P

n in _an containing the funda-
mental frequencies involved in the problem. Each
coefficient of the solution, as asiin or aciin , is associated
to a given frequency _Wiin for porperly separating all the
periodic effects. The only requirement due to this global
form is that _Wiin be not zero. In such a case, the case of
the resonance (e.g., n � ÿi1=i _a1�, the above solution
would require a specific formulation.

The nature of forces may be very different, the only
assumption being that their components �F ;G;H ; see
eq. 3) are periodical with respect to u and k. A similar
treatment is performed on the perturbations as on the
solution (the disturbing force and the solution are
expanded in Fourier series) in function of the effective
form of the zero-order solution �r0 � constant;u0 � 0;
k0 � linear function of time�: Let us recall that at the
zero order, the motion being in a plane, a simple choice
of the reference plane OXY in the mean orbital plane
permits to obtain u0 � 0 still remaining in the general
case. After some trigonometric expansions, the compo-
nents of the disturbing force take the following form:

F �

1 � KF �
X

k>0;kn

�pkkn sin Wkkn � qkkn cos Wkkn�

G�

1 � KG �
X

k>0;kn

�rkkn sin Wkkn � tkkn cos Wkkn�

H�

1 �
X

k>0;kn

�ukkn sin Wkkn � vkkn cos Wkkn�

�

�

�

�

�

�

�

�

�

�

�

�

�

�3�

with Wkkn � kk0 �
P

n knan: The resulting numerical
coefficients �p; q; r; t; u; v�kkn

are associated to a given
argument Wkkn ; while �KF ;KG� are two constant terms
(independently of k).

The first-order resolution leads to algorithmic solu-
tions using few parameters and suitable for e � 0, or
very faint values, and I � 0 (Bois 1994). Besides, an
extended formulation of the initial first-order solution
has been obtained by Exertier and Bois (1995), in order
to generalize the capacity of the theory to take into
account different periodic perturbations of various
physical nature. Most gravitational perturbations are
usually represented by spherical harmonic expansions
depending on spherical coordinates. Such perturbations
are directly expressed in the variables of the theory, thus
avoiding the heavy developments in elliptic elements.
This last idea obviously reinforces the interest in the use
of spherical coordinates instead of Cartesian, e.g. in the
so-called Hill equations. The coefficients �as; ac; bs; bc;
cs; cc�iin

of the solution (2) are given as literal functions
of the disturbing parameters (3) by way of extended
iterative formation laws (Exertier and Bois ibid):
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S1�xkkn ; ykkn� �

_Wkkn r0 xkkn � 2nykkn

n2
ÿ

_W
2
kkn

h i

r0

S2�xkkn� �

_Wkkn xkkn

n2
ÿ

_W
2
kkn

h i

r2
0

�4�

S3�xkkn ; ykkn� �
2n xkkn � �

_Wkkn � 3n2
= _Wkkn �ykkn=r0

n2
ÿ

_W
2
kkn

h i

r0

The indexes �k; kn� depend on the boundaries of
variation indexes of the disturbing force. Wkkn is the
common trigonometric argument of all series. In the
above equations, the case : k � �1; n � 1; k1 � 0;
_W
�1;0 � �n has not to be considered as what we call a

resonance in celestial mechanics. It is a particular case to
be discussed for each application of the first-order
theory. In section 4, the application of the theory to the
geopotential will permit to show these aspects in a
concrete case.

3. Extension to a rotating system

The purpose of this section is to show how the motion
equations have been modified when introducing the
concept of a precessing reference plane of constant
inclination in the theory. As a matter of fact, it permits
to eliminate the secular out of plane perturbations (on
u) which arise from the even zonal harmonics of the
central body.

3.1 Reference frames and systems of coordinates

Let OX 0Y 0Z0 and OXYZ be a fixed and a relative reference
frame respectively. OX 0Y 0Z 0 represents the inertial
reference system of the theory. It is connected to the
central body such as OX 0Y 0 is put in its equator. Let us
define some spherical coordinates r;/;K referred to this
fixed reference frame. On the other hand, OXYZ rotates
around OZ0 with an uniform velocity _X the OXY plane
having a constant inclination I relative to the planet’s
equator. The equatorial angle X between the OX 0 and
OX directions (Figure 1) is assumed to be a linear
function of time. As it is the case in the previous
formulation (section 2), let r;u; k be some spherical
coordinates referred to OXYZ; they are the variables
used in the theory. Let us recall however that OXYZ will
be a rotating frame in the following.

Now, in the relative frame, the Lagrangian of the
motion of the centre of mass of a body, submitted to any
perturbation W �r;u; k; I ;X� takes the following form:

L �

1
2

_r2
� r _uÿ r _X sin I cos k
ÿ �2

h

� r cos u �
_k� _X cos I� ÿ r sin u _X sin I sin k

� �2
�

� W �r;u; k; I ;X�

�5�

In this expression obviously, the components of the
velocity expressed in OXYZ relatively to OX 0Y 0Z 0 contain
some complicated terms due to the precession _X of OXY
around OZ0

:

3.2 Equations of motion

By application of the algorithm of Lagrange, we obtain
the classical general equations of motion. Then,
differential equations for the first order in e can be
established assuming the rate of rotation _X of the OXY
plane is a first-order quantity: X � X0 � e _X1�t ÿ t0�;
where X0 is an initial constant phase angle. At this point
however, no hypothesis is made on _X1. On the contrary,
section 4 shows that this last term is completely
determined in the resolution of the first-order equations
of motion.

The zero-order solution �r0;u0; k0� due to the right
hand side �F0 � ÿl=r2

0;G0 � 0;H0 � 0� is a particular
case of the general plane motion; indeed we adopt the
circular motion permitting to write k0 as linear function
of time. On the other hand, the adopted form for the
first-order terms �r1;u1; k1� is as general as possible.
These literal solutions are finally written as follows:

r0 � r0

u0 � 0
k0 � n�t ÿ t0� � k0

8

<

:

r1 � .1 � r�1
u1 � r1 � u�

1 �6�
k1 � nk1�t ÿ t0� � k�1

8

<

:

where n is the mean motion of the body in the relative
reference frame OXYZ; r0 a constant, and k0 a constant
phase angle. In addition, .1 and r1 are constant terms,
nk1 represents a secular term, and �r�1;u

�

1; k
�

1� represent
the periodic perturbations (2). The first-order equations
of motion have the following expression:

�r1 ÿ n2r1 ÿ 2r0n _k1 ÿ 2r0n _X cos I �

2
l

r3
0

r1 � F �

1 �r0;u0; k0; I ;X�

�u1 � n2u1 � 2n _X1 sin I sin k �
1

r2
0

G�

1�r0;u0; k0; I ;X�

�k1 �
2
r0

n_r1 �
1

r2
0

H�

1 �r0;u0; k0; I ;X�

8

>
>
>
>
>
>
>
>
>
>
>
>
<

>
>
>
>
>
>
>
>
>
>
>
>
:

�7�

These equations depart from those given by Melvin
(1987) mainly by the form of the zero- and first-order
solutions and consequently by the notion of order
adopted in our theory. The extended iterative formation
laws given equations (4) are unchanged. However, when
identifying the Fourier series terms of both perturbation
and solution in these equations, we have to take into
account for the new left hand side terms (in r and u) due
to _X1.

The linear orbit perturbation technique we applied to
obtain and then to solve the first-order system (7) is very
similar to the classical linear perturbation theory, as
developed by Kaula (1966). The linearization is carried
out with respect to a reference orbit; here, let us recall
that it is a circular motion of constant inclination I
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which precess with an uniform velocity _X: As a
consequence, the elements of the reference orbit are
substituted on the right hand side of the equations of
motion and result in the perturbations in the spherical
coordinates. There is thus no interest to consider the
homogeneous solution of the first-order equations (7).
The general solution �r�t� � r0 � r1;u�t� � u0 � u1;

k�t� � k0 � k1� - see eq. (6) and (2) - contains already
what we could call the force free and forced solutions of
the equations of motion.

4. Application to the Geopotential

The formalism of the theory can be applied to various
physical phenomena. Now, by taking into account the
extended potential of the Earth as main perturbation of
the problem, the aim is to obtain the expression of the
disturbing function and then its partial derivatives with
respect to r;u; k. These components of the disturbing
force are expanded to the first-order in the small
parameter e by injecting the zero-order solution
�r0 � constant;u0 � 0; k0� in the expressions of the
partial derivatives. The constant and purely periodic
terms are separated, these treatments being of different
nature. In addition, terms in sin k and cos k in the
components of the disturbing force are isolated (i.e., the
particular case _W

�1;0 � �n�, these last terms being
treated separately.

The gravitational field of a planet is expressed by the
following standard expression:

U �

l
r
� U�

where:

U�

�

l
r

X
lMax

l�2

X
l

m�0

ae

r

� �l
Pl;m�sin /�

�Cl;m cos m�Kÿ hg� � Sl;m sin m�Kÿ hg��

�8�

l is the planet’s gravity constant, ae its equatorial
radius, Pl;m Legendre associated polynomials and
�Cl;m; Sl;m� unnormalized coefficients depending on the
physical properties of the planet’s gravity field. These
last coefficients are determined in the rotating reference
frame with the central body, _hg being its uniform
velocity around OZ 0. Let us recall that r;/;K are the
spherical coordinates of a body in the planet’s reference
frame �OX 0Y 0Z 0

�:

In order to express the perturbation U� in the
variables r;u; k of the theory, it is necessary to introduce
the transformation of spherical functions under rotation
for using these coordinates instead of r;/;K coordinates.
The general expression of the transformation which
depends on a sequence of three constant Euler angles can
be found in Borderies (1978) or more recently in Sneeuw
(1992). For the particular sequence �Xÿ hg; I ; 0� which is
not exactly an Eulerian sequence according to the
definition given by Sneeuw (1992), let us recall the form
of the disturbing function (e.g., in (Kaula 1966)):

U�

�

l
r

X

l�2

ae

r

� �lXl

m�0

�Cl;m ÿ jSl;m�
�ÿ1�lÿm

�l ÿ m�!

X
�l

m0

�ÿl

�l ÿ m0

�!Cm0

l;m�I�Pl;m0 �sin u�

exp j�m0k� �m0

ÿ m�p=2 � m�Xÿ hg��

�9�

where j2
� ÿ1 and Cm0

lm�I� are trigonometric polynomials
in �I=2� (Borderies 1978). The three components of the
disturbing force �F �

1 ;G�

1;H�

1 � are obtained by differentia-
tion of U� in r;u; k; and then by making r � r0 �

constant;u � 0 and k � k0: The argument of these
series is: Wm0m � m

0

k0 � m�Xÿ hg� � �m
0

ÿ m�p=2
with: _Wm0m � m0n ÿ m _hg:

In particular, the constant terms in @U�

=@r and
@U�

=@u are obtained by making m0

� m � 0: They give
the following expressions of .1; r1; and nk1 :

.1 � 0 or any corrective value

r1 �
X
lMax

l�3

ae

r0

� �l

�ÿ1�lC0
l;0�I�P

0

l;0�0�Cl;0

nk1 � ÿ
_X1 cos I

�

n
2

X
lMax

l�2

�l � 1�
ae

r0

� �l

C0
l;0�I�Pl;0�0�Cl;0 �10�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

where P 0

l;m�0� is the derivative of Pl;m�0� for sin u � 0:
Their values are zero respectively for �l ÿ m� even and
�l ÿ m� odd. Now, _X1 has to be defined in order to
complete the expression of nk1 : To do that, let us
consider the second differential equation of system (7).
For the particular case m0

� �1;m � 0 �
_W
�1;0 � �n� in

this equation, and after equating terms in sin k it is
found that:

_X1 � ÿ

n
2 sin I

X
lMax

l�2

ae

r0

� �l

X

�

�l � 1�!
l!

C�1
l;0 �I�P

0

l;�1�0�Cl;0

�11�

The advantage is two-fold. First, this permits to
completely determine the precession rate X1 without
making an a priori hypothesis on the nature of this
secular term. As an example, the rotating rate of the
reference plane OXY of the theory has the following
expression for l � 2 :

_X1 � 3=2na2
e=r2

0 cos IC2;0: It is in
agreement with other classical results of satellite theory
(e.g., Kovalevsky 1963), considering here the motion is
circular. Second, it avoids to take into account the case
m0

� �1;m � 0 in using the expression of S2 (4), since
this case is already treated here. On the other hand, it is
clear that no first-order term in the form of sin k and
cos k is determined for the periodic solution in the
latitude component.

Considering the value of l must be even in order to
make �l � 1� odd and then P 0

l;�1�0� 6� 0 in (11), the
secular terms nk1 and _X1 are connected to even zonal
harmonic coefficients, properly. It represents the secular
effects arising in the classical argument of latitude and
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ascending node of a satellite orbit. On the other hand,
the constant term r1 depending on odd zonal coefficients
leads to motions that are slightly displaced out of the
reference plane OXY . Besides, the division by sin I in
(11) is not singular as the trigonometric polynomials
C�1

l;0 �I� are proportional to sin I. In fact, these expres-
sions can be computed whatever the inclination value
�0 � I � p�:

The coefficients �r�1;u
�

1; k
�

1� of periodic solutions series
are obtained from the disturbing series �F �

1 ;G�

1;H�

1 � with
both m0 and m 6� 0, and using the iterative formation
laws given in (4). It gives the following first-order
periodic terms:

�r�1�l;m;m0
� n2r0

ae

r0

� �l

�ÿ1�lÿm �l ÿ m0

�!

�l ÿ m�!
Cm0

l;m�I�

Pl;m0 �0�
ÿ�l � 1� � 2m0n= _Wmm0

n2
ÿ

_W
2
mm0

Al;m

�u�

1�l;m;m0
� n2 ae

r0

� �l

�ÿ1�lÿm �l ÿ m0

�!

�l ÿ m�!
Cm0

l;m�I�

P 0

l;m0
�0�

1

n2
ÿ

_W
2
mm0

Al;m

�k�1�l;m;m0
� n2 ae

r0

� �l

�ÿ1�lÿm �l ÿ m0

�!

�l ÿ m�!
Cm0

l;m�I�

2�l � 1�
n

_Wmm0

ÿ m0

ÿ 3m0

n2

_W
2
mm0

" #

Pl;m0 �0�
1

n2
ÿ

_W
2
mm0

Bl;m

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�12�

with:

Al;m � �Cl;m cos Wmm0 � Sl;m sin Wmm0 � �13�

Bl;m � �Cl;m sin Wmm0 ÿ Sl;m cos Wmm0 � �14�

where l � 2; 3; . . . ;m � �0; l�; and m0

� �ÿl;�l�: In
addition, �l ÿ m0

� is even in the expressions of r�1 and
k�1 but is odd in u�

1: As already shown in section 2, the
particular case m0

� �1;m � 0 has to be discussed.
Concerning u�

1 these last terms are now excluded; this
has been expected from the beginning with the
introduction of the nodal rate _X1 in the equations.
Concerning r�1 and k�1, the singularity can be avoided
here by taking into account the first-order secular terms
nk1 in the expression of _Wm0m: This technique has been
introduced, e.g. by Kaula (1966), in its first-order
solution of Lagrange equations. Thus, the common
denominator �n2

ÿ
_W

2
�1;0� of equations (12) takes the

following form, for l � 2 as an example:

n2
ÿ

_W
2
�1;0 � 2n _X1 cos I

�

3
2

n2 ae

r0

� �2

C2;0�1 ÿ
3
2

sin2 I�
�15�

These terms produce short period perturbations of large
amplitude notably on r; they are induced primarily by

the odd degree zonals. An explanation of this result can
be found e.g. in Balmino (1992).

The above solution (12) based on series expansions
proves to be a very compact expression of the complete
problem. As an example, the ’’M-dailies’’ are simply
obtained from these expressions for the subscripts
m 6� 0, m0

� 0. Besides, the solution is presented in a
form analogous to Kaula’s solution form, which
facilitates the interpretation. Finally, the position
perturbations �r�1;u

�

1; k
�

1� given by the solution are
directly expressed in the local orbital frame used in
satellite geodesy, the reference plane OXY containing the
satellite mean orbital plane. Moreover, literal expres-
sions of the velocities �_r�1; _u�

1;
_k�1� are easily obtained by

taking derivatives of the coefficients A and B with
respect to time.

5. Validation from TOPEX/Poseidon orbit

The aim of this section is to show the validity and the
interest in space geodesy of the analytical solution of
perturbed circular motion presented above. To this end,
this application to the T/P orbit consists in comparing
the analytical solution with numerical results obtained
in the framework of the altimetric mission. However, we
have chosen to map the mean orbit differences coming
respectively from the analytical and numerical solutions.

Concerning the numerical solutions, orbit differences
have been performed using CNES precise orbit ephe-
meris (POE). Indeed, the precise orbit determination
service at CNES in Toulouse is in charge of the T/P
precise orbit computation from different sources of
tracking observations using ZOOM software. It pro-
vided, notably in 1995, two kinds of orbit: the JGM-2
and JGM-3 orbits (Nouel et al. 1994). This double set of
orbits has constituted the background of our validation.
From these purely numerical results, the aim is to
properly separate orbit differences induced by the
potential coefficient differences and other sources of
orbit differences of variable nature in time and space. To
this end, the following procedure is applied within a
period of time of 100 days, corresponding to the 10-day
cycles 96 to 105. For each cycle, orbit differences
computed every minute are projected onto the T/P
ground tracks (ascending and descending) resulting in
5�5 deg grid after a 2D interpolation. Finally, by
averaging of the 10 cycles used, results in the radial,
along-track (Figures 2 and 3, respectively), and across-
track components are obtained on the basis of a 5�5
deg mean grid in order to highlight the large-scale
features. We have to underline that this period of time
has been chosen because no more significant informa-
tion appears on the mean grid for a longer period.

On the other hand, analytical orbit differences have
been determined using potential coefficient differences
between the JGM-2 and JGM-3 models given to the
degree and order 70 (Nerem et al. 1994; Tapley et al.
1994). These differences have been introduced in (12) in
order to determine the satellite coordinate differences
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Fig. 2. Mean values of orbit differences (radial component) in geographical coordinates computed from two numerical POE solutions of TOPEX/
Poseidon orbit over a period of 10 cycles: JGM-2 orbit minus JGM-3 orbit

Fig. 3. Mean values of orbit differences (along-track component) in geographical coordinates computed from two numerical POE solutions of
TOPEX/Poseidon orbit over a period of 10 cycles: JGM-2 orbit minus JGM-3 orbit



dr�1; du�

1; and dk�1. Then, by considering the sub-set of
mean orbital elements of the T/P orbit �r0 �

7716682:0 m; I � 66:040o
; X0 � 7:404o

;MJD � 49830�;
the analytical solution has been evaluated along a 10-
day orbital arc and values of dr�1; du�

1; and dk�1 have been
projected onto the map of the Earth every minute of
time. Figures 4 and 5 show maps of the predicted radial
�dr�1� and along-track �dk�1� orbit differences (for both
ascending and descending tracks) obtained by this
method.

Now, these results have to be compared to orbit
differences based on the numerical integration in order
to validate expressions (12) of the analytical solution.
The maps (Figures 2, 4 on the one hand, and 3, 5 on the
other hand) are in good agreement permitting to
validate the analytical solution, particularly the expres-
sions of periodic series. The comparison concerning the
across-track component �du�

1� gives also a very good
agreement, at the same level. However, the lack of
information at the 1/rev (cycle per revolution) and 1/rev
� 1/day frequencies in the numerical solutions is
obvious, due to the fit of empirical coefficients in the
dynamics (see e.g. (Marshall et al. 1995)). As a
consequence, the terms associated to these frequencies
have been removed in the analytical solution, and thus
have not been checked. Moreover, the radial orbit
differences given by these two methods, numerical and
analytical, have been compared to a third source, as an

ultimate control: the T/P radial orbit differences derived
by Haines et al. (1995) from two other dynamical
solutions. Results are still in good agreement. For
example, a comparison between the analytical and
numerical grids in the case of the radial component
gives differences with a mean value of 0.1 cm and a
standard deviation of 1.0 cm, in a global sense. It is quite
acceptable in the context of this application.

In order to give another example of the analytical
computation of radial orbit differences the ERS-1
satellite orbit has been considered also. First, we started
from gravity model differences between JGM-2 and
JGM-3 as in the case of T/P (see above). Using the same
conditions for both orbits should permit simply the
effects of the altitude difference to be emphasized.
However, the rms of the radial orbit differences we
have obtained (31.5 cm) seems to be rather high and
thus non realistic compared to the radial accuracy
recently achieved on ERS-1 (about one decimeter). In
fact, the quasi-systematic employment of empirical
and/or stochastic accelerations adjustments in current
precise orbit determination methods can absorb signals
arising from geophysical processes. This idea is surely
reinforced in the case of ERS-1. Accordingly, terms
close to the once-per-orbital-revolution frequency have
to be removed from analytical schemes as well as terms
of periods in excess of few days as such long-periodic
errors are absorbed to a large extent within numerical

Fig. 4. Application of the first-order analytical solution of perturbed circular motion in spherical coordinates to the TOPEX/Poseidon orbit.
Predicted radial orbit differences computed from the potential differences of JGM-2 minus JGM-3
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Fig. 5. Application of the first-order analytical solution of perturbed circular motion in spherical coordinates to the TOPEX/Poseidon orbit.
Predicted along-track orbit differences computed from the potential differences of JGM-2 minus JGM-3

Fig. 6. Application of the first-order analytical solution of perturbed circular motion in spherical coordinates to the ERS-1 orbit. Predicted radial
orbit differences computed from the potential differences of JGM-2 minus JGM-3 restricted to degree and order fifty



procedures. Thus, the geographically correlated radial
orbit differences showed in Figure 6 have been derived
with the JGM-2 and JGM-3 gravity fields restricted to
degree and order fifty. Their rms is now at the level of
5.2 cm allowing to note the relatively large uncertainties
in high degree and order geopotential coefficients at least
at the altitude and inclination of ERS-1.

Secondly, gravity model differences that one gets
between JGM-3 and GRIM4-C4 have been used also to
derive geographically correlated radial orbit differences
on ERS-1. An rms of 8.4 cm is obtained with both
gravity fields restricted to degree and order fifty. Now,
this last value can be compared to the ERS-1 radial orbit
error – about 4 cm – propagated from the covariance
matrix of the new GRIM4-C4 model (Schwintzer et al.
1996). As expected, geopotential coefficient differences
form certainly an estimate of errors in the knowledge of
the Earth’s gravity field, but it is not absolute. Thus,
satellite coordinate differences in geographical coordi-
nates based on such coefficient differences allow to
evaluate the order of magnitude of the so-called
geographically correlated orbit errors. Figures 4 and 6
constitute such indicators. A more detailed discussion
on realizations of orbit errors based upon gravity model
differences can be found in (Schrama 1992).

6. Conclusion

The general goal and innovation of this work is the
establishment of a purely analytical theory of orbital
motions notably valid for e � 0 and I � 0 or p allowing
easily very quick computation. It is based on a direct
integration of the differential equations of motion
written in spherical coordinates. Besides, by introduction
of an uniformly rotating plane of constant inclination as
a new reference plane of the theory, we produce new
analytical relations representing the position perturba-
tions due to the complete geopotential on a satellite
orbit. In addition, expressions can be used to derive
directly the coordinate perturbations in the local orbital
frame usually used in satellite geodesy. The present
extension improves thus the generality, the field of
validity, the precision, and as a consequence the
possibilities of applications of the solution.

The validation of the first-order solution is performed
in the case of the TOPEX/Poseidon orbit. It shows its
capability to predict orbital differences computed from
potential coefficient differences of two recent Earth
gravity field models: JGM-2 and JGM-3. Maps of the
radial and along-track orbit differences in geographical
coordinates obtained by the theory have been compared
with corresponding numerical results (precise CNES
orbit differences). These show a very good agreement, at
the level of 1.0 cm. That confirms the interest of such a
satellite theory whose equations have been treated in
geocentric coordinate variables permitting to describe
circular motions at any orbital inclination.

In addition, ERS-1 radial orbit differences due to
geopotential coefficient differences (JGM-2 minus JGM-

3, and JGM-3 minus GRIM4-C4) have been mapped in
geographical coordinates. The first-order analytical
solution applied to the geopotential coefficient differ-
ences between JGM-2 and JGM-3 provide an estimate of
radial errors at the 5 cm level with both gravity fields
restricted to degree and order fifty. On the other hand,
the same estimate of the ERS-1 radial orbit errors from
differences between JGM-3 and GRIM4-C4 is at the 8
cm level. These similar results prove the analytical
solution to be an efficient tool for representing an
estimate of orbit errors.
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