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Abstract. The Kalman filter has been applied extensively
in the area of kinematic geodetic positioning. The
reliability of the linear filtering results, however, is
reduced when the kinematic model noise is not accurately
modeled in filtering or the measurement noises at any
measurement epoch are not normally distributed. A new
adaptively robust filtering is proposed based on the robust
M (maximum-likelihood-type) estimation. It consists in
weighting the influence of the updated parameters in
accordance with the magnitude of discrepancy between
the updated parameters and the robust estimates obtained
from the kinematic measurements and in weighting
individual measurements at each discrete epoch. The
new procedure is different from functional model-error
compensation; it changes the covariance matrix or
equivalently changes the weight matrix of the predicted
parameters to cover the model errors. A general estimator
for an adaptively robust filter is developed, which includes
the estimators of the classical Kalman filter, adaptive
Kalman filter, robust filter, sequential least-squares
adjustment and robust sequential adjustment. The pro-
cedure can not only resist the influence of outlying
kinematic model errors, but also controls the effects of
measurement outliers. In addition to the robustness, the
feasibility of implementing the new filter is achieved by
using the equivalent weights of the measurements and the
predicted state parameters. A numerical example is given
to demonstrate the ideas involved.
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1 Introduction

Applications of the Kalman filter in dynamic or kine-
matic positioning have sometimes encountered difficul-
ties which have been referred to as divergences. These
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divergences can often be traced to three factors: (1)
insufficient accuracy in modeling the dynamics or kine-
matics (functional model errors of the state equations);
(2) insufficient accuracy in modeling the observations
(functional model errors of observation equations); and
(3) insufficient accuracy in modeling the distributions or
the a priori covariance matrices of the measurements and
the updated parameters (stochastic model errors).

The current basic procedure for the quality control of
the Kalman filter consists of the following:

(1) Functional model compensation for model errors
by introducing uncertain parameters into the state and/
or the observation equations. Any model error term can
be introduced into the models arbitrarily. We can then
augment the state (Jazwinski 1970, p. 308). A similar
approach is developed by Schaffrin (1991, pp. 32-34).
He partitions the state vector into / groups, each being
affected by a common scale error. Then % x 1 vectors of
scale parameters are introduced into the models. This
kind of approach may, of course, lead to a high-di-
mensional state vector which, in turn, greatly increases
the filter computational load (Jazwinski 1970, p. 305).

(2) Stochastic model compensation by introducing a
variance—covariance matrix of the model errors. In taking
this approach to prevent divergence, we have to determine
what covariance matrix to add. A reasonable covariance
matrix may compensate for the model errors. An inef-
fective covariance matrix, however, adds to the model
divergence. For instance, when the model is accurate in
some dynamic or kinematic periods, an unsuitable in-
creasing of the covariance matrix of model error will de-
grade the state estimators. An effective covariance matrix
for model errors can only be determined by trial and error.

(3) DIA (detection, identification and adaptation)
procedure (Teunissen 1990). This uses a recursive testing
procedure to eliminate outliers. In the detection step we
look for unspecified model errors. In the identification
step we try to find the cause of the model error and its most
likely starting time. After a model error has been detected
and identified, the bias in the state estimate caused by the
model error has to be eliminated as well. This model re-
covery from errors is called adaptation (Salzmanm 1995).
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The identification of the model is, however, quite difficult,
especially when the measurements are not accurate en-
ough to detect the unspecified model errors.

(4) Sequential least-squares (LS) procedure. A quite
different procedure that has frequently been used for
kinematic positioning does not use the dynamic model
information at all but determines discrete positions at
the measurement epochs (Cannon et al. 1986). In this
case, no assumption on the dynamic model is made, and
only the measurements at a discrete epoch are employed
to estimate the state parameters. The model error,
therefore, does not effect the estimates of new state
parameters. Usually, this method is presented as a se-
quential LS algorithm (Schwarz et al. 1989). The current
limitation of this approach is that it wastes the useful
information of the state model when the model accu-
rately describes the dynamic process in certain cases.

(5) Adaptive Kalman filtering. An innovation-based
adaptive Kalman filtering for an integrated Inertial
Navigation System (INS) global positioning system
(GPS) is developed by Mohamed and Schwarz (1999),
based on the maximume-likelihood criterion by proper
choice of the filter weight. Another adaptive Kalman
filter algorithm to directly estimate the variance and co-
variance components for the measurements is studied by
Wang et al. (1999). Both of the algorithms need to collect
the residuals of the measurements or the update series to
calculate the state variance—covariance matrices.

(6) Robust filter based on min—max robust theory.
The deviation of observation error distribution from the
Gaussian one may also seriously degrade the perfor-
mance of the Kalman filtering. Thus, there appears to be
considerable motivation for considering filters which are
robust enough to perform fairly well in non-Gaussian
environments. Facing this problem, Masreliez and
Martin (1977) applied the influence function of min—
max robust theory to replace the score function of the
classical Kalman filter. The basic disadvantages associ-
ated with this kind of robust filter are that the estimator
requires the unknown contaminating distribution to be
symmetried and it cannot work as well as the standard
Kalman filter does in Gaussian noise.

(7) Robust filter based on M estimation theory
(Huber 1964) and Bayesian statistics. In order to resist
the bad influences of both state model errors and mea-
surement outliers, a robust M—M filter is developed
(Yang 1991, 1997; Zhou et al. 1997, p. 299) by which the
measurement outliers are controlled by robust equiva-
lent weights of the measurements, the model errors are
resisted by the equivalent weights of the update pa-
rameters according to the divergence of the predicted
parameters and the estimated ones. Furthermore, a ro-
bust filter for rank-deficient observation models is de-
veloped by Koch and Yang (1998), by Bayesian statistics
and by applying the robust M estimate.

In the present paper, an adaptively robust filter is
developed by combining the adaptive Kalman filter and
robust estimation. The main feature of this new filter
consists in weighting the effects of the updated parameters
in accordance with the magnitude of discrepancy between
the dynamic model and the actual measurements.

2 Functional and stochastic compensations
for model errors

Let the linear dynamic system be given by
Xt - (Dt,t—IXt—l + rth (1)

and a time observation series Ly, Lo, ...
epoch ¢ by an observation equation

Li=AX +e (2)

is specified at

where @,,_; and 4, denote the transition and design
matrices, respectively, which are assumed known; the
vector X, consists of m unknown parameters. The
random error components W, and e, have zero expecta-
tions and are mutually uncorrelated. The covariance
matrices of W, and e, will be taken as

D(W,) = E(W;W) = Z, (3)

D(L)) = D(e,) = a*P ' = 3, (4)

where P, denotes a weight matrix of L,. The classical
Kalman filter reads

Xt = ()bt,t—l)?t*l (5)
X, =X, +K(L — 4.X) (6)
Xy = [ — KA|Zg, (7)

where X, and X,_; are the estimated state vectors at
epoch ¢ and ¢ — 1 respectively, X, is the predicted state
vector at epoch 7 — 1; g reads

p =Sy b+ TZuT] (8)
K is a Kalman gain matrix, which reads
K =3pd] (42547 +2,)" ©)

To compensate for the model errors, it is possible to
parameterize those model errors. We could then aug-
ment the state vector with these parameters and estimate
them together with the state. We model such a system
containing uncertain parameters by (Jazwinski 1970,
p. 281)

Xe = G 1 X1 +Hqu+1,W, (10)

Lt:A,x,+BtS+e, (11)

The parameters in vector u will be referred to as
dynamical parameters, whereas those in the vector s will
be called measurement parameters. H,,; and B, are
coefficient matrices. The estimator corresponding to the
augmented equations can be found in Jazwinski (1970).

This approach can, of course, compensate for the
model-error effects to some extent. It may, however,
increase the computational load. On the other hand,
once we learn the wrong parametric representation or
we do not introduce sufficient parameters, the filter can



again diverge. Furthermore, if too many parameters
are introduced, there may be insufficient data (Jaz-
winski 1970, p. 305) or it may lead to a rank-deficient
model.

Another method of compensating for the model er-
rors involves a stochastic model. Analyzing the estima-
tor of Egs. (6) through (9) we realize that when the
covariance matrix of the model error term is small, the
filter gain is therefore small, and subsequent observa-
tions have little effect on the state estimate. And when
the state model deviates from the actual system model,
the estimate and the state will diverge.

It is possible to introduce a suitable covariance matrix
to cover the model errors. In taking this approach to
avoid divergence, we have to determine F,ZVVHF,T in
Eq. (8). Some particular expressions for I'Zy, 7
are available (see Jazwinski 1970, p. 306). It is evident
that none of them work very well. All those techniques
which add a covariance matrix to account for the model
errors have their special parameters which have to be
adjusted in each application by experimentation.

3 Robust Kalman filter

A robust Kalman filter should be applied if data
contaminated by outliers are to be processed. This
problem was solved by Masreliez and Martin (1977),
who applied heavy-tailed Gaussian and non-Gaussian
distributions to account for outliers. A more efficient
robust Kalman filter based on polynomial interpolation
was developed by Tsai and Kurz (1983). Koch and Yang
(1998) derived a robust Kalman filter by using Bayesian
statistics, by which outliers are looked for not only in the
observations but also in the updated parameters.

3.1 Robust Kalman filtering for controlling
the observational outliers

If the outliers only in the observations are looked for,
then the robust estimator of filter could be

Xt:XtJth(Lt*AtXt) (12)

where K, is the Kalman gain matrix based on the
equivalent weight matrix of observations, i.e.

K, =ZgAl(4ZgAl +P71)7! (13)

in which P, denotes the equivalent weight matrix of L.

In the independent case, P, is a diagonal matrix with
elements p, (i = 1,2,...,n;), and p, can be (Huber 1964;
Yang 1993, p. 76)

Py s
P, = (14)
pl{ﬁ |V1/| >c

i

where ¢ is a constant, which is usually chosen as
¢ = 1.3-2.0. ¥} is the residual of the observation L, V/ is

1
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the standard residual corresponding to V;, and
p, = 1/0,,. Of course, other equivalent weight functions
can be chosen or constructed according to particular
situations (see Yang 1993, pp. 252-255; Zhou 1989). p,
is a descending function with respect to the standard
residual, therefore the outlier existing in the observation
L, is controlled.

In the case of dependent observations, the equivalent
weight matrix P, of the observation vector L, is a non-
diagonal matrix because of the dependence of the ob-
servations. The dependent equivalent weight matrix was
researched by Yang (1994). Here we give an equivalent
weight function for the elements of P; as

_ (Pr), [V/| <cand [V]] <c s
Py = (Pt),jm /| >cor|V[>c (15)

where V! = V/o;.

3.2 Robust filtering for controlling outliers
of observations and updated parameters

An estimator of the robust filtering for controlling the
outliers of the observation and the updated parameters
is given by Koch and Yang (1998)

X=X+ K(L — 4.X) (16)
K =354T (4S54l + a*P71)7! (17)
Ty = (G GT)™! (18)
GGl =o'%y! (19)

where Py denotes the equivalent weight matrix of the
updated parameter vector X;. The determination of the
element of Py is similar to that of 7,

An alternative expression to Eq. (12) is

Xt = (AtTptAt+P)?r)7l<AtTptLt+PX/\7l) (20)

which is called the M-LS filter (Zhou et al. 1997, pp.
295-296), similar to the M-LS Bayesian estimator
(Yang 1991). Here Py, denotes the original weight matrix
of X,. An alternative expression to Eq. (16) is

Xt: (AtTEAt+F)?,)_1(AtTELz+PX)?t) (21)

which is called the M—-M filter (Yang 1997; Zhou et al.
1997, p. 299).

The robust M—M filter above may cover the dynamic
model errors and the measurement outliers in theory.
However, the main problem is that when both the
dynamic model and the measurements are distorted by
outliers, the filter system cannot distinguish them, so the
system cannot determine the equivalent weights of both
the measurements and updated parameters.
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4 Adaptively robust filter

All the methods described depend on the knowledge of
the dynamic model errors, with which the functional or
stochastic models for compensation for the model errors
and the equivalent weights for the robust filter are
constructed. In practical applications, it is very difficult
to predict the error distribution or the error type of the
updated parameters or the dynamic model errors, thus it
is very difficult to construct functional and stochastic
models. Furthermore, when a moving vehicle is accel-
erated from zero or decelerated to a stop, the acceler-
ation profile is discontinuous. If this discontinuity falls
between two measurement epochs, the dynamics cannot
be accurately modeled or predicted by state equations;
in this case the predicted information from the dynamic
model should be treated with caution. Thus the filter
procedure should weaken the effects of the updated
parameters. In addition, if the updated parameter vector
is contaminated by model error, then it is usually
distorted in its entirety. Thus we do not need to consider
the error influence of the individual elements of the
updated parameter vector like the robust M—-M filter
does. An adaptive filter is suitable in this case to balance
the dynamic model information and the measurements.

4.1 General estimator of adaptively robust filtering

An adaptively robust filter is constructed based on the
estimator of Eq. (20) as

X, = (ATPA, + aPg ) " (ATPL, + aPg X,) (22)
Xy = (AT PA, +oPx) " o} (23)

where 7 is a scale factor, o is an adaptive factor which
can be chosen as

1 |A)?t| S Co

w={ o (a-lak))’ AX| < (24)
SANGED c < |AX[<e
0 |AX,| > ¢

where ¢y and ¢ are constants which are found to have
the values ¢ = 1.0-1.5, ¢; = 3.0-4.5

/ Jr{z ) (25)

and X, is a robust estimate of the state vector (state
position) which is only evaluated by new measurements
at epoch ¢ and the raw velocity observations are not
included in it. X, is a predicted position from Eq. (5) in
which the a priori velocity components are not included.
In our opinion, the change of the position expressed by
Eq. (25) can also reflect the stability of the velocity.
Equation (22) is a general estimator of an adaptively
robust filter. In the case of « # 0, Eq. (22) is changed
into, by using the matrix identities (Koch 1988, p. 40)

AX = % - X,

X=X + ZXAtT(AtZ)?,AtT + O‘Zt)_l (L — A.X;) (26)

4.2 Special estimators

The adaptive factor « changes between 0 and 1, which
balances the contribution of the new measurements and
the updated parameters to the new estimates of state
parameters.

Case 1. If « = 0 and P, = P, then
X, = (4 PA) 4] PL, (27)

which is an LS estimator using only the new measure-
ments at epoch 7. This estimator is suitable when the
measurements are not contaminated by outliers and the
updated parameters are biased so much that the AX, in
Eq. (24) is larger than ¢ (rejecting point), and the

information of updated parameters is completely
ignored.

Case 2. If « = 1 and P, = P, then

X, = (AP + Py) " (AT PLi + Pr.X,) (28)

which is a general estimator of the classical Kalman
filter. Equation (28) is equivalent to Eq. (6).

Case 3. If « is determined by Eq. (24) and P =P,
then

X, = (ATPA, + oPg) ' (ATPL, + oPg X,) (29)

which is an adaptive LS estimator of the Kalman filter.
It balances the contribution of the updated parameters
and the measurements. The only difference between
Eq. (22) and Eq. (29) is the weight matrix of L;; the
former uses the equivalent weights and the latter uses the
original weights of L;.

Case 4. If « = 0, then we obtain
X, = (4TPA,) 4T PL, (30)

which is a robust estimator using only the new
measurements at epoch ¢.

Case 5. If « = 1, then
X, = (4T PA + Py)” (A PL, + Py X)) (31)
which is an M-LS filter estimator (Yang 1997).

5 Test computation and analysis

A data set was collected on 20 June 1996, using Trimble
4000SSE by a flight. The available measurements are
C/A code, P2-code pseudoranges, L1 and L2 carrier
phases and Doppler measurements with 1-s data rate.



The rover receiver was mounted in an aircraft, and the
reference receiver was fixed at a site about 1 km from the
initial aircraft location. After about 10 minutes of static
tracking the aircraft took off, and the flight time was
about 90 minutes. The flight trajectories and velocities
are shown in Fig. 1.

The double-differenced C/A-code and P2-code
measurements are employed in the test performance.
An outlier of 50 m was given to the C/A-code mea-
surements of Satellite 2 every other 500 epochs in order
to test the performance of the robust algorithm. The
constant-velocity model of the Kalman filter was em-
ployed. The reasons for choosing the constant velocity
model are that so far we have not found any suitable
acceleration model to fit the test flight, and it is also
very difficult for us to construct a new reliable model.
Furthermore, the small time differences between the
observations may weaken the effects of the acceleration
on the dynamic model. Therefore we apply a transition
matrix as

1 At
¢t7t—l = l:() 1:|
with initial variances of 0.2m?> for positions,

9 x 10°m?s~2 for velocities, and 1 m? for code mea-
surements, and with a spectral density of 0.2 m?s~3 for
velocities. The dynamic model covariance matrix in
Eq. (8) is chosen as (Schwarz et al. 1989)

1/3Q2Al3
1/20,A8

T _ 1/20,A¢

rZyI, = OsA!

where O, denotes the spectral density for velocities and
At denotes a sampling time interval.

The highly precise results from double-differenced
carrier measurements are used only as “true values” for
comparing with the results from the code measurements,
in which the ambiguities are resolved on the fly using the
LAMBDA method (Teunissen et al. 1997). The follow-
ing six schemes are performed.
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Scheme 1: LS estimation, i.e. « = 0 and P, = P..

Scheme 2: classical Kalman filtering, i.e. « =1 and
P =P.

Scheme 3: adaptive Kalman filtering, i.e. o is determined
by Eq. (24) and P, = P,.

Scheme 4: robust estimation, i.e. « = 0 and the equiva-
lent weight element of P, is determined by Eq. (15).

Scheme 5: robust Kalman filtering, i.e. « = 1.

Scheme 6: adaptively robust Kalman filtering.

The position differences for the X component be-
tween the results from the six computation schemes and
the ““true values” are shown in Figs. 2-7. The position
differences for Y and Z components are similar to those
for the X component, and are omitted here.

Figure 1a and b shows that the flight states have two
notable sudden changes, one is close to epoch 1000 when
the plane takes off and the other one is between epoch
3000 and 4000 when the flight turns around. From the
test computation and comparisons, the following facts
can be stated.

(1) The two unstable states of the flight are obviously
reflected in the results of the classical Kalman filtering
(Scheme 2, Fig. 3) and the robust filtering (Scheme 35,
Fig. 6). The dynamic errors, however, have little influ-
ence on the results of the LS adjustment (Scheme 1,
Fig. 2) and the robust estimation (Scheme 4, Fig. 5),
since the a priori dynamic model information is not
considered in these two estimation procedures. The
adaptive filters do resist the influences of the dynamic
model errors (Scheme 3, Fig. 4 and Scheme 6, Fig. 7).

(2) Comparing the robust estimators, Schemes 4, 5
and 6, to the non-robust algorithms, Schemes 1, 2 and 3,
we recognize that the robust estimators (see Figs. 5b, 6b
and 7b) have effectively resisted the influence of the
outliers and the errors from the satellites of lower ele-
vation angle on the estimates of the state parameters.

(3) Among the above algorithms, the results from the
adaptively robust Kalman filter are the best. It cannot
only resist the impact of outliers, but also measure the
dynamic errors in time. Then, the adaptive factor « can

LR “;f.,\l‘
]

Fig. 1a, b. Flight trajectories
and velocities relative to fixed
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2000 4000
Epoch Number

6000 Fig. 2a, b. LS adjustment.

a Without outlier; b with outliers

Fig. 3a, b. Classical Kalman fil-
ter. a Without outlier; b with
outliers
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be appropriately determined to employ a priori infor-
mation reasonably, so that the estimator avoids the di-
vergences or large biases which often occur in the
classical Kalman filter because the dynamics are not
tracked in time.

(4) As a by-product, we find that from the compu-
tation, when the measurements are heavily contaminat-
ed by outliers, the results of the adaptive LS filter are
poorer than those of the classical Kalman filter. The
outliers distort the current estimates of the state pa-
rameters at the current epoch; consequently they make
the adaptive factor o believe that a dynamic state error
occurs, and result in a bad determination of «. The a
priori information is degraded inappropriately and the
noise of the estimates of state parameters increases;
compare Figs. 4b and 3b.

2000

Fig. 4a, b. Adaptive LS Kalman
filter; a without outlier; b with
outliers

4000
Epoch Number

6000

6 Concluding remarks

From our theoretical derivation, analysis, and actual
computation and comparison, the following conclusions
can be drawn.

(1) The classical Kalman filter can fully employ the
model information to improve the precision and
reliability of kinematic positioning by smoothing the
measurement noises based on support of the accu-
rate state equation. It cannot, however, control the
dynamic model biases.

The LS adjustment can resist the dynamic model
errors, but it cannot fully employ the reliable in-
formation from the dynamic model, even though the
model may be accurate in most cases.

2
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2000

4000 5000 Fig. 5a, b. Robust adjustment.

a Without outlier; b with outliers
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4000 6000 Fig. 6a, b. Robust Kalman filter.

a Without outlier; b with outliers
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(3) The adaptively robust Kalman filter can balance the
contribution of updated parameters and the new
measurements, but it needs the support of reliable
measurements.

(4) None of the estimators based on LS can resist the
measurement outliers.

(5) The adaptively robust Kalman filter proposed in this
paper can not only balance the contribution between
the updated parameters and measurements in ac-
cordance with the magnitudes of their discrepancy,
but also resist the influences of measurement outliers.
It can be combined with any other error compensa-
tion methods if a suitable stochastic covariance ma-
trix for dynamic model errors or some reliable
functional models are available. The general esti-
mator of the new adaptively robust Kalman filter
includes the estimators of LS adjustment, robust
adjustment, Kalman filter, robust Kalman filter and
adaptive LS filter. All of the special estimators can be
achieved by an effectively adaptive factor o, and an
equivalent weight function.

The adaptively robust filtering developed in this paper is
very preliminary; further theoretical and practical re-
search and analyses are needed.
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