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Abstract. A comparison was made between two meth-
ods for gravity field recovery from orbit perturbations
that can be derived from global positioning system
satellite-to-satellite tracking observations of the future
European gravity field mission GOCE (Gravity Field
and Steady-State Ocean Circulation Explorer). The first
method is based on the analytical linear orbit perturba-
tion theory that leads under certain conditions to a
block-diagonal normal matrix for the gravity unknowns,
significantly reducing the required computation time.
The second method makes use of numerical integration
to derive the observation equations, leading to a full set
of normal equations requiring powerful computer facil-
ities. Simulations were carried out for gravity field
recovery experiments up to spherical harmonic degree
and order 80 from 10 days of observation. It was found
that the first method leads to large approximation errors
as soon as the maximum degree surpasses the first
resonance orders and great care has to be taken with
modeling resonance orbit perturbations, thereby loosing
the block-diagonal structure. The second method proved
to be successful, provided a proper division of the data
period into orbital arcs that are not too long.
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1 Introduction

The Gravity Field and Steady-State Ocean Circulation
Explorer (GOCE) will be the first satellite to fly in the
framework of the European Space Agency (ESA) Earth
Explorer Mission program (ESA 1999). The projected
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launch is in 2004 and the mission duration will be 20
months, consisting of a 2-month commissioning phase
and two 6-month measurement collection periods with a
S5-month hibernation period in between. GOCE will fly in
either a dawn—dusk (launch in winter) or dusk—dawn
(launch in summer) sun-synchronous orbit at a mean
altitude of 250 km and an inclination of 96.5°. The orbit
will be near-circular with the eccentricity always smaller
than 0.0045. GOCE will be equipped with a drag-free
control (DFC) system eliminating the larger part of non-
conservative forces and allowing GOCE to fly a (near)
repeat orbit. The repeat period will be 2 months or
longer in order to guarantee a sufficiently dense pattern
of ground tracks for high-resolution gravity field sam-
pling. The objective of the mission is the determination
of a model of the static gravity field with an accuracy of
better than 1-2 mGal and 1-cm accuracy in terms of
gravity anomalies and geoid heights, respectively, at a
resolution of 100 km. GOCE will be equipped with a
high-quality, dual-frequency global positioning system
(GPS)/(GLONASS) Global Navigation Satellite System
receiver and a gravity gradient gradiometer providing
satellite-to- satellite tracking (SST) observations between
GOCE and the GPS satellites and observations of the
full gravity gradient tensor (SGG, satellite gravity
gradient) at satellite altitude, respectively.

The GPS/GLONASS receiver plays a dual role in
that it both enables a high-precision orbit determination
and long-to-medium-wavelength gravity field recovery
and supports the gradiometer to very accurately geo-
locate the SGG observations in an Earth-fixed reference
frame. The capability of precise orbit determination
(POD) has been assessed in detail by Visser and van den
IJssel (2000). Gravity field recovery up to high degree
and order is a demanding task from a computational
point of view. With a total mission duration of 12
months and a rich observation environment, which is
the case with tracking by GPS of GOCE, the total
amount of observations is of the order of tens of millions
(the foreseen GPS observation time interval is 10 s or
less). The GOCE orbit is sensitive to gravity field terms
of degree 80 and even higher (SID 2000; Visser and van
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den IJssel 2000), leading to a total number of gravity
unknowns of the order of 6500 or more. For SGG ob-
servations the maximum resolvable degree lies around
300, leading to about 90,000 unknowns. An efficient
algorithm, referred to as iterative block-diagonal gravity
field estimation, was implemented to estimate this
amount of unknowns from SGG observations based on
the peculiar observation geometry that exists if GOCE
flies a repeat orbit (Klees et al. 2000). This algorithm
results in significant reductions in both the computer
time and memory required. The subject of the present
paper is assessment of a similar algorithm for gravity
field recovery from orbit perturbations that can be ob-
served by SST of GOCE based on the linear perturba-
tion theory (LPT) (Kaula 1966; Rosborough 1987; Sect.
2.1). If such an algorithm proves to be feasible, this will
allow a simple integration with the method outlined in
Klees et al. (2000) to obtain combined SST/SGG gravity
field solutions or GOCE.

In addition, a method based on numerical integration
was investigated (Sect. 2.2). The latter method is more
demanding from a computational point of view. For
example, 35 minutes of CPU time were required on a
CRAY-J90 computer for one iteration using the block-
diagonal method for a gravity field recovery complete to
degree and order 80 for a 10-day data period, compared
to 50 hours for the approach using numerical integra-
tion, i.e. a reduction by a factor of 85. For higher
truncation degrees, this reduction will be larger. The
memory requirement for the first approach was around
1 Mb compared to 175 Mb for the second approach, i.e.
a reduction by a factor of 175. This reduction will also
be larger for higher truncation degrees. In fact, it can be
shown that this reduction is equal to six times the
truncation degree.

Gravity field recovery experiments were conducted
with both methods (Sect. 3) and evaluated (Sect. 4).

2 Methodology

The methods were based on gravity field parameter
adjustment from orbit perturbations that can be
observed using GPS. The strong geometry of the
GPS system allows a high-precision orbit determina-
tion in which dynamic model errors, predominantly in
the a priori gravity field model, can effectively be
minimized to the few-centimetre level by, for example,
a kinematic or reduced dynamic orbit determination
technique (SID 2000; Visser and van den IJssel 2000).
In other words, after a proper processing of the GPS
observations, the GOCE orbit may be considered to
be known at this accuracy level. In the SGG data
analysis process, this accuracy is high enough to
regard the orbit as a prior known quantity, allowing
us not to include unknown position parameters in the
estimation procedure (ESA 1999). The GOCE orbit
solution can be used as pseudo observations, e.g.
Cartesian x,y, and z coordinates in an Earth-centered
pseudo-inertial reference frame, for a gravity field
model adjustment.

In this adjustment a simulated state-of-the-art a priori
gravity field model that differs from the simulated true
gravity field model is used to compute a dynamic orbit
that fits best with these observations. In this orbit com-
putation no attempt is made to reduce the effect of gravity
field model errors and the total effect of these errors will
be included in the dynamic orbit. Thus, in this case, the
differences between the pseudo observations and the
dynamic orbit reflect the differences between the a priori
and true gravity field models. The differences can then be
used to adjust the coefficients of this a priori model.

Two methods were investigated for recovering the
gravity field information from the orbit differences, an
analytical method leading to a sparse, block-diagonal
normal matrix for the gravity field unknowns (Sect. 2.1)
and a method based on numerical integration leading to
a full normal matrix (Sect. 2.2).

2.1 Analytical block-diagonal approach

It was investigated whether a block-diagonal matrix
approach similar to a successful method implemented
for gravity field recovery from SGG observations
outlined in Klees et al. (2000) can be used for orbit
differences. In this case, the orbit differences were
differences between the Cartesian x, y, and z coordinates
of the true GOCE orbit (simulated with the true gravity
field model) and a dynamic orbit computed with an a
priori gravity field model. An important aspect of this
technique is the computation of the partial derivatives of
the coordinate differences Ax, Ay, and Az to the gravity
field parameters. In a first step, these differences are
transformed to perturbations in the radial, along-track
and cross-track directions. The partial derivatives can
then be computed using an analytical orbit perturbation
theory, in the following referred to as LPT (Kaula 1966;
Rosborough 1987; Schrama 1989; Visser 1992; Visser
et al. 1994). With the partial derivatives, linear obser-
vation equations can be derived linking the coordinate
differences to the gravity field unknowns (Kaula 1966;
Schrama 1989; Visser 1992)
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where r, 7, and ¢ denote the orbit perturbations in the
radial, along-track, and cross-track directions, respec-
tively. Use has been made of the Kepler elements: the
orbital semi-major axis a, eccentricity e (assumed zero
for GOCE orbit), argument of perigee w, inclination i
right ascension of ascending node Q, and the mean
anomaly M. The Greenwich hour angle is denoted by 0,
while Fj,,, is a function depending on the orbital
inclination i only. Furthermore, F;,, is the derivative
of Fj,, with respect to the inclination i. It is assumed
that the satellite flies in a repeat orbit with a duration of
ngay nodal days in which n., orbital revolutions are
completed (n4ay and nre, are relative primes). The gravity
field unknowns are represented by AS,, and ACy,,, where
[ and m denote the degree and order. The gravity field is
represented by a spherical harmonic model complete to
degree and order /.

For an exact repeat orbit, it can be shown that these
equations become Fourier series with the basic fre-
quency equal to 1/mey cycles per orbital revolution
(CPR) (Colombo 1984). The method of least squares
(LS) is used to solve these equations. With the above
equations, it can be shown that the normal equations
become block-diagonal when organized per order m,
provided there are a continuous data stream of orbit
differences and a data period equal to, or an integer
multiple of, the repeat period of the GOCE orbit. The
normal matrix elements are equal to zero outside these
blocks on the diagonal.
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It should be noted that Egs. (1)-(6) represent the
non-resonant particular solution of the linearized
equations of motion of a satellite with respect to a
reference circular orbit. Not included are the homoge-
neous solution and resonance effects caused by errors in
the initial condition, i.e. the initial position and velocity
of the satellite, and those caused by the zonal coeffi-
cients of the gravity field. The homogeneous solution
and resonance effects can be represented by (Schrama
1991)
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where @, represents the orbital angular velocity of the
satellite, ¢ represents time and a;;,b;x(j=0...4,
k =r,t,c) are constant amplitudes. These effects have
to be eliminated or accounted for when using the orbit
differences in the gravity field estimation. In the block-
diagonal approach, this is done by separately estimating
the amplitudes and subtracting the solution from the
orbit differences (Sect. 3). If this cannot be done
separately, the normal matrix looses its block-diagonal
structure. The analytical block-diagonal approach is
thus based on the assumption that the correlation
between the amplitudes of Egs. (7)-(9) and the gravity
field unknowns is at such a low level that separate
estimation is allowed, otherwise the normal matrix will
also be filled outside the blocks on the diagonal. More
attention will be paid to this aspect in Sect. 3.

The coordinate differences are assumed to be pro-
duced at a constant time interval, making it possible to
perform a discrete fast Fourier transform (FFT) on the
data. As mentioned previously, the orbit perturbations,
correlated for the homogeneous solution and resonance
effects, can be represented by a Fourier series with basis
frequency 1/nry (CPR) if the satellite flies in a repeat
orbit. In that case, the orbit perturbations can be writ-
ten as
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where {p € {r,7,c}|k=1,2,3},a;; and by; are the
amplitudes of the perturbations with frequency j/ney
(CPR), and nj indicates the maximum number of
frequencies, which is limited by the Nyquist frequency
imposed by the data time interval Az.

If a complete repeat period of n., orbit perturbations
at time #; with constant time interval is available, the
amplitudes a;; and by ; can be obtained by
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The amplitudes a;; and b;; can be connected to the
gravity field unknowns ACy, and AS;,, by means of the
LPT [Egs. (1)-(6)].

As stated before, the observation equations are
solved by the LS method, leading to a block-diagonal
matrix. This is the case when the matrix is organized per
order m (Colombo 1984). It can also be shown that even
and odd parities of / —m become uncorrelated. The
largest dimension of the blocks is thus equal to half the
maximum degree of the gravity field harmonic expan-
sion that is to be estimated. The solution of the normal
equations transforms to solving block matrices with di-
mensions much smaller than the dimension of the full
matrix. For example, for a gravity field recovery up to
degree and order 80 the largest submatrix that has to be
inverted has a dimension of 40, compares to about 6550
for the entire matrix. This prevents the necessity of long
and costly computer runs and facilities. An additional
advantage is that only a small part of the total normal
matrix (only the blocks on the diagonal) has to be
stored.

In summary, the analytical technique can be written
in the following steps.

(1) High-precision (kinematic or reduced-dynamic) or-
bit determination from GPS SST measurements for
a repeat period resulting in x,y,z coordinates that
match the true orbit as closely as possible.

(2) Dynamic orbit determination from these coordi-
nates and computation of residuals with an a priori
gravity field model.

(3) Transformation of coordinate differences between
the orbits of steps 1 and 2 into residual radial, along-
track, and cross-track orbit perturbations.

(4) Estimation of homogeneous solution and resonance
effects and elimination from the orbit perturbations.

(5) Discrete FFT of the remaining perturbations.

(6) Application of LPT to compute the normal equa-
tions, taking into account the block-diagonal struc-
ture of the normal matrix.

It is obvious that several approximations are introduced
by using this method. First, the observation equations
are obtained by a linearization of the equations of
motion along a circular orbit. Such a linearization leads
in general to a less accurate representation of (near-)
resonance orbit perturbations (Visser 1992). In addition,
the orbit will not be exactly circular and will have a
small eccentricity e leading to higher-order errors O(e).
The deviation from circularity may be several or even
tens of kilometers (SID 2000). Second, it has been
assumed that the homogeneous solution and resonant
orbit perturbations can be treated separately from the
particular solution. Due to the linearization, an iterative

procedure has to be adopted and steps 1-6 should be
repeated until convergence.

Suppose that the exact observation and, in conjunc-
tion, normal equations can be derived and are repre-
sented by
Ax =79, Nx=A/Ax=A"p (13)
and that the approximated equations using the LPT can
be written as
Ax=79, Nx=AT4,x=A4"y (14)
where A, and A, represent the matrices with exact and
approximated partial derivatives, respectively, ¥ is the
vector of unknowns ACjy,, AS},,, and y the vector of orbit
differences. Then the model or approximation error Ax
becomes

Ax = (N4, — N '4,)p (15)

As will be shown in Sect. 3, the matrix N, will not be
purely block-diagonal. In Klees et al. (2000) an iterative
scheme was adopted to eliminate the approximation
errors. Applying the same scheme results in a re-
computation after each iteration of the right-hand side
of the normal equations using the same 4, matrix, but
with updated orbit differences. The left-hand side
remains constant, i.e. the block-diagonal matrix N,.
After some manipulations (Klees et al. 2000), it can be
shown that the iterative process only converges when the
following criterion is met:

p(I — N, '4T4) < 1 (16)

where p is the spectral radius and 7 the identity matrix. If
A, is a close approximation of 4,, the following formula
will give a good indication for convergence:

p(I — [NJpgNo) < 1 (17)

where [Ni],4 is the block-diagonal part of the true
normal matrix. Actual computations of the spectral
radius are discussed in Sect. 3.2.

2.2 Full matrix approach with numerical integration

In a second method, the partial derivatives are obtained
by a numerical integration of the variational equations
that link the orbit differences to the gravity field
unknowns (SID 2000). The resulting observation equa-
tions are again linearized equations and are solved by
the method of LS. However, a fundamental difference
with the analytical approach is that the equations of
motion are not approximated. In addition, the observa-
tion equations are set up along the orbit computed with
the a priori gravity field model instead of a circular
reference orbit. A full set of normal equations is built up
and a completely filled normal matrix is obtained. It
must be noted that in this approach the data period can
be split into orbital arcs and for each arc an initial
position and velocity is estimated in addition to the



gravity field unknowns. The normal equations for the
different arcs are accumulated by the method of
partitioning, properly taking into account the effect of
the estimation of the initial conditions
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where N is the normal matrix, x the vector of unknowns
and 7 the right-hand side. The subscript a denotes the
initial conditions and g the gravity field unknowns. The
final normal equations are obtained by summing Eq. (19)
for all arcs. Because of the linearization of the obser-
vation equations, this method has to be iterated until
convergence (as is also the case for the analytical
method), despite the effectively exact computation of
the partial derivatives by numerical integration. How-
ever, due to the large computation time required, the
simulations were limited to one iteration.

3 Results

Simulations were carried out in which the true orbit of
GOCE was computed with the OSU91A model (Rapp
et al. 1991) truncated at several degrees. Thus different
cases were investigated in which the true gravity field
was simulated by the OSU91A model truncated at
different degrees in order to assess estimability of the
gravity field as a function of the truncation degree with
the two approaches outlined above. It was attempted to
compute an orbit that matches a repeat orbit as closely
as possible. In all cases, the difference between the
Earth-fixed positions at the start and end of the repeat
period was equal to 3 km or less, which seems to be a
realistic value for maintaining such an orbit. From the
true orbits the pseudo observations were derived, which
were then used to compute a dynamic reference orbit
with an a priori model for which JGM-3 (Tapley et al.
1996) was used truncated at the same degree as
OSU91A, resulting in coordinate differences Ax,Ay,
and Az caused by the gravity field model coefficient
differences. It has to be noted that no errors were added
to the coordinate differences, thus these differences are
caused purely by gravity field coefficient differences. The
a priori models were truncated at the same degree to
prevent aliasing of higher-degree terms in the gravity
recovery. Both the true and dynamic reference orbits
were computed with the GEODYN software kindly
provided by the NASA Goddard Space Flight Center
(Rowlands et al. 1995). The equations of motion and
variational equations are solved by an 1l1th-order
numerical integration procedure. The orbit was output
in the form of Earth-centered pseudo- inertial Cartesian
x,y, and z coordinates with a time interval of 10 s. A 10-
day repeat period was selected in September 2003, close
to one of the preliminary projected operation periods of
GOCE. In these 10 days GOCE will complete 161
orbital revolutions. Although it was stated above that
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the repeat period for GOCE will not be shorter than 2
months, a 10-day period was selected for testing and
analyzing the two gravity field recovery approaches and
for keeping the necessary computer time within limits.

3.1 Analytical block-diagonal approach

The analytical model was verified by comparing radial,
along-track, and cross-track orbit differences obtained
with numerical integration with those predicted by Egs.
(1)—(9) and the gravity field coefficient differences (Table
1). The approximation errors of the analytical model are
almost negligible for a truncation at degree 10: a few
centimeters at most, or 0.4—1.7% of the total signal. For
a truncation at degree 50, the errors are at the 8-13%
level of the total signal. In terms of energy, this is still

less than (13/100)% x 100 = 1.7%. It was investigated
whether these approximation errors are small enough to
guarantee a successful iterative gravity field recovery.
Initially only gravity field coefficient differences up to
degree and order 10 were taken into account. Two
different approaches were adopted. In the first approach
the homogeneous solution and resonance effects
[Egs.(7)—(9)] were eliminated from the orbit perturba-
tions. In the second approach this was not done, and the
orbit perturbations were used directly in the computa-
tion of the normal equations. In this way the effect of
errors in the initial conditions and of resonance effects
on the analytical block-diagonal approach can be
investigated.

As a quality measure of the gravity recovery, the
global root mean square (RMS) of geoid differences
between the true model and recovered model were used.
The total geoid difference between JGM-3 and OSU91A
up to degree and order 10 is equal to 11.93 cm. The
accuracy of the recovery may depend on which (com-
bination of) orbit difference component(s) is used. The
results indicate that the homogeneous solution and res-
onance effects have to be taken into account: when using
radial orbit differences the accuracy improves from 0.92
to 0.52 cm in terms of geoid error (Table 2). The
improvement is from 19.02 to 1.79 cm when using

Table 1. Comparison of orbit differences obtained with numerical
integration and with the analytical perturbation theory (LPT)

Truncation Radial Along-track Cross-track
degree (cm) (cm) (cm)
10% 71.60 274.59 109.27
10° 10.35 24.67 90.34
10° 1.21 2.60 0.46
30° 858.57 13794.88 739.87
30° 684.86 13076.60 612.86
30° 82.15 172.95 88.61
50% 1245.00 18341.01 1443.40
50° 825.88 17583.36 1001.22
50°¢ 114.89 250.81 117.47

#Total signal: numerical integration
® After subtracting particular LPT solution [Egs. (1)~(6)]
¢ Plus homogeneous/resonance solution [Egs. (7)+9)]
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Table 2. Gravity field recovery from orbit perturbations using the
block-diagonal approach: global RMS of geoid error (cm)

Maximum  Geoid Orbit component

degree signal
Radial ~ Along- Cross-  Three
track track directions

10 11.93 0.52 1.09 1.79 1.49
10% 11.93 0.92 1.46 19.02 5.78
10° 11.93 0.01 0.01 4.09 0.85
10° 11.93 0.01 0.01 0.02 0.04
13 14.38 0.54 1.42 13.01 3.07
13% 14.38 0.60 1.49 102.12 28.52
16 17.94 10.10 79.54 4.08 51.92
16* 17.94 12.31 11.26  123.60 32.03
30 37.15 52.07  5190.15 432.36 1587.57
30° 37.15 236.85 5268.51  834.27 1636.59

#Homogeneous solution/resonances not taken into account
®Second iteration
¢Second iteration: zonals excluded

cross-track orbit differences. It can be seen that the ap-
proximation errors lead to different gravity field recov-
ery errors when using orbit differences in different
directions: the geoid error is equal to 0.52, 1.09, and
1.79 cm when using radial, along-track, and cross-track
orbit differences, respectively. In addition, differences
may be caused by the elimination of the homogeneous
solution and resonance effects. By separately estimating
the relevant amplitudes [Egs. (7)—(9)], a part of the
gravity signal represented by the particular solution of
the LPT may be absorbed as well. Especially for the
cross-track direction, the signal is reduced significantly
by this estimation and elimination (Table 1).

Best results are obtained when using only the radial
orbit differences. Adding normal equations based on
along-track and cross-track orbit differences with the
same weight leads to a larger gravity recovery error. It
may thus be concluded that by using the particular so-
lution of the LPT, which gives an approximation of the
partial derivatives of the orbit differences to the gravity
unknowns and excludes resonance terms that are elimi-
nated separately, relatively large errors occur for the
along-track and cross-track directions, although the re-
covery error is in all cases much smaller than the signal.
The analytical block-diagonal approach is in principle an
approach that should be iterated until convergence.
Therefore, the four gravity field solutions of the first it-
eration, i.e. based on only the radial, only the along-
track, only the cross-track orbit differences, and also the
combination of these differences, were used in a second
iteration. The remaining gravity field recovery error after
the first iteration is almost entirely eliminated after this
second iteration, except for the solution based on the
cross-track orbit differences and the combined solution
which included the cross-track orbit differences as well. It
was found that the error is almost completely contained
in the zonal coefficients, which are correlated most with
the homogeneous solution and the resonance terms.
By excluding the zonal coefficients, the recovery error
becomes around 0.04 cm for the combined solution.

Based on these promising results, the truncation de-
gree was increased to 30, unfortunately resulting in an
unsuccessful gravity field recovery: the error in the re-
covered gravity field coefficients is for most coefficients
larger than the coefficient differences between the a
priori and true gravity field models. For example, the
geoid error is equal to 52.07 cm compared to a signal of
37.15 cm when using radial orbit differences. The ex-
planation for this failure may be the occurrence of the
first orbit resonance order, which is at order 16, because
GOCE completes about 16 orbit revolutions per day. As
stated before, the LPT is less accurate for (near-) reso-
nances. It may thus be concluded that for a low-flying
satellite like GOCE, the approximation errors induced
by the analytical model used in the block-diagonal ap-
proach become too large when the maximum degree is
larger than the first resonance order, leading to a true
normal matrix that is not block-diagonal. A few more
cases were investigated where the truncation degree was
equal to 13 and 16 (Table 2). It was found that up to
degree 13 the block-diagonal approach still seems to
recover the gravity field signal quite well: the geoid error
is less than 1 cm when using radial orbit differences
compared to about 14.38 cm for the signal. However,
when the maximum degree is increased to 16 or higher,
the recovery error is much above the signal.

This result seems to be in conflict with successful
application of analytical perturbation methods for
modeling gravity-field-induced orbit perturbations in-
cluding resonances and recovery experiments reported in
the literature, (see e.g. King-Hele and Winterbottom
1994; Visser 1995). However, it can be shown that this
apparent conflict is due to the block-diagonal approxi-
mation approach and not to the analytical perturbation
theory and its solution. To show this, one additional
experiment was conducted in which a full set of normal
equations was computed and solved using orbit differ-
ences in the radial direction. In this experiment, the
gravity field coeflicients were estimated simultaneously
with the initial conditions and the resonance solution for
the zonal coefficients was included in the computation of
the observation equations. This solution reads (Visser
1992)

lmax

I =even: Ar = ACH (%)
even r a l:;; 10 ( P )

X (l + 1)F[0//2(Coswol — 1)

Imax

_ /ae\!
l=o0dd:Ar=a 1:;:7 ACp (;) {Fiou-1)2 = Fioa+1)/2}
x (I — 1)(wot cos myt — sin wyt) (20)

In this case, a full normal matrix was obtained, although
with a block-diagonal dominant structure. However,
clear side bands could be observed close to the near-
resonance orders. The matrix looks similar to the matrix
obtained with numerical integration to be discussed in
the next section (Fig. 3). The resulting geoid error is



equal to 35.65 cm, compared to 37.15 cm for the
JGM-3/OSU91A geoid difference to degree and order
30. It was found that the error is contained for the larger
part in the low-degree zonal coefficients. Excluding the
zonal terms, the geoid error is equal to 8.02 cm after one
iteration compared to 36.74 cm for the JGM-3/OSU91A
geoid difference.

In summary, the analytical block-diagonal approach
based on the particular solution of the LPT was un-
successful for gravity field recovery for truncation de-
grees larger than 16. A full matrix approach seems to
lead to satisfactory results. However, in this case the
required computer time and memory requirements are
equivalent to those for the full matrix approach with
numerical integration. The latter approach leads to
smaller approximation errors. This will be corroborated
by the results presented in the next section.

3.2 Full matrix approach with numerical integration

The analytical block-diagonal method was shown to fail
for gravity field recovery for spherical harmonic expan-
sions above degree 16. Therefore, use was made of a full
matrix approach with numerical integration to assess
gravity field recovery for higher maximum degrees and
orders. Due to the data period of 10 days, the maximum
resolvable degree is 80, about half the number of orbital
revolutions. This can be explained by the fact that the
ground-track pattern of the satellite orbit divides the
Earth’s circumference into 160 parts at ground-track
crossings, leading to a Nyquist cut-off degree of 80. In
addition, it may be expected that the polar caps not
covered by the GOCE ground track due to the orbital
inclination of 96.6° start to play a role (these gaps,
however, represent less than 1% of the Earth’s surface).
The observations that were used in setting up the
observation equations were the inertial Cartesian x,y,
and z coordinates with 10-s time interval. All coordi-
nates were assigned the same weight. Gravity field
recovery experiments were conducted with the same true

Table 3. Linearization error of observation equations obtained by
numerical integration

Truncation Arc Radial Along-track Cross-track
degree length (cm) (cm) (cm)
10* 10 days® 71.60 274.59 109.27
10* 10 days® 0.00 0.07 0.00
30 10 days® 858.57 13794.88 739.87
30 10 days® 0.22 7.27 0.07
50 10 days® 1245.00 18341.01 1443.40
50 10 days® 0.40 6.35 0.09
50 1 day® 333.21 1054.26 240.00
50 1 day® 0.00 0.01 0.01
80 1 day® 329.10 1058.90 272.66
80 1 day® 0.01 0.02 0.01

#Included as a reference case (cf. Table 1)
®Total signal: numerical integration
¢ Linearization error
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(OSU91A) and a priori (JGM-3) gravity field models
used in the analytical block-diagonal approach, this time
truncated at degrees 30, 50, and 80 (the last one leading
to a normal matrix with a size of 6557 x 6557). First, the
linearization error of the observation equations was
assessed. This was done by inserting the known gravity
field differences between the true and a priori gravity
field models and the known initial condition differences
between the true and reference orbits in the observation
equations and analyzing the misfit. It was found that, as
expected, the linearization error is much smaller than the
approximation errors when using the analytical pertur-
bation theory (Table 3). The linearization errors are
much smaller than 1 cm, except for the along-track
direction, compared to signal magnitudes for the orbit
differences of several meters. It was found that the
linearization error grows with the arc length; for
example, the linearization error in the along-track
direction is equal to 6.35 cm or a 10-day arc compared
to 0.01 cm for a 1-day arc for a truncation at degree 50.

The gravity field recovery accuracy in terms of the
RMS of coefficient errors as a function of the degree is
displayed in Fig. 1 (top) for truncations at degrees 30
and 50. Up to degree 25 the recovery errors are an order
of magnitude smaller than the signal (OSU91-JGM-3),
which is quite acceptable for a first iteration with a rel-
atively short data period of 10 days. It was found that
no regularization was required for solutions up to degree
and order 50. In fact, the regularization is effectively
realized by the truncation at a certain degree.

It was found that truncation at degree 80 resulted in
an unstable normal matrix that could not be inverted
due to high correlations between the initial conditions
and (near-) resonance gravity field terms. Therefore,
gravity field recovery experiments were conducted where
the 10-day data period was split into 10 1-day orbital
arcs. As for the 10-day orbital arc, for each 1-day arc a
dynamic GOCE reference orbit was estimated from the
true x,y, and z coordinates and the normal equations
established. The resulting 10 sets of normal equations
were accumulated using the principle of partitioning
[Egs. (18) and (19)]. Using this approach, 10 sets of
initial conditions have to be accounted for instead of one
for the 10-day orbital arc length. By splitting up the data
period into shorter orbital arcs, the correlations have
less chance to build up. In addition, linearization errors
will be reduced (Table 3). This approach proved to be
successful and no regularization was required in solving
the normal equations. A remarkable result is the much
smaller gravity field recovery error for the truncation at
degree 50 due to the smaller linearization errors (Fig. 1,
bottom). In terms of geoid recovery accuracy, the error
is reduced from 16.83 to 0.04 cm (Table 4). For a
truncation degree equal to 80, this error is equal to
19.55 cm compared to a signal of 66.42 cm. However, it
should be mentioned that the normal equations com-
plete to degree and order 80 could be solved only by
making use of enhanced computer precision (16-byte
instead of 8-byte words), because of instability problems
that can be explained by the earlier-mentioned Nyquist
cutt-off degree and the polar gaps. In addition, it is well
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Fig. 1a, b. Gravity field recovery based on a full matrix approach
with numerical integration. The observations for the gravity field
estimation consisted of error-free orbit perturbations. The a priori
gravity field model used was JGM-3. The coefficient differences
between JGM-3 and OSU91A (5) were truncated at different degrees:
30 (1), 50 (2/3) and 80 (4)

known that at satellite altitude the orbit becomes less
sensitive to gravity field perturbations with increasing
degree. The geoid recovery error for a truncation degree
equal to 30 is 10.44 cm. The results indicate that the
orbital arc length plays an important role in gravity field
recovery and can be seen as an optimization parameter.
This optimization is, however, beyond the scope of this
paper and is left for future research.

Table 4. Gravity field recovery from orbit perturbations using the
full matrix approach with numerical integration

Maximum Arc Geoid signal ~ Geoid recovery
degree length (cm) error (cm)

30 10 days 37.15 10.44

50 10 days 46.28 16.83

50 10 x 1 day 46.28 0.04

80 10 days 66.42 failed

80 10 x 1 day 66.42 19.55

In principle, the full matrix approach with numerical
integration should be repeated until convergence.
However, due to the computationally demanding nature
of the recovery experiments, only one iteration was ap-
plied. The results indicate, however, that this approach
is an appropriate method to recover the gravity field
from orbit perturbations to relatively high degree and
order. It is interesting to assess the limiting gravity field
recovery accuracy in the presence of realistic orbit er-
rors. This has been done by using OSU91A as both true
and a priori model, but synthetic orbit errors are added
to the x, y, and z coordinates. The orbit errors were
obtained by conducting a kinematic orbit determination
experiment making use of double-differenced GPS car-
rier phase observations (Visser and van den IJssel 2000).
The following error sources were taken into account:
GPS carrier phase measurement noise, errors of GPS
station coordinates, uncertainties in GPS ephemeris, and
errors of atmospheric path length correction due to
troposphere. The orbit errors were at the few-centimeter
level. A detailed description can be found in SID (2000).
It can be seen in Fig. 2 that the gravity field recovery
errors are larger than for the case where JGM-3 was
used as a priori model with zero orbits errors. It may
thus be concluded that the full matrix approach with
numerical integration itself introduces already after the
first iteration smaller errors in the gravity field solution
when using error-free orbit perturbations rather than
orbit perturbations that are affected by orbit errors at
the few-centimeter level. In order to verify and corrob-
orate this conclusion, the orbit error spectrum was
propagated to gravity field coefficient errors by means of
an independent analytical covariance analysis (Colombo
1984; Schrama 1991; Visser 1992). The covariance
analysis is based on the same particular solution of the
LPT as described in Sect. 2.1 [Egs. (1)—(6)]. It can be
seen that the gravity field recovery error is in close
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Fig. 2. Propagation of orbit error to gravity field recovery error:
covariance analysis (/) and numerical integration approach for orbit
errors based on kinematic precise orbit determination (2). The gravity
field recovery error from orbit perturbations based on the JGM-3/
OSU91A gravity field model differences is included as a reference (3)
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Fig. 3. Magnitude of normal matrix for 50 x 50 gravity field
estimation from GOCE inertial position coordinates. The matrix is
organized per order (indicated along the axes)

agreement with the predicted error (Fig. 2) except at low
degrees. The difference at the lower degrees can be
explained by the fact that the 10-day data period was
split up into 10 1-day orbital arcs, resulting in additional
initial condition unknowns and thereby reducing observ-
ability of long-period gravity field orbit perturbations.

It is interesting to look at the structure of the normal
matrix, which is displayed in Fig. 3 for a maximum
degree equal to 50 containing only the gravity field un-
knowns for a 10-day orbital arc. The effect of the initial
conditions was taken into account by partitioning
[Eq. (19)]. It can be seen that although the matrix is
dominantly block-diagonal, clear horizontal and vertical
side bands can be distinguished. These bands occur close
to the resonance orders 0, 16, and 32, approximately
integer multiples of the number of orbital revolutions
per day. In addition, less pronounced oblique bands
occur for matrix elements representing two coefficient
terms for which the sum or the difference of the re-
spective harmonic orders is close to the resonance or-
ders. The side bands explain why a block-diagonal
approach applied to orbit perturbations, such as that
used in Sect. 3.1 did not lead to an accurate gravity field
recovery. Based on this normal matrix, the spectral
radius [Eq.(17)] was computed as a function of the
maximum degree. For each maximum degree an
appropriate subset of the normal matrix was used. It can
be seen in Fig. 4 that the spectral radius becomes larger
than 1 for degree 17, around degree 16, which is in
agreement with the occurrence of the first resonance
order and also reflects the strong side bands at this order
in the normal matrix. For comparison, the spectral
radius for iterative block-diagonal gravity field recovery
from radial diagonal SGG observations (Klees et al.
2000) for a 10-day repeat period is included. Based on
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Fig. 4. Spectral radius for block-diagonal approach for gravity field
recovery from SST and SGG observations

the sparse structure of the matrix, it will be interesting to
investigate, for example, fast conjugate gradient meth-
ods with preconditioners based on the dominant struc-
tures of the normal equations, for example as
implemented for space-wise gravity field recovery from
SGG observations (ESA 2000).

4 Discussion and conclusions

A block-diagonal approach was implemented and tested
for gravity field recovery from orbit perturbations of
GOCE. This approach is based on the particular
solution of an analytical LPT. The approach was found
to be successful as long as the maximum degree is less
than the first resonance order for orbit perturbations, in
the case of GOCE at order 16. For higher degrees, at
least up to degree 30, it was found that a successful
recovery is possible when resonance effects are included
in setting up the observation equations for the gravity
field zonal coefficients and initial conditions are esti-
mated simultaneously with the gravity field unknowns.
However, in this case a full, although sparse and block-
diagonal dominant, normal matrix was obtained, result-
ing in a significant increase in required computer central
processing unit (CPU) time and memory. By analyzing
the shape of the normal equations obtained by numer-
ical integration, it was found that clear resonance bands
show up in the normal matrix around multiples of order
16, giving a strong indication of the failure of the block
diagonal approach.

The full matrix approach with numerical integration
was found to be successful and viable for gravity field
recovery up to degree and order 80 with existing soft-
ware tools and computer facilities, although for a re-
covery complete to degree and order 80 the data period
had to be split into shorter orbital arcs. It was found
that the orbital arc length plays an important role and is
an important factor in the gravity field recovery error.
Increased orbital arc lengths lead to larger linearization
errors of the observation equations, but also result in
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better observability of the long-period orbit perturba-
tions. For a maximum degree equal to 50, the gravity
field recovery was almost perfect after one iteration
provided the orbital arc length was equal to 1 day. It is
fair to assume that the maximum resolvable degree will
increase with longer GOCE data observation and repeat
periods. The projected observation period for GOCE is
2 x 6 months and the repeat period will be longer than 2
months, resulting in larger maximum degrees for the
observable part of the gravity field from GOCE orbit
perturbations. Due to the sparse structure of the normal
matrix, which is strongly block-diagonal dominant with
side bands at the resonance orders, it is interesting to
investigate fast iterative methods, for example a conju-
gate gradient solver with preconditioners based on this
dominant structure. Finally, gravity field recovery errors
obtained with the full matrix approach from simulated
GPS-based orbit errors were found to be in close
agreement with error predictions based on an indepen-
dent covariance analysis tool.
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