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Abstract. Equations expressing the covariances between
spherical harmonic coefficients and linear functionals
applied on the anomalous gravity potential, 7, are
derived. The functionals are the evaluation functionals,
and those associated with first- and second-order deriv-
atives of 7. These equations form the basis for the
prediction of spherical harmonic coefficients using
least-squares collocation (LSC). The equations were
implemented in the GRAVSOFT program GEOCOL.
Initially, tests using EGM96 were performed using
global and regional sets of geoid heights, gravity
anomalies and second-order vertical gravity gradients
at ground level and at altitude. The global tests confirm
that coefficients may be estimated consistently using
LSC while the error estimates are much too large for the
lower-order coefficients. The validity of an error esti-
mate calculated using LSC with an isotropic covariance
function is based on a hypothesis that the coefficients of
a specific degree all belong to the same normal distri-
bution. However, the coefficients of lower degree do not
fulfil this, and this seems to be the reason for the too-
pessimistic error estimates. In order to test this the
coefficients of EGM96 were perturbed, so that the
pertubations for a specific degree all belonged to a
normal distribution with the variance equal to the mean
error variance of the coefficients. The pertubations were
used to generate residual geoid heights, gravity anom-
alies and second-order vertical gravity gradients. These
data were then used to calculate estimates of the
perturbed coefficients as well as error estimates of the
quantities, which now have a very good agreement with
the errors computed from the simulated observed minus
calculated coefficients. Tests with regionally distributed
data showed that long-wavelength information is lost,
but also that it seems to be recovered for specific
coeflicients depending on where the data are located.
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1 Introduction

When using least-squares collocation (LSC), available
information about the spherical harmonic coefficients of
the anomalous gravity potential, T, can be used directly as
observations, or in a remove-restore procedure, see
Forsberg and Tscherning (1981). However, if coefficients
are to be predicted, we need the explicit covariances [or
values of functionals applied on a reproducing kernel; see
Tscherning (1974, Sect. 2.2) and Tscherning (1993)]. As
shown in Sect. 2, the covariances are simply the observa-
tion functionals applied on the solid spherical harmonic
function of a specific degree and order, multiplied by a
constant which is dependent on the degree.

The equations have been implemented in the form of
new versions of the subroutines COVAX, COVBX and
COVCX (Tscherning 1976) in the program COVFIT
(Knudsen 1987).

The equations to be used for the calculation of the
estimates of the coeflicients and their error estimates are
derived in Sect. 3. They are implemented in a new ver-
sion of the GRAVSOFT program (Tscherning et al.
1992) GEOCOL.

In Sect. 4 the results of coefficient prediction tests are
described initially using the EGM96 (Lemoine et al.
1996) coefficients from degree 8 to 180. The coefficients
were used as control data and to generate control data
sets of geoid heights, gravity anomalies and second-
order radial derivatives. The error estimates of the co-
efficients were compared to the differences between
‘observed’” and predicted coefficients, and it was found
that the errors were too large for the low-degree coeffi-
cients. This seemed to be caused by the non-normal
distribution of the low-degree coefficients.

The computational experiment was repeated, now
using as coefficients from degree 2 to 180 pertubations of
EGM96 generated using a random number generator so
that they had a normal distribution with a variance
which for a given degree was equal to the error degree



variance of the EGM96 coeflicients. Using the original
EGM96 coefficients as a reference field, this resulted in
error estimates which were in a very good agreement
with the errors obtained in the calculations.

All derivations and tests have been carried out in
spherical approximation. In order not to use this, the
geodetic latitude must be changed to the geocentric
latitude. Furthermore, the value of the radius vector (r),
which is now calculated as R + 4, where R is the mean
radius of the Earth, must be computed rigorously from
the Cartesian coordinates.

2 Covariances between spherical harmonic
coefficients and point-related quantities

Let P, O be two points with coordinates (latitude,
longitude, ) (¢, 4,7), (¢, 2, ), respectively, and having
the spherical distance . Y;; are the surface spherical
harmonics, P; the Legendre polynomials and o7 the
degree variances. Then, following the (non- stochastlc)
covariance definition of Heiskanen and Moritz (1967,
Chap. 7), the covariance between the values of the
anomalous potential 7 in P, Q is
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The covariance between the coefficient GM C;;/R and
the anomalous potential is obtained by applying the
functional L;; on the covariance function, where
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(units of m?/s* the subscript ¢ at the integral sign
signifies the mean Earth’s surface).
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When applying the functional twice we obtain its norm,

squared,
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The correlation can also be calculated between, for
example, the value of T in a point P and the i, th
coefficient [evp(T) = T(P)]
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[Note that several of the above-derived equations may
be found in a slightly different notation in Tscherning
(1974).].

3 Prediction of spherical harmonic coefficients — theory

An approximation to T determined using LSC will have
the form

an cov(P,L,)

{ba} = {Con} {0} (8)
with
cov(P, L,) = L,(cov(P, Q)),

Cnm = COV(LmaLn) = Lle’l (COV(Pa Q))
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where b, are the solutions of the normal equations, L,
are the observation functionals and N is the number of
observations. If the data contain errors, the variance—
covariance of the noise is added to the normal-equation
matrix, {Cpn}.

The value of a predicted quantity is obtained by ap-
plying the associated functional to this expression. For
the spherical harmonic coefficients we then have
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The calculation of the observation functional applied to
the solid spherical harmonic function is generally done
by recursion, starting with the (0,0) term. This means
that a better computational strategy would be to
calculate all coefficients simultaneously up to and
including degree i. However, this strategy should
generally not be used when we want to calculate the
error estimates

E(Ly(T) — Lij(T))z = cov(Ly, Lij) — {COV(LnaLij)}T

X Cil{COV(Liijn)} (10)

because we must then store all the quantities cov(L,, L;;)
in the expression of Eq. (10) simultaneously, and
subsequently evaluate the expressions for all degrees
up to and including degree i.

At this point it is worth recalling that since we use an
isotropic covariance function (kernel), cf. Eq. (1), the
error estimate is an estimate of the error in a mean-
square (MS) sense, which only can be interpreted in a
standard manner if we deal with quantities associated
with point or mean value functionals. This interpreta-
tion is independent of any assumed underlying sto-
chastic model of the gravity field. For sets of coefficients
of a given degree, an interpretation of the error as an
MS error is possible if they all belong to the same nor-
mal distribution, and having the variance given by
Eq. (4).

Finally, a remark on the computational procedures.
If the coefficients have a normal distribution with the
same variance for each degree, then we may compute
error estimates by generating data from randomly gen-
erated normally distributed perturbed sets of coeffi-
cients. We may then calculate the difference between
‘observed’ coefficients and predicted values using
Eq. (9). The MS difference should then give a correct
estimate of the error which otherwise should have been
calculated using Eq. (10), which is very demanding nu-
merically.

4 Numerical tests of coefficient prediction
and error estimation

LSC estimation of coefficients and of the corresponding
error estimates should, according to theory, work. But

will it work in practice? There are two reasons why this
is now being tested.

First, computers have recently (i.e. 25 years after the
equations were first derived) become so large that it
would be numerically feasible to use the 100 000 ob-
servations needed to determine a global gravity field
approximation corresponding to, for example, a set of
spherical harmonic coefficients complete to degree 200.
LSC has until now primarily been used successfully for
local and regional gravity field approximation.

Second, the up-coming satellite gravity missions will
produce data of mixed types (e.g. several of the second-
order derivatives), a situation which LSC is especially
well suited to handle.

Therefore, as mentioned in the Introduction, the
GEOCOL program (Tscherning 1974) was upgraded to
permit coeflicient prediction implementing the equations
given in Sects. 2 and 3.

Initially numerical test data were generated using
EGMO96 from degree 8 to 180. Here the results will be
illustrated using two point configurations: (1) 400 points
distributed in the centre of equal-area blocks having 10°
latitude extent; and (2) 1600 additional points distrib-
uted with 5° spacing; 2000 points in total.

Three data types were generated: geoid heights,
gravity anomalies and vertical gravity gradients, located
either at zero altitude or at varying altitudes; see Table 1,
in which selected results are presented. The covariance
function used was the one generated from the EGM96
coefficients (the ‘true’ one). A signal to noise ratio of 103
was used throughout, since the investigation was not
aimed at studying the influence of any noise.

Tablel shows — as expected — that the result improves
with more gravity data and with a higher altitude. It is
remarkable that, for this low degree, the second-order
vertical gradient, T,,, gives results which are nearly as
good as those obtained when gravity was used. From
Fig. 1 we see the expected result, namely that geoid
heights and gravity give better results for lower degrees
than 7,.. Figure | also shows that the main contributions
to the coefficients are in the degrees below 40, corre-
sponding very well to the data spacing of 5 degrees.

The root mean square (RMS) differences between
predicted and ‘observed’ coefficients per degree are
shown in Figs. 2-4. Two thousand values of each of the
three data types at an altitude of 300 km have been used.
The figures also show the root-mean collocation error
estimates [Eq. (10)] and the coefficient root variances per
degree. These figures show, as could be observed in
Table 1, that the error estimates are too large. The
largest discrepancy occurs for the case where geoid
heights were used, and the smallest where vertical
gravity gradients were used.

It might be supposed that the discrepancy was due to a
program error. However, prediction tests using the same
(global) data configurations (Sanso et al. 2000) showed an
agreement between the MS differences between predicted
and observed values and the LSC error estimate, Eq. (10).
But since the prediction results were also excellent it was
believed that the software used in the test was correct, so
that the discrepancy must be caused by something else.
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Table 1. Prediction of EGM96

spherical harmonic coefficients Order Data type Gravity  Gravity  Gravity  Gravity T..
of degree 9 and order 9 to 01 Height 0 m 50 km 300 km 300 km 300 km
Number of 400 400 400 2000 2000
observations
m EGMO96
9 —-0.48 —-0.02 —-0.28 —-0.63 —0.44 -0.39
8 1.88 0.76 1.29 1.84 1.82 1.82
7 -1.18 -0.24 —-0.37 —-0.84 -1.18 -1.26
6 0.63 0.58 0.75 0.80 0.59 0.48
5 —-0.17 0.27 0.08 —-0.13 —-0.14 —-0.04
4 —-0.09 —-0.08 —-0.19 -0.23 —-0.06 0.04
3 -1.70 -0.31 —-0.80 -1.50 -1.53 -1.51
2 0.22 —-0.63 -0.31 0.24 0.21 0.14
1 1.43 0.81 1.00 1.12 1.34 1.22
0 0.28 0.46 0.50 0.32 0.31 0.45
EGM96 — predicted Mean —-0.18 —-0.08 —-0.02 —-0.01 -0.01
Standard deviation 0.64 0.40 0.18 0.07 0.14
Estimat. error 0.79 0.60 0.34 0.29 0.32

"In column 2 are given the ‘true’ values, and in the following columns the estimated values for different
altitudes and observation types. At the base of the table are given the mean and the standard deviation
of the differences (ERM96 — predicted). In the last row the square root of the value calculated using
Eq. (10), divided by GM/R, i.e. unitless, is given. Note that this value is much larger than the standard
deviation in the second-last row. All values have been multiplied by 10°

Recalling the final remarks of the previous section, an
investigation was carried out to see whether the EGM96
coeflicients had a normal distribution for each degree.
Histograms per degree were formed; see Fig. 5. On in-
specting the histograms, it immediately becomes clear
that the lower-degree coefficients do not follow a normal
distribution. [This fact has been conjectured by Jek-
eli(1991), based on certain theoretical considerations.]
This also explains why the discrepancies were largest for
geoid heights (which have the largest correlation with
the lower-order coefficients) and smallest for the vertical
gravity gradient.
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Fig. 1. Results of prediction of coefficients from degree 8 to 90. Data
generated using EGM96 degree 8 to 180 SD of coefficients;
------ SD of (obs.—pred.) coeff. from 7..; - - - - - SD (obs.—pred.)
coeff. from gravity; — — —— SD (obs.—pred.) coefficients from geoid

In order to verify that we would be able to obtain
valid error estimates for normally distributed coeffi-
cients, the following computational experiment was
carried out. A random generator of data with a normal
distribution with a given variance and zero mean was
used to generate perturbed EGM96 coefficients. The
program HARMEXG was used; see details in Tsch-
erning et al. (1999). The variance of the normal distri-
bution was set equal to the mean variance per degree of
the EGM96 errors.

The perturbed coefficients were used to generate
residual geoid heights, gravity anomalies and vertical
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Fig. 2. Results of prediction of coefficients from degree 8 to 15 using
geoid generated using EGM96 from degree 8 to 180 SD of
coefficients per degree; — — —— SD of (obs.—comp.); - - - - - - Mean SD
of collocation error estimates
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Fig. 3. Results of prediction of coefficients from degree 8 to 15 using
gravity generated using EGM96 from degree 8 to 180 SD of
coefficients per degree; — — —— SD of (obs.—comp.); - - - - - - Mean SD
of collocation error estimates

gravity gradients at 300 km altitude, as in the first ex-
periment. EGM96 itself was used as a reference field,
and the perturbed coefficients were predicted. The re-
sults are shown in Figs. 6-9; it can be seen that the error
estimates obtained from comparing observed and pre-
dicted values now agree well with the collocation error
estimates. A small discrepancy is found for the lowest
degrees, which is due to the fact that it is difficult to form
a normally distributed set of numbers from very few
values. Furthermore, we see that the second-order radial
derivative contributes very little to the (perturbed) co-
efficients of the lowest degree.

5 Prediction of coefficients from a regional
data distribution

The prediction of spherical harmonic coefficients will
only be good when it is based on a global data coverage.
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Fig. 4. Results of prediction of coefficients from degree 8 to 15 using
T.. generated using EGM96 from degree 8 to 180 SD of
coefficients per degree; — — —— SD of (obs.—comp.); - - - - - - Mean SD
of collocation error estimates

We know that the estimate of the coefficients will
degrade if, for example, we do not have data at the caps
at the south and the north pole. But how much will the
estimate degrade if the data only covers a part of the
globe ?

Using the error-estimation capability of LSC we are
able to study this. A small exampleis given here in Table 2,
where we have used a subset of 678 of the 2000 gravity
values used above at 300-km altitude with a distribution
limited by —45°, 45° in latitude and —90°, 90° in
longitude. The LSC estimated error which, as seen in
Table 1, bottom row, was 0.29 x 10°, changed to the
values shown in Table 2.

It is interesting to see that the prediction of some
coefficients becomes only slightly worse than when the
full data set of 2000 values was used. This confirms the
conjecture that regional gravity models may contain
much correct information even at the longer wave-
lengths.

Fig. 5. X-axis is the degree, and the Y-axis is
the percentage of the coefficients within bins
of half the size of the standard deviation for
the degree
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Fig. 6. Results of prediction of coefficients from degree 8 to 90. Data
generated using EGMY96 error degree variances to degree 180
SD of coefficients; — — —— SD (obs.—pred.) coeff. from geoid; - - - -
SD (obs.—pred.) coeff. from gravity; - - - -~ SD (obs.—pred.)
coefficients from 7.
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Fig. 7. Results of prediction of coefficients from degree 3 to 15 using
T.. generated using EGMY96 error degree variances to degree 180
SD of coefficients per degree; ------- SD of (obs.—comp.);
————— Mean SD of collocation error estimates

6 Conclusion

It has been demonstrated that it is numerically feasible
to use LSC for the prediction of spherical harmonic
coefficients. Meaningful error estimates can be calculat-
ed if we use the remove-restore method where an a
priori gravity field is first subtracted and later added, so
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Fig. 8. Results of prediction of coefficients from degree 3 to 15 using
geoid generated using EGM96 error degree variances to degree 180
SD of coefficients per degree; — — — — — SD of (obs.—comp.);
~~~~~~~~ Mean SD of collocation error estimates
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Fig. 9. Results of prediction of coefficients from degree 3 to 5 using
gravity generated using EGM96 error degree variances to degree 180
SD of coefficients per degree; ------- SD of (obs.—comp.);
————— Mean SD of collocation error estimates

Table 2. LSC error estimates of spherical harmonic coefficients of
degree 9 calculated from 678 gravity values. Unitless and multiplied
by 10°

Order 9 8 7 6 5 4 3 2 1 0
Error estimate 0.48 0.54 0.56 0.62 0.72 0.71 0.76 0.75 0.79 0.76
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that improvements to the set of coefficients and not the
total quantity are determined using LSC. The same
situation occurs in a network adjustment, where the
object is to find not the coordinates, but improvements
to the coordinates.

This will be important in simulation studies, where
we try to understand the influence of various data types
and data distribution on coefficient estimation. The use
of the procedures for much larger data sets (simulations
with sets corresponding to a 1° equal-area data distri-
bution have already been carried out) will be possible
using sparse matrix techniques, a topic where much
progress recently has been made see Moraux et al.
(1999).
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