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Abstract. The gravitational attractions of terrestrial
masses and condensed terrestrial masses were modeled
in local regions of gravity stations in different ways.
These differences in the models included the type of
coordinate frame (Cartesian versus spherical), grid
spacing (30 vs 3 arcseconds), and the shape of the
terrain (““flat-topped” vs “‘sloped-topped” prisms). The
effect of each of these variables is quantified for its
overall impact on Helmert gravity anomalies. The
combined effect of removing the masses and restoring
the condensed masses is also compared to classical
terrain corrections for suitability in computing Helmert
anomalies. Some detailed conclusions are drawn from
these test computations. The effect of the Earth’s
curvature has both a near-field effect (due to the
differences in volume and shape between rectangular
and spherical prisms) and a far-field effect (due to
physical location of masses below the horizon). The
near-field effect can achieve 0.4 mGal in the Rocky
mountains, and affect the geoid by up to 7.5 cm.
Additionally, the approximation of the terrain by flat-
topped prisms (even at fine spacings such as 3 arcsec-
onds) is inappropriate for terrain near the station, where
errors of 20 mGal have been computed using 30-
arcsecond data. It is concluded that when 30-arcsecond
terrain is allowed to have a more curved (bilinear) prism
top, its gravitational attraction is a significantly closer
approximation of 3-arcsecond terrain, even for the
prism surrounding the station, as compared to the case
of 30-arcsecond flat-topped prisms. It is suggested that
classical terrain corrections, for many reasons, should
not be used to compute Helmert anomalies. Considering
only the accuracy, and not the speed, of the computa-
tions, the following conclusions are drawn: terrain
effects computed inside a local ““‘cap” should be done
exclusively in spherical coordinates with a 3-arcsecond
Digital Elevation Model (DEM) out to 0.2° radius, and
then a 30-arcsecond DEM from 0.2 out to 3.5°. In all
cases, bilinearly shaped prism tops should be used.
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1 Introduction

The use of the Stokes integral (Heiskanen and Moritz
1967) to solve for the location of the geoid requires a
potential field with no masses external to the geoid.
Helmert (1884) proposed a few methods for mathemat-
ically computing a potential field which fulfills this
requirement. Helmert’s 2nd method of condensation
(Lambert 1930) removes the topographic masses and
restores them on a condensed mass layer at the geoid
and has the attractive property of having a small indirect
effect. However, as pointed out in Martinec (1998, p.
54): “All existing theories of topographical effects in
Helmert’s 2nd condensation technique are based on the
concept of planar approximation of the geoid.... This
approximation describes the actual situation only very
roughly”. The emphasis on planar terrain corrections
can be seen in the extensive literature on the subject
(Blais and Ferland 1983; Smith 1992; Ma and Watts
1994; Leaman 1998). Only recently have spherical effects
begun to be studied in great detail (Martinec et al. 1993,
1996; Martinec 1998; Sjoberg and Nahavandchi 1999).
In the spirit of Martinec (1998), this paper attempts to
further quantify the errors in using planar approxima-
tions, as well as to discuss other problems [the coarse-
ness of the Digital Elevation Model (DEM) and the
shape of prism tops]. The emphasis of this discussion is
on quantifying various approximation-related errors. As
such, it is imperative that computational error itself be
minimized. Therefore, all computations were done in the
space domain in double precision.

In order to use Helmert’s 2nd method of conden-
sation in conjunction with the Stokes integral, we must
calculate “Helmert gravity anomalies” from gravity
measurements on the surface of the Earth and a model
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of the Earth’s topography. Three major gravity re-
ductions (and many smaller ones) are required to do
this:

(1) mathematical removal of the topographic masses
above the geoid;

(2) mathematical downward continuation of gravity
from the Earth’s surface to the geoid;

(3) mathematical restoration of the topographic masses
as a condensed mass layer on the geoid.

In many past geoid computations, even until recently
(i.e. Sideris 1984; Vanicek and Kleusberg 1987; Véron-
neau 1997; Smith and Milbert 1999), the order of these
reductions has been (more or less) as listed but with the
first and third reductions combined into the classical
terrain correction (TC) and performed in one step
(Moritz 1968). The second reduction is classically
approximated by a normal gravity gradient or computed
using digital terrain models and assuming a linear
correlation of elevation with free air gravity anomalies.
Recent experiments with spherical Earth models (Mil-
bert and Smith 1998) have shown that the order of these
reductions is irrelevant, so long as we adhere to rigorous
mathematics. In fact, it is argued that downward
continuation should be performed in the smoothest
potential field possible. In this case, it should fall
between the removal of masses and restoration of
condensed masses (smoother potential fields can argu-
ably be obtained by isostatic reductions, but we do not
address that issue in this paper). Because the classical
TC combines a removal of masses effect at the surface
with a restoration of condensed masses effect at the
geoid, without allowing a rigorous downward continu-
ation between them, it is seen as a limited tool for high-
precision geoid computations. The removal of masses
and the restoration of condensed masses are distinct
steps, and this paper computes their separate, as well as
combined, effects, at a few test locations. This paper
does not attempt to address the computation of
downward continuation terms, but only to address the
terrain issues (that is, reductions 1 and 3 above).

This paper attempts to address the computational
issues of removing topographic masses and restoring
condensed topographic masses, such as the magnitude
of changes on gravity due to (1) the Earth’s curvature;
(2) the shape of prism tops (flat vs sloped); and (3) the
grid spacing of the DEM. In addition, the trade off
between acceptable accuracy and computational speed is
investigated. This paper confines results to a spherical
cap of small (3.5° or less) radius. Terrain effects outside
such a cap are long-wavelength, and methods for com-
puting them are being investigated separately.

2 Geometry

This section begins with the geometric differences
between three-dimensional (3-D) Cartesian and spheri-
cal prisms, specifically the different formulas for com-
puting gravimetric attraction. A brief discussion on the
concept of ‘“‘condensation” follows, and lastly the

derivation of formulas for computing gravimetric at-
traction of condensed masses.

2.1 Formulas for 3-D prisms

At any point in space (P), the gravitational potential
(Vp), generated by a generic volume (IT) of mass with a
constant density (p), can be written in generic coordi-
nates as

VP:Gp/édn (1)
I

where / is the distance from point P to the differential
volume element dIT and G is the Newtonian gravita-
tional constant. This formula may be written in
Cartesian coordinates as

V(xp,yp,zp)

1
- d
Gpn/ {(X - xp)2 +(y— J’p)z +(z— ZP)Z} 1/2) n

(2)
where
dIT = dxdydz
(x,y,z) = local Cartesian coordinates of dIT (z is up)

(xp, yp,zp) = local Cartesian coordinates of P.

The vertical component of gravitational attraction at
P(gp) due to the same mass can be determined through
differentiation in the vertical component

L Vp, 3 2r) G)

g(xP,yP,ZP) = Ozp

written in Cartesian coordinates as

g(xPayP>ZP>
(Z - ZP) dr

=-G6r s s 21672
(= x) 0 =)+ (- 2)

(4)

If IT is considered a “Cartesian prism” (i.e. a six-faced
figure bounded by the plane x = x; or x,, the plane
y =y or }», and the surfaces of z = z; or z;), then this
formula expands to

(xP 7vazP Gp

///x

X=X1 Y=V Z=2Z1 xP

(z—2zp)

% dxdydz
+(— J’p) (Z_Zp>2] o
(5)

where z; is often taken to be a constant while z; can be a
constant (this case will be called “flat-top”) or else a



function of x and y (this case will be called “‘sloped
top”’). See Figs. 1 and 2 for examples.

In the flat-top case, closed formulas (Nagy 1966) have
long been known for solving Eq. (5) (setting x,, »,, and
z, to zero for simplicity)
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: plane
y= yP
s Y=Y
X = XP "0 2
" T
/ /& -
X=X
1 X=X, zZ= Z1(= 0)
plane
Fig. 1. Example of a Cartesian flat-topped prism
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Z=24XY)
curved
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X= XP "'o'. y= y2
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1 X=X, Z= 21(— 0)
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Fig. 2. Example of a Cartesian slope-topped prism
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2 2 2
g(xpaJ’paZp) =—-Gp Z Z Z(_l)(i+j+k)

X —xiln(yj+s)—yjln(x,-+s)+zkarctan<@>] (6)
V4

where
s = 47 +27) " 7)

In the case of a sloped top, the simplest surface to fit to the
four corner heights of the prism is a bilinear surface, i.e.

zy=a+bx+cy+ dxy (8)

In this case, however, no closed solution to the integral
has yet been found. [Attempts by the authors to use the
symbolic language Mathematica 4.0 (Wolfram 1999)
have failed thus far.]

Equation (1) can be written in spherical coordinates,
¢/2/r (in order to model the terrain more accurately
than with the use of a “planar” model), as

1
V(pp,Ap,¥ =—Gp/ dI1
(0p,2p,rp) J [r2+r}2)—2rrpcosz,b](l/2> ©)

where
dIT = cos pdp didr
(@, A,r) = geocentric spherical coordinates of dIT
(@p, Ap,rp) = geocentric spherical coordinates of P
Y = geocentric angle between P and dIT

= arccos[sin ¢ sin @p + cos @ cos @pcos(L — p)]

Again, through differentiation in the vertical component

(rp)
, 0
g(QDPv/LParP) :_a V(q)Paﬂ“P?rP) (10)
rp

we may arrive at the gravitational attraction due to this
mass, at point P, this time in spherical coordinates

g((p‘mﬂvp’rp) = —G,O/ (VCOS lﬁ - Vp)
’ (r* +72 = 2rrycos )

3/2dH (11)

If IT is considered a ‘“‘spherical prism™ (i.e. a six-faced
figure bounded by meridians of 1 = 4; or /,, parallels of
¢ = ¢, or ¢,, and curved surfaces of » = r; or r,), then
Eq. (11) expands to

9(Ppy ApsTp)
(IR 6 ( lp )2
rcosy — r,)r? cos @
:—Gp/ / /(2+ - 0 drdide
P=01 A=A r=r) 4 }"p 1p COS lﬁ)

(12)

where 7| may be taken to be a constant radius R. Again
there are the two cases of “flat-top” (r, is a constant)
and “sloped top” (r, as a function of ¢ and 1). See
Figs. 3 and 4 for examples.



786

™ sphere

Fig. 3. Example of a spherical flat-topped prism
NP @ Ap.Tp)

\ _ r= (0,2
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z r= r1 (= R)
> sphere

Fig. 4. Example of a spherical slope-topped prism

Although no closed form has yet been found for the
solution to the triple integral in Eq. (12), the integral
with respect to r can be removed to speed up numerical
integration, using the following formula (see also Mar-
tinec 1998, p 45):

!J((/)pa’lpv”p)
P2

¥ (rrp—6cos2lprrp+cos w(r2+3rf,))
=—-Gp / / cos@

/
P=¢1 I=h
—(1=3cos*)r,In(r—rycosy+1) dide (13)
where
L= \[r+ 72— 2m,cos(y) (14)

The formulas presented thus far represent gravitational
potential and attraction of 3-D prisms. The point at
which the 3-D attractions are computed was referred to

as point P. In Helmert’s 2nd method of condensation,
we must also be concerned with the gravitational
attractions of those same prisms as condensed into
two dimensions. The concept of ‘“‘condensing” 3-D
masses into 2-D condensed mass layers is discussed in
the next section.

2.2 Mass condensation

Helmert’s 2nd method of condensation is a scheme
whereby the 3-D masses above the geoid are ‘“‘con-
densed” along the vertical direction (z in Cartesian, » in
spherical) to form a 2-D mass layer on the geoid. The
concept is fairly simple, but there are some differences
between condensation in Cartesian and spherical coor-
dinates. In both cases, a differentially small column of
mass is first defined [bounded by (x,x + dx), (y,y + dy),
(z1,z2) in  Cartesian coordinates or (¢,+d¢),
(4, 2+ cos ¢ di), (r,r2) in spherical coordinates], whose
projection along the vertical direction onto the geoid is
the differential area d4. In the case of Cartesian
coordinates, the “geoid” is the plane z = z;, and d4 is

d4 = dxdy (15)

In spherical coordinates, the “geoid” is the sphere
r = r1, and the differential area d4 is

d4 = ricospdepdl (16)

The amount of volume in the Cartesian differential
column is

Z z
dvol = / dIl = / dxdydz

/ J (17)
= (22— 21)dxdy = (2 — 21)d4
and in the spherical differential column
" 2
dvol = / dI = / r*cospdodidr
1 (3 —r)
:g(rg—rf)cosq)dq)di:%dfl (18)
1

Since mass must be conserved in condensation, the
amount of mass that is in the 3-D differential columns
must be equal to the mass that is contained in the
differential area d4 after condensation. As such, we can
use this mass conservation to compute the surficial
density, x (kg/m?), of the condensed masses in terms of
the old density, p, and the height, H, of the differential
column. In Cartesian coordinates (with H =z, — z;)

dM(3 - D)=dM(2 - D)
= pdvol = xdA4
= p(z2 —z1)d4 = kd4
= p(H)d4 = xdA (19)

and thus in Cartesian coordinates



K = pH (20)
and in spherical coordinates (with H = r, —ry)
dM(3 —-D)=dM(2 - D)

= pdvol = kdA4

= p(r3 —r})/(3r})d4d = kd4
:>p<H+H—2+§]3>dA—KdA (21)
Therefore, in spherical coordinates
<H +— 1 + frj) (22)

Note the 2nd and 3rd terms in Eq. (22), which are
missing from Eq. (20). By neglecting the 2nd and 3rd
terms of Eq. (22), a maximum error of 0.15% is
introduced, depending on the magnitude of H. This
error, however, is systematic and, like all systematic
errors, should not be ignored. In the US, preliminary
tests indicate that the systematic nature of this error can
sum up to geoid errors of a few cm.

2.3 Formulas for 2-D condensed prisms

In this paper, the point at which the attraction of the
condensed masses will be computed is referred to as
point Py (which may or may not be the same as point P,
depending on the sequence of gravity reductions).
However, Py will always lie along the same vertical as
P [so that the horizontal coordinates (x,y) or (¢, 4) are
identical for P and Fy]. The gravitational potential of
such a condensed prism, at a point Py, can be written
generically as

Ve, = G / ?dA (23)
A

where [ is the distance from point Py to the differential
area element d4, G is the Newtonian gravitational
constant, and « is the surficial density of the condensed
layer (kg/m?). This formula may be written in Cartesian
coordinates as

V(xPo y VP ZPo)

K

=G 5 2 S 4
i |o=xn) + 0 —ym) + (@~ 2n)]
(24)
where
dA4 = dxdy
(x,,21) = local Cartesian coordinates of d4

(xp,» ¥, zp,) = local Cartesian coordinates of Py

K is not removed from the integral, since it depends on
z5, which may depend on x and y in the “sloped-top”
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case. Using Eq. (20), Eq. (24) can be expanded slightly
to

V(XP(”)/P(, ) ZPo)

(22 — 1) A

-G
p 2] (1/2)

2 2
i 6= xn) 4 0= n) + (1 - 2n)
(25)
The gravitational attraction of such a condensed prism

at a point Py can be computed, as before, through
differentiation of potential in the vertical component

g(xPo y VPy» ZPO) = ? V(XPO y VPy» ZPO) (26)

Py
written in Cartesian coordinates as
9 (X Vo120 )

ol ],

X=X1 Y=)

(22—21)(z1—2p,)

)C xPO +(y ypo) +( ZP())

2} G drdr

(27)

Equations (26) and (27) are smooth and continuous as
long as zp # z; (station is not “on” the condensed
layer). In the flat-top prism case, a closed-form solution
to this equation (setting Xp,,p,,2,, all to zero) is as
shown below

g(xpoaypo’zpo)

2 2
:—Gp Zy) — 21 ZZ

i=1 j=1

xy,] (28)

’+/ arctan
ARy

where
s= (2 +y7+ ) (29)

A quick examination of Eq. (27) shows that if the
station (z,,) is at the same height as the condensed layer
(z1) then there will be no vertical gravitational attraction
due to the condensed layer. [That is, Egs. (27) and (28)
are discontinuous at the condensed layer.] This is in
disagreement with the traditional planar (Cartesian)
implementation of Helmert’s 2nd method of condensa-
tion, if the condensed prism is directly below the station
(x1 <xp <xyand y; < yp < ). If it is to the side, then
in Cartesian coordinates it is expected that there should
not be any vertical gravitational attraction due to the
condensed layer. In the case where the condensed prism
is directly below the station, a limit is used to compute
the attraction of the condensed masses as P, is moved
progressively closer to the condensed layer

lim g(xpo’ypo’ZM))
Zpy 21
{ —2nGpH  prism below station (30)
o prism to side of station
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The limit used here is one-sided, allowing the point P,
to approach the ‘“geoid” (surface upon which the
condensed masses reside) from above (4z or —+r
direction). The limit represents the gravitational attrac-
tion at a point P, that is an infinitesimally small
distance above the geoid. This is desirable, as the value
of gravitational attraction is discontinuous (though not
necessarily undefined) at the location of condensed
masses. The fact that this “limiting value™ is required,
and not the value directly on the geoid itself, in order to
ensure compatibility between various orderings of
gravity reductions, was shown in Milbert and Smith
(1998).

Similar “condensed attraction’ equations need to be
derived in spherical coordinates. Beginning with the
spherical version of Eq. (23)

K
V () 7/1P y'e) = G/ dA
( Pys P ) [(r2 + r%,o — 2r(rp, cOS ‘p)](l/m

d4 = r}cos pdodi
(¢, 4,r1) = geocentric spherical coordinates of d4
(@p,, Ar,» 7R,) = geocentric sphericalcoordinates of Py
Y = geocentric angle between Py and d4
= arccos[sin @ sin @p
+cos ¢ cos @p cos(A— Ap)] (31)

Using Eq. (22), Eq. (31) may be expanded to
V((Ppo, ;“Poa rPo)

= Gp / o e () (5 4 (32)

[(r} + ”1%0 — 2ryrp, COS 1//)](1/2)

The gravitational attraction of such a condensed prism,
at a point Py, can be computed, as before, through
differentiation of potential in the vertical component

0

_aTR)V((pPoJ“RNrHl) (33)

g((PPwiP(HrPo) =

which fully expands to

QAo

lim g((/)p()))“poarpo)

Tpyr1
_ [ —2nGpH — O  prism below station (35)
~lo-0 prism to side of station

where

0=-Gp

0 i [ (n=r)?) . ((2=n)®
y /2 /2 [(I’z r1)+(2\/r%:-05(l;3r12‘ )}cosq)did(p

=01 =l

(36)

It should be noted that Eq. (35) is in agreement with the
more general derivation given in Heiskanen and Moritz
(1967, Egs. 1-17a).

Since comparisons will be drawn between the formal
remove/restoration equations above and classical terrain
corrections, the classical TC approximation formula is
presented in Eq. (37) below. Recall (Moritz 1968, p 41;
see also the Appendix in the present paper) that this
equation is used to approximate the overall effect of
removing the masses (for a point P at the surface of the
Earth) and restoring the condensed masses (for a point
Py at the geoid).

1 x=4o00 y=+00 H H 2
TC = EG'O / / —( (x7yl)3_ ) dxdy (37)
0

X=—00 y=—00

where [y is the horizontal distance approximation
between (x,y) and (xp,yp). As per the comments above,
the height of Py(zp,) is not truly “on” the geoid (z = z}),
but is an infinitesimally small distance above it. Note
also that this “classical” formula is convenient for
computing TCs from Fourier transforms, but it is an
approximation to the ‘“true” TC wvalue, in planar
coordinates (see Appendix).

To summarize, equations for computing gravitational
attraction of 3-D and 2-D (condensed) masses in Car-
tesian or spherical coordinates have been presented, and
closed forms presented where they exist. For the special
case where we are interested in the attraction of con-

r—ri

2 =)+ (2522) 4 ¢

3
- ) )] (r1COS Y — 1y )13 cOS @

g((ppo,ipwrpo):—Gp//

Q=@ =l

Unlike the case of Cartesian coordinates, the condensed
prisms “to the side” of the station do not have a zero
contribution as Py approaches the condensation surface.
This is because the condensation surface, being spher-
ical, allows condensed prisms to lie below the local
horizon of any station as that station approaches r = r.
Equation (34) has no known closed-form solution, but
the limit as r,, approaches | may still be applied to it, to
achieve the following integral

(r?+ rﬁo — 211y, COS )

— dzde (34)

densed masses at a point that has been moved from the
surface down to the condensation level, limits have been
used to show how to compute those attractions. When
closed forms for these integrals were not available, the
computations in this paper used a Romberg quadrature
numerical integration algorithm as specified in Press
et al. (1992, pp 155-158).

This paper is focused more on errors due to various
terrain approximations, rather than emphasizing com-



putational speed. Ultimately, however, it is desirable to
find a reasonable tradeoff between computational ac-
curacy and computational speed that can be used in the
processing of terrain-related gravity effects at the mil-
lions of gravity stations around the US.

3 Methodology

As mentioned earlier, in order to arrive at Helmert
anomalies on the geoid, gravity values on the surface of
the Earth must have three primary corrections applied
(see Sect. 1). The computations in this paper assume the
order as listed in Sect. 1, but this paper does not attempt
to address the computation of the 2nd reduction
(downward continuation) itself. The order of events is
mentioned merely to establish (for this paper) that the
“remove step’’ is performed for a point at one location
and the “restore step” is performed for a point that has
been moved (downward continued) to another location.
No working knowledge of how that downward contin-
uation was performed is required to compute these
terrain effects. As such, for the remainder of this paper it
is assumed that gravitational attractions are computed
for 3-D masses at point P (the surface) but for
condensed masses at point Py (the geoid).

Four methods of computing the remove/restore were
used, as follows.

(1) Traditional planar terrain corrections at point P (a
single computation which is used to approximate the
combined effects of both the remove step, at P, and
the restore step, at ). [Eq. (37)].

(2) Rigorous remove (P) and restore (Py) in planar co-
ordinates [Egs. (6) and (28)].

(3) Same as method 2 but in spherical coordinates
[Egs. (14) and (395)].

(4) Same as method 3 but allowing the tops of the
prisms to slope bilinearly [Eqs. (14) and (35), with 7,
varying bilinearly].

In this way, the effect of each geometric change may be
monitored directly.

Additionally, the important question of DEM grid
spacing was investigated. A 3-arcsecond DEM (based on
National Imagery and Mapping Agency Digital Terrain
Elevation Data level 1 data) was used both at the 3-
arcsecond level, and averaged to the 30-arcsecond level,
to investigate the impact of coarseness. Lastly, to pro-
vide results that were for general terrain, four areas of
varying roughness (as measured through horizontal
gradients of terrain) were investigated during this study:
Pikes Peak, Colorado (extremely high and extremely
rugged), central Colorado (high and moderately rug-
ged), the Appalachians (low and slightly rugged) and the
Pacific Northwest (high and extremely rugged).

4 Effect of geometric differences

Computations of gravitational attraction were tabulated
in roughly circular rings (“roughly” because the DEM
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grid is latitude/longitude based and not distance/azi-
muth based) surrounding a station. The stations used in
the four computational areas are outlined in Table 1.

It should be noted that these stations do not fall on
even latitude and longitude lines, and their heights do
not necessarily lie on any particular surface defined by
the DEM data. This is very much the way any other
random gravity stations would appear. This raises the
issue of what height to use for the gravity station. In
most gravity measurements in the National Geodetic
Survey (NGS) database, an orthometric height is given,
usually scaled from a local topographic map. These
heights are usually considered accurate to +/—3 m in
general (sometimes much worse in the mountains).
However, there are many instances where these scaled
heights disagree radically (often by hundreds of meters)
from various DEMs in the region. In addition, inter-
polating a height from a 30-arcsecond DEM (which is
about 1 km horizontal spacing) can yield standard er-
rors in heights at the +/—20 m level, but only +/—5 m
from a 3-arcsecond DEM (Smith and Roman in press).
Because it is important in geoid computations for
heights to be consistent (Smith and Milbert 1999; Smith
and Roman in press), and because the DEMs generally
have fewer blunders than the scaled heights in the
gravity database, the height of the station was always
determined by bilinearly interpolating from the four grid
nodes of the 3-arcsecond DEM surrounding the station.
This removes blunders, and gives one consistent station
height to which all terrain reductions may accurately
refer.

The gravitational attraction, on a ring-by-ring basis,
was computed for these stations using the four methods
outlined in the previous section. Cumulative graphs of
the removal (at P) and restoration (at Py) for the four
methods for central Colorado are shown in Figs. 5 and
6. In all cases, these computations were done with 30-
arcsecond DEM data. The conclusions drawn from the
Central Colorado test are very similar to those drawn
for the other areas. Thus, for conciseness, the focus of
this discussion will be on the results from Central Col-
orado.

Certain conclusions can be drawn from a study of
these two figures. First, note that the combined (remove/
restore) gravitational attraction computed using method
1 (classic TC) increases monotonically with distance
from the station, while that of methods 2, 3, and 4
monotonically decreases. This is to be expected because
method 2, by its very nature, includes the restoration of
the infinite Bouguer Plate [see Eq. (30)], whereas method
1 would need to be evaluated to infinity to see the
complete effect. Because methods 1 and 2 both represent

Table 1. Coordinates of four gravity stations of interest

Name Latitude (°) Longitude (°) Height (m)
Pike’s Peak 38.840708 254.958653 4154.13
Central Colorado  38.500139 254.500139 2397.64
Appalachia 37.500417 279.500417 785.75
Pacific Northwest ~ 46.500417 239.500417 491.00
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Fig. 5. Combined effect of the removal of gravita-
tional attraction of 3-D masses (computed at the
Earth’s surface) and the restoration of gravitational
attraction of condensed masses (computed at the
geoid) for the central Colorado station, 0. to 1.5°
from the station, using 30-arcsecond terrain data.
Method 1 is shown with dash-dot-dot; method 2 with
dash-dot, method 3 with dots, and method 4 with a

solid line. Note that the scale prevents separation of

the lines for methods 2 and 3
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the terrain in Cartesian coordinates, it is obvious that if
they are both taken to infinity, then their representations
of the removal and restoration of the terrain would
become identical and they should approach the same
limit, but from opposite directions.

Second, there is a nearly 20-mGal offset of method 4
from method 3. This is due entirely to the difference
between the flat-top assumption in method 3 and the
(bilinear) slope-top assumption in method 4. Most of
this difference results from the central prism and its
immediate neighbors.

Finally, a small systematic offset exists between
methods 2 and 3. This offset is due to two separate ef-
fects, both tied to the curvature of the Earth. The first,
and dominant, effect will be called the ‘near-field
spherical effect”. This effect is due to the different shapes
of spherical prisms from rectangular prisms. Differing
shapes yield different mass distributions, and subse-

Fig. 6. As Fig. 5, but for 1.5 to 3.5° from the station

quently different gravitational attractions of both the
3-D and condensed masses. In fact, the largest contri-
bution to this effect is the difference in gravitational
attraction of condensed masses for the one prism
directly below any point P. This effect has almost no
dependence on the grid spacing (3 vs 30 arcseconds), nor
on latitude, but is almost entirely dependent on the
height of station P. A few example computations
showing the height dependence of this effect, broken
down into removal of 3-D masses, restoration of con-
densed masses, and the combined effect of these two
reductions, are shown in Table 2.

In Table 2, the cause of the differences between
Cartesian and spherical is mostly due to using a poor k
value in Cartesian coordinates [Eq. (20) vs Eq. (22)]. By
picking a poor x value, the “wrong” amount of con-
densed mass is put in a very close proximity to point Py,
causing a discrepancy between Cartesian and spherical
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Table 2. Numerical examples

of near-field spherical effect for H (m)  Cartesian Spherical Differ@nce
30-arcsecond data (mGal) ; i combined
Remove Restore Combined  Remove Restore Combined
100 -9.910 +11.194 1.284 -9.908 +11.194 1.286 0.002
1000 —38.772 +111.940 73.168 —38.774 +111.961 73.187 0.019
5000 —47.175 +559.701  512.526 —47.203 +560.160 512.957 0.431

cases. An empirical function was fitted to the difference
between Cartesian and spherical cases of the combined
effect of removing 3-D masses at the Earth’s surface and
restoring condensed masses at the geoid (for heights
ranging from 0 to 5000 m). This empirical function is
shown in Fig. 7.

Figure 7 represents an error curve, depending on
height, that is systematically produced if Cartesian co-
ordinates are used to compute the removal of the 3-D
masses at P (surface), and the restoration of condensed
masses at Py (geoid). This error is designated dAgNFSE
(NFSE = near-field spherical effect) and empirically
follows the form

OAGNFSE = 4 + bH + cH? (38)

where SAgNFSE represents the error in using Cartesian

coordinates, rather than spherical, to compute the
combined effects of removing masses at P (Earth’s
surface) and restoring condensed masses at Py (geoid), in
mGal. H represents the height of station P in meters, and

a =0+ 0mGal
b= —3.056x 107" £2.178 x 107" mGal/m
¢ =1.756 x 107% + 5.323 x 107" mGal/m?

(39)

The uncertainties in these coefficients never cause an
uncertainty in SAgNFSE larger than 0.5 pGal, for heights
between 0 and 5000 m. If S6AgNFSE is propagated
through the Stokes integral, a height-dependent map
of geoid errors due to this effect is obtained. Over the
US, the impact of the near-field spherical effect has a
root mean square (RMS) of 3 mm, but a maximum

Near-Field Spherical Effect

S 0.4
[«
£
2 03}
w
| =
.Q
@ 0.2f
[
D
©
C
o
(s}
2 01F
@
£
<
T

0.0F

L 1 L L ] |
0 1000 2000 3000 4000 5000

Elevation (meters)

Fig. 7. Empirically derived errors in Helmert anomalies due to near-
field spherical effects

value of 7.5 cm in the Rocky mountains (Smith and
Roman 2000). This is one clear example where Cartesian
coordinates significantly fail to accurately approximate
the terrain.

As there is no closed form for the attraction of a
condensed spherical prism, numerical integration was
necessary for this test. For the central prism itself, spe-
cial code was designed to break down the inner prism
into rings of different radii, and perform a numerical
integration over each ring. This allows the program to
use coarse numerical integration far from the station’s
latitude and longitude, and fine numerical integration
near the stations latitude and longitude.

5 Effect of using 3- vs 30-arcsecond data

In order to most effectively compute terrain effects in the
space domain, it is best to know where more coarse (30-
arcsecond) data may be substituted for finer resolution
(3-arcsecond) data. To determine this, gravitational
attraction was computed following the procedures in
Sect. 4, but using 3-arcsecond data. The cumulative
values for this case are presented in Figs. 8 and 9.

Notice that the agreement between the various
models is much better for the 3-arcsecond data, as
should be expected because the differences in the terrain
models are smaller with the smaller-sized prisms. Also
notice that all of the 3-arcsecond model results are
within 1 mGal of the results of method 4 with the 30-
arcsecond data. On all of the regions tested, the 30-
arcsecond bilinear-top model was within 1 mGal of the
3-arcsecond result.

In the more rugged areas, the use of 3-arcsecond data
provides a significant improvement in the model of the
near-station topography. A large change is seen between
the calculations for the flat-top prism models for the 3-
and 30-arcsecond data for these areas, mostly concen-
trated in the prisms nearest to the station.

In order to determine where 30-arcsecond data may
be used instead of 3-arcsecond data, the following plan
was proposed. Assume, for an example, that the radius
of = 3.5° represents an area outside of which we will
compute the removal and restoration of the terrain in
a separate way (Fast Fourier Transform methods or
spherical harmonic representations, as examples) to
that used inside the cap. This is the general approach
being proposed at the NGS, and is the reason why this
discussion has focused solely on computation of ter-
rain effects inside a cap. For greatest computational
speed, it would be best to use as coarse a DEM as
possible inside much of the cap, while still retaining



792

250

200
T

150
T

acceptable accuracy. Therefore in this example, if the
cap radius is Y = 3.5°, it is imperative to know how
much of that cap can be 30-arcsecond DEM and how
much must be 3-arcsecond DEM. Thus, it will be de-
sirable to use a 3-arcsecond DEM from i =0° to
¥ =1y and a 30-arcsecond DEM from y =y’ to
W = 3.5°, where / is some cut-off radius to be deter-
mined. Figure 10 shows the relation between i’ and
the error difference between 30- and 3-arcsecond re-
move/restore computations.

It can be seen in Fig. 10 that if the error budget al-
lows 10 pGal to be contributed from that part of the cap
that has the 30-arcsecond DEM, then the y/ value is
0.2°. In other words, we can use 3-arcsecond DEM in-
side ¥ = 0.2° and 30-arcsecond DEM from ¢ = 0.2 to
Y = 3.5° and suffer only a 10-pGal error from using the
30-arcsecond DEM. This hypothesis was tested for all
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four areas, and in each case }y = 0.2° was an acceptable
radius for switching to 30-arcsecond data, presuming a
10-puGal error budget for using 30-arcsecond data inside
a cap of 3.5°. The maximum cumulative error never
exceeded 10-pGal. This is deemed acceptable, consider-
ing that the geoid impact of a 10-puGal systematic error
made at every point throughout the Rocky mountains
would only be 0.6 cm.

Similar methods could be used for determining at
what point in using the 30-arcsecond data we can switch
from bilinear tops to flat tops. It should be noted,
however, that numerical integration is not significantly
slowed by the addition of bilinear tops. As such, this
question can remain unanswered, and bilinear tops kept
as the norm throughout the process of computation.
This will have no significant impact on speed, while al-
lowing more rigorous accuracy to remain.
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It is quite unfortunate that an analytic solution to
Eq. (12) [or (13)] has never been found (and may not
even exist), as this generally means that numerical inte-
gration is the only highly accurate method for computing
the gravitational attraction of localized prisms. As the
distance between station and prism gets smaller, nu-
merical integration (as a general rule) slows down sig-
nificantly. Even if we were to switch to Cartesian
coordinates near the station, the solution to the gravi-
tational attraction of a bilinear-topped rectangular prism
is not known in closed form, thus still requiring numer-
ical integration. However, there is one possible way to
gain quick (3-D) results, with a slight trade-off in accu-
racy (as high as 30 pGal, depending on station height):
use triangular prisms, with sloped (planar, not curved)
tops, in Cartesian coordinates (Smith 2000). Unfor-
tunately, the issue of the near-field spherical effect can be
only partly circumvented this way. Specifically, the
greatest component of near-field spherical effect is due to
the condensed, and not the 3-D mass differences. To
completely remove the near-field spherical effect would
require a fast solution to spherical condensed attraction.

6 Conclusions

It has been shown that the gravitational attraction of
terrestrial masses and condensed masses, at a level
consistent with recent geoid accuracy requirements,
must be determined with greater rigor and with finer
spatial resolution than has been used traditionally.

Use of spherical coordinates is necessary in order to
remove two effects — one of incorrect volume (near-field)
and the other of masses below the horizon (far-field).
However, because no closed forms for the solution of
gravitational attraction of spherical prisms have been
solved, numerical integration is necessary. A Romberg
algorithm has been found effective for this purpose.

Test computations at four gravity stations were per-
formed. Variables investigated included coordinate sys-

: and Y = 3.5°, as a function of /, for central
Colorado

tem, shape of prism top, and DEM grid spacing. It was
concluded that 3-arcsecond data with bilinear tops in
spherical coordinates should be used for computing
gravitational attractions inside a cap of 0.2°, and 30-
arcsecond data with bilinear tops in spherical coordi-
nates be used outside 0.2° to some critical radius. For a
slight degradation in accuracy, the numerical integration
over the spherical prisms closest to the gravity station
may be replaced by closed forms, using Cartesian co-
ordinates and sloped-top triangular prisms. The degra-
dation of going from Cartesian to spherical coordinates
is height dependent, ranging from 2 pGal for stations at
100 m elevation, all the way up to 431 pGal for stations
at 5000 m elevation. These largest errors lead to as much
as 7 cm of geoid error, and therefore it is concluded that
no more than 50 pGal of error be considered acceptable.
As such, it is suggested that near-field use of Cartesian
coordinates be avoided for all terrain computations
where elevations regularly exceed 1500 m.

Use of the traditional terrain correction is seen as
undesirable as currently formulated, predominantly be-
cause of the dependence upon Cartesian coordinates,
but also because the total remove-and-restore effects, for
different locations of P and Py, are combined into one
computation. Because this one computation represents
the removal of 3-D masses at the surface, and the res-
toration of condensed masses computed at the geoid, the
assumption is that some downward continuation needs
to be performed between these two effects. Without
separating the remove-and-restore terms, the accuracy
with which downward continuation may be computed is
reduced.

Appendix

One question that has raised some debate amongst
researchers has been the following: “In terms of Helmert’s
second method of condensation, what exactly does the
terrain correction (TC) represent?” The answer (in
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planar coordinates), to be proven below, is this: The TC
is exactly equal to the combined effects of removing all
of the 3-D topographic masses (computed at point P on
the surface of the Earth) and the restoration of the 2-D
condensed topographic masses (computed at point Py on
the geoid). That is, in planar coordinates, the following
will be proven:
TC = —"gp + “gn, (A1)
where Tgp is gravitational attraction at P (Earth’s
surface) due to topography and ©gp, is gravitational
attraction at Py (geoid) due to condensed topography.

It will be shown by extension that the following is
also true:
TC # —"gr + “gr (A2)
where ©gp is gravitational attraction at P (Earth’s
surface) due to condensed topography.

The proof begins by writing some of the formulas
that are needed. First, the attraction of all topographic
masses in an infinite plane, above the geoid (z = z;)

00 oo ()
z — Z
Tgp = —Gp / / / ( A r) dzdydx (A3)
X=—00 y=—00 z=Z]

where
L=\ =)+ =3+ = 2)? (A4)
and removing the “z” integral analytically

=—Gp / / ———|dydx (AS)

A 12

where
b=+ 5= + 1) n

b=\ —x0) + = 30) + (22, 7) — 2p)

Next we write out the formula for a Bouguer plate

=—Gp / / / d dydx (A7)
X=—00 y=—00 z=2]
which becomes, after removing the z-integral
Ap = —Gp ———|dydx (A8)
L lo
X=—00 y=—00
where
o=/ =) + (v — ) (A9)

It should be noted that Eq. (A8) can be solved
analytically to form the well-known formula for the
attraction of a Bouguer plate

B4

p = —2nGp(zp — z1) (AIO)

Now, finally, we write out the TC in its strictest
definition. That is, the removal of masses above z = zp
and the addition of masses below z = zp (Heiskanen and
Moritz 1967, pp 131-132)

L] I

X=—00 y=—00 z=zp

Y(x,y) s.t. z2(x,y) > zp

Lol T

X=—00 y=—00 z=23

Y(x,y) s.t. z2(x, ) < zp
(A11)

This formula holds as long as the topography is
piecewise continuous. Further simplifying, we obtain

oo oo

L] T ]

X=—00 y=—00 z=Zp

Y(x,y) s.t. z2(x,y) > zp

TCp = -
i / / / ) dzdydr
X=—00 y=—00 z=zp i
V(x,») s.t. z2(x,y) < zp
(A12)
thus
TQ_——&>/ t/ / ) dzdydr
XY=—00 y=—00 z=Zp
(A13)
and therefore
TCp=—-Gp / / (— — —>dydx (A14)
L

X=—00 y=—00

Examining Eqgs. (A5), (A8), and (A14), we can see that
the following is true:

Tgp + TCp = Bdp (A15)
or
TCp=—Tgp+B4p (A16)



This formula is nothing new. It is just a mathematical
confirmation of the definition of the TC — that is, the
difference between a Bouguer plate and the true
topography. Turning our attention now to the gravita-
tional attraction of condensed masses, the following
formulas for P and P, are known [see Egs. (27) and

(30)I:

oo

Cgp=—Gp / / <22‘ZI§§ZI‘ZP> dy dx
1

X=—00 y=—00

[e¢] [e¢]

= —Gp(zp — 1) / /(Zz%?zl)dydx (A17)

X=—00 y=—00

and

gr, = lim Cgp = —21Gp[z>(xp, yp) — z1]

zZp—2Z]

= —2nGp(zp —z1) = Bdp (A18)

[this formula is in agreement with the limiting form of
Egs. (1-17a) in Heiskanen and Moritz (1967)]. Unless
zp = zp everywhere (i.e. the topography was in fact,
before condensation, an infinite flat Bouguer plate), then
the following must also hold:

Cgp # Pap (A19)

As such, we can substitute Eqgs. (A18) and (A19) into
(A16) to yield the following equality and inequality:

TCp=—"gp + “gn, (A20)
and
TCp # —"gp + “gp (A21)

Note that this proof is for planar coordinates only, and
does not rely on the approximation formula of the TC
[Eq. (37)], but rather on strict definitions of the various
terrain components in planar coordinates.
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