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Abstract. Dedicated SST — or gradiometry missions like
GRACE and GOCE will provide gravity field informa-
tion of unprecedented resolution and precision. It has
been recognized that better gravity field models and
estimates of the geoid are useful for a wide range of
research and application, including ocean circulation
and climate change studies, physics of the earth’s
interior and height datum connection and unification.
The computation of these models will require the
solution of large and non-sparse normal equation
systems, especially if “brute force” approaches are
applied. Evidently there is a need for fast solvers. The
multigrid approach is not only an extremely fast
iterative solution technique, it yields en passant a well-
defined sequence of coarser approximations as a by-
product to the final gravity field solution. We investigate
the implementation of multigrid methods to satellite
data analysis using space-domain representations of the
anomalous gravity field. Theoretical and numerical
aspects are covered. Multigrid algorithms are applied
as stand-alone solvers as well as for the construction of
preconditioners in the conjugate gradient technique. Our
numerical results, concerning a regional gravity inver-
sion from simulated GRACE data, show that multigrid
solvers run much faster than conjugate gradient solvers
with conventional preconditioners.
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1 Background

The Gravity Recovery and Climate Experiment
(GRACE) and the Gravity Field and Steady-State
Ocean Circulation Explorer (GOCE) satellite missions
will provide gravity field information of unprecedented
resolution and precision. It has been recognized that

better gravity field models and estimates of the geoid are
useful for a wide range of research and application,
including ocean circulation and climate change studies,
physics of the earth’s interior and height datum
connection and unification (ESA 1999; NRC 1997).
The computation of these models from intersatellite—
tracking and gradiometric data will require the solution
of large normal equation systems'

Nx =y (1)

where x is the vector of u unknown gravity field
parameters, N the u# x u normal matrix and y the right-
hand side accumulated from satellite data. Numerical
problems related to the computation of N and y itself will
not be treated in this paper. Especially if “brute force”
approaches are applied, N will be non-sparse. Moreover,
due to the well-known ill-posed nature of the downward
continuation process — the movement of satellites at
orbital altitude smoothes out the fine structure of the
gravity field — the normal matrices tend to be ill-
conditioned. Also data gaps such as the polar regions in
the GOCE mission are likely to deteriorate the condition
numbers. Therefore we usually regularize the problem.
Applying Tykhonov regularization with parameter « and
matrix M, the normals appear as

(N+aM)x =y (2)

In GRACE and GOCE data analysis the size of the
system of Eq.(l) or (2) will be of the order
u =~ 20.000...90.000, if we aim for global solutions.
Besides, the optimal value of « is often not known a
priori and has to be determined from parameter choice
rules such as generalized cross-validation, the L-curve
method or ridge regression techniques. Then Eq. (2) has
to be solved several times and for condition numbers
varying over several orders of magnitude. Fast iterative
solvers must be designed to handle the problem within

"Within this paper, vectors and matrices are denoted by bold letters
(x), elements of function spaces by uppercase letters (X), and
mappings on function spaces by calligraphic letters (%)



774

acceptable computation time. A linear iteration of
Eq. (1) or (2) reads (set N+ oM =: N%)

X = xb 4 C(y — N*xF) (3)

where C should approximate (N“)_l, and it converges if
and only if

p(I—CN*) < 1 (4)

The quantity p is the spectral radius of the iteration
matrix, which is equal to the largest absolute value of the
eigenvalues. A convergence rate p = 0.1, for example,
means that one iteration step increases the accuracy of
the solution by one numerical digit.

However, the actual convergence rate of iterative
techniques strongly depends on the individual structure
of the equation system under consideration, which, on
the other hand, depends on the chosen gravity field
representation, the numbering scheme for the un-
knowns, the satellite orbit altitude, the satellite data
distribution, as well as the regularization parameter.
Considering the case of space-domain gravity field rep-
resentation, unfortunately the normal systems of
Eqgs. (1) or (2) lack a special block structure — which
would make them suitable for block Jacobi techniques —
as well as sparsity. In general, fast solvers for symmetric
positive definite systems are Krylov methods such as the
PCCGA (preconditioned conjugate gradient algorithm),
and multigrid methods. The application of PCCGA and
block-Jacobi techniques to gravity recovery from SST
and SGG is discussed by Schuh et al. (1996) and Schuh
(2000), where spherical harmonics are used as a basis.
Moreaux (2000) uses truncated covariance functions in
order to construct efficient preconditioners for Eq. (2)
within the least-squares (LS) collocation approach. An
iteration method for GOCE data analysis based on a
problem-oriented approximative solver is presented in
Klees et al. (2000). Kusche and Rudolph (2000) propose
multigrid algorithms for gravity recovery using a space-
domain representation.

In order to construct efficient multigrid solvers and
preconditioners, it is necessary to go one step back and
review the process of Galerkin discretization of the
anomalous geopotential 7. We assume that T € H,
where H is an infinite-dimensional Hilbert space equip-
ped with a reproducing kernel K = Y "2t P, The
reproducing kernel may be identified with a covariance
function of T describing the state of knowledge of the
geopotential power density. A linear operator
(i H — R" is supposed to map 7 onto n satellite
observations [/; of SST or gradiometry type,
li+e¢=/T=(A4;,T)y, i=1...n. Here, 4; € H are
the Riesz representers of the observation functionals.

The regularized normal equations
(JZ/?‘,,)M(,,) +O€])T - ‘52/26;1)]01) or
N*T =Y (5)

constitute a mapping of H onto itself, where &/’(‘n) is the
adjoint operator and .# is the identity operator. For
numerical purposes, Eq. (5) has to be discretized in the

following. The most popular technique is Galerkin®> LS
projection. Looking for a solution 7; in a finite-
dimensional subspace H; € H, we have to solve the Hj
equations

NIT =, (6)

where A~ j‘ is the restriction of the normal equation
operator and Y; an orthogonal projection of the right-
hand side (Kress 1989). Introducing a basis,
H; =span{®;,i =1...u;}, and a weight matrix P for
the observations, the normals finally take the well-
known form of Eq. (2) with design matrix A;; = o/;®;
= (4;,®;),;, normal matrix N = A”PA, right-hand side
y=ATPl, and Gramian regularization matrix
M;; = (®;, ®;),,. Common choices for the basis of the
approximation subspaces are the spherical harmonics
®; =Yy, k= —j...j, orapredefined system of harmon-
ic kernel functions, ®; = Y "2t ¢ P, (-, q)), e.g. Stokes
or Newton kernels. From the LS collocation point of
view, the natural choice of the basis in H; is given by the
Riesz representers of the observation functionals,
®; =4;,j=1...n. Here we end up with a Gramian
matrix, N;; = (4;,4;),, and right-hand side data y =1.
Concerning the huge amount of data collected during
the GOCE and GRACE missions, we expect that only
gridded or normal-point observations will be suitable to
LS collocation processing. However, we assume that we
need to regularize the LSC normal matrix.

Equations (6) are our point of departure in the der-
ivation of multigrid iterative solvers. Multigrid algo-
rithms have to be carefully adapted to the problem
under consideration, but they often run much faster
than Krylov methods with common algebraic precon-
ditioners, or provide efficient preconditioners. More-
over, as a byproduct they yield a well-defined sequence
of coarser approximations to the final solutions in hi-
erarchically nested subspaces.

Although large-scale geodetic problems were already
mentioned in a tutorial paper by Brandt (1982), one of
the fathers of multigrid methods, these techniques ap-
parently never gained attention in the geodetic literature.
Therefore in Sect. 2 we recall the basic principles and few
essential algorithms of multigrid methods. The remain-
der of this paper is organized as follows: Section 3 is
devoted to the embedding of the multigrid concept in the
framework of LS approximation on the sphere. Here we
restrict ourselves to space-domain representations of the
anomalous gravity field. In Sect. 4 we consider numerical
questions related to the solution of satellite normals,
using multi-grid methods as stand-alone iterative solvers.
Their use as preconditioners in the conjugate gradient
algorithm is described in Sect. 5. Finally, different algo-
rithms are applied to a normal equation system resulting
from a simulation of the GRACE mission scenario, and a
summary of performance is given in Sect. 6. We conclude
with an outlook. Convergence properties will be analysed
in a follow-up paper.

2More precisely denoted as Galerkin-Bubnov discretization of the
normal equations



2 The multigrid method

The multigrid approach was originally developed during
the 1960s for the iterative solution of discrete elliptic
boundary value problems. Multigrid iterations belong to
the class of fastest iterations because their convergence
rate is independent of the discretization, assuming that
certain regularity assumptions are fulfilled. Introductory
texts are those of Hackbusch (1985), Bramble (1993) or
Braess (1996). Recent developments concern, for exam-
ple, parallelization aspects of the multigrid approach. A
couple of recent papers also deal with multilevel
iterations for the solution of regularized ill-posed
problems arising from first-kind integral equations, see
Hanke and Vogel (1999) and the references therein. It
was found that also in this case — which is indeed close to
our application — multigrid techniques yielded very
favourable convergence rates. In our presentation we
follow Xu (1992), where the multigrid method is
presented within a large group of multilevel techniques
from a unified point of view.

The principle of multigrid iteration is simple: ap-
proximate solutions with smooth errors are obtained
very efficiently by applying standard relaxation methods
such as Richardson iteration, Jacobi overrelaxation
(JOR), successive overrelaxation (SOR), symmetric SOR
(SSOR), or block versions of these methods (Golub and
van Loan 1983). Here smoothness means that the short
wavelengths of the errors are reasonably damped, where
the error is defined with respect to the exact discrete
solution of the problem. Because of the error smooth-
ness, corrections of these approximations can be calcu-
lated cheaply on coarser grids. By grids we mean
hierarchically chosen approximation spaces
Hy C---CH;C---CHj. This basic idea can be used
recursively employing coarser and coarser grids. Only on
the coarsest grid must a direct solution be computed. The
benefit of this principle, of course, also depends on the
properties of the underlying equations and can hardly be
forecasted for complex problems. The basic V-cycle
algorithm for the H; solution of the discretized equation

LiX;=7Y; (7)
with &; : H; — H,, is as follows. The (k + 1)-th iterate is
given by

k+1/3
xR = xf +,9’j<Yj - ij,k)

yh+2/3

A R R (Yj - ngWﬂ)

Xk+2/3 + <Y ng+2/3)

k k
=X+ (- 2x)

(8)
k+1
X

By 2,1 we denote the orthogonal projection onto H;_1,
and .%; is a suitable chosen relaxation operator with a
smoothing property. Given X7, k the first step (pre-
smoothing) provides a smoothed approximation in H;.

In the second step the remalmng defect, which should be
of long-wavelength nature, is restricted to H;_;. We
apply a coarse-grid correction using #;_;. Finally a
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Hj 3
Hy K
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Fig. 1. Scheme of V-cycle, J = 3 (left), and nested iteration (right).
H, C H, C Hj are the approximation spaces. Each dot (e) indicates
application of an operator: smoothing relaxatlon %5 and &3 on the
fine- and intermediate grid, exact solution (& |) on the coarsest grid

post-smoothing is performed It should be noted that the
iteration operator #; is defined recursively by #;_;.
Only on the coarsest space, the correction needs to be
solved exactly: #, = (31) . The algorithm of Eq. (8),
applied with j=J to the ﬁnest discretization in Hjy,
therefore makes use of all coarser approximation spaces
down to H;. The multigrid iteration process can be
further accelerated by means of the concept of nested
iteration: good initial approximations X° on each
grid H;,i=1...J, can be found by performing a few
multigrid steps beginning with X1 The initial coarse-
space approximation ‘“bootstraps” itself. Figure 1
indicates the principle for J =3 grids, where the
motivation for the name ““V-cycle” becomes clear.

The most crucial issue for the efficiency of multigrid
algorithms is the approximation property: a Galerkin
solution to Eq. (7) in H;_; should be a good long-
wavelength approximation to the Galerkin solution in
Hj, therefore the coarser spaces have to be chosen in an
appropriate way. This will be made more precise in
Sect. 3. Convergence proofs are usually based on
Sobolev norms adapted to the problem under consid-
eration. In order to obtain an algebraic formulation, we
introduce a basis H; = span{®;),i =1...u;}, and
Eq. (7) reads L;)x(;) =y, or s1mp1y Lx =y. Within
the algorithm of Eq. (8), a sequence of smaller auxiliary
problems Ljox() =d is solved instead. Due to
H;_| C Hj it is clear that the base functions ®;;_) are
spanned by the @,

(1(j-1), - Doy -1) " = Ry (@i -+

and the auxiliary systems are related by

@) (9)

L1 =RgnLRj ) (10
dj1) = Rindy) = Ry (y) — LX)
The corrections are canonically continued onto the finer

space H;
8x(;) = R )8x(_) (11)

In other words, a linear interpolation is defined by
Eq. (11). Obviously the u;_; x u; restriction matrices
R(_1), j=2...J, determine the efficiency of the algo-

3For vectors and matrices defined with respect to the finest dis-
cretization, we will frequently omit the level-indicating index (J)
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rithm. They need to be sparse and are never stored as
full matrices in order to avoid the matrix products in
Eq. (10). Based on these considerations, a more flexible
multigrid algorithm, which allows for different pre- and
post-smoothing as well as multiple cycles between
coarser levels, is as follows.

J-grid algorithm for the solution of Nx =y: (12)

Select &, vy, v, x°
Define R

o . T
dok=12.. xX=9"x""1yN)
Tl =Nx'—y

Begin:

ry-1 = Ry_pr
doi=1,2,...,y
if J —1>1 then
SXiJ—l) = %(6X2511)’ru—1)7
Nu-1)
else if J — 1 =1 then
Solve N(])SX(l) = l‘(l)
end if
end do
x"=x — R(ijl)ﬁx”fj_l)
xk = 7" (x",y,N)
=M (x1y,N)
By ¥ we mean that a smoothing standard relaxation
technique is applied v times. Note that the new iterate
A (x¥1,y,N) on the J-level is defined in recursive style,
since it involves the iterates %(Sxi;ll), r—1), Ny-1)) of
the defect corrections on the next-coarser level built in
the same way. If we choose y > 1, the algorithm of
Eq. (12) cycles between coarser spaces. Figure 2 illus-
trates the basic cycles in the case of J = 3.
Considering the regularized normal equations

Eq. (2), it seems quite obvious to apply the algorithm of
Eq. (12) without modification to the regularized system.

J-grid algorithm for the solution of (N 4+ aM)x = y:

(13)
Hs S3
H, S
H, ()™

Fig. 2. Scheme of V-cycle, J = 3, y = 1 (left); W-cycle, y = 2 (right)

Set N := N 4+ aM
and continue with the algorithm of Eq. (12)

Begin:

However, a regularized normal equation system may be
always viewed as a discretization of a second-kind
integral equation. This opens the door to the so-called
multigrid methods of the second kind (Hackbusch
1985). The key issue is that an equation (L + AI)x =y
gives rise to the Picard-iteration x**! =/~ !(y — Lx¥).
Although such an iteration converges only if 4 is even
larger than the largest eigenvalue of L (and this means
for unrealistic large values of the regularization param-
eter), it can be used as a smoothing technique. We
obtain the following algorithm.

J-grid algorithm for the solution of (N 4+ aM)x = y:
(14)

Select x°

Define Ry
doj=J—1,....,1 Ny = RU)NUH)R(T/)
dok=12,... r'=N+aMx"'—y
Solve Méx = o~ 'rf~!

x = x4 8x

' =(N+oaM)x' —y

ry-1 = R(Jfl)r/

Begin:

8x(; ) =0
doi=1,2, ...,y
if J —1>1 then
Sxij_l) = =W(5X2511),1‘(171)7
Ny-1)
else if / — 1 =1 then
Solve (N(jy + aM))8x (1) = r(p)
end if
end do

xF=x'— R(TJ—I)SX)(;FI)

=M (X" y, N+ aM)

The regularization matrix M is usually band-limited or
diagonally dominant, so that the solution of
Méx = o~ 'r*~! should be determined without problems,
or else be sufficiently well approximated. Finally,
compared with the algorithm of Eq. (13), we see that
Eq. (14) needs only one control parameter 7.

We conclude this chapter with a very simple and
quite academic one-dimensional example in order to il-
lustrate the procedures of Eqgs. (13) and (14). The un-
known function f in our example, which may be
thought as an anomaly of a geophysical quantity defined
along a profile, will be discretized by some locally sup-
ported base functions or finite elements ¢,,i =1,...,4.



Collecting a number of measurements, we set up the
4 x 4 normal system (N+oaM)x =y or N°x =y. We
assume that the problem is ill-posed due to the nature of
the observations and needs to be regularized. Our aim is
to solve the problem using two levels, J = 2. Accounting
for geographical correlation, it makes sense to define the
coarse-grid base functions simply by

T L1 90 T
(¢1(l)a¢2(l)) =<6 h 1 ;)(¢1(2)a¢2(2)a¢3(2)7d)4(2))

The matrix above is the restriction matrix R = Ry;).
Note that this step requires at least a certain knowledge
of the underlying problem. Assuming orthonormality of
$; = ¢;(2), we have the Gram matrix M =1, and the
regularized 2x2 coarse-grid matrix is
N(1) + «M(;) = RNR” + Z1. At this point we can already
give the LS approximation of f in the coarser space
H = span{qﬁi(,),i = 1,2}

a 71

Joy = (451(1), ¢2(1)> (RNRT +§I) Ry
Next, in the course of the algorithm of Eq. (13) we have
to choose a smoothing operator . which lives on the
fine grid (or approximation space H, = spdn{qb
1,...,4}). For the well-known Jacobi relaxatlon for
example P (xF1y, N*) = xF=1 + Cpae(y — N*xF1), with
Cjac = diag(1/N%). In the algorithm of Eq. (14) the
smoothing operation is performed implicitly by the
Picard iteration matrix Cpi = o 'I. The following
coarse- grld correctlon step reads in both Egs. (13) and
(14) XK = X' 4 Cege(y — N*x’) with Ceec = RT(RNR” +
1)~ 'R. The new iterate x* = ./ (x*~ 'y, N¥), combining
smoothmg and coarse-grid correction, is therefore given
by

My, N =7 (x y,N%)

+ Coge(y — N"7(x*"1y,N¥)

Finally, in order to give a comparison in terms of
convergence rates, we assume the normal matrix of our
example to be of special Toeplitz structure with

il
4

Using regularization with o = trace(N)/trace(M) = 1,
we have for pure Jacobi relaxation p(I — Cy,.N*) = 0.89,
whereas the two-level iterations of Egs. (13) and (14)
yield spectral radii of p((I — CegeN”)(I — CjacN*)) =0.39
and p((I — CeeeN*)(I — CpicN*)) = 0.23. Even without
regularization, o =0, the algorithm of Eq. (13) still
converges, whereas pure Jacobi relaxation diverges! The
price to be paid is the additional complexity required by
the formation and solution of the coarse-level system.

N =1 ij=1...4

3 Spherical context

Here the basic concepts presented in the previous section
will be embedded in the framework of LS approxima-
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tion on the sphere. We assume that our fine-level
approximation space H; will be spanned by a basis of
radial-symmetric harmonic functions @) € H defined
on a suitable chosen Bjerhammar sphere Q, which allow
the following Legendre series representation:

oo

Z2n+l J p (q0)

n=0

kzl...u_/

(15)

where P, are the Legendre polynomials, ¢? the Legendre
coefficients, and ¢, € Q,k=1...uy is a set of points on
the sphere. It seems natural to assume that the entries of
the restriction matrices in Eq. (9) will be taken from
some spherical radial-symmetric L> functions

DOy =

< 2n+1
~ dr

Rici-1) = Rij-1)(9i, qx) = ' Py(q1, qx)

i=1..

which should be of local support in order to minimize
the computational burden. Nevertheless, the base func-
tions @y ;,j <J, defining the coarser approximation
spaces are in general not radial-symmetric. Assuming u,
to be large for the moment, the restriction equation,
Eq. (9), applied to the fine-level basis @) may be
regarded as an approximate convolution integral

uy
Qi1 = ZR(Jfl)(Qh‘Ik)(Dk(J)

,1>(qi,q/)®u)(',ql)dw/JFD (17)

X on+1 ,_
=3 7V @IPu(oq;) + D

and similar relations hold for ®,j<J —1. The
magnitude of the error or discrepancy term D depends
on the chosen point-set configuration, the number of
points, as well as the smoothness of the functions @
and R(;_;). Error bounds are given in Freeden et al.
(1998). Clearly, the base functions on the coarser levels
of approximation tend towards low-pass filtered ver-
sions of the original H, function, if the point-sets are
sufficiently large.

Now let 7, be an approximation of the anomalous
potential in H,, and let 2,_;T; denote its H-orthogonal

projection onto the coarser space H; | = span
((I)iu,l),l. =1.. .MJ_]>, 1.e.
(Tr, Ur1)y = (25115, Us1)y (18)

holds for arbitrary U; | € H; ;.
obtain for an error bound

Inserting Eq. (9) we

T — 251 Tl
-
< = R{_p(Ry_yMR{; 1)) Ry_pyM|| - [|Ty[
(19)
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where the matrix norm corresponds to || - ||; and
2n+1 ( )2
My = (D P,
k= Qs ”z:; . k, (qr:q1)
(20)

is of Gram type. It is obvious that for a given subspace
dimension u;_; the restriction matrix of Eq. (16) should
be chosen such that a low error bound of Eq. (19) is
obtained. As is well known, in the collocation case
(D[(J) = K(q,'7 ~), Eq. (20) reduces to My = K(qk,ql).
However, it seems difficult to improve the error estimate
of Eq. (19) for general point-set configurations.

4 Solution of satellite normal equations
by multigrid methods

Here we consider certain practical questions related to
the construction of multigrid stand-alone solvers for
Eq. (1) or (2). Our numerical example refers to regional
recovery of gravity anomalies from intersatellite track-
ing data, so first we present the underlying recovery
technique. Based on the Stokes—Pizzetti formula, we
have a representation of the anomalous gravity field

7& o /
—4n/5gS( ,q")do (21)
Q

where R, is the mean radius of the Earth, S(-,¢’) is the
extended Stokes function, and dg are generally surface
gravity anomalies (Heiskanen and Moritz 1967). In our
case, they should be considered as residual, referring to a
chosen reference field and defined on a reference surface
(Bjerhammar sphere). If we discretize the anomaly
function using u; block-mean values, Eq. (21) can be
approximated by

=0 Z5g, q1)AQ; (22)

where AQ; = [, da'. With ®; = R.AQ;/(4n)S (-, qi) W
have a representation of the type of Eq. (15), where the
Legendre coefficients of the Stokes function equal

» =R./(n—1). This has been used in a number of
studies on regional gravity field recovery. If the anomaly
blocks are chosen as equi-angular with respect to the
geographical coordinate system, the midpoints ¢; con-
stitute a geographical grid of width A. For GRACE and
GOCE data analysis, A between 0.5 and 2° seems
appropriate. Coarser grids for our multigrid algorithms
can be obtained easily by doubling the grid width: 2 - A,
4. A, etc.

A popular numbering scheme for the unknown
anomalies is latitude-by-latitude; see the left-hand side in
Fig. 3. Numerical tests have shown, however, that this
scheme is clearly not optimal if Gauss—Seidel-derived
smoothers are applied within the multigrid algorithm
(Rudolph 2000). The reason lies in the fact that these
methods successively improve the unknowns, but the
popular scheme causes jumps between algebraically

A A A

Fig. 3. Numbering schemes for anomaly blocks

neighbouring unknowns where the use of already im-
proved unknowns looses its sense. Better-suited schemes
are depicted in Fig. 3, in the centre and on the right-
hand side. The scheme on the right-hand side is useful
for domain partitioning and parallel computing.

Assuming that satellite measurements /; + ¢; = .o7;T,
i=1...n, are given, the normal matrix in Egs. (1) and
(2) is N = ATPA, where the design A matrix usually
contains certain derivatives of the Stokes function and P
is a weight matrix which can be chosen from prior in-
vestigations on the measurement error’s power spectral
density. x is the vector of unknown mean gravity
anomalies dg;, and the right-hand side y = A”1 has to be
accumulated from the data set. Numerous studies show
that the normals need to be regularized — or prior in-
formation has to be added — from the LSC point of view.
The choice of regularization parameter o and matrix M
or measures to reduce discretization errors or the effect
of omission zones will not be discussed in this paper; for
more details see Xu (1992), Xu and Rummel (1994) and
Ilk et al. (1995).

The multigrid algorithms of Egs. (12), (13) or (14)
may safely be stopped when the iteration error is sig-
nificantly below the expected accuracy of the gravity
field solution. An estimate for the iteration error is
¥ = x| < € = T E= | xf = x| (23)

—p
where p is the convergence rate of the linear iteration
process. Instead of computing p from the eigenvalues of
the iteration matrix, it is common to estimate the
quantity by the so-called reduction factor
p=IIxE = x|/ = xR (24)
An arbitrary norm can be chosen in Egs. (23) and (24).

But even before the multigrid process terminates, it
produces some interesting results. Within the nested
iteration (cf. Fig. 1), exact solutions X(;_py, X(y_2), ... on
the coarser approximation spaces can be obtained.
On the next-coarsest space with 2-A resolution, for

example, the solution vector Xy_i) = (0g1y—-1),
0, (J-1 ) of the auxiliary system
R, )NR{;_ X

= (Ry-nNR{;_;, + oRy_h)MR{;_ )Xy (25)

=Ry_ny

provides a regularized LS solution for the smoothed
gravity field representation



Re Uj—1 uy
L= ; 0gis—1) (Z R(qi, qi)S(- qk)AQk> (26)

k=1

In contrast, the restriction X(;_;) = R;_j)x of the final
solution x computes weighted regional means over the
gravity anomaly function

uj—1

_ R, "-'
Tra=5" Z( > R4, qx) 5gk> SCoq) AQ (27)
im1 \ k=1

Within this study, we use a computationally simple
normalized three-step restriction function

R(;—1)(qi,qx)
a ifyy, =0
b oif0<yy, <A &

0 if V2A; < iy

where Y, = /(qi,qr) denotes the spherical distance
between points ¢; and g, A; the grid width in H;, and
a>b > c > 0. As mentioned before, we do not store the
restriction coefficients R(;_;) as full matrices. Instead,
using the compressed matrix storage mode (Bjorck
1996), only the few non-zero entries are held in the
computer memory — less than 0.2% in our numerical
example due to the short cut-off distance \/EA]-, in
Eq. (28). The principle is depicted in Fig. 4, where s is
the maximum possible number of non-zero entries per
each ¢; due to Eq. (28). In the numerical example of
Sect. 6 we have s = 9.

5 Multigrid preconditioner

Efficient Krylov solvers such as the conjugate gradient
method require a preconditioning strategy, if applied to
an equation system of bad condition such as Egs. (1) or
(2). By preconditioning we mean (Golub and van Loan
1983; Hackbusch 1993) that each CG step begins with
the solution of a linear equation system

Cpkfl — l'k71 (29)

where r*=! = (N + aM)x*~! —y = N*x¥~! —y is the re-
sidual vector and C the symmetric and positive definite
preconditioner. In the case of PCCGA, each iteration

= =

Uj—1 R

Uj S S

Fig. 4. Storing the restriction coefficients within the compressed
matrix scheme. Only one u;_ X s real array and one u;_; x s integer
array are needed. s is the maximum number of nonzero entries
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step damps the error by 2(y/x(CTIN*)—1)/

(1/k(C"'N*) + 1), therefore a good preconditioner

should reduce the condition number x but, on the other
hand, should allow fast solution of Eq. (29). A popular
choice is the diagonal preconditioner, C = diag(N%). If
we apply m cycles of a symmetric multigrid iteration to
the system

N7p = r*! (30)

beginning with p’ =0, the preconditioner C is given
implicitly by the mth power of the multigrid iteration
matrix, and the preconditioned residual p*~! is the mth
multigrid iterate p™ for the exact solution p of Eq. (30).
Multigrid preconditioning, however, can be viewed from
a different point of view: as a multigrid iteration process,
each m steps combined with a PCCGA step. We find
that with multigrid-preconditioned CGA the stopping
rule of Eqs. (23) and (24) works much less reliably than
with multigrid stand-alone iterations, probably since
PCCGA is basically not a linear iteration. The conver-
gence rate itself, however, is clearly accelerated. More
sophisticated error estimates can be found in, for
example, Hackbusch (1993).

6 A numerical example

A numerical example should demonstrate the applica-
tion of multigrid stand-alone solution and precondi-
tioning techniques to satellite gravity anomaly recovery.
Satellite data y and normal matrix N were created within
a simulation experiment following the GRACE mission
scenario: a low—low high-precision intersatellite mission,
based on the EGM96 spherical harmonic geopotential
model for orbit (at 400 km altitude) and data simula-
tion. An analysis period of 31 days was chosen.
Intersatellite range-rate measurements were generated
at a sampling rate of 0.2 Hz and corrupted with
Gaussian white noise of variance (1 p m/s)>. This means
that a total number of 53 500 simulated observations
had to be processed. The methodology is presented in
Ilk et al. (1995). The arca under consideration was
chosen to be [57...132°] x [-24...43°]; see Fig. 5. A
set of 5025 1 x 1° mean anomaly blocks, computed from
the EGM96 model complete up to degree and order 360
and reduced by a low-degree reference model (OSU91
complete up to degree and order 12), is shown in Fig. 6.
This does not mean that we expect to recover the gravity
field at 1 x 1° resolution with an S/N ratio of 1, but a
high resolution was chosen in order to demonstrate
algorithmic performance in a seriously ill-posed prob-
lem. The same example has been used in Kusche and
Rudolph (2000). In order to simulate different degrees of
ill-posedness — or accuracy of prior information from
the LSC point of view — here the regularization
parameter has been shifted additionally by some orders
of magnitude.
In this example various algorithms were applied:

(1) MGV2JOR multigrid algorithm of Eq. (13), J = 2,
with Jacobi overrelaxation (JOR) smoother
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(2) MGV2R multigrid algorithm, Eq. (14), J =2

(3) MGV3JOR multigrid algorithm, Eq. (13), J =3,
with JOR smoother, V-cycle, y =1

(4) MGW3JOR multigrid algorithm, Eq. (13), J =3,
with JOR smoother, W-cycle, y = 2

(5) CGA-J conjugate gradient algorithm with diagonal
preconditioner

(6) CGA-MGV2JOR conjugate gradient algorithm with
m = 2 cycles of multigrid algorithm MGV2JOR as
preconditioner

(7) CGA-MGV3JOR conjugate gradient algorithm with
m = 2 cycles of multigrid algorithm MGV3JOR as
preconditioner.

The coarser grids were obtained by standard coarsening,
i.e. as 2 x 2° and 4 x 4° grids.

60°  70° 80" 900 100" 110" 120" 130°

a0 1 N i-w'
; . |
a0 = ISU'
o0 B ~ S 20°
10 | 10
i | | I

0 l t o
10"

200

T — — —

60° 70 80" 80 100° 107 120° 130°

-100 -80 -60 40 20 O 20 40 60 80 100

Fig. 6. (Pseudo-) true gravity anomalies (mGal)

The initial 4 x 4° approximation as well as the final
2 x 2° approximation obtained by nested iteration are
shown in Figs. 7 and 8. The final 1 x 1° approximation
from algorithm CGA-MGV2JOR after seven cycles is
given in Fig. 9, where the estimated as well as the true
iteration error is far below 0.1 mGal. When compared
to the pseudo-true field (Fig. 6), we can observe that the
main features are well detected. As expected, we cannot
hope to recover the gravity field at such high resolution
from a GRACE-type mission with satisfying S/N ratio.
In particular, ocean-ridge features of alternating sign
remain invisible within this experiment. We found a root
mean square (RMS) error of 12 mGal in the 2 x 2°

60’ 70 80° 90" 100° 1100 1200 130

-i00 -80 -60 -40 -20 o 20 40 &0 80 100

Fig. 7. Initial approximation on 4 x 4°

100 80 60 40 20 0 20 40 60 80 100

Fig. 8. Final approximation on 2 x 2°
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Fig. 9. Final approximation

block means weighted according to Eq. (27), and of
5 mGal in the weighted 4 x 4° block means, when
comparing to the E6M96-derived weighted blocks. Here
the regularization parameter was o = 1 - 10'°, which is
small when compared to an average diagonal element
trace (N)/u = 3 - 10'!. However, the important result is
that a suitable approximation is available after very few
iteration cycles, which means far less than 1% of the
computation time when compared to a direct solver.

A comparison of the different algorithms is given in
Tables 1, 2 and 3.

o is the regularization parameter, Iter no. is the
number of multigrid-cycles or CG-steps required by the
algorithm, and Time the execution time on a SUN Ultra
1 in minutes. Each algorithm was terminated when the
true RMS iteration error ||x — x|, fell below 0.1 mGal.
“Exact” solutions x of the regularized normal equations,
which only serve as a reference within this study, have
been derived for different as from running CGA-
MGV2JOR to [[r||, < 1-1073. In the case of multigrid
methods, C denotes the algorithm’s self-estimate
[Eq. (23)] for the RMS iteration error bound in mGal,
which is usually very good.

If only two grids are implemented — which is gener-
ally favourable as long as a direct solution on the
coarser space can be cheaply calculated — algorithms
MGV2JOR and MGV2R run very fast as long as the
problem is not too ill-conditioned. In the case of small
regularization parameters, MGV2R based on Eq. (14)
diverges due to large smoothing corrections. The use of
three grids serves as a test case for large-scale applica-
tion. Generally we found that the algorithms
MGV3JOR and MGW3JOR were very sensitive to the
specific configuration of the smoother, i.e. vi,v, and
overrelaxation parameter. We believe the reason for this
is that also the auxiliary systems of Eq. (25) are of bad
condition and require careful handling. Increasing the
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Table 1. Performance of different multigrid algorithms (J = 2). «
is the regularization parameter, Iter no. the number of iteration
steps, and Time the execution time on Ultra 1 in minutes. p is the
estimated convergence rate according to Eq. (24), and C the
iteration error bound [Eq. (23)] in mGal estimated using p

o MGV2JOR MGV2R

Iter no. Time C  p Iter no. Time C 0

Ix10" 5 6 008 038 5 6 005 023
5% 10 11 10 0.09 0.66 6 7 012 032
1x10" 61 41 0.09 091 37 25 1.23() 0.85
5% 10° 127 75 0.09 0.96 no convergence

Table 2. Performance of different multigrid algorithms (J = 3)

o MGV3JOR MGW3JOR

Iter no. Time C p Iter no. Time C p

1x10" 9 12 018 054 8 12 0.05 0.52
5% 10" 14 16 0.10 0.72 14 17 0.09 0.72
1x10"° 79 71 0.09 093 79 79 0.09 0.93

5% 10° 165 140 0.10 0.96 164 155  0.10 0.96

Table 3. Performance of different conjugate gradient precondi-
tioners

o CGA-J CGA-MGV2JOR CGA-MGV3JOR

Iter no. Time Iter no. Time Iter no. Time

1x 10" 55 23 3 7 5 14
5% 101 78 33 4 9 5 14
1x 10" 180 71 7 13 12 26
5% 10° 260 104 10 16 17 37

number of inner cycles y did not further enhance the
performance — due to the bad condition of the auxiliary
systems we would usually need y > 10 for a sufficiently
accurate solution of the defect equation on the second
grid, which makes the algorithm perform numerically
like MGV2JOR but more time-consuming. However, we
expect that MGV3JOR and MGW3JOR have great
potential for large-scale application since only systems
of a size less than u/16 need to be solved directly. The
clear winner of this comparison is the conjugate gradient
algorithm with multigrid preconditioning. We found
that CGA-MGV2JOR was able to solve the normal
equations within an acceptable time even for unrealistic
strong ill-posedness, i.e. for very small regularization
parameters. The conjugate gradient technique with
conventional preconditioning such as diagonal (CGA-J)
or (not shown in Table 3) SSOR can compete neither
with multigrid stand-alone solvers (Table 1) nor with
multigrid-preconditioned CG.

7 Outlook

We found that multigrid methods offer a flexible and
fast tool to compute gravity anomaly solutions from



782

regularized satellite normal equations, which will arise
from the dedicated gravity missions of the present
decade. We expect that global high-resolution solutions,
based on space-domain gravity field representations, will
be possible within acceptable computation time. Further
investigations will concern convergence properties of
multigrid algorithms as well as global application and
parallelization aspects.
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