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Abstract. A new method for airborne vector gravimetry
using GPS/INS has been developed and the results are
presented. The new algorithm uses kinematic accelera-
tions as updates instead of positions or velocities, and
all calculations are performed in the inertial frame.
Therefore, it is conceptually simpler, easier, more
straightforward and computationally less expensive
compared to the traditional approach in which the
complex navigation equations should be integrated.
Moreover, it is a unified approach for determining all
three vector components, and no stochastic gravity
modeling is required. This approach is based on
analyzing the residuals from the Kalman filter of sensor
errors, and further processing with wavenumber coeffi-
cient filterings is applied in case closely parallel tracks of
data are available. An application to actual test-flight
data is performed to test the validity of the new
algorithm. The results yield an accuracy in the down
component of about 3-4 mGal. Also, comparable
results are obtained for the horizontal components with
accuracies of about 6 mGal. The gravity modeling issue
is discussed and alternative methods are presented, none
of which improves on the original approach.
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1 Introduction

Measuring the Earth’s gravity field is one of the most
important activities in geodesy for the determination of
the geoid and the prediction of dynamic orbits of
satellites. In addition, many scientific and engineering
disciplines need gravity information for exploration and
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navigation and to investigate geophysical phenomena.
Although satellite technology makes it possible to
determine the gravity field using satellite observations
as evidenced by JGM-3 (Tapley et al. 1996) or satellite-
borne instrumentation (gradiometer), the shorter-wave-
length signatures are either poorly modeled or only
moderately well known in the high-degree expansions,
such as the global model EGM 96 (Lemoine et al. 1998);
see Jekeli (1998). Therefore, airborne gravimetry plays a
very important role in recovering the Earth’s gravity
field in the range of medium to high frequencies, which
then fills the gap between the terrestrial gravity field
measurements and global gravity models in the wave-
lengths between 1 and 100-200 km (Hein 1995).

Currently, airborne gravimetry is conducted using
either sea/air gravimeters on a stabilized platform for
scalar gravimetry or with an inertial navigation system
(INS) for scalar or vector gravimetry. The INS is further
divided into two categories, namely a local stabilized
system and strapdown INS. In all cases the Global
Positioning System (GPS) provides accurate kinematic
acceleration, and the separation of the gravitational
acceleration from the system errors is very crucial. Re-
sults from airborne gravity surveys using modified
gravimeters and GPS in Greenland, Antarctica, and
Switzerland show that an accuracy of 3-5 mGal and a
resolution of 10 km is achievable with current technol-
ogy (Brozena and Peters 1994; Forsberg and Kenyon
1994). For a local stabilized system, an ITC-2 inertial
platform system was tested and showed that an accu-
racy of 1 mGal with resolution of 2—-3 km is achievable
(Salychev et al. 1994). Unlike the above two systems,
there is no physically stabilized platform in the strap-
down case. Instead, the inertial sensors are physically
bolted to the vehicle, and the measured data in the body
frame are transformed to the local-level frame compu-
tationally. The advantages of the strapdown system are
its smaller size, lower cost, and greater operational
flexibility (Jekeli 1995). It has been shown that the
performance of the strapdown INS is comparable to
that of the stabilized airborne gravimeter (Glennie et al.
2000).



The traditional way of determining the gravity dis-
turbance components using GPS/INS data is to inte-
grate the navigation equations associated with the INS
and to model the INS errors and gravity disturbances
as stochastic processes (Forsberg 1987; Eissfeller and
Spietz 1989; Knickmeyer 1990; Jekeli 1994; Wang 1998;
Grejner-Brzezinska and Wang 1998). GPS position and/
or velocity are used as updates in a Kalman filter esti-
mation of the errors, including the gravity disturbances,
and the calculations are done in the navigation frame.
Moreover, this technique is limited to the estimation of
the horizontal components.

Alternatively, the gravity disturbance vector can be
obtained directly by differencing the GPS and INS
sensed accelerations (Jekeli 1992), which is analogous to
conventional airborne scalar gravimetry using gravime-
ters (Brozena 1991). Based on this idea, a new algorithm
for vector gravimetry has been developed for strapdown
INS. In this algorithm, no stochastic gravity model is
necessary and all three components are estimated in a
unified approach. Furthermore, all calculations are
carried out in the inertial frame, which reduces the
computational complexity.

In this paper, a detailed theoretical development and
the results of application to real flight data are pre-
sented. In addition, the advantages and disadvantages of
the new algorithm are discussed in terms of the theo-
retical as well as the practical point of view.

2 Model development

The fundamental equation of airborne vector gravi-
metry is based on Newton’s second law of motion
expressed in a non-rotating, freely falling coordinate
frame, called the i-frame, which may be identified with
an Earth-centered celestial (inertial) frame

=o'ty (1)

where X’ is the second time derivative of positions,
namely the kinematic acceleration; a’ is the specific
force; and g’ is the gravitation. A superscript on a vector
refers to the frame in which its coordinates are given.
The kinematic acceleration X’ can be derived from GPS
three-dimensional (3-D) positions, and the specific force
a’ can be measured by a triad of single-axis accelerom-
eters. Denoting the observed quantities with a tilde and
the errors in the observations with ¢, the fundamental
equation can be expressed in terms of observations as

X —ox' =a' —oa + ¢ (2)

where X' is the observed acceleration derived from GPS;
a' is the specific force obtained by the INS; and X/, a’
are the respective errors in GPS and INS observed
accelerations. The accelerometer error da’ can be
expressed in terms of the sensor errors in the body
frame (b-frame) and the orientation error, according to
the Coriolis Law

oa' = Cioa’ +a' x ¥ (3)
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where Cj is the transformation matrix from the body
(vehicle) to the inertial frame, and W' is the orientation
error of the body in the inertial frame. Error (3) is a
linear approximation that neglects higher-order terms in
da’ and W'. Since the accelerometers and gyros have
some systematic errors, these can be modeled as well. In
this study, only essential systematic errors are consid-
ered for both inertial sensors, namely biases and scale
factors. GPS-observed accelerations are assumed to
have only white-noise errors. Although this is not
strictly true due to increased noise at high frequencies
arising from the numerical differentiation, we assume
that sufficient smoothing has already been applied to
reduce the high-frequency errors. On the other hand, the
accelerations should be devoid of biases and long-term
trends, such as resulting from tropospheric and
ionospheric delays. All three sensors presumably gene-
rate white noise, and we have

da’ = b, + diag(a®)k, + ¢, (4)
5(052 =b, + diag(mfb)l{g + & (5)
OX = gg (6)

where g, ~ N(0,D,), g, ~ N(0,D,), and &g ~ N(0,Dg)
are zero-mean, Gaussian, white-noise processes with
indicated dispersion matrices. Subscripts on the vectors
in Egs. (4)—(6) provide additional specialization. For
example, in Eq. (5), ®), is the angular rate of the body
frame with respect to the i-frame, expressed in b-frame
coordinates. The biases, b, for the accelerations and b,
for the gyros, and corresponding scale factors k,, k,, can
be modeled as random constants

b, =0, %, =0, b,=0 &, =0 (7)
The dynamics of the orientation error are given by

¥ = (ool ®)
= —Cib, — Cidiag(e’)k, — Cig,

where Eq. (5) is used. Combining Egs. (7) and (8), we
can set up the system model expressed by a set of linear,
first-order, differential equations in terms of the INS
system error parameters as well as orientation errors

b, 0 0 0 0 0 b,
b, 0 0 0 0 0 b,
k| =0 0 0 0 0 K,
K, 0 0 0 0 0 K,
¥ | |0 —C 0 —Cidiag(ewh) 0 | [V
(000 00 0 7[0]
0000 0[]0
+(0 000 0 []|O
0000 0[]0
0000 —C||g,

=Fs+ Gw 9)
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which implicitly defines the state vector, s, the noise
vector, w, and corresponding coefficient matrices, F' and
G.

The external observations are a combination of ki-
nematic acceleration calculated from GPS positions and
normal gravity. The corresponding update to the specific
force is, therefore, given by

y=a - (& -7) (10)

where ¥ denotes normal gravitation in the i-frame
(normal gravity less the centrifugal acceleration due to
the Earth’s rotation). From Egs. (2), (3), and (4), we also
have

y = Cib, + Cidiag(a’)x, +a' x ¥ + Cig, — X' — og’
(11)

where

og =g -7 (12)
is the gravity disturbance vector using the usual
convention in geodesy (which, however, is the negative
of the error in gravity with respect to normal gravity).
Note that the first equation, Eq. (10), consists of actual
observed (calculated) and sensed quantities (GPS and
INS accelerations); while the second equation, Eq. (11),
is a model of this update in terms of the error parameters
of the system.

Also note that the gravity disturbance vector, dg’, is not
specifically included as a state of the system. Including it
for estimation would require the interpretation of dg’ as a
stochastic process, as well as a corresponding mathe-
matical model for the process. In fact, many studies have
been devoted to the development of such models, but it is
not easy to achieve an accurate representation (even if the
stochastic interpretation is valid). A gravity disturbance
component along a given trajectory is neither a variable of
a finite-order state-space nor does it satisfy a linear dif-
ferential equation, as pointed out by Jekeli (1994) and
Jordan (1972). The gravity disturbance vector is for now
intentionally excluded from the observation model, thus
reflecting an imposed premise that we have no prior in-
formation on its existence, as far as the system model is
concerned. The consequence of this will actually allow us
to find a kind of estimate for Jg’.

In matrix form the observation model is expressed
therefore as

y+0g =Hs+v (13)

where the observation matrix and observation noise
vector are given, respectively, by

H=[C} 0 Cjdiag(a”) 0 [a'x]] (14)

v=Cig, — X' (15)

and where [a'x] is a skew-symmetric matrix with
elements arranged to emulate the cross-product. As-
suming g and &g are uncorrelated, v~ N (0,C}
D,C? + Dg).

On the basis of the system dynamics, Eq. (9), and the
updates, Eq. (10), the state vector, s, can be estimated
using the usual Kalman filter formulation (Brown and
Hwang 1992). If the estimated parameters are denoted §,
then the adjusted observations are given by

y=Hs (16)
The residual of the adjusted observation relative to the
observed value, Eq. (10), is given by
v=y-y
= —og' + Ci(db, + diag(a®)dk,)
—a' x 0¥ + Cle, — &6 (17)
T ST 5k T 5ecT AT\"

where s = (5ba ob, ok, ok, (V) ) is the
true error in the estimates
os=8—s (18)

The residual is computed using Eq. (10) but, as seen in
Eq. (17), it contains the gravity disturbance vector as
well as the true errors in the estimates of the system
parameters and the noise of the inertial sensors and the
observed kinematic acceleration (the gyro errors enter
through 6¥'). If we can assume that the latter errors are
all small compared to the gravity disturbance vector,
then the (negative) residual is an estimate of it

v —og (19)

This method of determining the gravity disturbance
vector, while simultaneously estimating the sensor errors,
is based on the customary technique of detecting outliers
in a least-squares (LS) adjustment by inspecting the
residuals corresponding to the adjusted observations.
Significant systematic behavior in the residuals usually
implies faulty or deficient modeling. Of course, serious
caveats must accompany this method. The spectral
components of the gravity disturbance signal that (when
transformed into the time domain by the vehicle’s
velocity) exhibit the same characteristics as the sensor
errors will be absorbed by the corresponding estimates in
the Kalman filter. This means that the true errors in the
estimates, s, can be large and thus may vitiate the result
of Eq. (19). In essence, the feasibility of the method
depends on the separability of the gravity disturbance
signal from the effects of sensor errors on the accelera-
tion; this is also the case with any other approach.

It may now be argued that having discovered a flaw
in the model (as indicated by the presumably systematic
behavior of the residuals), the model must be changed to
include the gravity disturbance vector as an error pa-
rameter to be estimated. This approach is studied after
first investigating the residuals with actual test data.
Aside from this gravity modeling issue, we may contrast
the present method for estimating the gravity distur-
bance vector with the more traditional approach based
on GPS position updates (Jekeli 1994) as follows.

(1) The former is expressed entirely in terms of accel-
erations, not positions. Ultimately we seek the
gravity vector, and this formulation is conceptually



easier, more straightforward, and computationally
less expensive since the complicated inertial navi-
gation equations do not have to be integrated.

(2) The calculations are performed in the i-frame in-
stead of the navigation frame (n-frame, or local-
level frame), which is defined by the directions of
local north, east, and down. This also simplifies the
formulations and thus improves the computational
efficiency.

(3) The total gravity vector is determined, not just its
horizontal components. This is possible since no
free-inertial navigation solution is computed (which
is not feasible in the vertical direction).

3 Test data

The data used in this study were collected by the
University of Calgary on 1 June 1995 and made available
by the Special Study Group 3.164 of the International
Association of Geodesy. They include the coordinates of
an airborne GPS antenna at 0.5-s intervals, and raw
accelerometer and gyro data at a data rate of 50 Hz. The
purpose of this airborne gravity survey over the Canadian
Rocky Mountains was to assess repeatability as well as
the accuracy of airborne gravimetry using GPS and INS.
The airborne system consisted of a strapdown inertial
system, the Honeywell LASEREF III, and two GPS
receivers, the Ashtech Z-XII and the NovAtel GPSCard.
In order to perform differential GPS (DGPS) positioning,
three base stations were also operated on the ground.

In this survey, four flights were carried out, all east—
west approximately over the same ground track. The
total length of the profile was 250 km and the flying
altitude was around 5.5 km above mean sea level. The
terrain elevation varied from 500 to 3000 m with ap-
proximate mean of 1500 m. Average flying speed was
approximately 430 km/h, so the corresponding spectral
resolution for 90 and 120 s smoothing is approximately
5.0 to 7.0 km. For details on the data description see
Wei and Schwarz (1998).

Figure 1 shows the trajectories of three of the four
flights. Legs 1 and 3 are almost on top of each other and
Leg 2 is about 0.005 degrees (=~ 540 m) to the north.
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Fig. 1. Three flight trajectories for the test data of June 1995

Note the strong oscillations characterizing the dy-
namics of the flight. The principal oscillations occurred
around the first (along-track) and the third (vertical,
down) axes of the body frame, corresponding to roll and
yaw rotations. These dynamics were probably caused by
the auto-pilot function of the airplane which automati-
cally maintains the direction and the velocity of the air-
plane. A plot of the attitude of the airplane (Fig. 2) for
one of the lines shows that the roll and yaw motions have
an amplitude of about 2.5° and a period of about 55 s.

It may already be guessed that separating the gravity
signal with frequencies in the range of these dynamics
will be difficult. The effect of the dynamics will be ex-
plained in more detail later.

4 Data processing

Four main procedures are involved in the new technique
(Fig. 3). First, the GPS accelerations are derived from
the GPS positions, calculated with the DGPS technique,
by applying a numerical differentiator. A fifth-order B-
spline differentiator was applied to the GPS positions to
obtain these kinematic accelerations. Since the numer-
ical differentiation tends to amplify high-frequency
components, the accelerations were smoothed to reduce
these high frequency noises. For this purpose, a third-
order B-spline smoother with a window length of 60 s

attitude (deg)

)(+50

o+ 85°

3.925 3.93 3.935 3.94 3.945
gpstime (sec)

395 Fig. 2. The attitude of the airplane for Line 1 (392 500-
x10 ° 394 900 GPS seconds), y = pitch, n = roll, = roll
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was applied to the raw GPS accelerations. This 60-s
smoothing was shown to be enough to yield GPS
acceleration better than 1 mGal accuracy (Jekeli and
Garcia 1997). The B-spline smoother was used because
of its elegant theory and model behavior in numerical
calculations (Kincaid and Cheney 1996).

Second, the raw INS data (increments of velocities
and angles) are integrated to generate the b-frame
inertial measurement unit (IMU) accelerations. A third-
order Runge-Kutta integration algorithm, using qua-
ternions, was applied for this procedure (Jekeli 2000).
For consistency, the IMU acceleration was also aver-
aged by the same third-order B-spline smoother applied
to GPS acceleration.

Third, Kalman filtering is performed to estimate the
INS system errors. Here, the GPS acceleration is used as
an update value and the residuals from the filter are
assumed to approximate the gravity disturbance vector.
These residuals were found to retain significant non-
gravitational systematic errors. Therefore, in a final step,
biases and trends were removed with the assumption of
known endpoint values. In addition, the residuals from
the three legs were processed with a wavenumber cor-
relation filter (WCF) to remove remaining systematic
errors. The WCF, developed by von Frese et al. (1997),
decomposes space domain data into wave domain co-
efficients through a Fourier transformation, and then
constructs the correlation spectrum by comparing coef-
ficients of a pair of co-registered data at the corre-
sponding wavelength.

The wavenumber correlation coefficient between two
data sets x and y is defined as

x .
CCy = cos(Al) = |;T|y)1:k| (20)

where CCy is the correlation coefficient for the wave-
number k, A0 is the phase difference of the data sets x
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- IMU biases &, 30
- IMU scale factors
- IMU noise
accel.
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position, x
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Kalman Filter
INS error
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Estimate
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Fig. 3. Schematic diagram for acceleration update algorithm

and y, A0, = 0; — 0y, and - denotes the scalar product of
vectors. Based on the above wavenumber correlation
coefficient, the components showing less correlation than
a certain tolerance are assumed as noise and filtered out.

The repeated tracks of the test data provide an op-
portunity to decorrelate the gravity signal from some of
the systematic errors, since we can assume that the
gravity signal is commonly detected in all three legs,
while the random noise and systematic errors should not
be common. Using the WCF, long-term trends as well as
medium-frequency airplane dynamic effects, can be re-
moved to some extent.

5 Results and analysis

Figure 4 shows the difference between the GPS and INS
accelerations, after taking out the normal gravitation,
i.e. Eq. (10), but rotated into the n-frame. Note that the
means are removed for clarity in the plots. In an ideal
situation, this should be the gravity disturbance vector
according to Egs. (1), (10), and (12). However, the
results still contain systematic errors, especially large
trends, in all components. Note that the overall trend in
Leg 2 is opposite to that in Legs 1 and 3 for the north
components. In addition, strong high-frequency oscilla-
tions appear in the north component. Because the
airplane mainly flew in the east-west direction, the roll
motions of the vehicle directly affect the acceleration of
the north component. These high-frequency oscillations
are a consequence of the dynamics of the aircraft, also
called phugoid motion (Boedecker and Neumayer 1995).

As we can see, the simple difference between the GPS
and INS acceleration already shows the gravitational
signature. In particular, the down component is very
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Fig. 4. Difference between the smoothed GPS and INS accelerations
[Eq. (10)] in the n-frame, with means removed, for Legs 1, 2 and 3;
north (top), east (middle), and down (bottom)



well detected; for example, look at the low anomaly
around 393 700 GPS seconds and the high anomaly
around 393 300. Since the down component is not much
affected by the orientation errors, it does not include a
significant trend.

A numerical comparison against control data pro-
vided by the National Imagery and Mapping Agency
(NIMA) (for the deflections of the vertical) and by the
University of Calgary (for the down component) is
shown in Table 1. The accuracy of the control data is
estimated to be better than 5 and 1.3 mGal for the hor-
izontal and down components, respectively. In should be
noted that the horizontal control data are different from
those presented in Jekeli and Kwon (1999), where
EGM96 was inadvertently omitted.

The large standard deviations for the horizontal
components (18-78 mG@Gal) are caused mostly by the
trends due to the orientation error, as seen in Fig. 4. As
expected, the down component shows much better
standard deviation than the horizontal components. In
particular, for Leg 3 it has the very good accuracy of 4.5
mGal.

Next, it is attempted to estimate the orientation and
sensor errors through the Kalman filter developed in
Sect. 2. Only the accelerometer bias and orientation
errors are included in the unknown parameter vector in
this study. Because the effects of the scale factor errors
appear mainly in the high-frequency components, it is
assumed that these are essentially removed in the
smoothing procedure. Furthermore, the high correlation
between the orientation error and gyro bias hinders the
separation between them, and the result would not be
improved by including both as system states. The initial
values are set to zero, and the initial variances are set to
20 mGal, 2 arc seconds, and 2 arc minutes, respectively,
for accelerometer biases, horizontal and vertical orien-
tation errors.

The residuals from the Kalman filter are shown in
Figs. 5-7. In general, the results are much improved
compared to the observations themselves (Fig. 4). The
large biases have mostly vanished. Almost all high/low
anomalies are detected in all three legs, and the trends in
the north and down components are significantly re-
duced through the filter. The east components, however,
still contain large errors at both ends of the profiles in all
three lines. In addition, the high-frequency oscillations
remain in the north direction. This makes sense, because
these oscillations cannot be removed by estimating the

Table 1. Means and standard deviations (mGal) of observations
(GPS acceleration—-INS acceleration—normal gravity) with respect
to control data

Leg 1 Leg 2 Leg 3
North SD 63.4 77.9 353
Mean -272.9 -573.9 -827.2
East SD 31.1 18.6 46.67
Mean -108.5 -16.8 -2159
Down SD 10.9 12.4 4.5
Mean 354 96.8 131.3
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Fig. 6. Residuals from Kalman filter (dashed) and control data (solid)
for north (top), east (middle), and down (bottom) component for Leg 2

low-frequency parameters such as orientation errors and
biases. Numerical comparison with respect to the con-
trol data shows tremendous improvement in north and
down components (Table 2). The minimum and maxi-
mum standard deviations with respect to the control
data occur in the down component of Leg 3 (3.9 mGal)
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Table 2. Means and standard deviations (mGal) of residuals from
the Kalman filter with respect to control data

Leg 1 Leg 2 Leg 3

North SD 17.5 10.1 15.3
Mean -12.6 =57 =25

East SD 8.6 14.9 10.8
Mean -6.2 16.5 -13.3

Down SD 5.0 6.5 39
Mean 25.0 52.4 49.0

and the north component of Leg 1 (17.5 mGal), re-
spectively.

That systematic sensor errors are not completely re-
moved from the residuals is reasonable, as seen in
Eq. (17). Since the system is basically a relative mea-
surement system, the biases between the residuals and
the control data cannot be determined unless a gravity
value at a point is available. In order to eliminate the
biases and some additional long-term uncompensated
systematic errors in the residuals, an endmatching, linear
correction is applied using the known gravity distur-
bance vector at the ends of the profile.

Table 3 shows the means and the standard deviations
of the residuals with respect to the control data after
applying the endmatching procedure. As expected, the
east component in Leg 3 significantly improves, while
the others slightly improve or deteriorate.

As explained previously, the WCF is very efficient in
extracting a signal from co-registered data. Therefore, as
a final procedure in refining the residual from the Kal-
man filter, the WCF was applied to all combinations of

Table 3. Means and standard deviations (mGal) of the difference
between residuals, after endmatching, and control data

Leg 1 Leg 2 Leg 3
North SD 14.4 8.6 14.3
Mean 11.8 4.6 6.2
East SD 8.7 9.1 10.4
Mean 43 -16.3 22.5
Down SD 5.1 5.0 3.5
Mean -8.7 2.2 =20

two parallel tracks (Leg 1-2, Leg 1-3, and Leg 2-3). The
results from the WCF show significant improvements in
combinations Leg 1-2 and Leg 2-3. However, the Leg
1-3 combination does not show any improvement (see
Figs. 8-10).

This illustrates a very interesting feature, namely, the
dependency of the INS errors on the direction of
the flight. Leg 1 and 3 are in the same direction, so the
characteristics of the long-term INS errors are almost
the same, while for Leg 2 they have opposite charac-
teristics. Therefore, remaining long-term errors in
oppositely traveled paths are canceled through the WCF
as in the Leg 1-2 and Leg 2-3 combinations. WCF
applied to the combination Leg 1-3, however, does not
remove the errors because they have common charac-
teristics. Numerical comparison with the control data
after applying the WCF is given in Table 4.

The best standard deviation for the down component
(3.2 mGal) is obtained for the Leg 2-3 combination. The
other two combinations also show that the down
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Fig. 10. Residual after endmatching and WCF vs control data for
Leg 2-3 combination

component can be recovered with an accuracy of 3—4
mGal. Although not as good as the vertical component,
the horizontal components have very good accuracies
(5.8-6.2 mGal). Therefore, it can be concluded that the
deflection of vertical can be recovered with an accuracy
better than 1.3 arc seconds (1 arc second = 4.75 mGal).
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Table 4. Means and standard deviations (mGal) of the difference
between residuals, after endmatching and WCF, and control data

Leg 12 Leg 13 Leg 23
North SD 5.8 12.7 5.9
Mean 8.2 9.0 5.4
East SD 6.2 8.4 6.1
Mean -0.3 13.4 -0.3
Down SD 4.3 34 3.2
Mean -3.2 -5.3 0.1

6 Discussions

Although the results from the new algorithm compared
well with the control data, there are disadvantages. One
is that it yields no standard deviations for the estimated
gravity disturbances because they are not really estimat-
ed as system states. This implies that the method is
theoretically incomplete, and the rigorous solution
would be to include a gravity model into the system
dynamics. However we can always integrate a gravity
model in the new approach by augmenting Eq. (9).
Toward this objective, two gravity models were designed
and tested. The first model selected for each gravity
disturbance component was the well-known third-order
Gauss—Markov model (Gelb 1994). The number of
parameters increases to 24 by adding nine parameters
for the gravity disturbances, and the design matrix, H,
and the dynamic matrix, F, have to be properly
expanded

M= [C} 0 Cjdiag(a®) 0 [a'x] I 0 0] (21)

. T
5= bl bl kT o) o) og)'] (22)

o F]] 0
F= { i F] (23)
where Fj; is given by F in Eq. (9) and

0 0 0 1 0 0 0 0 0 ]

o0 0 0 0 1 0 0 0 0

o0 0 0 0 1 0 0 0

0O 0 0 0 0 O 1 0 0

Frb=| 0 0 0 0 0 0 0 1 0

o 0 0 0 0 O 0 o0 1

-0 0 =38 0 0 38 0 0

0 —f3 0 0 =38 0 0 =38 0
[0 0 —f3 0 0 =35 0 0 —3p]
(24)

and og’, dg” represent auxiliary parameters that trans-
form the third-order differential equations for the
Gauss—Markov process to first order. f,f,, and f3;
are the corresponding correlation parameters of the
processes. The initial values for the accelerometer biases
and orientation errors are the same as for the no-gravity
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model case. The scale factor errors and gyro biases are
not estimated for the reasons stated in the previous
section. Various values for these parameters and for the
variances of the gravity models were tested. Of these,
one of the best results with a correlation distance of
about 12 km and variance of 900 mGal® is presented in
Fig. 11 for all three legs.

The estimates of all three gravity disturbance com-
ponents are poorer than the residuals based on the no-
gravity model, as seen by comparing Fig. 11 to Figs. 5,
6, and 7. Overall, the standard deviations of the hori-
zontal components, as well as of the vertical component,
are several times larger (Table 5). In particular, the east
component of Leg 1 shows the worst result (Standard
deviation = 58.3 mGal), caused by the instability of the
filter at the beginning of the trajectory. The best result
was obtained for the down component of Leg 3, with a
standard deviation of 7 mGal.

The second type of gravity model selected is rather
empirical, composed of trigonometric functions. Since
the residual from the original approach seems to reflect
largely the gravity disturbance, a frequency analysis is
performed on the residual. After identifying the princi-
pal frequency band, or highest frequency component,
supposedly contained in the gravity signature, these
disturbances are modeled as combinations of trigono-
metric functions with limited frequency bands in the
time or spatial domain, where the amplitudes are pa-
rameters to be estimated. In other words, each gravity
disturbance component is modeled as
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Fig. 11. Estimated gravity disturbances modeled by a third-order
Gauss—Markov process for Legs 1, 2 and 3; north (zop), east (middle),
and down (bottom)

Table 5. Standard deviations of difference between estimated
gravity disturbances modeled by third-order Gauss—Markov pro-
cess and control data (mGal)

Leg 1 Leg 2 Leg 3
North 26.3 9.0 14.7
East 58.3 15.5 23.4
Down 12.5 13.9 7.0
n
27kt
5g,-:Zajkcos +ijks1n—
k=0
2nt 2m - 2t
=aj +aj cos? + aj cos
271 2t 21 -2t
+aj, cos——— +bﬂ sin — +b]2s1n + ..
. 2m- nt
+ bj, sin
=D;- Bj (25)

The matrix D; consists of trigonometric functions
dependent on tlme t. The vector B; consists of the
coeflicients of the trigonometric functions. With all three
components combined, we have

og=D-P (26)
where
D 0 0
D =10 D, 0
3x3(2n+1) 0 0 D

Dy =Dy=D3

1x(2n+1)
2mt 2mt -2 . 2mt
1 cos——cos - SIn—
T
L 2mt-2 . 2nt-n
X sin .- sln
T T
[ B
. l5> = 1B
3(2n+1)x1
| Bs
[ao] [ax ] [aszo]
ap a as
ann ann asn (27)
Bl = . ) ﬁ2 = . ) B3 =
aln ar asz,
by by b3
L b1y L b2y | L b3,

With maximum order of expansion n, the number of
unknown parameters increases by 3 x (2n + 1); the sizes
of the design matrix H, state vector s, and the dynamics



matrix F, should be expanded accordingly. The coeffi-
cients of the trigonometric functions are modeled as
random constants with initial variance of 1 m/sec>. We
have

H — i = ab Sl D 2
3% (15+6n-+3) [C, 0 Cydiag(a®) 0 [a'x] D] (28)
T
T T T T @l pT aT aT
(15+6ns+3)x1 [b” b, ¥, %, Bi By Bs (29)
Fry 0

- (30)

(1546n43)x (154+-6n+3) (30 (6n43)

Clearly, we have to decide the maximum order n of the
trigonometric expansion. Higher order would generate
more detail in the gravity disturbance signal, but would
require much more calculation time. In order to decide
the maximum order for the expansion, a simple LS fit of
the residual could be performed. In this study, it was
shown that »n should be at least 20 to obtain 2 mGal
accuracy of fit to the residuals. The actual estimation
was done with n = 10, which already required a very
long computation time.

Figure 12 shows the resulting estimates of the gra-
vity disturbance components for all three legs. These
estimates appear much smoother than the residuals with
no gravity modeling (Figs. 5-7). Furthermore, the high-
frequency oscillations in the north component residuals
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Fig. 12. Estimated gravity disturbances modeled by trigonometric
expansions of order 10 for Legs 1, 2 and 3; north (top), east (middle),
and down (bottom)
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Table 6. Standard deviations of differences between estimated
gravity disturbances modeled by trigonometric expansions and
control data (mGal)

Leg 1 Leg 2 Leg 3
North 24.1 12.5 18.0
East 16.6 22.0 21.7
Down 12.6 9.4 16.4

are absent in this case because of the low-frequency
modeling.

Numerically the results are more consistent among
the legs and more stable than in the case of Gauss—
Markov modeling (Table 6). However, they are still
worse than for the case of the no-gravity model. The
maximum standard deviation appears in the north
component of Leg 1 (24.1 mGal) and the minimum oc-
curs in the down component of Leg 2 (9.4 mGal).

It is expected that better estimates could be obtained
with higher-order expansions, as well as with careful
selection of the frequency band in this approach. Since
the purpose of this test was not to design a gravity model
but to show a modification of the mathematical model
for theoretical completeness, further refinement to im-
prove the results was not pursued.

7 Conclusion

This research addressed a new efficient algorithm for
recovery of the vector gravity field from data collected
by GPS and INS. The new algorithm has three
distinct features compared to the traditional algo-
rithm. First, accelerations from GPS are used as
updates in the new algorithm while positions are used
in the traditional approach. Second, the gravity
disturbance vector is not modeled stochastically in
the new approach. The ‘estimated’ gravity disturbance
is identified with the residual from a Kalman filter
estimation of the sensor error parameters. Third, the
frame selected for all calculations is the inertial frame,
while the navigation frame is selected in the traditional
approach.

Application to real data, however, showed that this
residual cannot fully separate the orientation error from
the horizontal gravity disturbances. In addition, the re-
sidual also contains the effect of system white noise.
Therefore, further data processing, comprising endpoint
matching and WCF, was applied to the residuals to
extract a more refined gravity disturbance signal. The
final results from all processing show that accuracies of
approximately 6 and 3—4 mGal can be achieved for the
horizontal and vertical components, respectively. The
result for the vertical component is comparable to that
of other investigators (Wei and Schwarz 1998); for the
horizontal component, the results demonstrate a new
capability.

There are several lessons to be learned from this
study. First, aircraft dynamics greatly influence hori-
zontal gravity component estimation, as seen in the
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north component of the INS acceleration. Second, the
endpoint data are important to eliminate residual trends
and biases. Third, multiple traverses over the same
gravity signal are important to reduce other systematic
errors, e.g. by using the waveform correlation filter. The
tracks may be spaced apart by a distance equal to the
resolution of the recovered signal.

For theoretical completeness, two types of gravity
models, Gauss—Markov processes and trigonometric
expansions, were included in the system dynamics and
tested. In both cases, the gravity estimates were worse
than the no-gravity model residuals when compared to
the control data. This emphasizes the known difficulty in
stochastically modeling the gravity disturbance; based
on these tests, it is not a recommended approach. The
approach with the trigonometric expansion showed less
dependency on the a priori information, and better
estimates are expected if we include higher-order terms
and carefully select the frequency band. However, the
calculations then become extremely expensive and better
numerical algorithms or computing systems will be
required.
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