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1 Introduction

There are many brilliant contributions to spherical
harmonic analysis of a function given on a sphere as
well as to spherical harmonic synthesis which is the
forward computation of retrieving the function from its
Fourier coefficients (see e.g. Colombo 1981; Sneeuw
1994; Sneeuw and Bun 1996). An important application
of this theory is when the function is a global terrain
model. The theory of reduction of a global elevation
model to spherical harmonic coefficients taking isostasy
into consideration can be found in many bibliographic
sources (see e.g. Balmino et al. 1973; Rapp 1982; Siinkel
1985, 1986; Rummel et al. 1988; Pavlis and Rapp 1990).
All of these contributions consider the Airy/Heiskanen
isostatic model, apart from Siinkel who introduced a
smoothing operator to the linearized Vening Meinesz
model and determined both depth to the compensation
level and the smoothing factor to account for a regional
compensation. The scope of the present paper is to
revisit the theory of spherical harmonic analysis of a
global Digital Elevation Model (DEM) using the Airy/
Heiskanen model and expand it for the Pratt/Hayford
model as well. The spectra resulting from both models
will be computed and compared to the observed gravity
field of EGM96.

2 Expansion for the potential of mass distributions
into spherical harmonics

For the inverse distance function the following series
expression in spherical coordinates holds, or equally its
spherical harmonic expansion
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where Pj(cos Yp,) are the Legendre polynomials of
degree / and yp, the angle linking attracting point O to
the computation point P. A separation of the functions
related to P from those related to Q can be made by
means of the addition theorem of the spherical harmonic
functions
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where P, are the fully normalized associated Legendre
functions and m denotes order. Equation (3) refers to
normalized quantities and can be derived from the non-
normalized expression given by Lense (1954, pp. 75-76).
Using the abbreviation
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Eq. (3) becomes
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The gravitational potential at an arbitrary point in space
P due to the Earth’s mass distribution is given by
Newton’s law of gravitation

V;:G///plg)dZQ (6)

where G denotes the gravitational constant, p the density
inside the Earth and /pp the distance between P and the
infinitesimal volume element dX, at Q. Inserting
Egs. (1) and (5) into Eq. (6), we obtain
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In Eq. (8), M is the Earth’s mass in a spherical
approximation, M = npR3 with p denoting a mean
density value of the Earth e.g. 5500 kg m~3, and R its
radius. For the transition from a volume to a surface
integral in Eq. (8), the volume element in spherical
coordinates dZg = r? odro do’Q was introduced. The
objective of this paper is the computation of the
dimensionless potential harmonic coefficients of Eq. (8)
by taking the isostatic compensation of topography into
account. For this purpose the idealized isostatic models
of both Airy/Heiskanen and Pratt/Hayford are consid-
ered. It should be stressed that the computation refers to
points situated outside or on a sphere including all
masses (Brillouin sphere), i.e. throughout this paper only
Eq. (1) is taken into consideration. A theoretically
correct computation taking place on the Bjerhammar
sphere should comprise both Egs. (1) and (2), the former
for rp < R and the latter for those Q’s for which rp > R.
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3 Topographic/isostatic harmonic coefficients
with the Airy/Heiskanen model

The crust in the Airy/Heiskanen model is considered to
have constant density p, = 2670 kg m—3 but variable
thickness, where highly elevated terrain is compensated
by thick crust and low terrain or oceans by thin crust.
The density of the denser mantle layer on which the
mountains float is considered also to have a constant
value, namely p,, = 3270 kg m~3. Thus, the density
contrast between crust and mantle becomes
Ap = p,, — por = 600 kg m=3. A relation for the variable
root (¢) and anti-root (¢') thickness can be obtained from

the condition of floating equilibrium for the continents
and the oceans, respectively. For flat columns one
obtains, respectively
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where i and /' denote the positive (heights) and negative
elevations (depths) of a global elevation set and
pw = 1030 kg m—3 the density of sea water. When the
convergence of the verticals is taken into account one
obtains in linear approximation (Lambeck 1988; Rum-
mel et al. 1988)
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R denotes a mean Earth radius value (R = 6370 km) and
Da the thickness of the crust for zero elevation. A
popular value for Da in Airy’s model is Da = 30 km.
Equation (8) is written in the Airy/Heiskanen model as
the difference between the coefficients generated by the
potential of the surface topography and those generated
by the compensation part. One writes

1 301 .
C%‘mﬁ//[fl (0) —4°(0)]

x ¥7,(Q)dag (13)
where the surface topography part is
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Replacing ocean depths /4’ by equivalent rock topogra-
phy and taking the convergence of the verticals into
account, one obtains for the coefficients of the isost-
atically compensated topography (for derivations see
Stinkel 1986; Rummel et al. 1988)

ch = Ch —Ch (16)

where the coefficients from the uncompensated topog-
raphy are
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and those corresponding to the isostatic compensation
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For a shorter notation the following surface harmonic
expansions were introduced in Egs. (17) and (18)
(Rummel et al. 1988, Eq. 23):
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For initial presentation of the numerical results the
potential coefficient spectrum was computed. The degree
variance (spectral power or simply spectrum) of a set of
coeflicients for degree / is defined by

/
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Figure 1 displays the separate contributions of 4y, A2,
and h3;, to the computation of the uncompensated
potential coefficients according to Eq. (17). The eleva-
tions and depths for these computations were taken
from a 1° x 1° mean elevation file, known as TUGS87
(Wieser 1987). The hy,’s are properly multiplied by the
respective factors given in Eqs (17) so that the curves 1n
Fig. 1 have dimensions of ¢7 = Z ((CT) (ST,
The harmonic coefficients of Egs. (19) (21) were com-
puted to degree 180 using the program ‘gsha.m’ written
in MaTLAB (Tsoulis and Sneeuw 1998) using integrated
associated Legendre functions (Gerstl 1980). The
heights/depths were treated as mean values and this
was properly taken into consideration in the spherical
harmonic analysis algorithm (Albertella and Sacerdote
1995; Tsoulis 1999). The computations shown in Fig. 1
agree with those reported in Rumrnel et al. (1988): the
power spectra of (h/R)* and (h/R)® are approximately
107 and 107'3, respectively, of the power of (h/R).
Figure 2 compares the uncompensated, the Airy-com-
pensated and the truncated up to maximum degree and
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Fig. 1. Separate contributions of %y, h2;, and A3, [Eqs. (19)+(21)]
to the computation of the uncompensated potential coefficients
[Eq. (17)]

order 180 potential coefficient spectrum of EGM96
(Lemoine et al. 1998). In all representations, the degree
variances o7 for degree / > 2 are displayed; the zeroth
and first degree of the spectrum refer to the deviation
between the geocentre and the centre of mass of the
topography and its isostatic compensation and a remark
on their magnitude can be found in Pavlis and Rapp
(1990, p. 374).

4 Topographic/isostatic harmonic coefficients
with the Pratt/Hayford model

According to the isostatic model of Pratt/Hayford there
exists uniform density p,, below the level of compensa-
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Fig. 2. A comparison between the following potential coefficient
spectra: uncompensated topography [Eq. (17)], isostatically compen-
sated topography after Airy [Eq. (18)] and the truncated (180 x 180)
EGM96 model
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tion (Dp = 100km). Above floats a layer of thickness
Dp + h or Dp — I relative to sea level and of variable
density, so that the mass of each column of the same
cross-section remains constant. Consequently, moun-
tains are underlain by low-density crust and oceans by
high-density material. For a flat-Earth approximation
the density p of a column of height Dp + A, & represent-
ing the height of the topography, should satisfy the
equation (Dp + h)p = Dpp,,, assuming that the density
of a column of thickness Dp equals the mean density of
the crust p,. The variable density underlying the
continents in a flat and a spherical column representa-
tion is given respectively by (Lambeck 1988)
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For the ocean part it holds respectively that
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Hence, the density deficiency in continental regions for a
flat column approximation is
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For the spherical column representation one obtains,
after some reordering
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Similarly, the density surplus for the sub-oceanic
columns in the flat and the spherical column approx-
imation is given respectively by
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Equation (13) holds for the Pratt/Hayford model as
well. The distinction to a surface topography part and a
compensation part is made also for Pratt/Hayford. The

former consists of the contribution of the model-defined
densities over the continental regions and of the density
contrasts p,, — p, over the oceans. The compensation
part corresponds to the potential generated by the
variable density anomalies Eqs. (27)—(30). Thus, the
topographic/isostatic coefficients using the Pratt/Hay-
ford model will be given by Eq. (13) with
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The integral for rg in the first of Eqs. (31) is identical to
the one appearing in Eq. (14). Thus, the only difference
for the “topography” contribution over continental
regions between the two isostatic models arises from
the difference between p, and p;. For the ocean part
one obtains, by integrating the second of Egs. (31) with
respect to rp
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Expanding the second term in the bracket into a
binomial series up to third order in #’'/R gives
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For the compensation part one neglects at first the effect
of the convergence of the verticals. Thus, for flat
columns, inserting Eq. (27) into the first equation
of Eq. (32) and integrating over rp yields, after a few

steps
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Inserting Eq. (29) into the second of Egs. (32), one
obtains similarly for the ocean part
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#' denotes here the bathymetry information, i.e. the
original depths of the global elevation set taken as
absolute value; the concept of equivalent rock topogra-
phy is absent in the present analysis of the Pratt model.
Inserting expressions (34), (35) and (36) into Eq. (13),
one obtains a separate contribution to the potential
coefficients from the ocean topography part, the land
and the ocean isostatic parts respectively. The land
topography part will be given by Eq. (17) using another
harmonic expansion hiy,. It holds that
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(o5 is given from Eq. (17) with hip,(i=1,2,3)
deﬁned as follows:
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For the other three contributions to the potential
coeflicients after Pratt/Hayford compensation, one has
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In Eqgs. (41)—(43) enter the following spherical harmonic
expansions are entered:

oo
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In order to take the convergence effect of spherical
columns into consideration, one has to insert Egs. (28)
and (30) into the first and second integral of Eq. (32),
respectively. Following the same procedure one is once
more led for the land part of the topography to Eq. (17)
with the expansions of Egs. (38)—-(40) now modified as
follows:

o = - / [ (2) (25, jTa@iee (2

the remaining two terms being written andlogously For

/land

the continental part of the compensation, sz ,
Eq. (42) holds with the expansion of Eq. (44) written as
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Thus, in order to account for the convergence of the
verticals in the computation of the land compensation
part, one has to replace the factor 4/(Dp+ h) in up
expansion of Eq. (44) with Eq. (28) and then apply
Eq. (42). For the ocean part of the compensation one
obtains the following slightly modified version of

Eq. (43):
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with the expansions of Egs. (48)—(51) modified to
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A®p(Q) is given by Eq.(30) and the remaining
[Egs. (49)—(51)] are treated in an analogous manner.
Thus, for the computation of the ocean part of the
isostatic compensation of a Pratt-compensated elevation
model when the convergence of verticals is taken into
account, Eq. (54) should be used. The expansions A4,
h2} . k3], and kY, are then taken from Egs. (48)—(51),
replacing the factor /' /(Dp — h') by the density anomaly
A°p(Q) given by Eq. (30).

Similarly to the spectra computations carried out in
the previous section, we proceed to respective compu-
tations for the Pratt/Hayford model. Figure 3 displays
the effect of neglecting the convergence of verticals on
the power spectra of the potential coefficients. Illustrated
are the power spectra of the set of coefficients complying
to flat columns for the land part and the isostatic part of
the topography [Egs. (38)— (40), (44)—(51)], the spectrum
for spherical convergent columns [Egs. (39)—(41), (52)-
(55)] and the spectrum corresponding to the set of po-
tential coefficients generated by subtracting the previous
two. The spectrum of this residual set of coefficients is
1072 to 10" of the power of either the flat or the
spherical column coefficients. Figure 4 shows power
spectra of both Airy and Pratt compensation in a single
graph. One observes that the Pratt model seems to fail as
a compensating mechanism, at least up to degree 60.
From that point up to / = 180 its spectrum converges
slowly to that of Airy. Consequently, the difference be-
tween the two up to / = 60 is approximately equal to
the difference between Airy compensation and uncom-
pensated topography. A first attempt to apply the set of
coeflicients that emerged from the difference between the
two sets (Airy minus Pratt) to obtain a global field of

Effect of convergence of verticals on the spectrum of Pratt compensation
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Fig. 3. The effect of the convergence of the vertical columns in Pratt’s
isostatic model

gravity anomalies and geoid undulation differences
produced fields that — apart from the identification of
continents — could hardly be interpreted. Further in-
vestigation is necessary to examine the limitations of
using the harmonic coefficients resulting from both
models to the prediction of gravity anomalies in gravi-
metrically deficient areas. Such studies should also
consider the effect of ice which Pavlis and Rapp (1990)
demonstrated to be non-negligible (at least in the Airy/
Heiskanen case). Extension of the maximum degree of
expansion beyond 180 should also be pursued. The in-
ability of the Pratt model to remove the effect of to-
pography at the degree range 0—60 is also a matter that
deserves further research. Regional harmonic synthesis
applications of the two sets should reveal different local
characteristics of the gravity field and thus set the one of
the two isostatic models which is more appropriate to
the specific region.

Potential Degree Variances: Airy vs Pratt
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5 Concluding remarks

The theory on spherical harmonic analysis of a global
elevation model accounting for the effect of isostasy
according to Airy/Heiskanen was revisited and expand-
ed to the Pratt/Hayford model. The obtained sets of
harmonic coefficients can be used as an alternative
technique for estimating gravity anomalies in areas
where poor or no data are available. The present
contribution shows that the Pratt isostatic model
removes the effect of topography, i.e. acts as a compen-
sating mechanism to the uncompensated topography
spectrum only in the degree range 60—180. It can be used
as an alternative to the Airy-resulting spectrum, which
was used solely until now. However, further research is
necessary for the optimal application of the present
theory, for example to determine which degree range of
the Pratt-resulting spectrum produces the most satisfac-
tory results when used in combination with a satellite-
derived model for the prediction of gravity anomalies or
geoid undulations. With the dawn of the first gravity
and gradiometry satellite missions these applications
become more relevant than ever, particularly in areas
where lack of data will continue to exist, such as at the
polar gap regions.
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