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Abstract. A synthetic Earth and its gravity field that can
be represented at different resolutions for testing and
comparing existing and new methods used for global
gravity-field determination are created. Both the bound-
ary and boundary values of the gravity potential can be
generated. The approach chosen also allows observables
to be generated at aircraft flight height or at satellite
altitude. The generation of the synthetic Earth shape
(SES) and gravity-field quantities is based upon spher-
ical harmonic expansions of the isostatically compen-
sated equivalent rock topography and the EGM96
global geopotential model. Spherical harmonic models
are developed for both the synthetic Earth topography
(SET) and the synthetic Earth potential (SEP) up to
degree and order 2160 corresponding to a 5 x ¥
resolution. Various sets of SET, SES and SEP with
boundary geometry and boundary values at different
resolutions can be generated using low-pass filters
applied to the expansions. The representation is achieved
in point sets based upon refined triangulation of a
octahedral geometry projected onto the chosen reference
ellipsoid. The filter cut-offs relate to the sampling pattern
in order to avoid aliasing effects. Examples of the SET
and its gravity field are shown for a resolution with a
Nyquist sampling rate of 8.27 degrees.
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1 Introduction

Within the International Association of Geodesy (IAG)
the idea of the construction of a synthetic Earth has
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been encouraged in order to obtain a better insight into
different methods that are applied in practice, mainly
for the analysis of the Earth’s global gravity field.
There even exists an IAG special study group especially
focusing on the topic of a synthetic Earth, but most of
its goals are beyond the scope of this study. In this
context, previous studies have been conducted, such as
the mass-point geopotential modelling experiment by
Vermeer (1995). The inspiration for this study partly
originates from ideas presented in Van Gelderen
(1991), who created a two-dimensional synthetic Earth.
The aim of the current study is to realize an artificial
Earth and its gravity field at various resolutions with a
corresponding band-limited signal content. The latter is
mainly done in order to avoid the procedures required
for aliasing treatment that are common to most
approaches in gravity-field determination, but this is
not the main focus and the major interest in the
aforementioned comparison of methods. For future
needs, the case of non-band-limited signals can be
easily obtained by following the same procedure, but
simply changing the filter characteristics. The synthetic
Earth is designed for the testing of gravity-field
modelling methods exterior to the Earth’s physical
surface, such as comparison of boundary element
methods (BEM) with least-squares (LS) collocation or
spherical harmonic analysis with spherical wavelet
analysis in preparation for gravity gradiometry mis-
sions.

The Earth’s topography, i.e. orthometric heights, and
geoid heights are combined to yield the Earth geometry
relative to a chosen reference ellipsoid. The combination
of the ellipsoid and the Earth geometry is called the
synthetic Earth shape (SES). The gravity-field observ-
ables, such as the gradient vector of the gravity poten-
tial, are generated from a synthetic Earth potential
(SEP) that is expanded in spherical harmonics up to
degree and order 2160. Such a spherical harmonic model
is constituted of the EGM96 model (Lemoine et al.
1997) and an isostatically compensated equivalent rock
topography model (Rummel et al. 1988). Both the
spherical harmonic coefficients of the topography and
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the topographic-isostatic potential are derived using
the GETECH global 5 x5 digital terrain model
(GETECH 1995). The combination of these coefficient
sets using adequate low-pass filters, tuned to the desired
spatial sampling pattern, leads to the mentioned SES
and chosen boundary values from the SEP. The use of
the spherical harmonic expansion also allows the gen-
eration of observables at the flight height of aeroplanes
and at satellite altitudes.

The creation of the synthetic Earth topography
(SET) will be discussed in the second section of this
paper. The third section is devoted to the construction of
the spherical harmonic coefficients of the SEP, followed
by a section on the generation of the shape of the SES
boundary and specific boundary values such as the ele-
ments of the gradient vector of the gravity potential.

2 The synthetic Earth topography (SET)

The Earth topography is derived from the GETECH
global 5 x 5 digital terrain model (GETECH 1995).
The topography is considered as orthometric heights on
land and depths over the oceans. From a global
equiangular grid of 2160 elements in latitude and 4320
elements in longitude, spherical harmonic coefficients
are obtained up to degree (n) and order (m) 2160
following a modification of the procedure described in
Colombo (1981). For this purpose, algorithms and
scaling as discussed in Koop and Stelpstra (1989) and
in Koop (1993) are tested and applied in order to avoid
numerical stability problems in the recurrence relations
of the Legendre functions. Before a spherical harmonic
expansion can be computed, a so-called equivalent rock
topography is generated (cf. Rummel et al. 1988). This
can be achieved by replacing all water depths (D) by a
smaller negative topography consisting of rock,
H® = —0.614D. The factor 0.614 results from the
conversion of a column of water of constant density
into rock of constant density equal to 2670/kg m3. Next,
the global topography with constant density everywhere
can be expanded into a spherical harmonic series. The
spherical harmonic analysis yields coefficients (Hymq)
from the point equivalent rock topography values H*

1 Her
Hymo = E/ R(q) Ynmoz(q)daq (1)
a
where
_ cosmi, fora=0
Yina(g) = Bam(sin q’q>{ sin m)nqq fora=1

and the integration is performed over all points ¢ on the
unit sphere o; ¢ and A are the geocentric latitude and
longitude, and P,, are the fully normalized associated
Legendre functions. The heights/depths become dimen-
sionless after division by the mean Earth spherical
radius (R). From these coefficients, the Earth topogra-
phy at an arbitrary point p can be reconstructed from a
spherical harmonic synthesis up to the maximum degree
Nmax = 2160 using

Nmax 1 1

Her(p> =R Z Z ZHnmmYnmoc(p) (2)

n=0 m=0 oa=0

and the equivalent rock topography can be converted
back to water depth by D = —H*/0.614 in the case of
HT < 0.

The analysis strategy for solving the discretized ver-
sion of Eq. (1), according to Colombo (1981), allows the
use of point data or mean data. The point-data ap-
proach was used, which may cause imperfections in a
range of degrees of the expansion. This is mainly due to
the lack of a one-to-one relation between the number of
grid points and the coefficients (it is approximately 2:1).
The result is that a 5’ x 5’ topography grid created from
the spherical harmonic coefficients does not exactly
match the original GETECH 5 x 5 at the smallest
scales. In areas with the most extreme topographic
gradients, the maximum differences can be of the order
of several tens of metres. However, this is of no im-
portance for the creation of the synthetic Earth as the
space domain result of the spherical harmonic synthesis
is adopted as a ‘true’ world topography, and the original
GETECH data set is no longer used.

3 The gravity potential of the synthetic Earth (SEP)

As well as the topography that is needed to define one
part of the boundary, a ‘realistic’ potential field must
also be created. The idea is to use an existing global
geopotential model for the lower degrees, in combina-
tion with adapted geopotential coefficients obtained
from a global topographic—isostatically-induced poten-
tial for the medium and smaller-scale details. This
procedure will be explained in the three steps below.
First, the use of the global geopotential model is
discussed, followed by a description of the topogra-
phic—isostatic potential, and finally the adaptation
procedure for combining both models is presented.
The EGM96 global geopotential model (Lemoine
et al. 1997) is chosen. The coefficients, provided in a
tide-free system, are converted to refer to the GRS80
ellipsoid (Moritz 1980) using the ratios between the GM
values i.e. the geocentric gravitational constants and the
semi-major axis a as described in, for example, De
Bruijne et al. (1997). For the representation of the
longer-wavelength contents of the SEP, the EGM96
coefficients (CESM) are low-pass filtered using a spheri-
cal equivalent of the Butterworth filter F(y) (see e.g.
Oppenheim et al. 1983) with the spectral amplitude filter
coefficients B,,. This Butterworth filter is as follows:

F(,) =Y _(2n+ 1)B,(ny, k)Py(cos ) (3)
n=0
and
1
B,,(nb, k) =

2k
1+ (—h)

where k is the order of the filter, ny is the band degree at
which the power is halved (or the amplitude /2/2), ¥,



is the spherical distance between the points p and ¢, and
P,(cosyr) are the non-normalized Legendre polynomials
(Heiskanen and Moritz 1967). The low-pass filter
characteristics are chosen as np, = 50 and £ =3 from
degree 2 up to 360 in order to suppress the weights for
the amplitude towards zero for the degrees tending to
360. This is needed for a smooth transition between the
EGM96 potential coefficients and the topographic—
isostatic-induced potential that is treated with the
complementary filter, thus with weights close to one
just over degree 360. This is closely related to the choices
in the weighing procedures of modified Stokes ap-
proaches (cf. Haagmans et al. 1998). This choice of the
filter characteristics also implies that most of the energy
in the coefficients of EGM96 up to degree 50 is kept, and
beyond 50 is suppressed. Accordingly, the filtered
coeflicients are

CtP — B,(50,3)CESM  forn=2,...,360

nmo nmo (4)
These coeflicients describe the gravity potential caused
by deeper and/or larger-scale mass inhomogeneities
inside the Earth. An example of a Butterworth spectral
filter with n, = 150 and k = 3 is shown in the right-
hand-side plot of Fig. 1. The power per degree (c,) for
the dimensionless spherical harmonic coefficients
(Crimes Sum), such as those of the topography or potential
in Egs. (1) and (4), can be expressed by a degree
variance spectrum as

n 1 n
=Y > Ch,=> (Ch+

m=0 o=0 m=0

S2

nm

), n>0

()

The complementary part of the potential coefficients and
the extension up to degree and order 2160 is derived
starting from a potential caused by the SET and its
isostatic compensation. As a first step, potential coeffi-
cients based solely upon an isostatically compensated
equivalent rock topography are generated following the

Dimensionless degree variance spectra
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procedure described in Rummel et al. (1988). It consists
of the following steps.

1. Spherical harmonic coefficients H,,, H2um, and
H3,,,., are determined from the global 5 x 5 GE-
TECH grids_with equivalent rock topography for
H/R, (H/R)* and (H/R)’, respectively. The latter
terms replace H /R in Eq. (1) to obtain the second and
third set of coefficients from degree 0 up to 2160. The
use of the third-order approximation beyond degree
180 as applied in Rummel et al. (1988) may lead
to too high an energy in the highest degrees of the
expansion for the potential, however this will be
reduced in the combination procedure described
hereafter.

2. For the isostatic compensation, an Airy—Heiskanen
model is chosen with a compensation depth (D) of
30 km. However, the compensation is not likely to be
valid for topographic signals at spatial scales smaller
than 200 km. The spectral compensation component
is therefore low-pass filtered with a Butterworth filter
B,(150, 3); see Eq. (3).

3. The topographic and isostatic components are com-
bined to give dimensionless spherical harmonic coef-
ficients C!

nmo*

The result of these three steps is, for n =2,...,2160

R —D.\"
1—B,(1 Hoo
{[ B, 50,3)( = )] -
n—3
pc (R_DC) ]Hznlnx
0 R

mo__ 3 Pe
e 2n+1p,

n+2
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n+2)(n+1)
6
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Fig. 1. Degree variances of topography and isostasy combinations (lef?); the isostasy low-pass filter (right)
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where p, = 5514 kg/m? is the mean density of the Earth
(Rummel et al. 1988) and p. = 2670 kg/m? is the mean
density of the crust; Ap = p, —p, = 3270 — 2670 =
600 kg/m? is the density contrast between the mantle and
the crust at the root of the isostatic compensation. The
degree variance spectra of equivalent rock topography, of
equivalent rock topography and its isostatic compensa-
tion, and of the Butterworth-filtered version of the latter
(including the filter) are shown in Fig. 1. More details and
discussion on the choice and the background to this
Earth model can be found in Rummel et al. (1988).
Now, two potential coefficient sets are available for
an overlapping frequency range between degrees 2 and
360. Since the topographic-isostatic potential does not
contain contributions from deep mass inhomogeneities,
except those of topography, the degree variances do not
match the degree variances of the model Earth from
EGMO96, which is based on observational data. Instead
of modelling all other mass inhomogeneities, rather than
those caused only by the topography, an empirical ap-
proach was chosen to force a match between the degree
variance spectra. Between degrees 25 and 360, linear
trends are LS fitted to the logarithmic degree variance
spectra log(c,) of EGM96, obtained by substituting

CESM in Eq. (5), and of the topographic-isostatic
model, obtained by substituting CI! “in Eq. (5). This
gives

log(cESM) —log(cM) = Aa + Abn + ¢

Aa = AEGM — 4TIl and Ab = bEGM — bT[ (7)

The difference in trend is applied to all topographic—
isostatic coefficients in order to obtain an improved
match between the degree variances in the overlapping

range and a smooth extension to higher degrees, so that

the corrected coefficients CIC become for degree 2 to
2160

A
CHS = oL 10120050 ®

Note that the factor of 1/2 occurs in Eq. (8) because
Eq. (7) relates to power and Eq. (8) relates to magni-
tude.

At this stage, it is possible to combine the EGM96
low-pass filtered coefficients [Eq. (4)] with the coeffi-
cients of the corrected topographic—isostatic potential
[Eq. (8)]. In order to obtain a smooth transition between
the two sets, a high-pass Butterworth filter Bu,, was used
for the corrected topographic—isostatic potential coeffi-
cients. That is, the complement in power of the low-pass
filter is applied to EGM96, which gives

CcHP — Bu,(50,3)CTIC for n=2,...,2160

nmo. nmot

Buy(ny, k) = /1 — B2(ny, k) 9)

Combining the results of Egs. (4) and (9) leads to the
dimensionless potential coefficients (Cj,,) defining the
SEP. This approach leads to an Earth potential model
that has a similar behaviour to EGM96 in terms of its
spectral power, with a smooth extension up to degree
and order 2160. Therefore

Cnmot _ CLP + CHP

nmo. nmot

Cnmot = CHP

nmo.

for n=2,...,360
for n=1361,...,2160 (10)

The matching approach and its result are shown in
Fig. 2.

]
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Fig. 2. Procedure for fitting equivalent rock
(e.r.) topographic—isostatic degree variances
to those of EGM96 (right), and the result of

2500 the final combined potential coefficient

model (left)



A consequence of changing the topographic—isostatic
potential coefficients by the empirically determined
correction function is that the degree variances in the
higher degrees become smoother, and loose the direct
relation to the topographic—isostatic model as presented
in Eq. (6); see Fig. 2. Obviously, the direct geophysical
interpretation of the potential from the combined model
is rather difficult and depends upon the filter parameters,
and the meaning of the correction function. This means
that the synthesized results from the model will, in a
way, be ‘realistic’, and that it is not easy to invert the
procedure applied. Thus, the effects of the assumptions
that play a role in the topographic—isostatic model po-
tential, for instance related to downward-continuation
issues, are also difficult to trace back to the final model.
The combined potential coefficients are the basis of the
SEP that can be evaluated at arbitrary points by means
of a spherical harmonic expansion.

4 The synthetic Earth shape (SES)

For every arbitrary point p on the GRS80 ellipsoid with
geographical latitude ® and longitude A, Eq. (2) can be
evaluated using the corresponding geocentric coordi-
nates to yield an orthometric height H(p) equal to H* (p)
on land. At sea, the boundary follows the shape of the
mean sea surface. In this study, it is assumed that the
mean sea surface coincides with the geoid, so that the
height H(p), denoting the permanent sea surface topog-
raphy, is simply set to zero. An evaluation point p is
defined to be situated at sea, when bathymetry (—D) is
present at that location. At the same point p, a spherical
harmonic expansion can be evaluated to give geoid
heights N(p) using the potential coefficients in Eq. (10),
with radius r, from the origin of the ellipsoid to point p
at the ellipsoid; this gives

va "p

n=2 m=0 o=0
and
Acnmaz = Cnmot — anlisgo forn = 2, 4, 6, 8; m = 0, a=0
ACumy = Coma otherwise

where y denotes the normal gravity at the ellipsoid (see
e.g. Moritz 1980). The ellipsoidal height k(p) = H(p)+
N(p) for arbitrary points p at the ellipsoid can now be
constructed. The ellipsoidal geometric heights, together
with the GRS80 ellipsoid, define the shape of the SES
boundary.

5 Construction of boundary values from the SEP

Once the shape of the SES boundary is generated,
gravity-field quantities can be evaluated on or outside
this boundary in order to obtain the desired potential
field values and gravity observables, such as the
disturbing potential 7(p) and the gravity acceleration
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magnitude (Heiskanen and Moritz 1967). In order to
arrive at these values at the boundary at point p with
geographic coordinates {®, 1, A} and corresponding
geocentric coordinates {¢, 4,7}, the disturbing potential
is first generated.

Ninax n+l n 1
o) =20y (2) S S G Fa(p)

a n=2 p m=0 a=0 (12)

T(p) =W(p)—U(p)

In Eq. (12), W(p) is the desired gravity potential at point
p, and U(p) is the normal gravity potential of the
ellipsoidal field that can be obtained from (Heiskanen
and Moritz 1967)

U(p)=V(p)+Qp) (13)
where
GM 4 a\™
Vip)=-—11~ > I (7) Pyu(sin q’p)]
p n=1 p

and

Q(p) =1’ (rycos 9,)’

where J,, are the non-normalized even zonal spherical
harmonic coefficients of GRS80; w is the Earth’s
constant rotation rate for GRS80 (cf. Moritz 1980);
and Py, (sin @) are the non-normalized associated Legen-
dre functions. Thus, Q is the centrifugal potential. By
combining the results of Eqgs. (12) and (13), we are able
to generate ‘true’ synthetic gravity potential values at
arbitrary points on or outside the SES boundary.

Next, the focus is directed to the components of the
gradient of T in the north direction along the x’-axis, in
the east direction along the )/-axis, and in the zenith
direction along the Z/-axis. The latter coincides with the
direction of r,. The x’- and )’-axes are both tangential
to the sphere of radius r,. The gravity gradient vector
can be obtained from differentiation of the disturbing
potential T(p) [Eq. (12)] in the three above-mentioned
directions. The local Cartesian coordinates directly
relate to the spherical coordinates at point p. The result
for the gradient of 7 expressed in both coordinate
systems is given in Eq. (14). More details on the elab-
oration of, for instance, the derivatives of the associ-
ated Legendre functions, can be found in Heiskanen
and Moritz (1967).

Srip - (T 20, 1)

oT(p) 0T(p)

' 00
GM R (a)" L 0Yma(p)
= 5 - ACnmai
I"[% ; Tp m:O; aq)
oT(p) ~ 3T(p)

= 14
0y’ 1p €08 @,04 (14)
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GM NIHZIX a n n l
= ——22(71 + 1)(—) Acannma(P)
I/‘p n=>2 p m=0 o=0

The last step is to transform the gradient of Eq. (14) to
the gradient in the local Cartesian system with the x- and
y-axis now in the tangent plane to the ellipsoidal normal
at point p pointing north and east, respectively, and the
z-axis in the direction of the outer normal of the ellipsoid
at point p. The y-axis coincides with the j/-axis and only
a rotation needs to be carried out over the positive angle
A® = @, — ¢, in the northern hemisphere and over the
negative angle in the southern hemisphere. Thus

oT(p)
ox
VI(p) = | %2
AT (p)
Oz
cosAD 0 —sinAd® ag—fﬁ
d
= 0 1 0 oy (15)
sinA® 0 cosAdD AT (p)

oz’

The gravity vector g(p) can now be obtained at point p by
adding the vector of the ellipsoidal normal field y(p) to the
gradient vector of 7. The normal gravity vector at point p,
7(p)=(0, 0, y,), with geodetic coordinates {®, 1, h}, can
be obtained from (Heiskanen and Moritz 1967)

2 : 3
W, = yhp_0<1 (I +/+m— 2f sin® @,)h, +;h§)

(16)

where y,_, is normal gravity at the ellipsoid that can be
obtained for the GRS80 geodetic latitude of p from
Somigliana’s formula (Heiskanen and Moritz 1967), f is
the geometrical flattening of the GRS80 ellipsoid, and m
is the centrifugal force at the equator divided by the
normal gravity at the equator (Heiskanen and Moritz
1967). For distant points at satellite height, y can also be
obtained from an extension of the expansion in Eq. (16),
without the centrifugal effect, or from taking the full
derivative [as in Eq. (14)] of the potential ¥ in Eq. (13)
rotated to the ellipsoidal normal direction [as in Eq.
(15)]. Combining the results of Egs. (15) and (16), or Eq.
(15) and modified versions of Egs. (16) or (13), gives the
gradient vector at point p. On the boundary this is

g(p)=VW =VU+VT =5+VT

0T (p) OT(p) OT(p)
_< ox = 0y ' 0z +yh">

(17)

Equations (15), (16) and (17) produce the ‘true’ synthetic
gradient of the synthetic Earth at arbitrary locations on
and, slightly modified, outside the SES boundary.

6 The generation of SES and SEP at different
spatial resolutions

The SES boundary and the boundary values of SEP are
generated at rather homogeneously sampled patterns.
For the sampling pattern, an octahedron is used as a
starting point (cf. Lage 1996). Each of the eight
constituent triangles can be subdivided into four equal-
sized triangles as described in Klees (1997), and so on to
obtain an increased spatial resolution. Subsequently, the
corner points of these triangles are projected onto a
sphere with radius a. In Fig. 3 this procedure is
illustrated for a resolution level 4 geometry. The number
of triangles (M) for each level I (I=0,1,2,...) is
Ny = 26%20. The number of corner points N, in this
case also the evaluation points, is related to the number
of triangles by Nop = 2 + Ny /2 (see Fig. 3).

Next, the spherical coordinates of the corner points
are considered to be geocentric, from which the point
configuration on the GRSS80 ellipsoid, shown in Fig. 4,
automatically follows.

The results for different resolution levels in terms of
(1) the number of evaluation points, (2) the maximum
distance between neighbouring points, (3) the corre-
sponding Nyquist degree and (4) the chosen Butterworth
low-pass filter parameters are shown in Table 1. The
filter parameters relate to the largest triangle side, de-
noted ‘Largest distance’ in Table 1, or the corresponding
Nyquist degree, that is present in each resolution. The
band degree ny, is half of the Nyquist degree and, to-
gether with the chosen order of the filter, it will reduce
the signal that may be very aliased.

The lower and higher levels are not mentioned here,
since the first focus will be at levels 4 to 9 from a prac-
tical and computational point of view. However, the
idea can be extended to higher levels if desired in the
future. For each level, a set of low-pass-filtered SET

Triangle
refinement

Octahedron

Resolution level 4

Fig. 3. Level 4 geometry from an octahedron and its refinement; 2048
triangles and 1026 points



level 4 (sampling < 8.72°)

Table 1. Information on different resolution levels: the number of
evaluation points, the largest occuring triangle side and the cor-
responding Nyquist degree, and the filter parameters

Resolution No. of Largest Nyquist  Butterworth filter
level points distance degree parameters
(deg) =)

4 1026 8.72 20.5 n, = 1025,k = 7
5 4098 4.36 41 n, = 20.50, k = 7
6 16 386 2.18 82 n, = 41.00, k = 7
7 65 538 1.09 164 n, = 82.00, k = 7
8 262 146 0.55 328 n, = 164.0, k = 7
9 1048 578 0.27 656 n, = 328.0,k =7

coefficients and SEP coefficients can be generated using
the filter characteristics specified in Table 1. This means
that B, (ny, k)H,ym, and B, (ny, k) Cymy, are used instead of
H,, and C,,, in Egs. (2), (11), (12) and (14). These
filters are chosen such that the effect of aliasing on the
signal at higher degree than the Nyquist degree is small:

Topography/bathymetry [m]

— —

509

Fig. 4. Point distribution for level 4 resulting from
the octahedron refinement

for instance, for the topography at levels 7, 8 and 9, a
signal-to-noise ratio of 10~* was found, which means
that the maximum errors in the topography are below
1 m. This seems acceptable since the original GETECH
topography is provided in metres. As an example the
topography—bathymetry, the disturbing potential and
the gravity disturbance were generated at resolution
level 4 [i.e. with B,(10.25,7)]. The gravity disturbance
og(p) = —0T(p)/0r is obtained from Eq. (14) including
the level 4 filter. The topography—bathymetry (i.e. or-
thometric heights and ocean depths) are shown in Fig. 5,
the disturbing potential in Fig. 6 and the gravity dis-
turbance in Fig. 7, for a level 4 global grid.

It is also possible to generate similar results, and the
actual boundary with boundary values, for all the other
mentioned resolutions. These can be made available for
testing purposes to any interested group or individual.
Information concerning the software and test data sets
can be obtained from the author (deos@geo.tudelft.nl
or roger.haagmans@ikf.nlh.no).

-4000

-2000 0 2000

4000 Fig. 5. Topography—bathymetry for level 4
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Disturbing Potential [m?/s?]

-800 -600

Gravity disturbances [mGal]

-400 -200 0 200 400

600 Fig. 6. Disturbing potential for level 4
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7 Summary and conclusions

In this study, a procedure has been presented and results
are obtained for the creation of a synthetic Earth
boundary and gravity-field boundary values. Part of the
approach followed Van Gelderen (1991), who created a
two-dimensional synthetic world. This required the
adoption of a global topography with a fine resolution
in order to be able to generate a ‘realistic’ potential field
as an extension to the EGM96 model. In order to
achieve this, a matching procedure in the spectral
domain was developed and applied to the potential of

40 Fig. 7. Gravity disturbances for level 4

the isostatically compensated equivalent rock topogra-
phy in terms of spherical harmonic coefficients. Pre-
scribing the spectral power of EGM96 in the range
between degrees 25 and 360 to the final combined
potential coefficients models, the results are expected to
be reasonably close to reality, at least for the resolution
levels 4 to 9 under consideration.

The development of the topography and potential in
spherical harmonic coefficients allows, in combination
with adequately chosen low-pass filters, rather straight-
forward representations of the SES boundary and the
gravity field for the desired resolutions. For practical



representation, point sets are chosen based upon a tri-
angulation scheme starting from an octahedron. The
advantage of this scheme is the rather homogeneous
sampling pattern on the Earth’s surface. Butterworth
filters are applied such that aliasing effects are minimal
due to the link between the filter-band degree and the
largest distance between neighbouring points of a cho-
sen level. These filters can easily be changed, or even
omitted, in order to allow aliasing to enter the problem.
However, for the purpose of testing various techniques
used in gravity-field practice, the alias-free synthetic
realization of the Earth could be a good starting point.
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