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Abstract. A closed formula for computing the gravita-
tional attraction of a general vertical prism with N + 2
faces (N faces are vertical planes, the other two are the
inclined top and bottom planes) in Cartesian coordinates
is presented. In addition, the special case of a triangular
prism is discussed. Algebraic differences and overlooked
singularity conditions of a previously published formula
of this computation (which was only for the triangular
special case) were identified and are also presented.
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Introduction

Computation of gravity signals from 3-D masses of
homogeneous density is a problem with a long history in
gravimetric geodesy and geophysics (Rausenberger
1888; Mader 1951; Gotze 1978; Petrovic 1996). A
method is described herein where an exact closed
formula (using mostly standard intrinsic computer
functions) for the gravitational attraction of a vertical
prism can be computed in Cartesian coordinates. For
the purposes of this paper, a vertical prism is defined as
an N + 2- faced polyhedron (called “IT’”) where N faces
are perpendicular to the x—y plane (so that the projection
of IT onto the x—y plane is an N-sided polygon), and the
other two faces are inclined planes (see Fig. 1). Full
details on the general case where N > 3 are given, with
some discussion on the special case of a triangular prism
(N = 3). While it is true that three points define a plane,
a prism with four or more vertices can exist where the
four or more corners lie on a plane. This plane may just
be an approximation for the true topography, but that is
all any surface is, whether flat or curved — an approxi-
mation of the true topographic surface. And while the

utility of a “flat, but inclined” planar top to the prism
may be limited, it is more accurate than a prism with
“flat and un-inclined” tops and bottoms (to clarify:
“flat” means the surface has an infinite radius of
curvature while ““inclined” means the surface is not
parallel to the x—y plane). No closed-form solution to
this problem with curved prism tops has yet been found.
The applications of N > 3-sided prisms are few, but
could include computing gravity signals in mostly flat
areas near rivers and gorges, or the forward modeling of
density anomaly features of odd shapes on the gravity
signal. Since the applications for N > 3 are limited, the
emphasis of this paper will be on the N =3 problem,
although a few brief notes on the N > 3 problem are
made near the end of the paper.

Solution of a five-term mixed logarithmic
and square-root integral

In anticipation of its use later in this paper, a solution of
the following equation is presented:

F(a,b,g,d, e x) = /ln[ax—i—b—&— \/gx2+2dx+ede

(1)

The solution of this integral is complicated, yet is
recurrent in the computation of gravitational attraction
over a vertical prism with sloping top and bottom faces.
Its solution is generally not found in most mathematical
handbooks and tables of integrals. Woodward (1975)
presents one method of computation by substitution of
variables, but that paper does not fully address all
singularity conditions that occur, and has an algebraic
difference from the solution presented in the present paper
(this will be discussed later). With the advent of modern
symbolic languages, such as Mathematica 3.0 (Wolfram
1996), faster solutions to such integrals are possible than
through manual techniques by a human using paper and
pencil (albeit with perhaps less aesthetically pleasing
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results than might be achieved by a human). As an
additional bonus, symbolic languages are generally not
prone to algebraic errors. Although the solution for the
indefinite integral will be shown, ultimately that solution
will be used to solve for the definite integral, as follows:

X2

/ In[ax + b + \/gx*> + 2dx + e] dx

X=X
=F(a,b7g,d,e,x2)—F(a,b,g7d,e,x1) (2)

The solution to Eq. (1) was computed using Mathem-
atica 3.0 (Wolfram 1996), and can be written as the sum
of seven terms

F=C+G+CG+C+Cs+Cs+ (4 (3)

where the first five are fairly simple to read and
implement into computer programs. The 6th and 7th
terms are more complex, but are very similar to one
another. Symmetries and patterns re-occur, and the
form in which all seven terms are presented attempts to
exploit re-occurring terms

C1 = —X (4)

C> = |\/2abd — d? — a’e — b2g + eg
ab—d+a*x — gx )
X arctan @ —

[\/2abd—d2—aze—b2g+eg /( 9)

()

Cr— (ab — d) In[b?> — e + 2abx — 2dx + a*x* — gx*] (6)

P 2(a* — g)

Cy = xInfax + b + \/gx> + 2dx + €] (7)
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(ad — bg) In [“L\j;) +2\/gx% + 2dx + e}
Cs = ‘
(a*> - g)\/g

1
Cs = (— E) V0> — 03(04 — Os)
Xln( QG_Q7
VO3 — 09(Q10 — O11)(Q17 — O1)

On
" (Q13 — Q1a)(Q1s — Q16)> ©)

C; = (— é) VO + 03(04 + Os)

><ln< Qs+ 07
VOs + 09(Q10 + 011)(Q17 + O1s)

On
* (013 + 014)(Q15 + le)) (10)

where
01 = —2(a*> — g)(—2abd + d’e + b*g)
0, = —2a’bd + a*e — 2abdg + b*g*
+a* (24 + (b — e)g)
03 = 2a(ad — bg)\/—2abd + d? + a?e + b*g — eg
Oy = bd — ae
Os = b\/—2abd + d*> + a*e + b>g — eg

Oy = —2a’bd + a'e — 2abdg + b*g* + a*(2d* + (b* — e)g)
Qo = 2a(ad — bg)\/—2abd + d> + a?e + b>g — eg
Q10 = (b — 2ad + bg)(—2abd + d* + a*e + (b* — e)g)
011 = (3a’bd — a’e + bdg + a(—2d* + (—2b* + e)g))

x \/—2abd + d> + a’e + b*g — eg
013 = —2(a’b — 2ad + bg)(—2abd + d* + d*e + (b* — €)g)
Q14 = 2(—3a*bd + a*e — bdg + a(2d* + 2b*g — eg))

x \/—2abd +d> + a’e + b*g — eg
O1s = \/—2abd + d* + a*e + b>g — eg
Ois = —\/—2abd +d* + a*e + b>g — eg

The variables Qg, O7, O16, and Q17 are linearly dependent
on x. The variable Oy, is quadratically dependent on x. It
is useful, for computational speed, to break Qg, 07, QOis,
and Q17 down to their linear forms in x (so that
Os = Reo + xRg1), while O, remains in its original form

Q,’ = Ri,O +xRi‘,1 i€ (67 7, 16, 17)
Reo = 2d(a® — g)*(—2abd + d* + d®e + (b* — e)g)
Ry = 2g(a* — 9)*(=2abd + d* + d*e + (b*> — e)g)
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Ryo = 2(d® — 9)*(—abd + d* + d’e — eg)
x \/—=2abd + d> + a*e + b>g — eg
Ry = 2a(d® — g)*(ad — bg)
x \/—2abd + d? + a?e + bg — eg

R16,0 =d—ab
Rigg1 =g — a*
R17,() =ab—d
Rii=d —yg

01> = 4(a* — g)*\/—2abd + d? + e + b*g — eg

X \/gx? 4+ 2dx + e

While this solution to Eq. (1) appears lengthy, but easy
enough to put into computer code, there are two
complications. The first complication is that geometry
will occasionally cause singularities in these formulas.
(For example, when the bottom plane of the prism is
parallel to the x—y plane, then a; = a, = 0, and if at the
same time one of the side faces, &, of the prism is parallel
to the x—z plane, then m; = 0, and this combination
causes a singularity in the C¢ and C; terms which will
cause a computer failure if the above solution is coded
without caution.) Using limits, these singularities may
all be eliminated with appropriate coding in the
integration subroutine. This is covered in a later section.
The second complication is that complex numbers are
used in the above equations. In FORTRAN 77 and C,
no standard function exists for taking square roots of
complex numbers, although coding one is a fairly simple
task (such a function does, formally, exist in C+ +
using the complex template). However, whether one
writes one’s own subroutine, or uses an existing one,
means that two equally possible roots of a complex
number could be computed, which was shown in initial
tests to cause occasional incorrect computations. In
order to remove this source of error, the following steps
were taken. Note in Eq. (2) that there is a difference of
two functions. Of specific interest, the following two
terms will occur if Eq. (2) is expanded:

AC(, = Cé(xz) — C(,(xl)

11
AC7 = C7(X2) — C7(X1) ( )
If Eq. (11) is used as written, there is an instability in the
computer code which depends on the choice of which
complex square root is computed. However, because Cg
and C7 are logarithmic functions, and also because the
Q) through Qs terms have no dependence on x one may
re-write Eq. (11) as

=

—
~—

6(X2

ty

6

AC6 = D6 IH[E6(Xz)] — D6 1n[E6(x1)] = D6 ln[ 1

|

R

=
Ny

~— ~—

7

AC7 = D7 111[E7(X2)] 7D7 111[E7(X])] = D7 In

NI

=
S—

b

(12)

where Dg, E¢, D7 and E7 are functions of the Q variables
and can be inferred from Egs. (9), (10) and (11). Using
Eq. (12) for ACs and AC; [rather than Eq. (11)] will
yield stability and correct results, so long as consistency
is used in computing the square root of complex
numbers.

Gravitational attraction of a polygonally shaped
vertical prism

The gravitational attraction generated at a point P by an
homogeneously dense (p=constant) mass distributed
over a volume, I, in (x,y,z) space, is

z—z
9(xp, Vps2p) = _GP/( & ) dIT (13)
I

where [ is the distance from point (x,,,,2,) to point
(x,y,z). For the purpose of this paper, the volume (IT) is
assumed to be a vertical prism, with sloping top and
bottom. (A “‘vertical prism” will be defined as any
polyhedron, of N + 2 faces, where N of those faces are
contained in planes perpendicular to the x—y plane.). The
nature of the “sides™ (the N vertical faces) of a vertical
prism allows any volumetric (3-D) integral over such a
prism to be broken up into an integral over an area A4
(where 4 is the projection of II onto the x—y plane) and
the vertical coordinate, z

/f(x,y,z)dH://f(x,y,z)dsz (14)
it a4z

Note that 4 is a polygon, and can be of any general
shape (i.e. convex or concave). Applying Eq. (13) to
Eq. (14) yields

g(xpavaZp) =
Z(x.y)
z—2z2,
—arf | 2 : e e
A4 z=z(x) |:(x_xp) + (y_yp) + (Z_ZP)
(15)

where zj(x,y) and z(x,y) are the equations of the
bottom and top bounding planes of the vertical prism.
The outer integral (over A) is shorthand for a double
integration in x and y, over the area bounded by polygon
A. Attempting to evaluate this integral over an irregu-
larly shaped polygon, 4, can involve very complicated
upper and lower limits for both the x and y integrals. In
order to avoid this complication, one can use a trick of
calculus (used also in Woodward 1975), breaking down
2-D integration over an irregularly shaped polygon into
a sum of integrals, where each component integral is
“quasi-trapezoidal”

A/ S x,y)dd = i

Xj mpx+ng

Sf(x,y)dx dy (16)

Xi V=0



In Eq. (16), N is the number of sides of polygon 4 and as
i equals (1,2...N —2,N — 1,N), the variable j equals
(2,3...N—1,N,1) and k equals (3, 4 ... N,1,2). The
lower limit y; is arbitrary, but for simplicity can be taken
as the y coordinate of the centroid of the polygon. The
values my, and ny, are the coefficients of line &, where the
kth line connects the ith and jth points of the polygon
(see Fig. 1). Caution should be used when applying
Eq. (16). When x; = x;, m; goes to infinity (that is, the
kth side of the polygon is parallel to the y axis).
Thankfully, when this occurs, the integral in Eq. (16)
goes to zero, and should therefore be separately coded in
programs as such

Xj mgxH-ng

fle,y)dxdy =0 if mg=o00 (x; =x;) (17)

X=Xi Y=

This was not mentioned in Woodward (1975), even
though the occurrence of north/south lines (where my
goes to infinity) is very prevalent in most DEM (Digital
Elevation Model) applications. Inserting Eq. (16) into
Eq. (15), and centering the coordinate frame at the point
of interest, the following equation arises:

g(x,=0,y,=0,z,=0)

X myx+ng ajx+axy+as

ok ] T

x=x; y=n z=A1x+Ay+A43

—E dxdyds
Va2 4+yr 422
(18)

where the equations of the top and bottom planes
(z1 and z;) have been written out as

Z1 (x,y) =Ax +A2y+A3
z(x,¥) = a1x + ary + a3

(19)

Performing the inner two integrals (over y and z) in
Eq. (18) is fairly straightforward, and leads to the
following:

N T4
g:—GpZ / Zs; ln[oc;erﬁ,Jr\/y1x2+251x+111}
=1 =

(20)

where s;, a1, f;,7;,0; and #; are as follows:
For /=1:

1

T
,/l—l—ag

(alaz + my + mkag)

azag + n; + nkag)
l4+a

B 2
_\/1+a%

2
J_

4 1+a +2a1a2mk+mi+a§m,§)
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2
o) = 4(a1a3 + arasymy + aarng + myng + a2mknk)

(21)
= 4(a3 + 2arasny + ng + a3ny)
For [=2:
s/ =
1/1 +A2
— (414> + my + miA 3)
./1 +A2
(A2A3 + mi + nkAé)
,/1 +A2
"/l = 4( +A + 241 Amy, + m,% +A2mk)
= 4(A1 A5 + AsAsmy + Ay Aony + myny + Asmyny;)
= 4(A3 + 242A3ny + ni + A3n}) (22)
For [ = 3:
1
S = —
1 +a3
2
o = > (alaz)
1+ a3
2 23
B = ———(a2a3 + o + 303 (23)
91+ a3
7 =401+ aj)
01 = 4(araz + a1ary)
n; = 4( + 2axa3yn +y0 + azyo)
For | = 4:
1
5| = +———
\/1+43
2
) = ——=(A4142)
\/ 1+ 43
2 24
B = ——— (4245 + o + 3043) 24
\/1+43

4(1 +4})
5 4(A143 + A1420)
4(A3 + 242430 + 35 + A3)7)

Up to this point, the calculus involved has already been
documented in previous papers. Specifically, Woodward
(1975) arrives at an equation similar to Eq. (20), but that
paper has an algebraic difference with regard to the
o, B, 7, 0 and 5 values (and has unmentioned singular-
ity conditions, discussed later). Woodward’s values for
o, B, 7, 0 and n are scaled relative to the values listed in
Eqgs. (21)-(24) as follows:
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[, B)] = O‘/ aﬂ[ ]
\/1 + a3 \/1 + 43
(25)
4 4
(71, 01,m)] = [Tagorm] [/1 751 oy ]

where the superscript W refers to Woodward’s values,
and the “or” indicates that a, values be used for / = 1,3
and A, values be used for / = 2,4. Although this would
at first indicate an error in Woodward (1975), there is
not. Specifically, if one uses the o, f, y, é and n values
presented in Egs. (21)-(24), or those of Woodward
(1975), the exact same value for the gravitational
attraction is computed. Thus a word of warning about
symbolic packages like Mathematica: do not assume
that the solution which comes out of such a package is
either the simplest, or the only, solution to any given
problem.

The final step in computing the gravitational attrac-
tion is to perform the integration over x which remains
in Eq. (20). Unlike the method of Woodward (1975), the
method used here will be the one presented at the be-
ginning of this paper. Therefore, Eq. (20) becomes

= —GpXN:isl(F

i=1 I=1
_F(alvﬁlvylv(slvnl?xi)) (26)

(0517ﬁl>"/175177’117xj)

Equation (26) represents a closed analytical form for the
gravitational attraction of any polygonally shaped
vertical prism with sloping top and bottom faces. A
single subroutine (called intlog5, not presented in this
manuscript) was written in FORTRAN 77 which
computes, for any oy, f;, y;, 61, #;, x; and x; values,
the difference seen in Eq. (26). For actual implementa-
tion, however, a second subroutine, intlog5a (available
at the National Geodetic Survey web page at http://
www.ngs.noaa.gov/GEOID), was written which specif-
ically exploits the interactions between the values of
o, P, v;, 0 and n; that occur in this particular
problem, and has special code to avoid some singular-
ities that occur due to geometry (mentioned in the next
section). Prior to calling intlog5a, the individual
o1, By, v;, 01 and n; values are computed for a given
i,/ combination (remember that «;, f,, y,, 6; and 1,
are dependent on my and ny, and k is dependent on i).
The subroutine is then called for a given x; and x; with
the appropriate o;, f8;, v;, 6; and #, values.

Coding in FORTRAN 77 and avoiding singularities

Specific cases where singularities occur do exist, and
should be coded appropriately to avoid computational
overflows. It must be stressed that the method of
Woodward (1975) fails to mention many singularities
of geometry, and coding that method without proper
care can cause the code to crash or, more dangerously,

run and yield false results. The case of a face parallel to
the y axis has been mentioned in Eq. (17). In addition,
the geometry of the solution (i.e., station of interest sits
on a face or a vertex of the triangular prism) will
occasionally cause terms either to equal zero exactly, or
to approach zero in the limit. Special code should be
used to prevent attempts to compute these values, and
they should instead be identified and set to zero. Most of
the “singularity” conditions will be easily identified by
one of a, 5, y, 0 or n (or some combination of them)
being zero. One exception is the case where a3 (or 43) is
equal to zero (i.e., the plane of the top or bottom face of
the prism intersects point P). In that case, the singularity
is identified through a polynomial equation in o, f3, 7, o
and 7 (see footnote ““a” in Table 1). The special cases are
summarized in Table 1. A “0” entry indicates that when
the subroutine identifies the appropriate combination of

input variables being equal to zero, certain
AC; = Ci(xj) — Cr(x;)) values should be set to zero
(where 7=1, 2, ... 7). For ease of reading, the “/”

subscripts on o, f5, 7, ¢ and n have been dropped.

In addition to the special cases in Table 1 which can
cause AC; to go to zero, there are a few special cases
where the individual components of the AC; term [either
Ci(xj) or Cy(x;)] can go to zero. Specifically, these cases
occur when x; or x; (but not both at the same time)
equals zero. In general, when x; = 0 or x; = 0, then C, (x;
or x;) =0 and C4(x; or x;) =0, and for a few special
cases, C>(x; or x;) = 0 (see Table 2).

Application to a triangular prism

Although Eq. (26) works for any polygonally shaped
vertical prism, the case of greatest interest would be for a
triangular prism (rectangular prisms have been studied
and documented with simpler solutions in many other
papers). For the case of a triangular prism, the number
of vertical faces, N, is 3, so that

34
g=-GpY > si(F(
i=1 =1

“[7ﬂ17717517’71:xj)

_F(alaﬁlaylaélan[axi)) (27)

The stability of the software was tested in a number of
ways. First, gravitational attraction of triangular
prisms was computed using Eq. (27) as well as using
numerical integration. In every case, Eq. (27) was
correct to sub-microGal accuracy, with a significant
increase in speed (milliseconds, versus seconds to days)
over the numerical integration. Specifically, a right-
triangular prism was built, 1000 m on a side, with the
following initial coordinates, relative to a station at
coordinates (0,0,0):

x(1) = 1000 y(1) = 1000 zipwer(1) = —4000 zypper(1) =0

x(2) = 1000 ¥(2) = 2000 Ziower (2) = =390 Zypper(2) = —100
x(3) = 2000 y(3) = 1000 Zlower(3) = —4500 Zupper(3) = —200
(28)
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Table 1. Values to set to zero

when singularity conditions oc- Variables(s) which equal  AC, AC, ACs ACy ACs ACs AC,
cur. For any values x; and x; zero
az (or 43)" - 0 0 - - 0 0
None of o, f, 7, , 5 — — - — _
a _ _ _ _ _ _ _
p - - - - _ _ _
Y Imp Imp® Imp® Imp® Imp® Imp® Imp®
S _ _ _ _ _ _ _
n Imp°© Imp© Imp® Imp® Imp®© Imp® Imp®
o, B - - - - 0 0 0
a, 09 - - 0 — _ _ _
ﬁv 56 - - 0 - 0 - —
o, 0 - - 0 - 0 0 0
B. o, ' - 0 0 - 0 0 0
% B, o, n® - 0 0 - 0 0 0

@ Check for a3 or 43 = 0 by checking if 2080 — 6% — a2y — 2y + 1y =0

°It is impossible for y = 0. All further combinations of variables with y will be omitted

°It is impossible for = 0 without the additional requirements of f =0 and § = 0 at the same time
9This combination occurs when ai, ap and my = 0 or when A, A> and m; =0

°This combination occurs when a;, a, and n; = 0 or when 4, 4, and n; =0

"This combination occurs when az and n; = 0 or when 43 and n, =0
€This combination occurs when my, n, asz and either a; or a» = 0 or when my, ny, A3 and either 4; or

A =0

Table 2. Additional values to set to zero when singularity condi-
tions occur, and x; =0 or x; =0

Table 3. Computational time for closed form, and numerical in-
tegration for a test prism

Variable(s) which Ci(x;orx;)  Cux;orxy)  Colx;orx)
equal zero

X; OT X; 0 0 -

x; or x; and o, 0 0 0 0

x; or x;and 8, 6 0 0 0

x; or x; and o, 8, & 0 0 0

The entire prism was moved progressively closer to the
station, by moving the position of x(1),y(1) along the
line x = y in steps of dx=dy=200 m (see Fig. 2), and
the gravitational attraction of the prism computed to an
accuracy of 1 pGal. Table 3 summarizes the results. For
this example, Woodward’s formulas either fail to yield
the correct result or fail entirely because the geometry of

Y
'y
Top view
of prism
Q * ooo 100
ol
K\ I’
&
o’“/’
kAN
T
&
4
I’ h.
©.0) X
Fig. 2.

x(1), (1) Time for Time for Time for Number of
Woodward Smith numerical iterations
closed closed quadrature  for quadrature
form (s) form (s) (s)

0,0 0.075" 0.058 22.476 6
200, 200  0.082* 0.059 177.662 7
400, 400 0.083" 0.059 177.617 7
600, 600 0.082° 0.061 1412.510 8
800, 800 0.082* 0.061 1412.510 8

1000, 1000 fails® 0.061 578 564 096° 12°

# Although speed is comparable, the Woodword scheme arrives at
the wrong value by 0.01 to 0.02 mGal

°In this geometry, situations occur where a3 = 0 while neither
ny =0 nor a; =a, = m; =0, which are the only two situation
which Woodward has discussed

¢ Extrapolated after 11 iterations (the 12th iteration would have
taken 2 months)

this situation allows a3 = 0 without his two “special
cases” of n=0o0r a; =a, =m; = 0.

Note that as the prism comes closer and closer to the
station, the number of iterations increases. Each itera-
tion breaks down the prism into smaller and smaller
cubes. When the prism is too close to the station, the
near-field effects of quadrature approximation are too
large, requiring smaller cubes for a more accurate
computation. This makes the quadrature solution take
longer and longer, eventually making it quite impractical
to compute, through numerical integration, the gravi-
tational attraction of nearby prisms. (One can reduce
this time, but not to the level of a closed form, by using
multiple-sized cubes in the quadrature solution.) How-
ever, the closed form shows no distance-dependent time
to compute, and even for the prism located at
x(1),»(1) = (0,0), the time advantage is a factor of 388
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times faster. Clearly there is good reason to use the
closed form.

Next, as a simple example, various flat-topped rect-
angular prisms were broken up into two right-triangular
prisms, and gravitational attraction computed using
Eq. (27), as well as closed forms for rectangular prisms
(Nagy 1966). Agreement was always to the nanoGal or
better.

Finally, an equilateral triangularly shaped prism, 1 m
high, was centered 10 m below a test station. The side of
the prism was increased from 1 to 1 000 000 m, and the
attraction of the prism approached 0.1119 mGal. This is
to be expected, as the triangular prism is approaching a
Bouguer plate (where the attraction of the plate, no
matter how far it is below the station, is 0.1119 mGal,
for a plate 1 m thick).

New method versus Woodward

There are distinct similarities between the computational
method outlined here and that of Woodward (1975).
However, numerous differences make the present meth-
od superior, even discounting the non-essential algebraic
difference in computing o, f, y, 6 and 5. The most
important difference between the two methods is in the
treatment of singularities. Woodward identifies only two
special cases (a3 =0 with n; =0 and a3 =0 with
a; = a, = my = 0). The present paper addresses seven
special cases. It was seen that Woodward’s formulas fail
if singularities occur which he has not covered. Addi-
tionally, Woodward’s method occasionally suffers from
rounding errors, yielding 0.01- to 0.02-mGal errors. If
these errors are systematic, they can significantly affect
the total computation of the terrain signal on gravity.
Finally, Woodward’s method addresses only the special
case of an N = 3-sided prism, whereas this paper
addresses the general case for all N > 3. While the
utility of prisms with four or more faces is limited, it is
nonetheless an advantage over Woodward. This is
briefly discussed in the next section.

The N > 3 problem

There are few cases where a DEM is broken up into
prisms that are neither triangular (N = 3) nor rectan-
gular (N = 4), and therefore the N > 3 solution has very
limited applications (the N =4 solution, as already
mentioned, has already seen a great deal of historical
treatment). However, the solution presented in this
paper is good for all N > 3, so a few words must be said
here for completeness.

The use of a flat plane to model the topography de-
fined by N >3 points means that some approximate
surface must be used, if the N points are not co-planar.
A simple best-fit plane is the easiest solution to this
problem. Equation (29) shows the formulas for com-
puting Ay, Ay, and 43 for an N > 3 prism top

- R -

N 5 N N N
Z X XiVi Z Xi Z iZi
4 i=1 i=1 i=1 i=1
N N N N
A | = Xy Y doxizi (29)
A3 i=1 i=1 i=1 i=1
3 N N N
Z Xi Vi N Zj
L i=I i=1 i L i=1

where x;, y;, and z; are the Cartesian coordinates of the
prism top corners. Equation (29) can be used in a similar
way to compute aj, ap, and a3 for the bottom of the
prism. Equation (29) should only be used in cases where
the topography is sufficiently smooth to allow for a flat
approximation (such as in large flood plains). In all
other cases, the topography should be modeled with
triangular prisms which allow for a diverse number of
slopes in a local region.

Conclusions

A closed, stable, fast formula for computing the
gravitational attraction of any N +2-faced vertical
prism, with sloping top and bottom faces, has been
shown. The algebra is lengthy, but is easily coded.
Occasionally geometry can cause the formula to become
unstable, but these instabilities have been identified, and
special logic for the subroutines has been presented. In
deriving this formula there was a heavy dependence on
the symbolic language of Mathematica 3.0. Through the
use of Mathematica, a correct, but different formula
than has been previously published (Woodward 1975)
was found. The advantages over the method of Wood-
ward include better treatment of singularities, closer
agreement with numerical integration, and allowance for
N > 3-sided prisms. It was found that the closed
formula provided a more efficient method for computing
triangularly shaped prisms, particularly in the region
near a station of interest.
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