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Abstract. When processing global navigation satellite
system (GLONASS) carrier phases, the standard double-
differencing (DD) procedure cannot cancel receiver clock
terms in the DD phase measurement equations due to the
multiple frequencies of the carrier phases. Consequently,
a receiver clock parameter has to be set up in the
measurement equations in addition to baseline compo-
nents and DD ambiguities. The resulting normal matrix
unfortunately becomes singular. Methods to deal with
this problem have been proposed in the literature.
However, these methods rely on the use of pseudo-
ranges. As pseudo-ranges are contaminated by multi-
path and hardware delays, biases in these pseudo-ranges
are significant, which may result in unreliable ambiguity
resolution. A new approach is addressed that is not
sensitive to the biases in the pseudo-ranges. The proposed
approach includes such steps as converting the carrier
phases to their distances to cancel the receiver clock
errors, and searching for the most likely single-differenced
(SD) ambiguity. Based on the results from the theoretical
investigation, a practical procedure for GLONASS
ambiguity resolution is presented. The initial experimen-
tal results demonstrate that the proposed approach is
useable in cases of GLONASS and combined global
positioning system (GPS) and GLONASS positioning.
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1 Introduction

The global navigation satellite system (GLONASS) is
the Russian equivalent of the global positioning system
(GPS). Like the GPS, the GLONASS positioning system
consists of 24 satellites and has great potential for
precise navigation and geodetic applications, which is

evidenced in part by the present international GLON-
ASS experiment (Slater et al. 1998; Willis et al. 1999). It
has also been seen that there are many advantages in the
integration of the two existing satellite systems. For
example, the combination of the two systems offers the
increases in accuracy and integrity gained by adding
more visible satellites. When the GLONASS system is
completely deployed, the integrated GPS and GLON-
ASS constellation will consist of a total of 48 satellites.
When using such an integrated satellite constellation, at
least 12 satellites will be visible in open areas at any time.
The maximum number of satellites in view can reach 20
in the best case. The increase in satellite availability will
also make fast static and kinematic positioning much
more feasible than it is with just each system alone (e.g.
Kleusberg 1990; Ashkenazi et al. 1995; Hein et al. 1997;
Langley 1997).

However, due to the fact that the GLONASS satel-
lites transmit their signals at different frequencies, pro-
cessing the GLONASS carrier-phase measurements is
much more complicated than processing only GPS data.
In processing the GLONASS carrier phases, one of the
critical issues is that the standard double-differencing
(DD) procedure cannot cancel receiver clock terms in
the DD carrier-phase measurement equations. Conse-
quently, the unknown parameters in the measurement
equations include baseline components, DD ambiguities
and relative receiver clock terms. The resulting design
matrix unfortunately contains a rank deficiency. As a
consequence of this, the normal matrix becomes singular
(Wang 1998b). In order to remove this singularity,
a number of modelling methods have been investigated
in the literature. The proposed models can generally be
categorized into two types, i.e. type A, models excluding
the receiver clock parameters, and type B, models
including the receiver clock parameters. Examples for
the models of type 4 are those of e.g. Raby and Daly
(1993), Leick et al. (1995), Landau and Vollath (1996)
and Pratt et al. (1997); for a detailed review of these
models, see Leick (1998) and Wang (1998b). The models
of type B can be found in e.g. Walsh and Daly (1996),
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Kozlov and Tkachenko (1997) and Rapoport (1997). An
optimal model of type B has been identified in Wang
(1998a).

In terms of GLONASS carrier-phase ambiguity res-
olution, a common feature of many existing models is
that they rely on the use of pseudo-range measurements,
although the pseudo-ranges are used in a different way
for each model. Unlike GPS, the effects of inter-channel
hardware delays on GLONASS pseudo-ranges are sig-
nificant (e.g. Pratt et al. 1997; Jonkman et al. 1998;
Wang 1998a). For reliable ambiguity resolution, specific
efforts must be made to accommodate these biases.
Therefore, for high-precision geodetic applications of
the GLONASS data, it will also be of great importance
to develop suitable algorithms to process carrier-phase
data only. Examples in this direction are the works of
Rossbach and Hein (1996), Povaliaev (1997) and
Habrich (1998).

This paper emphasizes an approach to GLONASS
carrier-phase ambiguity resolution which is not sensitive
to the biases in pseudo-range data. Mathematical
description of the proposed approach and practical
strategies for data processing are presented, and tested
using real data sets collected on three baselines.

2 Modelling GLONASS phase measurements

Similar to GPS measurements, in the case of short
baselines, the so-called differencing procedures can
considerably reduce some systematic errors existing in
the GLONASS measurements, such as atmospheric
delay, satellite orbit and clock errors. The resulting
mathematical models are simplified. For short baselines,
the mathematical model for single-differenced (SD)
carrier phases is usually expressed as (e.g. Leick 1995;
Teunissen and Kleusberg 1996; Habrich 1998)

%@:iﬁm+i%@+m+%@ (1)

where the superscript p identifies the satellite; the
subscripts u# and v represent the receivers; the index i
denotes the epoch at which the data are collected; ¢?2, (i)
is the SD carrier phase expressed in units of cycles; p? (i)
is the SD receiver—satellite range; c is the speed of light;
tw(i) is the relative receiver clock error; N? is the integer
carrier-phase ambiguity; & (i) is the noise error of the
SD carrier phase; and 4, is the wavelength for satellite p.
For satellites p and ¢, the DD carrier phase is further
written as
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which shows that, unlike GPS, the DD GLONASS
carrier phases are sensitive to the receiver clock errors
(e.g. Raby and Daly 1993). Because the relative receiver
clock term in Eq. (2) does not cancel, a receiver clock
parameter has to be set up in addition to the baseline

components and the DD ambiguities. Consequently, the
normal matrix becomes singular. This means that
the DD ambiguity parameters cannot be separated from
the receiver clock parameter (Wang 1998b, 1999). In order
to cancel the receiver clock errors in DD carrier phases,
such strategies as converting original carrier phases into
distances, GLONASS mean frequency or GPS L1
frequency have been proposed in the literature (e.g. Leick
et al. 1995; Landau 1998). It has been shown that the
adjustment results using these strategies are identical
(Wang 1998b). Converting the carrier phases into
distances and then forming the double differences gives

(1) = PLLE) + Nog + 81(3) (3)
with
Vie = ANt + (Ap — 29)N, (4)
& (1) = Aty (1) = 25, (7) (5)

In Eq. (3), the SD ambiguity parameters are present.
The SD and DD ambiguities are inseparable, however.
The lumped parameter N?7 is, by definition, not an
integer. Obviously, the key issue here is how to
determine the integer SD ambiguity value. One possible
option to obtain the SD ambiguity value is to make use
of both SD pseudo-ranges and SD carrier phases (e.g.
Leick et al. 1995; Landau 1998). For example, at epoch
i, the SD ambiguity may be approximated as

NG, = 2 [RE(0) — 2y ()] ©
v

where R? (i) is the SD pseudo-range. It is easy to see that
the correct estimation of SD ambiguities is highly
dependent on precise pseudo-ranges. In many practical
situations, however, pseudo-ranges may be seriously
biased by multipath and hardware delays. For example,
a 5-m error in pseudo-range will cause an error of about
26 cycles in the estimated SD ambiguity value. The effect
of this error in the DD carrier-phase measurements can
reach as much as 0.04 m (about 0.2 cycles) and thus
make the ambiguity resolution unfeasible. Therefore,
specific strategies for estimating SD ambiguities need to
be further investigated.

3 An approach to GLONASS ambiguity resolution

When resolving GPS ambiguities, the integer least-
squares (LS) principle is most critical (Teunissen 1993).
Within the search space assumed to contain the correct
integer ambiguities, all possible ambiguity combinations
are fitted to the GPS measurements. The integer
ambiguity combination that results in the minimum
quadratic form of the LS residuals is considered as the
most likely (best) solution. In the case of GLONASS
ambiguity resolution, however, we have to deal with
both the DD ambiguities and the SD ambiguities.

In order to reduce the number of unknown SD
ambiguities in the measurement equations, the satellite



p is chosen as a reference satellite in forming all the DD
carrier phases. Thus N? is the unique unknown SD
ambiguity parameter in the following adjustment. If
both SD and DD ambiguities are thought to be integers,
the basic principle for fixing DD ambiguities can also be
employed to determine this unknown SD ambiguity.
The proposed approach to the SD and DD ambiguity
resolution is presented in the following.

3.1 Estimating float DD ambiguities

Based on Eq. (3), the linearized mathematical model of
the DD carrier phases reads

Dli = DAixc + Bixy +fmxm +e; (7)

where i = 1,2,...,s denotes the epoch number and s is
the total number of epochs; D is an (n—1) x n DD
matrix operator (Teunissen 1997) with n being the
number of satellites; /; is an n x 1 vector of the difference
between the SD carrier-phase measurements and their
calculated values; x. is a 3 x 1 vector of the unknown
increments of baseline components; x; is an (n — 1) x 1
vector of the unknown DD ambiguities; x, is an
unknown SD ambiguity parameter; 4; is an n X 3 design
matrix capturing the relative satellite-receiver geometry
at epoch i;B; is an (n— 1) x (n— 1) diagonal matrix
whose diagonal elements are the wavelengths, say A;;
fm 1s an n x 1 vector of the wavelength-difference terms,
i.e. 4 —/p, and e; is an (n— 1) x 1 vector of the DD
phase noise terms expressed by Eq. (5).

For the adjustment of all s epochs of data, the
mathematical model reads

[ =Ax. + Bxy + fxm + e (8)
where
A= (4TD" AID", ... ATD")"
B = (B, B,...,By)"
=i Smseef)
(el,ez,...,esr)T

It is easy to prove that

0

(AaB7f) Bk_]{m =0 (9)

which indicates that a linear dependent combination
exists in the column vectors of the design matrices (e.g.
Teunissen and Kleusberg 1996). The resulting normal
matrix is therefore singular. This theoretically confirms
the above statement, that the SD and DD ambiguities
are inseparable. In order to remove the singularity in the
normal matrix, the SD ambiguity parameter is assigned
an approximate value (mg) and Eq. (9) is rewritten as

[(mo) = Ax. + Bx; + e (10)

with [(mg) = [ — fmy. In Eq. (10), the unknown SD
ambiguity disappears and, thus, the unknown DD
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ambiguity parameters can be estimated together with
the baseline components. In order to do this, a
stochastic model (covariance matrix) for DD carrier
phases is also required. By assuming that the unscaled
SD carrier phases are statistically independent and have
the same variance 3, the covariance matrix for the DD
carrier phases at epoch i is derived as

2, 52 2 2
b —E),p 2).p L }72,
C = o? Aoy M+, .. 2 = o2p!
= = R
Ay A Ay + 4y

(11)

Moreover, with the assumptions that the time correla-
tion between epochs is absent and the covariance
matrices for each epoch are identical, the whole
covariance matrix in the adjustment is then written as
Cov(e) = C = diag(C;) = oidiag(P ') = o3P ™! (12)
where P is the weight matrix and P, are its block
diagonal matrices. Based on the mathematical and
stochastic models given by Egs. (10) and (12), respec-
tively, the LS estimators of the unknowns x. and x; are
derived as

)EC(M()) = QXCATPZ(WZ()) + Q;@C)ekBTPi(mO) (13)

kachTPl_(mO) + Q)ngTPl_(mo) (14)

with the matrices QOs,, Ox,, Oz, and Oy being deter-
mined by

)Ek(n’lo) =

Or. Qs ATPA ATPB]
{QM 0s, } - [BTPA BTPB] (15)
Hence, the LS residuals read
é(mg) = 1(mo) — Axc(mo) — By (mo) (16)
and the estimated variance factor is
() = 22 ty

where Q(mg) = &7 (mg)Pé(my) is the quadratic form of
the residuals and r= (s —1)(n— 1) — 3 is the model
redundancy.

Intuitively, it may be expected that if the SD ambi-
guity is fixed to its correct integer value, the mathe-
matical model expressed by Eq. (10) will have a good
performance in the following DD ambiguity-float solu-
tion. The closer the approximate SD ambiguity my to its
correct value, the smaller the resulting quadratic form of
residuals. However, the following theorem shows that
this is untrue.

Theorem 1. (DD ambiguity-float solutions with the SD
ambiguity fixed to various values) Suppose that fixing
the SD ambiguity parameter x,, in Eq. (10) to any two
integer values m; and m; leads to two sets of statistics for
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the DD ambiguity-float solutions, namely, x.(m;),
)ACk(m,‘), é(mi), Q(mi), and )Ec<m]'), )Ek(mj), é(mj), Q(m])
It is then concluded that

L. S(mi) = Si(my) + B f - (my = mi)
2. )Ec(mi) = fc(’”,)

3. e(m;) = é(my)

4. Q(m;) = Q(m;)

Proof. See Appendix.

Equation (18) shows that, when fixing the SD ambi-
guity to different values, the DD ambiguity parameters
can be easily calculated without need to reprocess the
whole data set. Equation (19) indicates that the baseline
components estimated from DD ambiguity-float
solutions are not influenced by the fixed SD ambiguity
values. These two equations can be used to simplify the
process of searching for the best SD ambiguity value.

Equations (20) and (21) indicate that, in DD ambi-
guity-float solutions, the DD phase residuals and the
quadratic form of the residuals are independent of the
fixed SD ambiguity value. These results may be
explained by using the concept of estimable quantity in
the framework of a rank defect LS adjustment (e.g.
Teunissen 1985, 1996; Koch 1988). In this situation,
the fixed SD ambiguity value is considered as a datum
constraint and the residuals are estimable quantities,
which are invariant to the changes in the fixed SD am-
biguity value (Teunissen 1985, 1996; Koch 1988).
Therefore, with the statistics of the DD ambiguity-float
solutions, it is impossible to search for the most likely
SD ambiguity value. Ambiguity validation criteria need
to be further discussed.

3.2 Ambiguity validation criteria

Given the SD ambiguity fixed to an approximate value
m;, the real-valued DD ambiguity parameters are
estimated, and the so-called ambiguity search process
is then performed using a search criterion based on the
minimization of the quadratic form of the LS residuals.
During the search process, the compatibility of all the
potential integer ambiguity combinations with the
associated measurements is statistically tested. If no
integer ambiguity combination passes this acceptance
test (e.g. Tiberius and de Jonge 1995; Walsh et al.
1995) under the given confidence level, the correct
integer ambiguities cannot be identified with the
available data.

When one or more integer ambiguity combinations
are accepted, the integer ambiguity combinations that
result in the minimum and second minimum quadratic
forms of the LS residuals will be considered as the most
likely (best) and second-best solutions, respectively. The
next and most critical step for ambiguity resolution is to
apply a so-called discrimination test (Tiberius and de
Jonge 1995; Walsh et al. 1995) to ensure that the most
likely integer ambiguity combination, denoted as Kj,

is statistically better than the second-best combination,
denoted as K;. In this study, the integer ambiguities
obtained from the ambiguity search process are treated
as nonstochastic quantities. Investigations into the sto-
chasticity and distribution of the integer ambiguities can
be found in e.g. Teunissen (1998).

Suppose that fixing the DD ambiguities to K; and K>
produces the quadratic forms of the residuals Q(K;, m;)
and Q(K,,m;), respectively. With the SD ambiguity
being fixed to m;, the acceptance of the best DD ambi-
guity combination can be evaluated by the following
statistic:

P ) (22)
Q(Kl ) mi)

with Q(K],m,*) :Q(m,)-l—R(m,) and R(m,) = [Kl—
2e(m)]” O 'Ky — xx(m;)]. If the measurement errors
are assumed to be normally distributed, the quadratic
forms Q(m;) and R(m;) are independent (Koch 1988, p.
301) and, furthermore, each of them has a chi-square
distribution, which is a particular form of the gamma
distribution (Johnson and Kotz 1970, p. 167). Conse-
quently, the statistic 7" has a beta distribution (e.g. Koch
1988, p. 133). For the discrimination test, a classic
statistic is defined by (e.g. Frei and Beutler 1990)

- Q(Kz, m,»)
F = —Q(Kl,m[) (23)

A disadvantage of this statistic F is that its distribution
is, if not impossible, very difficult to identify. A more
rigorous statistic for ambiguity discrimination testing,
called W ratio, can be defined by (Wang et al. 1998a)

d
W= $1(mi)\/Oa )

with
d = Q(Kz, m,») — Q(Kl,m,-)

Qs =4 (K —K) 0. (K — Ka)

and
Q(Kl s mi) — W

s-(n—1)—4 (25)

§1 (Wl,) =

where ) = (Q4 — 4d)*/160,. The statistic W has a
student’s ¢ distribution (Wang et al. 1998a).

The above acceptance and discrimination test statis-
tics are, as expected, dependent on the fixed SD ambi-
guity value. The closer the SD ambiguity is to its correct
value, the larger the T statistic. Similar to the case of the
DD ambiguity search, therefore, the SD ambiguity val-
ues that result in the maximum value of the T statistic
are considered as the most likely (best) SD ambiguity
values, denoted as m;. With the SD ambiguity fixed to
its most likely value, the correct DD ambiguities should
be more easily recovered.



When the DD ambiguities are fixed to their correct
values, there are two methods to deal with the SD
ambiguity parameter in the final baseline solutions,
namely, method A, fixing the SD ambiguity to its most
likely value, or method B, treating the SD ambiguity as a
real-valued parameter. In the case of using method B, the
DD ambiguities may be considered as constant param-
eters in Eq. (8), and then one can obtain the following
measurement equation:

[(Ky) = Axc + fxu + e (26)

where /(K;) = I — BK, with K| being the validated best
DD ambiguity combination. Based on the mathematical
and stochastic models defined in Egs. (26) and (12),
the SD ambiguity-float solution can be obtained. The
treatment of the SD ambiguity in the final baseline
solutions will be further discussed in Sect. 4.4 using a
real data set.

3.3 A practical procedure for resolving
GLONASS ambiguities

An important feature of this approach to GLONASS
ambiguity resolution is that the SD ambiguity value is
involved. In order to start the process of ambiguity
resolution, the initial SD ambiguity value must be
determined. With the help of Eq. (6), an approximate
SD ambiguity value m, can be estimated from pseudo-
ranges. By assuming that possible biases in SD pseudo-
ranges are less than 20 m, a search window for the
correct SD ambiguity is then constructed as
(mo — 100, mo + 100).

On the other hand, it is easy to see from Eq. (10) that
before the correct SD ambiguity value is identified,
systematic model errors caused by the approximate SD
ambiguity value will always be present. Denoting Vm as
the integer error in the fixed SD ambiguity value, the
systematic error in the DD carrier phase for satellite pair
p and ¢ can be derived as

VI = (i)~ Jy) - Vim (27)

which indicates that the size of the systematic error is
reference-satellite  dependent. However, numerical
experiments show that choosing different reference
satellites gives almost identical results. The reason for
this is that the GLONASS satellite frequencies are very
close. In order to explain this point clearly, the matrix P,
in Eq. (11) is approximated as

2 1 1
L B 2 (28)
1 1 .. 2

where Ay may be one of the wavelengths Ay, 4;,...,7,.
The errors made in the elements of the above matrix are
always less than 0.8%. With Eq. (28), the influence
imposed by the SD ambiguity error Vm on the
ambiguity-fixed solution is derived as
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Vi, = (4"PA) ' 4"Pf - Vm

—1
(Z AT DTP,»DAl) :

i=1

~1
— (ZAZ.T DT(DDT)"DA,->
i=1

N

A/ D"PDf,, - Vm
i=1

ATD" (DD ' Df,, - Vm (29)
1

1

in which D"(DD")™'D = E, —le,el is an orthogonal
projector matrix. It is apparent that this matrix is
independent of the structure of the DD matrix D and
thus the choice of the reference satellite (Teunissen
1997). Although using different reference satellites does
produce similar results, one may argue that for a good
approximation of the SD ambiguity value, it is still
better to choose the highest satellite as the reference
satellite. Actually, if the search window is large enough
to contain the correct SD ambiguity, the ambiguity
resolution and position solutions before ambiguity
resolution are independent of the approximate SD
ambiguity values.

Based on the above analysis, a procedure for
GLONASS ambiguity resolution is given as follows:

1. Choose a reference satellite.

2. Compute an approximate SD ambiguity for the ref-
erence satellite.

3. Set up a search window for the SD ambiguity.

4. Identify the most likely SD ambiguity using the
statistic 7.

5. Validate the most likely (best) DD ambiguity com-
bination using a testing procedure.

It should be noted that although the above discussion
focuses on the processing of GLONASS data only, the
basic equations and procedure are also valid when
combing GLONASS and GPS carrier phases. For the
combined GPS and GLONASS data processing, it is
proposed thatthe GPS-GPSand GLONASS-GLONASS
DD carrier phases are formulated (e.g. Wang 1998a, b).
The reason for this is that the GPS-GLONASS DD
ambiguities may be sensitive to the biases caused by
incompatibilities between the GPS and GLONASS
systems. It has also been commented in the literature
(e.g. Walsh and Daly 1998; Zarraoa et al. 1998) that the
GLONASS and GPS carrier phases may have various
noise levels, which should be taken into accounted in the
stochastic model. For a realistic stochastic model for the
carrier phases, a rigorous statistical method should be
used (e.g. Wang et al. 1998b), but this will not be
discussed further here.

4 Experiments

Three experiment data sets were collected in Perth,
Australia, using two Ashtech GG24 GPS/GLONASS
receivers. All the data sets are free of cycle slips. The
details of the data sets are presented in Table 1. The zero



426

Table 1. Details of the experi-

ment data sets Baseline names

Zero baseline

1.2-km baseline 0.3-km baseline

Baseline length (m) 0
Cut-off angle (degrees) 15
GLONASS satellites 5
GPS satellites 0
Data interval (s) 10
Data span (min) 5

Survey date

22 July 1997

1216 285
15 15
4 4
5 6
10 10
5 10

16 February 1998 9 February 1998

baseline and 1.2-km baseline data sets are analysed in
detail to show the performance of the proposed
approach to GLONASS ambiguity resolution, whereas
the 0.3-km baseline data set (with a longer data span) is
processed in a batch mode to compare two different
methods of dealing with the SD ambiguity in final
baseline solutions.

4.1 Ambiguity search and acceptance test results

Following the procedure proposed above, the SD and
DD ambiguity search was performed for the zero and
1.2-km baseline data sets. The DD ambiguity search was
conducted using the LAMBDA method (Teunissen
1993). The resulting statistics for ambiguity validation
tests are presented in Figs. 1-6. It is shown in Fig. 1 that,
in the case of the zero baseline, the most likely SD
ambiguity is —6, with the maximum value of statistic T
being 0.964. If the confidence level is chosen as 99%, the
critical value for statistic T is set up to 0.384. Therefore,
the best DD ambiguity combination can pass the
acceptance test. Figure 2 indicates that in the case of
the 1.2-km baseline, the peak value of the statistic T
reaches 0.620, with which the most likely SD ambiguity
is identified as 0. With the same confidence level, the
critical value for statistic T is 0.411, and thus, the best
DD ambiguity combination can also be statistically
accepted. Both Figs. 1 and 2 show, as expected, that
with the fixed SD ambiguity value approaching its
correct value, the value of statistic 7' increases.

Statitic T

0 L i L L L L L
100 80 60 40 20 0 -20 -40 -60 -80

SD ambiguity

-100

Fig. 1. Statistic T for the acceptance test of the best DD ambiguity set
(zero baseline)

4.2 DD ambiguity discrimination test results

The DD ambiguity discrimination test statistics 7' and W
are shown in Figs. 3-6, indicating, as expected, similar
trends as in Figs. 1 and 2 for the statistic 7. Overall, the
closer the SD ambiguity to the most likely value, the
bigger the values of the discrimination test statistics F'
and W. With the SD ambiguity fixed to its most likely
value, the values of both statistics, F and W, for both
data sets are larger than 2.0. This indicates that the two
best DD ambiguity combinations can be distinguished
very well. With the statistic 7, the confidence level of

0.7

Statistic T

100 80 60 40 20 0 -20 -40 -60 -80 -100

SD ambiguity

Fig. 2. Statistic T for the acceptance test of the best DD ambiguity set
(1.2-km baseline)

Statistic F

100 80 60 40 20 0 -20 -40 -60 -80 -100

SD ambiguity

Fig. 3. Statistic F for the discrimination test between the best and
second-best sets of DD ambiguity (zero baseline)



the DD ambiguity discrimination test in each data set is
extremely close to 100%.

From Figs. 1 and 2, it is easy to see that a range of
possible values for the SD ambiguity can pass the

3.5

3

25

2

1.5

Statistic F

100 8 60 40 20 0 -20 -40 -60 -80 -100
SD ambiguity

Fig. 4. Statistic F for the discrimination test between the best and
second-best sets of DD ambiguity (1.2-km baseline)

Statistic W
o = N w A~ OO ~N oo ©

100 80 60 40 20 0 -20 -40 -60 -80 -100
SD ambiguity

Fig. 5. Statistic W for the discrimination test between the best and
second-best sets of DD ambiguity (zero baseline)

Statistic W
N W S 00 O N oo ©

-

100 8 60 40 20 0 -20 -40 -60 -80 -100
SD ambiguity

Fig. 6. Statistic W for the discrimination test between the best and
second-best sets of DD ambiguity (1.2-km baseline)
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ambiguity acceptance test. This situation is somewhat
similar to that of DD ambiguity resolution. However,
the important thing here is that any accepted incorrect
(or approximate) SD ambiguity values must cause sys-
tematic model errors and may unfortunately result in
incorrect DD ambiguity resolution. This was the case
for the zero baseline. For example, when the SD ambi-
guity was fixed to an incorrect value of —33, where the
correct SD ambiguity value was —6 cycles (a bias of —27
cycles), an incorrect DD ambiguity combination was
subsequently identified as the best DD ambiguity com-
bination, and this incorrect ambiguity combination also
passed both acceptance and discrimination tests, in
which 7'=0.45, f =2.62 and W = 6.26 (with a confi-
dence level close to 100%). For reliable DD ambiguity
resolution, therefore, it is critical to fix the SD ambiguity
to the most likely value.

4.3 Baseline errors caused
by incorrect SD ambiguity values

In order to evaluate the effects of incorrect (or
approximate) SD ambiguities on the final baseline
solutions, the DD ambiguities were first fixed to their
correct values (verified with the known baseline length).
Then, with the SD ambiguity being fixed to all possible
values in the search space, the differences between the
solved baseline lengths and the known value were
produced for each data set, and are shown in Figs. 7
and 8.

Figures 7 and 8 demonstrate that, as expected, the
best baseline solution is achieved when the SD ambi-
guity is fixed to the most likely value. In the case of the
1.2-km baseline (GPS + GLONASS data), as shown in
Fig. 8, an error of 5 cycles in the SD ambiguity leads to a
baseline change of about 1.0 mm (the standard devia-
tion of the baseline length is 2.3 mm). In some cases,
however, small errors in the fixed SD ambiguity values
may result in large baseline errors. For example, in the
case of the zero baseline (GLONASS data only), as
shown in Fig. 7, an error of 5 cycles in the SD ambiguity

0.25

o
2 o
(4] N

Baseline error (m)
o
4

0.05

O i 1 L L L L " L L
100 80 60 40 20 0 -20 -40 -60 -80 -100

SD ambiguity

Fig. 7. Baseline errors vs SD ambiguity (zero baseline)
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0.06

0.05

0.04

0.03

0.02

Baseline error (m)

0.01

0 ! L I 1 L i 1
100 80 60 40 20 0 -20 -40 -60 -80 -100

SD ambiguity

Fig. 8. Baseline errors vs SD ambiguity (1.2-km baseline) (the zero
line is given by the ground truth value of the baseline length

value can bias the baseline length by as much as
10.0 mm (the standard deviation of the baseline length is
0.8 mm). This again indicates that the approximate SD
ambiguity value computed by pseudo-ranges may not be
accurate enough for precise baseline solutions.

4.4 Treatment of the SD ambiguity
in final baseline solutions

In order to compare the two methods of treating the SD
ambiguity parameter in final baseline solutions, the
0.3-km baseline data set was processed in a batch mode
with segments of 2, 5 and 10 minutes, respectively. A
total of eight solutions were obtained, and the results are
listed in Table 2.

In Table 2, we see that methods A and B produce
almost identical baseline components. We should also
note that the standard deviations of the baseline com-
ponents for methods A and B are also very close (almost
identical). One possible reason for this, as mentioned
above, is that the coefficients of the SD ambiguity pa-
rameter in Eq. (26) are much smaller than those of other
parameters. This leads to a geometry which is not sen-
sitive to the SD ambiguity parameter. However, in order
to check the SD ambiguity search process, it is wise to
treat the SD ambiguity as a real-valued parameter in the

final baseline solution. The integer nearest to this esti-
mated SD ambiguity parameter should be the same as
the most likely SD ambiguity value produced by the SD
ambiguity research process.

From Table 2, it can be seen that the most likely
(best) SD ambiguity value varies slightly for different
segments in the same data set. A possible reason for this
is that some systematic errors in carrier-phase mea-
surements change slightly over time, influencing the
selection of the SD ambiguity value. It should be noted,
however, that the most likely SD ambiguity value is
statistically the best one fitting the measurements, and
thus this value might reduce some of the systematic
errors existing in carrier-phase measurements. When
processing the GLONASS carrier phases, therefore, the
use of the most likely SD ambiguity value will improve
the reliability of the DD ambiguity resolution.

5 Concluding remarks

Although converting the GLONASS carrier phases to
distances before forming the DD measurements can
remove the receiver clock terms from the DD measure-
ment equations, both SD and DD ambiguity parameters
simultaneously appear in the DD measurement equa-
tions. This results, however, in a singularity in the
normal matrix. In theory, without additional informa-
tion, it is impossible to resolve the SD and DD
ambiguities at the same time. This kind of information
may be obtained from pseudo-ranges, which can be used
to calculate an approximate SD ambiguity value. With
the SD ambiguity fixed to this approximate value, the
DD ambiguity resolution can be performed. The SD
ambiguity value determined by the pseudo-ranges,
however, may not be accurate enough for reliable DD
ambiguity resolution, as pseudo-ranges may be signifi-
cantly contaminated by multipath and hardware delays.

In this paper, the SD ambiguity value is determined
using other information, which is mainly based on two
basic facts, namely (1) that the possible range or space of
the SD ambiguity is sufficiently known, and (2) that the
closer the SD ambiguity parameter is to its correct value,
the better the performance of the DD ambiguity reso-
lution, or the larger the statistic 7. By searching through
all the possible integer SD ambiguity values, the best

Table 2. The results for the

0.3-km baseline data set Batch  Data Best SD DD ambiguity Final solution: Final solution:

no. span (min) ambiguity resolution statistics =~ method A method B

T F w Corrections® (mm) Corrections® (mm)
1 2 -12 0.87 129 16.1 5.1 4.2 4.1 5.2 4.2 4.1
2 2 -13 0.86 9.6 135 51 2.6 1.0 5.0 2.6 1.0
3 2 -14 0.61 8.8 128 9.1 7.6 0.1 9.0 7.6 0.1
4 2 -14 063 I1.5 151 6.8 2.3 3.6 6.7 24 3.6
5 2 -13 0.43 4.6 83 7. 5.8 2.1 7.1 5.8 2.1
6 5 -12 086 109 234 6.2 4.7 1.5 6.2 4.7 1.5
7 5 -14 0.65 209 336 7.1 4.3 2.7 7.0 44 2.7
8 10 -13 081 239 519 6.5 44 2.1 6.5 44 2.1

4 Estimated corrections to the approximate baseline components



(most likely) SD ambiguity value can be identified,
which is associated with the maximum value of the
statistic 7. When the SD ambiguity is fixed to its most
likely value, the correct DD ambiguities can be more
easily recovered. Therefore, the proposed GLONASS
ambiguity resolution approach is actually based on a
two-level search process, in which all the SD and DD
ambiguity combinations are compared using the statistic
T. A mathematical relationship between any two DD
ambiguity-float solutions based on different SD ambi-
guity values has been established, which makes the two-
level search process more efficient.

The initial experimental results indicate that the
proposed approach is feasible for resolving the carrier-
phase ambiguities in the cases of GLONASS and com-
bined GPS/GLONASS positioning. However, it should
be pointed out that, like any other new approaches, the
proposed approach needs to be extensively tested under
varying circumstances. This approach is based on
models for short baselines. Its possible application for
long baselines remains a topic for further research.
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Appendix

Proof of theorem 1. (DD ambiguity-float solutions with
the SD ambiguity fixed to various values)
From Eq (15), we can obtain

Qi =G '+ G '4"PBQ; BTPAG™! (A1)
0:. 05 = 0L, = —G '4"PBQ;, (A2)
O:, = [B"PB — BTPAG'A"PB]™!
= [s- BePBy — ByPHG 'H'P.B,] ™! (A3)
= [BPAPB] ™
where
G=A"PA (A4)
H =" D4 (A5)
i=1
A=s-P' —HG'H" (A6)
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Case (a):
)Ek(mi) _fk(mj)
= Qi ATP[I(m;) — I[(m;)] + Qs BT P[I(m;) — I(m;))]
=04, |B"P—BTPAG ' ATPIf - (m; — m,)
= Q5 [BP AP f - (mj — m;)
= B.'P AT P B ByP AP, - (my — my)

=By fou - (mj —my) (AT)
Case (b):
Xe(mi) — %c(m;)
= 0, A" P[I(m;) — [(m;)] + Qx5 B PI(m;) — [(m))]
=G 'ATPf - (m; —m;) — G A" PBO;,
x [BTP —B"PAG'ATP|f.(m; — m,)
=G 'H'Pf,, - (m; —m;) — G'H' B O,
X [BeP AR f - (mj — m;)
=G 'H"Pf,, - (m;j —m;) — G 'H' Pfy, - (m; — m;)
=0 (A8)

Case (c):

e(m;) —eé(m))

= 1(m;) — Axc(m;) — B (m;) — [1(mj) — A% (mj) — By (m))]
=/ - (mj—m;) = B[xi(m;) — X (m;)]
=f-(mj—m;)—=B-B fy,- (m;—m;)
=f-(mj—m;)—f-(m;—m;)

—0 (A9)

Based on the result of (c), case (d) is obviously true. [J
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