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Abstract
The issue of outliers has been a research focus in the field of geodesy. Based on a statistical testingmethod known as thew-test,
data snooping along with its iterative form, iterative data snooping (IDS), is commonly used to diagnose outliers in linear
models. However, in the case of multiple outliers, it may suffer from the masking and swamping effects, thereby limiting the
detection and identification capabilities. This contribution is to investigate the cause of masking and swamping effects and
propose a new method to mitigate these phenomena. First, based on the data division, an extended form of the w-test with its
reliability measure is presented, and a theoretical reinterpretation of data snooping and IDS is provided. Then, to alleviate the
effects of masking and swamping, a new outlier diagnostic method and its iterative form are proposed, namely data refining
and iterative data refining (IDR). In general, if the total observations are initially divided into an inlying set and an outlying
set, data snooping can be considered a process of selecting outliers from the inlying set to the outlying set. Conversely, data
refining is then a reverse process to transfer inliers from the outlying set to the inlying one. Both theoretical analysis and
practical examples show that IDR would keep stronger robustness than IDS due to the alleviation of masking and swamping
effect, although it may pose a higher risk of precision loss when dealing with insufficient data.

Keywords Outliers · w-test · Data snooping · Iterative data snooping (IDS) · Masking and swamping effects · Extended
w-test · Data refining · Iterative data refining (IDR)

1 Introduction

Inmany geodetic data processing tasks, large sets of observa-
tions are recorded or sampled, where it is nearly impossible
that such datasets are free from outliers (Lehmann 2013;
Rofatto et al. 2020a). In case outliers occur, the least squares
(LS) estimation, typically applied to geodetic data process-
ing, may lose the properties of unbiasedness and minimum
variance on the parameter estimate (Koch 1999; Teunissen
2000). Thus, one of the major challenges of geodetic data
analysis is to deal with outliers properly. In this paper, the
outlier follows the definition given by Lehmann (2013): out-
liers are observations that are contaminated by gross errors.
In contrast, the observations without any contamination are
defined as inliers (Hawkins 1980). Generally, there have been
two main categories of methods developed to deal with out-
liers, which are outlier diagnostics and robust estimation
(Rousseeuw and Leroy 1987).
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Themethods of outlier diagnostics aim to pinpoint outliers
from the data, after which these outliers are to be removed or
corrected, followedbyanLSanalysis for the remaining cases.
The outlier diagnostics has a long history, since Thomp-
son (1935), Pearson and Sekar (1936), Nair (1948), and
Grubbs (1969) studied the outliers based on the normalized
or studentized residuals of LS. Their results were followed
up by many researchers who detect and identify outliers in
normal samples or linear regressions, e.g., Daniel (1960),
Anscombe (1960), Quesenberry and David (1961), Fergu-
son (1961), Srikantan (1961), David and Paulson (1965),
Stefansky (1972), Ellenberg (1973, 1976), Rosner (1975),
Galpin and Hawkins (1981), and Fischler and Bolles (1981).
Besides, there are extensive reviews of the subject by Beck-
man and Cook (1983).

In geodesy, considering the characteristics of geodetic
data, outlier diagnostics methods have also been extensively
studied.After over half a century of development, data snoop-
ing has becomeone of the best-established outlier diagnostics
methods andhas beenused as a standardprocedure for quality
control. Data snoopingwith its associated reliabilitymeasure
originated in the pioneering work of (Baarda 1967, 1968),
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later extended by Pope (1976) to the case that the preci-
sion of the observations is unknown, see also, e.g., Alberda
(1976), Kok (1984), Teunissen (1985), Xu (1987a, b) and
Koch (1999). Data snooping usually consists of three steps.
First, the test statistics are usually used to detect the presence
of outliers in the observation system (Teunissen 2000; Koch
2015). Then, model selection is carried out to identify the
most possible outlier by screening each observation (Först-
ner 1983; Yang et al. 2013). Finally, parameter estimation is
carried out after excluding the tested outlier. The statistical
test used in data snooping is well-known as the w-test. In
case that observations are independent of each other, the w-
test statistics are equivalent to the normalized or studentized
least squares residuals.

Formodern geodetic applications, there are typically large
datasets that are very likely to contain multiple outliers. In
this case, one of the most commonly used methods is to
implement the data snooping procedure iteratively, process-
ing outliers one by one (Mickey et al. 1967; Barnett and
Lewis 1978; Gentle 1978), which is known as iterative data
snooping (IDS) (Kok 1984; Lehmann and Scheffler 2011;
Rofatto et al. 2017;Klein et al. 2022).However, this approach
is not theoretically rigorous, since it is assumed that there
is only one outlier in each iteration, but this assumption
is overthrown immediately in the next iteration (Lehmann
and Lösler 2016). Actually, in the case of multiple outliers,
the testing methods would be hampered by the masking and
swamping effects. Specifically, masking effects are that mul-
tiple outliers can mask each other easily, which increases the
difficulty of outlier detection (McMillan 1971). In addition,
swamping effects are that if the suspected maximum number
of outliers is large, the statistical test tends to declare more
outliers than there are (Fieller 1976).

Another kind of method, robust estimation, aims to
attain a solution with higher robustness via modifying the
score function of LS. Since Box (1953) coined the term
‘robustness’, an enormous amount of studies has been pub-
lished on this subject, e.g., M-estimation (Huber 1964;
Hampel et al. 1986), L-estimation (Sarhan and Greenberg
1956), R-estimation (Hodges and Lehmann 1963; Jaeckel
1972; Duchnowski 2013), S-estimation (Rousseeuw and
Yohai 1984), median estimation (Stigler 1977; Duchnowski
2010), quantile regression (Koenker and Hallock 2001),
Msplit estimation (Wiśniewski 2009, 2010), least absolute
values method (Edgeworth 1887; Khodabandeh and Amiri-
Simkooei 2011), leastmedianof squaresmethod (Rousseeuw
1984; Rousseeuw and Leroy 1987), sign-constrained robust
least squares (Xu 2005), and various generalized versions of
them. Using the theory of breakdown point (Hodges 1967;
Donoho and Huber 1983), they have achieved satisfactory
performance when dealing with multiple outliers.

Among all of these robust estimations, the subclass of
M-estimation is more attractive in geodesy, since they are

computationally efficient and can be easily implemented in
existing geodetic adjustment software (Yang et al. 2002;
Koch 2013). Compared to other robust estimations, M-
estimation is usually consistent with the LS solution in the
absence of outliers, so that retains higher precision of param-
eter estimates in most cases. Due to the nonlinear property of
M-estimators, the iteratively reweighted least squares (IRLS)
procedure is developed for practical applications (Holland
and Welsch 1977; Koch 1999). The principle of IRLS is to
adapt the weight for each observation based on the previous
adjustment residuals. Such weights reduce or eliminate the
effect of outliers on the final estimate of the parameters via
many different down-weight strategies, e.g., Huber’s esti-
mator (Huber 1964), Danish method (Krarup et al. 1980),
Hampel’s estimator (Hampel et al. 1986), IGGIII method
(Yang 1994; Yang et al. 2002). However, since these method
are based on the measure of initial LS residuals, the masking
and swamping effects unavoidably bring in some incorrect
down-weight selection (Hekimoğlu 1997, 1999).

The present contribution is to investigate the cause of
masking and swamping effects and to propose a new method
to mitigate these phenomena. First, based on the data divi-
sion, an extended form of the w-test with its reliability
measure is presented, and a theoretical reinterpretation of
data snooping and IDS is provided. Then, a new outlier diag-
nostic method and its iterative form are proposed, namely
data refining and iterative data refining (IDR). In general,
if the total observations are initially divided into an inlying
set and an outlying set, data snooping can be considered a
process of selecting outliers from the inlying set to the out-
lying set. Conversely, data refining is then a reverse process
to transfer inliers from the outlying set to the inlying one.
For IDS, all data are usually assumed as inliers in the initial
stage. In this case, the inlying set is probably contaminated
when there are multiple outliers. Consequently, a contam-
inated inlying set might invalidate the test decision, which
might cause the masking and swamping effect. However, in
the initial stage of IDR, the suspected outliers are moved
out of the inlying set. Therefore, a reliable inlying set rela-
tively guarantees the validity of the following test, thereby
effectively alleviating the masking and swamping effect.

This contribution is structured as follows: In Sect. 2, the
Gauss–Markov model is briefly reviewed. Also, Baarda’s w-
test and data snooping are introduced. In Sect. 3, first, based
on the data division, the extended w-test with its associated
reliability measure is presented. Then, data snooping is rein-
terpreted, and a newmethod called data refining is proposed.
In Sect. 4, the iterative forms of data snooping and data refin-
ing are presented, which are IDS and IDR, respectively. As
well, the comparison of IDS and IDR is discussed in detail. In
Sect. 5, a linear fitting example is used to analyze the property
of IDR for dealing with outliers. Finally, Sect. 6 concludes
this contribution and discusses future work.
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2 Baarda’s data snooping in the linear
models

In this section, the linear model with least squares estimates
is briefly reviewed. Then, the w-test and data snooping with
its associated reliability measure are introduced.

2.1 Linear models and least squares (LS) estimate

Consider the linear model of observation equations (Koch
1999; Teunissen 2000):

E( y) � Ax, D( y) � σ 2Q. (1)

Here, E(·) and D(·) are the expectation and dispersion
operators, respectively. A ∈ R

m × n is the non-random
design matrix of rank(A) � n < m. y ∈ R

m is the
vector of observations with normal distribution, and x ∈ R

n

is the vector of unknown parameters. The symmetric positive
matrix Q ∈ R

m × m denotes the variance–covariance cofac-
tor of y, and σ 2 denotes the variance of unit weight. The LS
estimate of the unknown parameters x is given by:

x̂ �
(
ATQ−1A

)−1
ATQ−1 y, (2)

with the cofactor matrix of variance–covariance:

Qx̂x̂ �
(
ATQ−1A

)−1
. (3)

The residual vector of y can be given as:

ê �
[
Im − A

(
ATQ−1A

)−1
ATQ−1

]
y, (4)

with the cofactor matrix of variance–covariance:

Qêê � Q − A
(
ATQ−1A

)−1
AT. (5)

For condition equations, the linear model in Eq. (1) can
be equivalently written as (Koch 1999; Teunissen 2000):

BTE( y) � 0, D( y) � σ 2Q. (6)

Here, B ∈ R
m × (m−n) is a basis matrix satisfied that

BTA � 0 and rank(B) � m − n. In this case, the resid-
ual vector can be given as:

ê � QB
(
BTQB

)−1
BT y, (7)

with the cofactor matrix of variance–covariance:

Qêê � QB
(
BTQB

)−1
BTQ. (8)

Particularly, if σ 2 is unknown, it can be estimated as:

σ̂ 2 � êTQ−1 ê
m − n

. (9)

In general, LS is the best linear unbiased estimator
(BLUE) for linear models (Koch 1999; Teunissen 2000).
However, the optimal properties of LS might be compro-
mised, once the observations are contaminated from gross
errors resulting in the presence of outliers (Rousseeuw and
Leroy 1987; Lehmann 2013). Therefore, statistical test pro-
cedures for outlier diagnostics have been developed.

2.2 w-test and data snooping

Suppose there is a suspected gross error in the kth observa-
tion, then the linear model in Eqs. (1) or (6) becomes (Koch
1999; Teunissen 2000):

{
E( y) � Ax + ck∇k , D( y) � σ 2Q
BTE( y) � BTck∇k , D( y) � σ 2Q

, k ∈ {1, . . . , m},
(10)

where ∇k is the size of the gross error in the kth observation.
ck � [0, . . . , 0, 1, 0, . . . , 0]T is a unit vector with the kth
element equal to one. Thew-test statistic for the kth observa-
tion can then be formed as follows (Baarda 1967; Teunissen
2000):

wk � ∇̂k

σ
√
q2∇̂k

� cTk M y

σ

√
cTk Mck

, (11)

with

(12)

M � Q−1 − Q−1A
(
ATQ−1A

)−1
ATQ−1

� B
(
BTQB

)−1
BT � Q−1Qêê Q

−1.

Here, ∇̂k � cTk M y/cTk Mck is the LS estimate of ∇k , and
q2∇̂k

� 1/cTk Mck is the variance cofactor of ∇̂k .

In specific, wk obeys a normal distribution, that is wk ∼
N (δ, 1), where δ � ∇k

σ

√
q2∇̂k

. If there is no gross error in obser-

vation yk , then δ � 0, otherwise, δ �� 0. Therefore, one can
test whether the data yk is an inlier or outlier according to
the significance of wk . The so-called w-test is organized as
follows. Given a critical value kα , if |wk | > kα , then yk is
tested as an inlier; otherwise, yk is tested as an outlier. Here,
kα is calculated as the quantile of N (0, 1) upon a significance
level α, that is kα � N1−α/2(0, 1).
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Note that when σ in Eq. (11) is unknown, then it can be
estimated as:

σ̂ 2
k � êTk Q

−1 êk
m − n − 1

�
yT

[
M − Mck

(
cTk Mck

)−1
cTk M

]
y

m − n − 1
,

(13)

where êk is the observation residuals calculated by Eq. (10).

In this case,wk � ∇̂k

σ̂k

√
q2∇̂k

turns to obey a student distribution

with a degree of freedom m − n − 1 and a noncentralized
parameter δ, that is wk ∼ t(m − n − 1, δ) (Xu 1987a, b).
Correspondingly, the critical value of the w-test becomes
kα � t1−α/2(m − n − 1, 0). Also, wk can be equivalently
transformed as another test statistic obeying the τ distri-
bution with a degree of freedom 1 and m − n − 1, that is√

m−nwk√
m−n−1+w2

k

∼ τ(1, m − n − 1, δ) (Pope 1976; Koch 1999;

Lehmann 2012).
Furthermore, considering the reliabilitymeasure, themin-

imal detectable bias (MDB) can be given by (Baarda 1967,
1968; Teunissen 2000):

MDBk � δ0σ
√
q2∇̂k

� δ0σ√
cTk Mck

. (14)

Here, δ0 is the theoretical noncentralized parameter, that
can be computed via δ0 � N1− α

2
(0, 1) − Nβ(0, 1) or δ0 �

t1− α
2
(m − n − 1, 0) − tβ(m − n − 1, 0), where α and β are

the significance level and the power of the test, respectively.
By letting k run from 1 to and including m, one can screen

the whole data set for potential outliers. The significance of
the test statistics is tested by comparing them to the critical
values. Thus, the observation with the largest absolute value
of test statistic is tested to be an outlier when:

max
k∈{1, ...,m}|wk | > kα. (15)

The procedure for screening each observation for an out-
lier is knownas “data snooping” (Kok1984;Teunissen2000).
Furthermore, in the case of multiple outliers, the data snoop-
ing procedure can be implemented iteratively to process
outliers one by one, which is known as iterative data snoop-
ing (IDS) (Kok 1984; Lehmann and Scheffler 2011; Rofatto
et al. 2017; Klein et al. 2022).

Note that if observations are independent of each other,
the w-test statistics are equivalent to the normalized or stu-
dentized least squares residuals used by Thompson (1935),

Pearson and Sekar (1936), Nair (1948), and Grubbs (1969),
as:

wk � êk

σ
√
q2êk

or
êk

σ̂k

√
q2êk

, (16)

where êk is the kth element of the LS residuals ê, and q2êk are
the variance cofactor of êk .

3 Data division and extendedw-test

In this section, to distinguish inliers and outliers, the data
division is first discussed. Based on the data division, an
extended w-test with its associated reliability is presented.
Then, data snooping is reinterpreted, and a newmethod called
data refining is proposed.

3.1 Data division

Bymeasuring via a suitably standardized scale, observations
can be divided into two groups based on the characteristics
of inlying and outlying, referred to as inliers and outliers
(Hawkins 1980; Xu 1987a, 1987b). In other words, let all
data come from a complete set {y1, . . . , ym}, then they can
always be divided into two sets, called the inlying set and
the outlying set. Generally, for an observation system, the
observations in the inlying set are to be retained, while those
in the outlying set are to be excluded.

Here, a data divisionmethod is proposed as follows.Given
an outlier number q, then all of the candidate pairs of the
inlying-outlying set can be listed as follows:

Ii ∪ Oi � {y1, . . . , ym}, i ∈
{
1, . . . ,

(
m
q

)}
. (17)

Each pair of the inlying and outlying sets corresponds
to a candidate model (Teunissen 2000, 2018; Lehmann and
Lösler 2016):

{
E( y) � Ax + C i bi , D( y) � σ 2Q
BTE( y) � BTC i bi , D( y) � σ 2Q

, i ∈
{
1, . . . ,

(
m
q

)}
,

(18)

where C i ∈ R
m × q is a design matrix which consists of unit

vectors generated by the outlying set Oi , and bi ∈ R
q is

the size vector of gross errors in the data of the outlying set.
Based on the principle of model selection, one can find the
most likely pair of inlying-outlying sets, I and O, with the
least square of residuals as:

123



An extended w-test for outlier diagnostics in linear models Page 5 of 21 58

Fig. 1 Procedure of data division

C � argmin

C i , i∈
{
1, ...,

(
m
q

)}
{
êTi Q−1 êi

}

� argmin

C i , i∈
{
1, ...,

(
m
q

)}

{
yT

[
M − MCi

(
CT
i MCi

)−1
CT
i M

]
y
}
,

(19)

where êi is the observation residuals calculated via Eq.
(18). Note that, when q � 0, there is only one candidate
pair of inlying-outlying set, that is Ii � {y1, . . . , ym}, and
Oi � ∅. In addition, when q � m − n, êi always equals the
zero vector and the data division will be invalidated. There-
fore, the choice of q should satisfy that 0 ≤ q ≤ m − n − 1.
Figure 1 gives an example of data division where m � 5 and
q � 2.

3.2 Extendedw-test

After the data division, the statistical test can then be used
to test data in both the inlying set and the outlying set. This
procedure usually consists of following two phases. The ini-
tial phase is shown in Fig. 2. Using a data division method
such as Eq. (19) with a presumed suspected outlier number
q0, the total data can be initially divided into two subsets:
an initial inlying set denoted as I0 and an initial outlying set
denoted as O0. The data in I0 and O0 are thus considered the
suspected inliers and the suspected outliers, respectively. In
this case, the linear model is given by:

Fig. 2 Initial phase of the test

{
E( y) � Ax + C0b0, D( y) � σ 2Q
BTE( y) � BTC0b0, D( y) � σ 2Q

, (20)

where C0 ∈ R
m × q0 is a design matrix generated by O0, and

b0 ∈ R
q0 is the gross error size vector of data in O0. The

model given in Eq. (20) is called the initial model. Consid-
ering the specific structure of C0, this model is essentially
equivalent to Eqs. (1) and (6) with the data in O0 excluded.

In the testing phase, a statistical test can be applied to
determine whether a suspected data, originating from either
the initial inlying or outlying set, should be classified as an
outlier or an inlier. As shown in Fig. 3, if the suspected data yk
is selected, all data can be divided into three disjoint parts, the
inlying set Ik , the outlying set Ok , and the testing set {yk}, in
which the data number arem−1−qk , qk , and 1, respectively.
In this case, the linear model in Eq. (20) becomes:

{
E( y) � Ax + Ckbk + ck∇k , D( y) � σ 2Q

BTE( y) � BTCkbk + BTck∇k , D( y) � σ 2Q
,

k ∈ {1, . . . , m}, (21)
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Fig. 3 Testing phase of the test (k � 3)

where ck ∈ R
m is the unit design vector generated by {yk},

Ck ∈ R
m × qk is the design matrix generated by Ok. Corre-

spondingly, bk ∈ R
qk denotes the gross error sizes of data in

Ok , and ∇k represents the gross error size of yk . This model
is called the testing model, which is equivalent to Eq. (10)
with the data in Ok excluded.

Using the model given in Eq. (21), the LS estimate of ∇k

is derived as:

∇̂k �
cTk

[
M − MCk

(
CT
k MCk

)−1
CT
k M

]
y

cTk

[
M − MCk

(
CT
k MCk

)−1
CT
k M

]
ck

. (22)

Proof See Appendix.

The variance cofactor of ∇̂k is given by:

q2∇̂k
� 1

cTk

[
M − MCk

(
CT
k MCk

)−1
CT
k M

]
ck

. (23)

Proof See Appendix.

Then, according to Eqs. (22) and (23), the w-test statistics
can be extended as:

wk � ∇̂k

σ
√
q2∇̂k

�
cTk

[
M − MCk

(
CT
k MCk

)−1
CT
k M

]
y

σ

√
cTk

[
M − MCk

(
CT
k MCk

)−1
CT
k M

]
ck

,

(24)

Likewise, the extended w-test statistic wk satisfies that
wk ∼ N (δ, 1), where δ � ∇k

σ

√
q2∇̂k

. If yk is an inlier,

then δ � 0; otherwise, δ �� 0. Therefore, following the
principle of significance test (Fisher 1925), the extended
w-test can be organized as follows. Given a critical value
kα � N1− α

2
(0, 1), if |wk | ≤ kα , then yk is tested as an inlier;

otherwise, yk is tested as an outlier.
In addition, if σ in Eq. (24) is unknown, it can be estimated

via Eq. (21), as:

σ̂ 2
k �

yT
[
M − MGk

(
GT

k MGk
)−1

GT
k M

]
y

m − n − qk − 1
. (25)

Proof See Appendix.

Here, Gk ∈ R
m × (qk+1) is the design matrix gen-

erated by Ok ∪ {yk}, that is Gk �
[
Ck ck

]
. Corre-

spondingly, the test statistic and the critical value become

wk � ∇̂k

σ̂k

√
q2∇̂k

∼ t(m − n − qk − 1, δ) and kα �

t1−α/2(m − n − qk − 1, 0). Also, wk can be equivalently

transformed as another test statistic, that is
√
m−n−qkwk√

m−n−qk−1+w2
k

∼
τ(1, m − n − qk − 1, δ).

Furthermore, considering the reliability measure, the
MDB of the extended w-test can be given as:

(26)

MDBk � δ0σ
√
q2∇̂k

� δ0σ√
cTk

[
M − MCk

(
CT
k MCk

)−1
CT
k M

]
ck

,

where δ0 is computed by N1− α
2
(0, 1) − Nβ(0, 1) or

t1− α
2
(m − n − qk − 1, 0) − tβ(m − n − qk − 1, 0).

Note that in the w-test for IDS or other iterative testing
methods, the test statistic in Eq. (24) has been used as an
equivalent form of the classical one in Eq. (11) to test data
within the observation system, i.e., in the inlying set I0 (Kok
1984; Teunissen 1990, 2000). Additionally, in the extended
w-test, both the format and the usage of this test statistic are
further extended to encompass a broader range of the testing
data, specifically for data outside the observation system,
i.e., in the outlying set O0. For example, using the extended
w-test, one can first choose either data in I0 with the largest
|wk | or that inO0 with the smallest |wk | as themost suspected
data. Then, this suspected data can be tested as an outlier or
an inlier via evaluating the significance of the test statistic.

Essentially, the extended w-test is based on the principle
of using the inlying set to test whether the testing data is an
outlier. Consequently, the test performance depends on the
number and quality of data in the inlying set. In specific,
from Eq. (26), one can see that a larger sample size for the
inlying set results in a reduced MDB, thus enhancing the
test power. Additionally, apart from the substantial capacity,
maintaining the purity of the inlying set is also crucial, since
the contamination of the inlying set might cause the masking
or swamping effects. For instance, if there are outliers left in
the inlying set Ik during the testing phase, the linear model
in Eq. (21) will become:

{
E( y) � Ax + Ckbk + ck∇k + Clbl , D( y) � σ 2Q

BTE( y) � BTCkbk + BTck∇k + BTClbl , D( y) � σ 2Q
,

(27)
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where Cl ∈ R
m × ql is the design matrix generated by the

outliers left in Ik , and bl ∈ R
ql denotes the corresponding

gross error sizes of these outliers. In this case, the estimate
∇̂k in Eq. (22) will be biased:

E
(
∇̂k

)
�
cTk

[
M − MCk

(
CT
k MCk

)−1
CT
k M

]
E( y)

cTk

[
M − MCk

(
CT
k MCk

)−1
CT
k M

]
ck

�∇k +
cTk

[
M − MCk

(
CT
k MCk

)−1
CT
k M

]
Cl bl

cTk

[
M − MCk

(
CT
k MCk

)−1
CT
k M

]
ck

. (28)

One can see that the expectation of wk � ∇̂k

σ

√
q2∇̂k

will not

be zero even if ∇k � 0. Consequently, some inliers would
be identified as outliers, which can be called the swamping
effect. Moreover, if the observation precision is unknown,
the estimate of σ 2 in Eq. (25) will also be biased:

E
(
σ̂ 2
k

)
�

E
{
yT

[
M − MCk

(
CT
k MCk

)−1
CT
k M

]
y
}

m − n − qk − 1

� σ 2 +
bTl C

T
l

[
M − MCk

(
CT
k MCk

)−1
CT
k M

]
Clbl

m − n − qk − 1
.

(29)

Here, since
bTl C

T
l

[
M−MGk

(
GT
k MGk

)−1
GT
k M

]
Cl bl

m−n−qk−1 > 0, this

estimate σ̂ 2
k will be enlarged by the outliers left in Ik , thereby

shrinking the size of wk � ∇̂k

σ̂k

√
q2∇̂k

. In this case, the outliers

can be difficult to detect, which is exactly the masking effect.

3.3 Data snooping

Using the extendedw-test, data snooping can be reinterpreted
as follows. Assuming there is at most one outlier in the initial
inlying set I0, data snooping is a procedure of traversing all
data in the inlying set to find out this outlier.

The procedure of data snooping is given in Fig. 4. Specif-
ically, according to Eqs. (24) and (25), one can construct a
test statisticwk for each data in the initial inlying set, yk ∈ I0.
In this case, for each wk , the inlying set Ik , outlying set Ok ,
and testing set {yk} are constructed as follows:

Ik ∪ {yk} � I0 and Ok � O0. (30)

Then, the data with the largest test statistic is considered
the most suspected outlier in I0. Generally, data snooping
consists of the following three parts.

Detection: with a significance level α, the significance of
the largest test statistic is tested by comparing it with the

Fig. 4 Procedure of data snooping

critical value kα . Once the extended w-test failed, which is
given as follows:

max
k

|wk | > kα , yk ∈ I0, (31)

then it turns to the identification step.
Identification: the data with the largest test statistic is then

identified as an outlier and put into the outlying set.
Adaptation: the LS is implemented for parameter estima-

tion using the data in the inlying set.

3.4 Data refining

Similarly, assuming there is at most one inlier in the initial
outlying set O0, one can then traverse all data in the outly-
ing set and find out this inlier. This procedure is called data
refining.

The procedure of data refining is given in Fig. 5. Here,
according to Eqs. (24) and (25), one can construct a test
statistic wk for each data in the initial outlying set, yk ∈ O0.
In this case, for each wk , we have:

Ok ∪ {yk} � O0 and Ik � I0. (32)

Then, the data with the smallest test statistic is consid-
ered the most suspected inlier in O0. Likewise, data refining
consists of the following three parts.

Detection: with a significance level α, the significance of
the smallest w-test statistic is tested by comparing it with the
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Fig. 5 Procedure of data refining

critical value kα . Once the w-test is passed, which is given as
follows:

min
k

|wk | ≤ kα , yk ∈ O0, (33)

then it turns to the identification step.
Identification: the data with the smallest test statistic is

then identified as an inlier and put into the inlying set.
Adaptation: the LS is implemented for parameter estima-

tion using the data in the inlying set.

4 Iterative data snooping and iterative data
refining

After data division, data snooping and data refining can be
employed to find a single outlier or inlier. However, the exact
outlier number, denoted as q∗, is often unknown in practical
applications. In such cases, given a range of possible outlier
numbers based on some knowledge, one can then diagnose
outliers within this range. This range is typically defined by
setting the minimum and maximum suspected outlier num-
bers, denoted as qmin and qmax, respectively.

In this section, the iterative forms of data snooping and
data refining are presented, which are called IDS and IDR
(iterative data refining), respectively. Then, the difference
of IDS and IDR are discussed, from the perspective of
robustness and accuracy, choice of significance level, and
computation cost.

4.1 Iterative data snooping (IDS)

If all data are divided into an outlying set and an inlying set
during the initialization, then iterative data snooping (IDS)
can be considered as a process of picking the data tested as
outliers from the inlying set to the outlying set one by one.

As shown in Fig. 6, the initialization of IDS (t � 0) is
organized as follows. Given the minimum suspected outlier
number qmin, then all of the candidate pairs of the inlying-

outlying set can be listed as I(0)i ∪ O(0)
i � {y1, . . . , ym},

i ∈
{
1, . . . ,

(
m
qmin

)}
. According to Eq. (19), one can find

the most possible pair of inlying-outlying sets to construct
the initial model in the first iteration (t � 1):

C(1)
0 � argmin

C(0)
i

{
yT

[
M−MC(0)

i

(
C(0)T
i MC(0)

i

)−1
C(0)T
i M

]
y
}
,

i ∈
{
1, . . . ,

(
m

qmin

)}
(34)

where C(0)
i ∈ R

m × qmin is the design matrix generated by the

outlying set O(0)
i . Note that qmin is usually set as 0 to avoid

dropping any inliers in most cases (Kok 1984; Lehmann and
Scheffler 2011; Rofatto et al. 2017; Klein et al. 2022)

As shown in Fig. 7, the iteration procedure in IDS is orga-
nized as follows. Assuming in the tth iteration, I0(t) andO0

(t)

are the initial inlying and outlying set, respectively, one could
then construct test statistics for each data in the inlying set,
which are w

(t)
k , yk ∈ I(t)0 . In this case, for each w

(t)
k , observa-

tions are divided into three disjoint parts, outlying set O(t)
k ,

inlying set I(t)k and testing set {yk}, in which the elements
numbers are qmin + t − 1, m − qmin − t and 1, respectively.
The relationship among them is given by:

I(t)k ∪ {yk} � I(t)0 and O(t)
k � O(t)

0 , (35)

According toEq. (24), the extendedw-test statistic is given
as follows (Kok 1984; Teunissen 1990, 2000):

w
(t)
k �

c(t)Tk

[
M − MC(t)

k

(
C(t)T
k MC(t)

k

)−1
C(t)T
k M

]
y

σ

√
c(t)Tk

[
M − MC(t)

k

(
C(t)T
k MC(t)

k

)−1
C(t)T
k M

]
c(t)k

,

(36)

where c(t)k ∈ R
m and C(t)

k ∈ R
m × (qmin+t−1) are generated

by {yk} and O(t)
k , respectively. Particularly, if σ is unknown,
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Fig. 6 Initialization procedure of IDS

Fig. 7 Iteration procedure in IDS

it can be estimated via Eq. (25) as:

σ̂
2(t)
k �

yT
[
M − MC(t)

k

(
C(t)T
k MC(t)

k

)−1
C(t)T
k M

]
y

m − n − qmin − t
,

(37)

where G(t)
k �

[
C(t)
k c(t)k

]
. The procedure of IDS consists of

the following three parts.
Detection: given a significance level α, the largest test

statistic is compared to the critical value k(t)
α . Once the

extended w-test fails, which is given as follows:

max
k

∣∣∣w(t)
k

∣∣∣ > k(t)
α , yk ∈ I0

(t), (38)

with

k(t)
α � N1− α

2
(0, 1) or t1− α

2
(m − n − qmin − t , 0), (39)

then it turns to the identification step.
Identification: the data with the largest test statistic in the

inlying set is identified as an outlier and put into the outlying
set.

Adaptation: when the iteration is terminated, the LS is
implemented for parameter estimation using the data in the
inlying set. The terminating condition is that the data number
in the outlying set is equal to the maximum suspected outlier
number qmax, or all data in the inlying set are considered
inliers. Note that qmax is usually less than m − n to make the
parameters estimable.

4.2 Iterative data refining (IDR)

Conversely, if all data are divided into an inlying set and
an outlying set during the initialization, then iterative data
refining (IDR) is a process of picking the data tested as inliers
from the outlying set to the inlying set, one after another.

Likewise, the initialization of IDR (t � 0) is shown
in Fig. 8. Given the maximum suspected outlier number
qmax, then all of the potential pairs of inlying-outlying
sets can be listed as I(0)i ∪ O(0)

i � {y1, . . . , ym}, i ∈
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Fig. 8 Initialization procedure of IDR

{
1, . . . ,

(
m

qmax

)}
. According to Eq. (19), one can find the

most possible pair of inlying-outlying sets to obtain the initial
model in the first iteration (t � 1):

C(1)
0 � argmin

C(0)
i

{
yT

[
M−MC(0)

i

(
C(0)T
i MC(0)

i

)−1
C(0)T
i M

]
y
}
,

i ∈
{
1, . . . ,

(
m

qmax

)}
(40)

where C(0)
i ∈ R

m × qmax is the designmatrix generated by the

outlying set O(0)
i . Note that qmax should be less than m − n

to make the data division effective.

Fig. 9 Iteration procedure in IDR

The iteration procedure in IDR is shown in Fig. 9. Assum-
ing in the tth iteration, I(t)0 and O(t)

0 are the initial inlying
and outlying sets, respectively, one could then construct test
statistics for each data in the outlying set, which are w

(t)
k ,

yk ∈ O(t)
0 . For each w

(t)
k , all data are divided into three dis-

joint parts, outlying set O(t)
k , inlying set I(t)k and testing set

{yk}, whose element numbers are qmax − t ,m−qmax + t −1,
and 1, respectively. The relationship among them is given
by:

O(t)
k ∪ {yk} � O(t)

0 and I(t)k � I(t)0 , (41)

According toEq. (24), the extendedw-test statistic is given
by:

w
(t)
k �

c(t)Tk

[
M − MC(t)

k

(
C(t)T
k MC(t)

k

)−1
C(t)T
k M

]
y

σ

√
c(t)Tk

[
M − MC(t)

k

(
C(t)T
k MC(t)

k

)−1
C(t)T
k M

]
c(t)k

,

(42)

where c(t)k ∈ R
mand C(t)

k ∈ R
m × (qmax−t) are generated by

{yk} and O(t)
k , respectively. Particularly, if σ is unknown, it

can be estimated via Eq. (25) as:

σ̂
2(t)
k �

yT
[
M − MG(t)

k

(
G(t)T

k MG(t)
k

)−1
G(t)T

k M
]
y

m − n − qmax + t − 1
,

(43)
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where G(t)
k �

[
C(t)
k c(t)k

]
. Similarly, the procedure of IDR

consists of the following three parts.
Detection: given a significance level α, the largest test

statistic is compared to the critical value k(t)
α . Once the

extended w-test passes, which is given as follows:

min
k

∣∣∣w(t)
k

∣∣∣ ≤ k(t)
α , yk ∈ O(t)

0 , (44)

With

k(t)
α � N1− α

2
(0, 1) or t1− α

2
(m − n − qmax + t − 1, 0),

(45)

then it turns to the identification step.
Identification: the data with the smallest test statistic in the

outlying set is identified as an inlier and put into the inlying
set.

Adaptation: when the iteration is terminated, the LS is
implemented for parameter estimation using the data in the
inlying set. The terminating condition is that the data num-
ber in the outlying set equals the minimum suspected outlier
number qmin, or all data in the outlying set are tested as out-
liers. Likewise, qmin is usually set as 0 to avoid dropping any
inliers.

4.3 Precision and robustness

The procedure diagram of IDS and IDR is illustrated in
Fig. 10. Generally, for IDS, all data are usually considered
inliers and put into the inlying set in the initial stage. In the

following iteration, the extendedw-test is used to transfer the
data tested as an outlier from the inlying set to the outlying
set. This iterative process continues until either the amount
of data in the outlying set reaches an upper threshold or there
are no more suspected outliers left in the inlying set. Con-
versely, for IDR, the data are divided into an inlying set and
a non-empty outlying set in the initial stage. In the following
iteration, the extended w-test is a process of picking the data
tested as an inlier from the outlying set to the inlying set.
Finally, the process will be terminated either the number of
data points in the outlying set reaches a lower threshold, or
all data in the outlying set are tested as outliers.

Generally, both IDS and IDR are based on the extended
w-test that uses the inlying set to test the suspected data as
an inlier or outlier. Therefore, as analyzed in Sect. 3.2, the
test performance is up to the number and quality of data in
the inlying set. For IDS, the amount of data in the inlying
set is sufficient though, the inlying set is usually contami-
nated in the initial stage in the case of multiple outliers. As
a consequence, a contaminated inlying set might invalidate
the subsequent test decision thereby compromising the per-
formance of decision and identification for outliers, which is
exactly the cause of the masking and swamping effect. Con-
versely, for IDR, the suspected outliers are moved out of the
inlying set as much as possible in the initial stage. This pro-
cess ensures a more reliable inlying set, thereby mitigating
the masking and swamping effect and enhancing the credi-
bility of subsequent tests. Note that, this advantage is based
on the premise that the inliers in the observation system are

Fig. 10 Procedures of IDS and IDR
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sufficient. If the data within the inlying set is severely lack-
ing, the test results may also become untrustworthy due to
the low reliability. In conclusion, compared to IDS, IDR will
show stronger robustness when dealing with multiple out-
liers, and might pose a greater risk of precision loss if there
is an insufficient amount of data in the inlying set.

4.4 Choice of significance level

Generally, the choice of significance level α for both IDS
and IDR should be guided by the principle of controlling
the overall false alarm rate, also known as the overall type I
error rate. In practice, given an adjustment network, one can
first establish the mapping relations between α and the over-
all false alarm rates. Subsequently, based on these mapping
relations, the required α can be determined by specifying an
overall false alarm rate. The Monte Carlo Simulation (MCS)
proves useful in this process, where each false alarm rate
is counted while systematically adjusting α within a speci-
fied range. The significance level α corresponding to a given
false alarm rate can then be derived (Lehmann 2012; Rofatto
et al. 2020b). In particular, if the observation precision σ is
known, an overall test can be implemented at the beginning
of IDS and IDR to regulate the overall false alarm rate (Kok
1984; Teunissen 2000). Consequently, the subsequent deter-
mination of α would become more flexible in this regard.
For example, one can choose different α in different itera-
tion through considering the numbers and correlations of the
test statistics.

4.5 Computational cost

Both IDS and IDR are computationally expensive when the
amount of data is large since there would be quantities of
test statistics to be computed. From Eqs. (19) and (24), one
can see that the main time-consuming task is to compute the
inversion of CT

k MCk , a symmetric matrix with dimension
qk × qk . The computational complexity of such an operation
is of the order O

(
q3k

)
(Lehmann and Lösler 2016). Gener-

ally, for IDS, there would be

(
m
qmin

)
matrices of dimension

qmin × qmin in the initial stage, andm−q matrices of dimen-
sion q × q during the iteration where q ranges from qmin to

qmax − 1. As for IDR, there would be

(
m

qmax

)
matrices of

dimension qmax × qmax in the initial stage, and q matrices
of dimension q × q during the iteration where q ranges
from qmax to qmin + 1. Comparatively, IDR shows more time
consumption than IDS, due to the extra computational cost
in the initial stage.

5 Example

In this section, an example is used to evaluate the per-
formance of IDR for dealing with outliers. It is useful to
elaborate on the theoretical considerations with a simple
practical example. Thus, a numerical example of linear fit-
ting with m equidistant data points is given. With error-free
abscissae i � 1, . . . , m, the observations in Eq. (1) are
yi � x1 + i x2 + ei , ei ∼ N

(
0, σ 2

)
, where m � 10,

n � 2 (Lehmann and Lösler 2016). The unknown param-
eters x1 � 0 and x2 � 1 denote the intercept and slope
parameter, respectively. Correspondingly, the design matrix
is given by:

A �
[
1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

]T

. (46)

In addition, the variance–covariance cofactor matrix is
given as Q � Im , and the standard deviation of unit weight
σ is set as 1.

The numerical example is conducted via MCS. In each
simulation, in addition to the normally distributed random
errors, different numbers and sizes of gross errors are added
to the observations, where the outlier number q∗ ranges from
1 to 3, and the gross error size ∇ ranges from 1 to 30 times
the observation precision. For fairness, the preset minimum
outlier number qmin for IDS and IDR are both set as 0 and the
maximum outlier number qmax are both set as 5. Finally, both
cases of σ known and unknown are considered for different
application scenarios.

In the following discussion, the DIA probability levels
(Teunissen 2018; Zaminpardaz and Teunissen 2019; Yang
et al. 2021) are used to evaluate the performance of IDS
and IDR, which can be calculated via MCS (Hekimoglu and
Koch 1999; Rofatto et al. 2020b). Specifically, when there is
no outlier, PFA denotes the probability of false alarm (FA)
for rejecting any inlier. And when there are some outliers,
PCD denotes the probability of correct detection (CD) for
rejecting any outlier and PCI denotes the probability of cor-
rect identification (CI) for rejecting all outliers. Besides, the
fitting root-mean-square error (RMSE) is also used to evalu-
ate the robustness of these methods. The RMSE is calculated

by RMSE �
√

1
m

m∑
i�1

(
ŷi − yi

)2, where ŷi and yi are the

estimated value and true value of the observation yi .

5.1 Control of FA probability

Before the outlier diagnosis, it is very useful to determine
the significance level for the statistical test by controlling the
PFA or called the type I error rate (Lehmann 2012; Rofatto
et al. 2020b). First, Fig. 11 gives the relationship between
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PFA and RMSE of IDS, IDR, and LS under different signif-
icance levels. Generally, one can see that larger significance
levels would lead to higher PFA and RMSE for both IDS
and IDR. Specifically, when σ is known, the PCA of IDR are
similar to IDS regardless of significance levels. Therefore,
the accuracies of IDS and IDR remain at the same level,
which is slightly lower than LS. However, in the case of σ

unknown, PFA of IDR is larger than that of IDS by using
the same significance level. As a consequence, one can see
that IDR shows a higher RMSE than LS and IDS. It indi-
cates that IDR might pose a larger risk of precision loss than
IDS in case of data insufficiency, especially when a large
significance level is chosen. To control the PFA and RMSE,
we give the significance levels of IDS and IDR under some

fixed PFA in Table 1. Generally, when σ is known, a fixed
PFA corresponds to the same significance level for IDS and
IDR. When σ is unknown, the significance level of IDR will
be much smaller than that of IDS under the same PFA. In
practice, if the σ is known, the overall test can also be used
at the beginning of both IDS and IDR to regulate the overall
false alarm rate (Kok 1984; Teunissen 2000).

5.2 Comparison of CD, CI probabilities, and RMSE

After the determination of the significance levels in Table 1,
the performance of IDS, IDR, and LS are compared in case
the observations are contaminated by outliers. First, to eval-
uate the outlier detection capability of IDS and IDR, PCD of

Fig. 11 PFA and RMSE of IDS, IDR, and LS under different significance levels
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Table 1 Significance levels of IDS and IDR under different PFA

Methods PFA �
1.0 × 10−3

PFA �
1.0 × 10−2

PFA �
1.0 × 10−1

IDS (σ
known)

1.0 × 10−4 1.0 × 10−3 1.0 × 10−2

IDR (σ
known)

1.0 × 10−4 1.0 × 10−3 1.0 × 10−2

IDS (σ
unknown)

1.0 × 10−4 1.0 × 10−3 1.0 × 10−2

IDR (σ
unknown)

3.2 × 10−5 3.2 × 10−4 3.2 × 10−3

the two methods under different outlier numbers are shown
in Fig. 12. In general, one can see that for both IDS and
IDR, a larger significance level would lead to a higher PCD,
which indicates that although a larger critical value tends to
drop more inliers, it also improves the detection capability.
In addition, when σ is known, as the gross error size grows,

the PCD of both IDS and IDR show increasing trends and
finally keep stable at 100%. However, when σ is unknown,
the situation become different. Although IDS and IDR still
show comparable PCD in the case of a single outlier, when
there are multiple outliers, PCD of IDS shows a downward
trend as the gross error size grows even with a great signif-
icance level. It is because when there are multiple outliers,
the inlying set of IDS is contaminated, and the estimate of σ

using Eq. (34) will be biased especially when gross errors are
large. As a consequence, this biased estimate will shrink the
size of the extended w-test statistics, thereby compromising
the detection capability. It proveswhenσ is unknown the IDS
would be severely affected by the masking effect of multiple
outliers. Conversely, due to the alleviation of the masking
effect, IDR still shows satisfactory performance for outlier
detection.

To compare the outlier identification capability of IDS and
IDR,Fig. 13gives PCI of the twomethods under different out-
lier numbers. In general, when the gross error is small, larger

Fig. 12 PCD of IDS and IDR under different significance levels and outlier numbers
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Fig. 13 PCI of IDS and IDR with different significance levels under different outlier numbers

significance levels would bring higher PCI. But it becomes
the opposite when the gross error is large. Because in the
case of small gross errors, the outlier is hard to detect, and
a larger significance level is helpful to detect more outliers.
Conversely, in the case of large gross errors, the outlier is
easy to detect, and a small significance level will keep more
inliers. Specifically, in the case of a single outlier, there is
no significant difference between IDS and IDR when σ is
known. And when σ is unknown, IDS shows a higher PCI
than IDR regardless of the significance level. However, in the
case of multiple outliers, no matter σ is known or unknown,
IDR shows a notable superiority over IDS on the PCI. Espe-
cially, when the outlier number reaches 3, while the PCI of
IDR still sees an upward trend with the increase in gross
error size, those of IDS almost keep stable at a very low
level, which means it is almost impossible for IDS to make
a completely correct decision, no matter which significance
level is chosen. It indicates that, in case of multiple outliers,

IDRwould show stronger potential of identification than IDS
due to the alleviation of the masking and swamping effect.

Finally, Fig. 14 compares the fitting RMSEs using IDS,
IDR, and LS under different outlier numbers. Generally, for
both IDS and IDR, when the gross error size is small, a lower
significance level leads to higher accuracy. But when the
gross error size is huge, a higher significance level keeps
higher robustness. Specifically, when there is only a single
outlier, the RMSE of LS dramatically increases as the gross
error size enlarges,whichmeansLS is even not robust for rare
outliers. In comparison, by using the two outlier diagnosis
methods, fitting errors can be generally reduced to the same
extent. At this time, IDS keeps slightly higher accuracy than
IDR, especially in the case thatσ is unknown.However,when
there is more than one outlier, although IDS have a certain
resistance to multiple outliers, the robustness would severely
degrade as the gross error magnitude increases. For example,
when σ is known and there are three outliers, IDS shows even
lower accuracy than LS. Because although the outliers can
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Fig. 14 RMSE of LS, IDS, and IDR with different significance levels under different outlier numbers

be detected by IDS in this case (see Fig. 12), many inliers
will also be rejected due to the low identify capability (see
Fig. 13). In addition, when σ is unknown, IDS could hardly
detect any outlier (see Fig. 12), thereby keeping the same per-
formance as LS. This verifies that the IDS, although has been
widely used in various practical applications, actually may
lose robustness for handling multiple outliers with remark-
able sizes. In comparison, the fitting errors of using the IDR
are generally much smaller and can always be controlled,
even in the case of gross errors with large numbers and mag-
nitude. It reveals that due to the alleviation of the masking
and swamping effect, IDR would show higher robustness
than IDS when dealing with multiple outliers.

5.3 Analysis of suspected outlier numbers

In this subsection, the influence of qmax on the performance
of IDS and IDR are analyzed. For fairness, the PFA of both

IDS and IDR are chosen as 1.0 × 10−2 and the gross
error is set as 15σ . First, Fig. 15 shows the significance level
of IDS and IDR under different qmax. Generally, when σ is
known, the significance levels of IDS and IDR under a fixed
PFA will remain consistent and unchanged regardless of the
choice of qmax. In case that σ is unknown, the significance
level of IDS is still unchanged as the qmax grows. However,
the significance level of IDR is much slower than that of
IDS and shows a downward trend as the increase in qmax. It
indicates that for IDR, while the significance level will not
be influenced by qmax in the case of σ known, with a larger
qmax, a smaller significance level is needed to control PFA in
the case of σ unknown.

Using these determined significance levels, the RMSE of
IDS, IDR, and LS under a fixed PFA and different qmax are
shown in Fig. 16. Note that the qmax, which ranges from 3
to 7, is always larger than q∗ to guarantee the robustness.
Generally, when there is only a single outlier, IDS and IDR
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Fig. 15 Significance level of IDS and IDR under a fixed PFA and different qmax

Fig. 16 RMSE of IDS, IDR, and LS under a fixed PFA and different qmax
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always show higher improvement than LS on robustness.
Comparatively, IDS keeps slightly higher accuracy than IDR,
especiallywhen a large qmax is chosen. In the case ofmultiple
outliers, while the robustness of IDS severely degrades, IDR
always shows higher robustness due to the alleviation of the
masking and swamping effect. In addition, compared to IDS,
the performanceof IDR ismore sensitive to the choice ofqmax

especially when σ is unknown. In other words, the RMSE
of IDR always shows an increasing trend as the qmax grows,
since that a larger qmax would lead to greater risk of dropping
inliers. It reveals that under the premise that qmax is greater
than the outlier number, a smaller qmax is more popular to
ensure the accuracy of parameter estimates.

6 Conclusion

In this contribution, the causes of masking and swamp-
ing effects are investigated, and a new method of outlier
diagnostics is proposed to alleviate these phenomena. First,
according to the concept of data division, an extended formof
thew-test with its associated reliability measure is presented.
Secondly, based on the extended w-test, both data snooping
and IDS are reinterpreted theoretically. Finally, a new outlier
diagnostic method and its iterative form are proposed, which
are called data refining and iterative data refining, respec-
tively. While data snooping is a process of snooping outliers
from a preset inlying set to the outlying set, data refining can
be considered as a reverse process to refine inliers from an
outlying set to the inlying one.

A linear fitting example is used to evaluate the perfor-
mance of the proposed IDR when dealing with outliers.
Generally, when there is a single outlier, IDR shows simi-
lar performances with IDS on both probabilities of correct
decision and accuracy of the parameter estimate. However,
when the outlier number grows, the correct decision probabil-
ity and estimation accuracy of IDS will degrade dramatically
due to the masking and swamping effect. Conversely, IDR
still maintains a stable and satisfactory performance, even in
the case of gross errors with large numbers and magnitudes.
It proves that IDR outperforms IDSwhen dealing withmulti-
ple outliers, due to the alleviation of masking and swamping
effect.

It should be noted that compared to IDS, the applications
of IDR still face several challenges. First, IDR poses a larger
risk of precision loss for parameter estimation, especially
when the observation precision is unknown. Therefore, it is
especially important to control the false alarm rate to avoid
dropping toomany inliers. Second, the performance of IDR is
more sensitive to the preset parameter qmax. In other words, a
larger qmax usually causes lower precision of parameter esti-
mation, once it exceeds the truth outlier number. Factors to
consider when choosing qmax include data redundancy, the

observation environment, and the task requirements. Finally,
IDR usually costs relatively higher computing time because
finding a suitable model in the initial stage is usually compu-
tationally expensive. Therefore, how to find the most reliable
and efficient initializationmethodwill be further investigated
in our future works.
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Appendix of Proof

Proof of Eqs. (22)-(23)
According to Eq. (21), the normal equation can be given

by:

[
ATQ−1A ATQ−1Gk

GT
k Q

−1A GT
k Q

−1Gk

][
x̂k
∇̂k

]
�

[
ATQ−1 y
GT

k Q
−1 y

]
. (A1)

where

Gk �
[
Ck ck

]
, ∇k �

[
bTk ∇T

k

]T
. (A2)

Here, we apply a Gaussian elimination. The above equa-
tion is pre-multiplied with the following square and full-rank
matrix:

[
In 0

−GT
k Q

−1A
(
ATQ−1A

)−1
Iqk+1

]
, (A3)

resulting in:

[
ATQ−1A ATQ−1Gk
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][
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�
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(
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ATQ−1

]
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]
.

(A4)
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Considering that M � Q−1 −
Q−1A

(
ATQ−1A

)−1
ATQ−1, so we have:

GT
k MGk∇̂k � GT

k M y. (A5)

Inserting Eq. (A2) into Eq. (A5), we have:

[
CT
k MCk CT

k Mck
cTk MCk cTk Mck

][
b̂k
∇̂k

]
�

[
CT
k M y

cTk M y

]
. (A6)

Likewise, the above equation is pre-multiplied with the
following square and full-rank matrix:

[
Iqk 0

−cTk MCk
(
CT
k MCk

)−1
1

]
, (A7)

resulting in:

[
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k MCk CT
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(A8)

Therefore, we have:

cTk
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k MCk
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k M
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� cTk

[
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y, (A9)

which indicates that:
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, (A10)

and

q2∇̂k
� 1
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[
M − MCk

(
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k M

]
ck
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The proof is done.
Proof of Eq. (25)
Following Eq. (A5), we have:

∇̂k �
(
GT

k MGk

)−1
GT

k M y. (A12)

Inserting Eq. (A12) into (A4), we have:

ATQ−1Ax̂k + ATQ−1Gk

(
GT
k MGk

)−1
GT
k M y � ATQ−1 y.

(A13)

Solving Eq. (A13), results in:

x̂k � (
ATQ−1A

)−1
ATQ−1

[
Im − Gk

(
GT

k MGk
)−1

GT
k M

]
y.

(A14)

Then, inserting Eqs. (A12) and (A14) into (21), we have:

êk �
{
Im − A

(
AT Q−1A

)−1
AT Q−1

[
Im − Gk
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GT
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GT
k M

]}
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(A15)

Then, the estimate of σ can be given by:

(A16)

σ̂k �
√

êTk Q
−1 êk

m − n − qk − 1

�

√√√√ yT
[
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(
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k M

]
y

m − n − qk − 1
.

The proof is done.
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