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Abstract
For decades, the residual terrain model (RTM) concept (Forsberg and Tscherning in J Geophys Res Solid Earth 86(B9):7843–
7854, https://doi.org/10.1029/JB086iB09p07843, 1981) has been widely used in regional quasigeoid modeling. In the
commonly used remove-compute-restore (RCR) framework, RTM provides a topographic reduction commensurate with
the spectral resolution of global geopotential models. This is usually achieved by utilizing a long-wavelength (smooth) topog-
raphy model known as reference topography. For computation points in valleys this neccessitates a harmonic correction (HC)
which has been treated in several publications, but mainly with focus on gravity. The HC for the height anomaly only recently
attracted more attention, and so far its relevance has yet to be shown also empirically in a regional case study. In this paper, the
residual spherical-harmonic topographic potential (RSHTP) approach is introduced as a new technique and compared with the
classic RTM. Both techniques are applied to a test region in the central European Alps including validation of the quasigeoid
solutions against ground-truthing data. Hence, the practical feasibility and benefits for quasigeoid computations with the
RCR technique are demonstrated. Most notably, the RSHTP avoids explicit HC in the first place, and spectral consistency of
the residual topographic potential with global geopotential models is inherently achieved. Although one could conclude that
thereby the problem of the HC is finally solved, there remain practical reasons for the classic RTM reduction with HC. In this
regard, both intra-method comparison and ground-truthing with GNSS/leveling data confirms that the classic RTM (Forsberg
and Tscherning 1981; Forsberg in A study of terrain reductions, density anomalies and geophysical inversion methods in
gravity field modeling. Report 355, Department of Geodetic Sciences and Surveying, Ohio State University, Columbus, Ohio,
USA, https://earthsciences.osu.edu/sites/earthsciences.osu.edu/files/report-355.pdf, 1984) provides reasonable results also
for a high-resolution (degree 2160) RTM, yet neglecting the HC for the height anomaly leads to a systematic bias in deep
valleys of up to 10–20cm.
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1 Introduction

The shortest wavelengths of the Earth’s gravity field are
highly correlated with the topography. The purpose of any
topographic reduction in gravity modeling is smoothing the
observations (gravity, deflections of the vertical, etc.) in order
to improve interpolation and prediction of the data. By this,
the required data density in context of the sampling theorem
and, consequently, aliasing errors are significantly reduced.
In the context of geoid or quasigeoid modeling, reducing the
bandwidth of the residual data also facilitates to find a suit-
able parameterization in least-squares techniques.

In the framework of the remove-compute-restore (RCR)
technique to compute geoid or quasigeoid models, residual
terrain modeling (RTM) is a most widely used strategy to

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00190-024-01843-4&domain=pdf
http://orcid.org/0009-0003-6156-1063
https://doi.org/10.1029/JB086iB09p07843
https://earthsciences.osu.edu/sites/earthsciences.osu.edu/files/report-355.pdf


65 Page 2 of 23 J. Schwabe et al.

process together data given in different representations and
containing different information about the topography on dif-
ferent frequencybands, i.e., terrestrial observations of gravity
field functionals in discrete points, global geopotential mod-
els (GGM) given as spherical harmonic (SH) coefficients,
and digital elevation models (DEM) usually represented by
regular grids. In context of a regional computation, the dis-
crete terrestrial gravity data contain information for thewhole
spectrum of the gravity field, but due to the sampling theo-
rem (size of the area, point spacing) they are not capable of
resolving the lowest and highest frequencies. In this regard,
the GGMprovides information of the low-frequency compo-
nent and thereby also accounts for large part of the far-zone
effect. In the sense of band-limited data, the RTM then deliv-
ers the high-frequency spectrum of the topographic signal.

The basic idea of the RTM reduction has been first
described already 40 years ago (Forsberg and Tscherning
1981; Forsberg 1984). The topographic effect is computed
with respect to a smoothed topographic surface, frequently
referred to as “reference topography” or “RTM surface.” For
negative RTM heights, where the actual topography is below
the RTM surface, a negative density is used, so that moun-
tains are virtually removed and valleys are filled up through
the RTM reduction. This approach assumes an approximate
relation between the RTM surface and the long-wavelength
signal due to the topography in the GGM. Thus, in the prac-
tical implementation in context of the RCR technique, the
spectral resolution of the RTM surface in the space domain
(not to be confused with the grid spacing here) is typically
chosen in accordance with the maximum SH degree of the
GGM applied. However, shorter wavelengths may be used
with advantage as long as the desired smoothing of the dis-
crete terrestrial data is achieved and the latter are available
with sufficient spatial extent and density according to the
sampling theorem.

The RTM surface can be constructed by, e.g., simple aver-
aging or more sophisticated filter operations in the space
domain. Another option is the truncation of the spectrum
of the topographic heights to the desired resolution by spher-
ical harmonic (SH) analysis and subsequent synthesis (see
e.g. Hirt et al. 2019). Since the contributions of “negative”
and “positive masses” cancel out at larger distances, compu-
tation of the RTM reductions in the space domain is possible
andusually donewith a constant integration radius around the
computation point (Forsberg and Tscherning 1981; Schwabe
et al. 2014).

As a result, the reduced field is supposed to be residual
yet smooth. This means that the short wavelengths are decor-
related from topography and contain deviations between the
assumed and real (albeit unknown) mass densities only, so
that in case of a standard density the reduced field merely
resembles a high-pass filteredBouguer anomaly.On the other
end of the spectrum, the long-wavelength components of the

signal are mostly removed, making the field practically sta-
tionary when considered as a stochastic process.

The well-known problem from the theoretical viewpoint
is that after the RTM reduction computation points in valleys
are buried inside the topography, making the reduced poten-
tial field non-harmonic. Numerically, this shows in large
biases in these points, so that the initial aim of the RTM
reduction, i. e., achieving residual yet smooth values for the
compute step, fails. In the original RTM approach, this is
solved by a so-called harmonic correction (HC) to the grav-
ity (Forsberg and Tscherning 1981; Forsberg 1984)

δghc = 4πGρ · MIN
(
HP − HP̄ , 0

)
, (1)

with G the gravitational constant and ρ the assumed stan-
dard density. P̄ is the projection of the topographic point P
along the vertical onto the RTM surface. To be on the safe
side, we remind the important note already made by many
authors (e.g., Forsberg 1984; Klees et al. 2022) that, follow-
ing this sign convention, the HC δghc must be added to the
RTM reduction, which is then subtracted from the gravity
observations in the remove step or added in the restore step.

Recently, the HC in the context of the RTM technique was
revisited and refined by various authors (e.g., Omang et al.
2012; Yang et al. 2022; Klees et al. 2023). Some studies
also describe approaches to avoid the HC. For example, in
the “baseline RTM technique” (Rexer et al. 2018; Hirt et al.
2019) SHcoefficients of the topographic potential are derived
from SH coefficients of the height function, whereas (Bucha
et al. 2019) propose a cap modification to realize the spectral
filtering in the RTM approach. Finally, already Vermeer and
Forsberg (1992) pursued a completely different approach in
the frequency domain, yet in planar approximation.

In this study, we present another approach to account for
the residual topographywhich has similaritieswith the “RTM
baseline approach” by Hirt et al. (2019). Based on regional
gravity and GNSS/leveling data from the D-A-CH geoid
project (Schwabe et al. 2021) we show that the quasigeoids
computed by this method and by the classic RTM method
are consistent, i.e., agree at the centimeter level. This is the
first main result of this paper.

It has been a long-accepted assumption since Forsberg
and Tscherning (1981) that the HC for the height anomaly
can be neglected. Until shortly, most studies dealing with
the HC or refined RTM approaches thus only considered
gravity, or mainly focused on analyzing the results of var-
ious approaches regarding their magnitude and differences.
Recently, closed-form expressions for the HC were derived
by Klees et al. (2023), indicating that the HC in fact can
contribute up to 20cm in terms of the height anomaly in
mountainous regions. Still, authors of recent case studies
seemwidely unaware of its significance (e.g. Lin et al. 2023).
Moreover, effective empirical verification of the HC for the
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height anomaly was impeded by the lack of sufficiently accu-
rate ground-truthing data (GNSS/leveling) to actually trace
the impact of the HC in the relevant regions (e.g. Omang
et al. 2012; Yang et al. 2022). With the growing role of
the (quasi)geoid in GNSS-based height determination, this is
now changing. But even based on the new GSVS17 dataset
for the “Colorado geoid computation experiment” (Wang
et al. 2021), Yang et al. (2023, Section 5.2) only observe
a very small reduction in terms of standard deviation. Thus,
we consider the significance of HC for the height anomaly
as an ongoing topic. To finally demonstrate by our compar-
isons that it is indeed indispensable in regional quasigeoid
modeling is therefore the second main result of this paper.

The manuscript is structured as follows. In Sect. 2, recent
findings regarding the HC in context of the classic RTM
(Forsberg and Tscherning 1981) are summarized. Our new
approach based on the residual spherical harmonic topo-
graphic potential (RSHTP) is introduced in Sect. 3. Data
and implementation of the techniques in the case study are
described in Sect. 4. Results are presented in Sect. 5 and dis-
cussed in context in Sect. 6. Finally, conclusions are drawn
in Sect. 7.

2 Recent findings regarding the HC in the
classic RTM

The classic approach to derive the HC according to Eq. (1)
considers the effect of a condensed Bouguer plate between
the points P̄ and P and the effect of harmonic downward con-
tinuation of the exterior gravitational potential of the plate in
P̄ to the interior point P (Forsberg and Tscherning 1981). In
recent years, various authors have published formulas for the
HC based on refined approximation schemes, e.g., applying
the condensation to a spherical shell (e.g., Klees et al. 2022,
Eqs. (1), (2)). As far as the HC in terms of the gravity distur-
bance is concerned, this provides the same result like Eq. (1)
except for negligible higher-order terms (see Eq. (6)).

However, while Forsberg and Tscherning (1981) claim the
effect of the condensation is nearly zero for height anomalies,
Yang et al. (2022) showed that in case of the Bouguer plate
approximation it is in fact ζhc = −πGρ

(
HP̄ − HP

)2
/γ (to

be added to the RTM reduction according to our sign con-
vention introduced in Sect. 1). Omang et al. (2012) reported
ζhc = −4πGρ

(
HP̄ − HP

)2
/γ , but without detailed deriva-

tion.
Recently, based on a cylinder configuration Klees et al.

(2023) published the closed-form expressions (in the follow-
ing the “HC case” HP̄ − HP > 0 is implicitly assumed)

δghc = −4πGρ
(
HP̄ − HP

)
(2)

�ghc = −4πGρ
(
HP̄ − HP

)
(1 − u) (3)

ζhc = −2πGρ
(
HP̄ − HP

)2

γP
(4)

for the gravity disturbance, the gravity anomaly and the
height anomaly, respectively (modified after Klees et al.
2023, Eqs. (36)–(40)). Therein, u = (

HP̄ − HP
)
/rP . The

last term in�ghc does not exceed 0.14mGal even in extreme
cases. Typically, it keeps below 10µGal and can therefore be
neglected (Klees et al. 2023). A formula similar to Eq. (4)
has been derived by Ågren (2004, Eq. 29), but in context of
the analytical continuation bias inside the topography when
computinggeoid heights fromaGGM.Asimplified approach
leading to the same closed-form expressions except for
higher-order terms of u and u2 can be summarized as follows:

Imagine a spherical shell bounded by concentric spheres
in P and P̄ . The formulas for the internal and external attrac-
tion and potential of the spherical shell are derived, e.g., in
MacMillan (1958, pp. 35–40) and Wichiencharoen (1982,
Table 1). However, the latter seems to contain errors and
should be used with caution (see “Appendix A”). Consider
the HC as the difference between the internal potential of
the shell in P and the external potential of the shell in P
after condensing it onto a sphere passing through P . Due to
symmetry, the condensed shell can be treated as a pointmass
located in the geocenter, and the HC can be easily computed
from the total mass. We obtain

δghc = δgshellP − δgshell,condensedP (5)

= −4πGρ
(
HP̄ − HP

) (
1 + u + u2

3

)
(6)

for the HC in terms of gravity disturbance, and

δVhc = δV shell
P − δV shell,condensed

P (7)

= −2πGρ
(
HP̄ − HP

)2
(
1 + 2u

3

)
. (8)

in terms of the potential. For typical RTM configurations, the
magnitude of the negative RTM height keeps below 2000m.
For example, in the Mont Blanc area, the negative RTM
height even for a RTM corresponding to degree 300 (relates
to 133km Boxcar filter) is 1462m. Accordingly, the terms of
order u remain below 0.14mGal (as already noticed above)
or 0.1mm, respectively, and thus can be safely neglected in
practice. Since the magnitude of the effect is small (ca. 20cm
for a RTMwavelength corresponding to SH degree 2160, see
Table 2 in Sect. 5.2), we can safely take the normal gravity at
the computation point instead of the corresponding telluroid
point. Thus, the HC in terms of the height anomaly according
to Bruns’ theorem (Hofmann-Wellenhof andMoritz 2005) is
obtained as in Eq. (4) and the resemblance with the closed-
form expressions according to Klees et al. (2023) is shown.
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Carrying out elaborate analytical derivations of the down-
ward continuation, Klees et al. (2023) show that these
formulas are in fact exact. The discussion of all the other
published HC has therefore become obsolete. Thus, in our
regional quasigeoid study using the RCR technique (Sect. 5),
we will focus on the impact of Eq. (4) on the restored height
anomalies when comparing with an alternative approach to
model the topography (Sect. 3) as well as independent vali-
dation data from GNSS/leveling.

3 The residual spherical harmonic
topographic potential approach (RSHTP)

In the following, a reduction similar to the RTM approach is
defined as the difference between the full-scale topographic
potential in the space domain (i. e., complete topographic
reduction) and a truncated expansion of the topographic
potential into spherical harmonics up to a suitable maximum
degree nmax.

A similar approach has been described as “baseline RTM
technique” by Rexer et al. (2018) andHirt et al. (2019). How-
ever, there the SH coefficients of the potential are computed
from a SH expansion of the topographic height function H ,
which implies a convolution in the SHdomain. For an accept-
able error, height coefficients are thus needed until, e.g.,
degree 10,800 or even 21,600 for potential coefficients up
to degree 2160. Furthermore, only the gravitational effect is
considered in that study, but not the potential.

Instead, we will compute the SH coefficients of the poten-
tial directly from the DEM heights. For this reason, and also
because in fact there is no smoothed reference topography
(RTMsurface) involved at all,wefind it appropriate to refer to
this method as the “residual spherical harmonic topographic
potential” (RSHTP) approach.

In spherical approximation, the computation of the New-
tonian gravitational field from a grid of topographic heights
involves numerical integration of spherical tesseroids, i. e.,
fragments of spherical shells bounded by inner and outer
radii r1 and r2 as well as parallels (spherical co-latitudes)
θ1, θ2 and meridians λ1 and λ2. Let l ′ be the running dis-
tance in the integration between the computation point and
the positions within the tesseroid, given as

l ′ =
√
r2 + r ′2 − 2rr ′ cosψ ′ (9)

with

cosψ ′ = (
cos θ cos θ ′ + sin θ sin θ ′ cos

(
λ′ − λ

))
. (10)

Let us also assume a constant density ρ within the cell. Then
the contribution V of this grid cell in terms of the potential

is

V = Gρ

r2∫

r1

θ2∫

θ1

λ2∫

λ1

1

l ′
r ′ 2 sin θ ′dλ′dθ ′dr ′. (11)

Note that here we used the term “spherical approximation”
related only to one aspect, i.e., associating a DEM grid cell
with the shape of a spherical tesseroid. The other aspect,
replacing the geoid with a sphere as far as the base and the
position in spaceof the tesseroids is concerned, is just amatter
of practical implementation and therefore not discussed here.

As it is well known, there is no analytical solution to
Eq. (11) in the space domain, and numerical methods have to
deal with a singularity in the computation point if the latter
is located on the surface of the DEM (Grombein et al. 2013).
However, for a finite SH expansion of the inverse distance
up to a certain cut-off degree nmax, the integral can be solved
analytically.

Combining (rewritten fromHofmann-Wellenhof andMoritz
2005, Eq. (1–108))

1

l ′
=

nmax∑

n=0

n∑

m=0

1

2n + 1

P̄nm (sin θ)

rn+1 r ′ n P̄nm
(
sin θ ′)

× [
cosmλ · cosmλ′ + sinmλ · sinmλ′] (12)

and (modified from Hofmann-Wellenhof and Moritz 2005,
Eq. (2–78)),

V = GM

r

nmax∑

n=0

n∑

m=0

(a
r

)n
P̄nm (sin θ)

[
C̄nm cosmλ

+ S̄nm cosmλ
]

(13)

we arrive at

{
C̄T
nm

S̄Tnm

}
= Gρ

GM (2n + 1)

r2∫

r1

θ2∫

θ1

λ2∫

λ1

r ′ n+2

an

× P̄nm
(
sin θ ′)

{
cosmλ′
sinmλ′

}
sin θ ′dλ′dθ ′dr ′ (14)

for the contribution of eachDEMelement to the fully normal-
ized SH coefficients C̄T

nm , S̄Tnm of the topographic potential.
To this end, replace the left-hand side of Eq. (11) with
Eq. (13), use Eq. (12) in the integral on the right-hand side
of Eq. (11), and solve for C̄T

nm and S̄Tnm to obtain Eq. (14).
P̄nm(·) is the fully normalized associated Legendre function.
The scaling coefficients for the normal field GM (geocen-
tric gravitational constant) and a (major axis of the reference
ellipsoid) have to be chosen by convention. In this study, we
assume theGRS80 (Moritz 2000) normal potential to be used
as the standard in context of the disturbing potential.
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The series in Eq. (12) is subject to the divergence problem.
Theoretically, it is only valid for nmax → ∞, and also the
condition r > r ′ must be satisfied for the series to converge.
It has been shown that SH series diverge on the topography
once that the topographic densitymodels are realistic enough
or nmax is large enough. Thus, methods like the RSHTP or
the RTM will likely fail for irregularly shaped asteroids, or
even the Moon (Hirt and Kuhn 2017). However, the scope
of this study is the comparably regularly shaped Earth. Here,
reasonable results can be obtained by truncating the infinite
potential series to a suitablenmax as ameans of regularization.
To demonstrate this for a typical resolution of a combined
GGM(degree2160 resp. 2190)wasoneof thegoals inSect. 5.

The kernel can be factorized into three items, each depen-
dent only on a single integration variable. Thus, we can
rewrite Eq. (14) in the form

{
C̄T
nm

S̄Tnm

}
= Gρ

GM (2n + 1)

r2∫

r1

r ′ n+2

an
dr ′

×
θ2∫

θ1

P̄nm
(
sin θ ′) sin θ ′dθ ′ ×

λ2∫

λ1

{
cosmλ′
sinmλ′

}
dλ′.

(15)

The definite integral of the associated Legendre functions
by recursion is elaborated in detail in Fukushima (2012). An
alternative recursion formula is derived in Wei (2016). How-
ever, for a small enough cells the integration with respect to
θ ′ and λ′ can be replaced by finite differences. Thus, Eq. (15)
can be approximated in the form of a massline integral

{
C̄T
nm

S̄Tnm

}
= Gρ

GM (2n + 1)

r2∫

r1

r ′ n+2

an
dr ′

× P̄nm
(
sin θ̄

)
sin θ̄

{
cosmλ̄

sinmλ̄

}
�λ�θ, (16)

with θ̄ and λ̄ denoting the spherical coordinates of the cell
centers. Moreover, in practical computations the cell size can
be safely replaced by the nominal grid resolution in terms of
the geodetic latitude (�θ ≈ −�ϕ). After evaluating the par-
tial integral with respect to dr ′, the final formula is obtained
as

{
C̄T
nm

S̄Tnm

}
= Gρ

GM(2n + 1)(n + 3)

(
r ′

a

)n

r ′3
∣∣∣∣

r2

r1

× P̄nm
(
sin θ̄

)
sin θ̄ ×

{
cosmλ̄

sinmλ̄

}
�λ�θ̄. (17)

Numerical tests showed that themagnitude of the effect of the
massline approximation is correlated with the height of the

column r2 − r1. At 1 arc-minute grid resolution, it is limited
to ±8mm in the most mountainous parts of the study area.

Equivalent expressions were already considered by Fors-
berg and Tscherning (1981, Eqs. 27–30), yet we have no
knowledge whether they were ever actually tried in practice
in context of the RCR technique. Considering the compu-
tational implementation, Eq. (17) is similar to the usual SH
analysis except that it additionally includes the massline ker-
nel (the r3 term) to multiply with.

Once the SH coefficients C̄T
nm , S̄

T
nm of the topography have

been determined by summation over all tesseroids, the reduc-
tion containing the high-pass filtered effect of topography can
be computed as

δgRSHTP = δgFST − δgSHT (18)

�gRSHTP = �gFST − �gSHT (19)

δVRSHTP = δVFST − δVSHT, (20)

where (·)FST denotes the full-scale topographic signal com-
puted in the space domain, i. e., the usual topographic
reduction by evaluating Newton’s volume integral between
the topography and the geoid (exemplified by Eq. (11) in
terms of the potential), and (·)SHT denotes the spectrally
truncated topographic signal computed in the space domain
by SH synthesis (exemplified by Eq. (13) in terms of the
potential) from the topographic coefficients (Eq. 17). Basic
formulas for the SH synthesis of other functionals can be
found in standard textbooks on physical geodesy or, e.g.,
Gruber et al. (2014).

The residual quantities are then obtained as

δgres,RSHTP = δgobs − δgGGM − δgRSHTP (21)

�gres,RSHTP = �gobs − �gGGM − �gRSHTP (22)

Tres,RSHTP = Tobs − TGGM − δVRSHTP, (23)

where T is the disturbing potential, δg are gravity dis-
turbances and �g are gravity anomalies. Of course, the
approach can also be applied to other observable functionals
of the gravity field, e.g., deflections of the vertical.

(·)GGM − (·)SHT can be efficiently computed in one SH
synthesis if the GGM is accordingly reduced at coefficient
level using C̄T

nm , S̄
T
nm (provided that the underlying GM

and a of the SH coefficients are scaled to match those of
the GGM). Rearranging the terms as written below, this
can be interpreted as if first the observation (·)obs (here
gravity) is reduced for the full-scale topographic effect in
the space domain, which gives a no-topography quantity
(·)NT = (·)obs − (·)FST, and then the corresponding band-
limited quantity for the GGM (·)GGM-SHT = (·)GGM−(·)SHT
is subtracted. Thus, the terms δgNT and �gNT resemble the
no-topographygravity disturbance and theBouguer anomaly,
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respectively.

δgres,RSHTP = (δgobs − δgFST) − (δgGGM − δgSHT)

= δgNT − δgGGM-SHT (24)

�gres,RSHTP = (�gobs − �gFST) − (�gGGM − �gSHT)

= �gNT − �gGGM-SHT (25)

Tres,RSHTP = (Tobs − δVFST) − (δTGGM − δVSHT)

= TNT − δTGGM-SHT, (26)

TheSH topographic coefficients of the potential according
to Eq. (17) only need to be evaluated and reduced from the
GGM coefficients once. However, whereas the RTM tech-
nique allows for integration over a fixed radius (see Sect. 1),
this approach requires a fixed-area computation. In the fol-
lowing, we will use the term fixed-area computation in two
different contexts depending on the method. Related to the
RSHTP approach, it means the summation of the DEM cells
over a fixed regional domain instead of a global summation,
i.e., using a truncated topography over a regional domain and
assuming zero outside. Related to the classic RTM approach,
we will use it also to differentiate from the abovementioned
integration over a fixed radius, i.e., the same portion of topog-
raphy is modeled for each computation point.

The expansion of the topographic heights into SH coef-
ficients of the potential according to Eq. (17) relies on
the orthogonality of the spherical harmonics on the sphere.
Fixed-area computation will cause spectral leakage in addi-
tion to the usual effects of truncating the SH expansion to
nmax or introducing jumps at the boundaries of the grid (“edge
effects”). This means that when expanding regional data into
SH, the power in the data is distributed differently across the
SH degrees compared to expanding global data (Slobbe et al.
2012). The impact of this on the computations in the space
domain, particularly in context of RCR computations for the
regional quasigeoid, are considered in Sect. 5.1.

4 Setup of the case study

The modeling approaches including the new method
described in Sect. 3 were investigated using the data from
the D-A-CH (Germany-Austria-Switzerland) geoid project.
This initiative was formed in 2017 between the Federal
Agency of Cartography andGeodesy (BKG) ofGermany, the
StateAgency for Spatial Information andRuralDevelopment
(LGL, Federal State of Baden-Württemberg, Germany), the
Agency for Digitisation, High-Speed Internet and Survey-
ing (LDBV, Free State of Bavaria, Germany), the Federal
Office of Metrology and Surveying (BEV) of Austria and
the Topographic Office (swisstopo) of Switzerland. It aimed
to promote a cooperation in the field of regional gravity field
modeling, to exchange and improve the underlying data and

models, and to facilitate cross-border height determination
for users of geodetic coordinates in the border region of
the three countries (Schwabe et al. 2021). It was recently
extended to the whole Alpine region under the name Euro-
pean Alps Geoid (BKG 2022; Bauer and Schwabe 2023).

The inner region to compute the quasigeoid was chosen to
be centered around the Lake Constance and also to roughly
cover equal areas of Switzerland, Austria and the German
federal states of Baden-Württemberg and Bavaria. Within
the D-A-CH cooperation, available point gravity data and
GNSS/leveling data were exchanged in an area extending
about 100km further (Fig. 1). Data of France were also con-
tributed from swisstopo’s archives after consultation with the
data owners. Newest gravity data from ongoing fieldworks
in the autonomous Italian province of South Tyrol were pro-
vided by the Cadastre of South Tyrol. Unfortunately, no point
data were available for the other Italian territories in the test
area.

For the most part, the data density and quality is compara-
bly good (average point density 0.7 per km2 in the inner
geoid domain, agreement of gravity station heights with
DEM heights typically better than 10m, only a few appar-
ent outliers in the visual inspection of the residual gravity
data after the remove step). Coarser data prevail in the high
mountain areas of Switzerland and Austria, mostly outside
geoid area, as well as data gaps in parts of Italy and France.
Also, the georeference of the gravity points in France is not
always clear, which becomes apparent through larger differ-
ences between point heights and DEM (Fig. 2). The errors in
the gravity data and the lack of data in the area to the south
of the geoid area make the study of the impact of different
approaches to handle topography more difficult. However,
since we use the same data and an identical RCR process-
ing scheme except for the topographic reduction, the main
conclusions to be drawn from the comparison are not sub-
stantially affected.

Both gravity and GNSS/leveling data were homogenized
to ETRS89 coordinates and EVRS normal heights. This
included application of national a priori geoid models and
height transformation grids, as far as applicable, and also
conversion to the zero-tide system for both ellipsiodal and
normal heights in the GNSS/leveling data.

As for the GGM, the GECOmodel (Gilardoni et al. 2016)
up to degree 2190 and order 2159 was used. The SH coef-
ficients beyond degree 2160 in this model originate from a
prior conversion of ellipsoidal harmonics to spherical har-
monics. In this context, we used the model coefficients “as
is” in the SH synthesis, i.e., up to degree 2190. However, as
far as the cut-off wavelength in the classic RTM approach is
concerned, the model is considered as “degree 2160.”

On the other hand, the nmax for the SH expansion of the
topographic potential ((·)SHT term) in the RSHTP approach
was chosen at degree 2160. Testing different combinations
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Fig. 1 Datasets (blue dots: gravity stations, black triangles: GNSS/leveling points) and data domains (plot area: gravity domain, orange inlay: geoid
domain)

of nmax for both (·)GGM and (·)SHT, as well as for the regional
vs. global case (see Sect. 5.1), it was found that this provided
the best results for the area, based on the empirical standard
deviation of the residual gravity data (Table 1) as the criterion.

All functionals of the disturbing potential in this study are
defined in accordancewith the normal potential of theGeode-
tic Reference System 1980 (Moritz 2000). In this regard, the
coefficients of the GECO model were rescaled accordingly
following (Gruber et al. 2014, Eq. (4.21)). Also, all quanti-
ties from the GGM are computed according to the zero-tide
convention.

Regarding theDEM, it was decided to use the global 3 arc-
second MERIT DEM (Yamazaki et al. 2017) for this study
since a spectrally filteredRTMsurface to be used in context of
the classic RTM approach was readily available by means of
theMERIT2160 dataset (Hirt et al. 2019). Also, MERIT was
one of the best available DEM from global satellite radar data
at that time (Zahorec et al. 2021, Appendix C). MERIT2160
is a set of SH coefficients of the height function up to degree
2160 which was derived from the global MERIT grid. The
corresponding RTM reference surface computed from SH

synthesis of the MERIT2160 coefficients, also to SH degree
2160, was provided by Christian Hirt (personal communica-
tion).

The respective domains in which the data are given were
defined like this:

• Geoid domain: 46.75°N – 48.35°N (ca. 180km) / 7.5°E
– 11.5°E (ca. 300km)

• Gravity domain: 45.85°N–49.25°N (ca. 380km) / 6.1°E
– 12.9°E (ca. 510km)

• DEM domain (regional case): 44.95°N – 50.15°N (ca.
580km) / 4.7°E – 14.3°E (ca. 720km)

The locations of the gravity and of the geoid domain are
visualized in Fig. 1 alongside with the point data.

The processing scheme is as follows:

1. Remove step

(a) Computation of residual gravity disturbance at sta-
tion height. Here, we directly evaluate the norm of
the full gravity vector |g| from the GGM, i. e.,
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Fig. 2 Differences between gravity station heights and MERIT DEM. The orange inlay marks geoid domain of the test area

δgres,RTM = gobs − |g|GGM − δgRTM or
δgres,RSHTP = gobs − |g|GGM-SHT − δgFST,
respectively. The quantities |g|GGM and |g|GGM-SHT
were computed according to Eqs. (4.49) and (4.52) in
Gruber et al. (2014) using the unreducedGGMcoeffi-
cients C̄nm (after rescaling to GM and a of GRS80),
S̄nm and the reduced GGM coefficients C̄nm − C̄T

nm ,
S̄nm − S̄Tnm (see Eq. (17)), respectively. Note that this
approach resembles the computation of residual grav-
ity disturbances with respect to the normal potential
of the GRS80 system but without explicitly evaluat-
ing the normal gravity.

2. Compute step

Note that the following approach for the compute step in this
study was chosen out of convenience over, e.g., least-squares
techniques such as collocation or estimation of radial base
functions. It is not specific or a requirement to the RTM or
the RSHTP method in the remove and restore steps. The aim
was to transform residual gravity to residual height anomalies
in mostly the same way for each of the compared methods

Table 1 Standard deviations (SD) of residual gravity (mGal) after the
remove step for different nmax regarding the global geopotential model
(GGM) GECO and the SH expansion of the topography according to
Eq. (17)

Approach nmax
GGM

nmax
Topography

SD

RTM-SH 2190 RTM surface computed 3.9

(regional) 2160 from MERIT 2160 4.4

RSHTP 2160 2160 4.8

(regional) 2190 2160 4.4

2190 2190 5.4

RSHTP 2160 2160 4.5

(global) 2190 2160 4.8

2190 2190 6.1

RTM and RSHTP in order to study the isolated impact of the
different topographic reduction schemes.

The parameters quoted in the following substeps were
determined empirically during previous computations in
the same area within the D-A-CH project (using the RTM
approach with the same terrestrial gravity data and the
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GECO GGM to model the gravimetric quasigeoid of the
area, and using the same GNSS/leveling data for validation).
While this setup does not necessarily provide the optimal
GNSS/leveling fit also for the RSHTP approach in each sub-
region (see results in Sect. 5.4), in particular in view of the
Wong-Gore kernel modification, it still proved as a reason-
able reference for the method comparisons with no impact
on the general characteristics and conclusions.

(a) Data preselection 1: All gravity points where the station
height differs from the DEM height by more than 10m
were rejected. This relates to a total of ca. 5 percent for the
whole dataset. The choice of this global threshold value
might be too pessimistic in some mountain areas with
new and accuratelymeasured gravity stations, e.g., South
Tyrol. However, it was done after extensive empirical
tests in order to reliably circumvent gross errors in some
problematic data sources, e.g., in France. Anyway, the
data selection applies equally in the method comparison,
so again themain characteristics and findings do not seem
affected.

(b) Data preselection 2: For each cell of the grid (see next
step) the median of the residual gravity values was com-
puted, and only the corresponding data point of that
median value was used together with its original loca-
tion in the gridding. This has proven useful as another
robust means to filter outliers.

(c) Gridding: Using the simple collocation mode of the
GRAVSOFT program GEOGRID (Forsberg and Tschern-
ing 2014), the residual gravity data were interpolated
onto a geographical grid with 0.01° spacing (target grid).
Relevant interpolation parameters with this method: Cor-
relation length of themodel covariance function (second-
order Markov model) 15km, a priori standard deviation
(assumedwhite noise of thedata, somewhat optimistic for
the parts of the data inAustria andSwitzerland) 0.1mGal,
number of nearest points per quadrant (subselection of
data around each computation point) 5.

(d) Conversion of residual gravity δgres,(·) to residual height
anomalies ζres,(·) was realized in the frequency domain by
means of Fast Fourier Transform, as implemented in the
GRAVSOFT program SPFOUR (Forsberg and Tschern-
ing 2014). Wong-Gore modification of the Stokes kernel
was applied up to degree 160. Note in this context that,
since we operate with smoothed residual gravity values
(decorrelated with height), the impact of applying the
Stokes function (Hofmann-Wellenhof and Moritz 2005,
Eq. (2–305)) in terms of gravity anomalies instead of
the Hotine-Koch function (ibid., Eq. (2–369)) in terms
of gravity disturbances is numerically negligible in this
configuration.

3. Restore step

(a) Station heights for the target grid (0.01° grid spacing)
were resampled from the original MERIT DEM grid.

(b) Computation of restored height anomalies ζRTM =
ζres,RTM + ζRTM + ζGGM or ζRSHTP = ζres,RSHTP +
δζFST + ζGGM-SHT,
respectively, for computation points in the target
grid and for the GNSS/leveling points. The grids
are mainly used for visualization and grid-based
comparisons in Sect. 5. For the comparison with
GNSS/leveling data in Sect. 5.4. Only the residual
height anomaly ζres,(·) was interpolated from the grid
coming out of the compute step,whereas the terms for
the RTM and RSHTP reductions were directly evalu-
ated for the location and height of the GNSS/leveling
points.

For the classic RTM reductions (·)RTM the reference
topography (RTM surface) was derived from the model
MERIT2160 (Hirt et al. 2019), as outlined above. In the fol-
lowing,wewill refer to this as the “SH-filteredRTMsurface,”
or short “RTM-SH.” Additionally, a running average filter
with 15km diameter was also tested, hereafter referred to
as “15km boxcar filter,” or short “RTM-Boxcar.” However,
in our comparison of RTM and RSHTP in Sect. 5 we will
focus on theRTM-SHapproach. For detailedmaterial includ-
ing also the results and comparisons for the RTM-Boxcar
approach the reader is refered to the Electronic Supple-
mentary Material (ESM1). Here, we only summarize our
observation that the RTM-Boxcar solution produced signifi-
cantly larger residual gravity values. This confirms again that
the RTM-SH surface is more consistent with the GGM coun-
terpart than the RTM-Boxcar surface, a conclusion already
drawn in Hirt (2010).

Computation of the topographic effects in the space
domain was done as follows. In the innermost zone of 150m
around a computation point, the formulas for the rectan-
gular prism (MacMillan 1958; Forsberg 1984; Nagy et al.
2000) were used. Beyond, the optimized formulas for the
tesseroid according to Grombein et al. (2013) were applied.
Between 150m and 5400m distance from the computation
point the tesseroids are vertically subdivided so that their
height does not exceed the horizontal resolution (i. e., max.
90m). Unlike the horizontal subdivision, this reduces the
near-zone approximation error of the tesseroids consider-
ably (Schwabe et al. 2015). In the computation of the SH
topographic coefficients for the RSHTP approach unaltered
tesseroids were used. However, in order to save computation
time, the original MERIT DEM grid was downsampled to
1arc-minute resolution. In both cases, the fixed-area com-
putation extended over the whole DEM area as specified
above, and the 3-D geometry of the topography was treated
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in ellipsoidal approximation neglecting the (quasi)geoidal
variation, i. e., assuming r ≈ r0(ϕ)+ HDEM. In all computa-
tions involving topography (RTM and RSHTP), the standard
density ρ = 2670 kgm−3 was applied.

In general, station heights were introduced in terms of
ellipsoidal coordinates (i.e., including ellipsoidal height) and
mapped to geocentric co-latitude and radius when comput-
ing terms from SH coefficients ((·)GGM, (·)SHT, (·)GGM-SHT)
by SH synthesis, whereas for the computations to evaluate
the topographic effect in the space domain ((·)RTM, (·)FST)
the physical height was used both related to the DEM and the
height of the computation point. This means that for the latter
the geoid was neglected in the inner geometry of the topogra-
phy, and the prisms or tesseroids are placed on the ellipsoid.
This also applies for the SH expansion of the topography
(computation of the coefficients according to Eq. (17)) in the
RSHTP approach.

Where necessary, physical heights and ellipsoidal heights
were converted using EGG08 (Denker et al. 2009) as an a
priori height transformation grid. In context of the station
heights of the gravity data this implicitly means the conver-
sion between gravity anomalies and gravity disturbances. It is
safe to assume that the conversion does not impose any addi-
tional noise or bias larger than 0.1mGal to the gravity data.
Thus, the impact on the practical RCR quasigeoid results is
negligible.

Finally, while the HC to gravity (Eq. 1) was routinely
applied in the computations of the RTM reductions in the
remove step, theHC in terms of the height anomaly according
to Eq. (4) was evaluated separately and its impact on the
results was analyzed in detail in Sects. 5.3 and 5.4.

5 Results

5.1 Comparison of global versus regional SH
expansion of the topographic potential in the
RSHTP approach

This section is dedicated to the study of the leakage effect
that the SH expansion of the topography from regional DEM
data has on the RSHTP reduction. To this end, we will first
consider a simulation experiment without using any regional
terrestrial gravity data. This includes forward modeling of
the terms in Eqs. (21)–(26), here displayed for nmax = 2190
regarding the (·)GGM terms and nmax = 2160 related to the
(·)SHT terms.

As described in Sect. 4, over the regional domain of the
study area theMERITDEM (Yamazaki et al. 2017) was used
at original 3arc-sec resolution for the full-scale topographic
reduction ((·)FST) and downsampled to 1arc-min in the SH
expansion of the topography ((·)SHT). In the global case, the
downsampled 1arc-min version of the MERIT DEM was

used outside the study area both for the (·)SHT and the (·)FST
terms.

However, it should be noted that theMERITDEM is tech-
nically not a global DEM. The southern boundary of the
grid domain is located in the Southern Ocean at 60° south-
ern latitude with zero heights all along the boundary. Thus,
the Antarctic continent is missing in the MERIT DEM. In
view of the orthogonality problem the simulations for the
global SH expansion presented here are therefore formally
only valid for a hypothetical Earth in which Antarctica does
not exist. However, considering the outcome of our compar-
ison with the regional computation as presented below, we
have no indication that this “quasi-global” computation sig-
nificantly changes the numerical results of the restored height
anomalies for the study area, as compared to a “true global”
computation.

Detailed viewgraphs for the various quantities, including
forward modeled fields for gravity disturbance and height
anomaly are compiled in the electronic supplementary mate-
rial (ESM2). Here we only consider the differences of the
RSHTP reduction ((·)FST minus (·)SHT) for the global minus
the regional case. These are shown inFig. 3. The samedistinct
high-frequency striping pattern appears for both functionals
with magnitudes up to 12mGal or 4cm, respectively. This
pattern does not seem to correspond with the local terrain
height.

In order to simulate the remaining effect like in a RCR
computation of the quasigeoid, we first propagated the grav-
ity differences (Fig. 3, left panel) to height anomalies using
the same method as in the actual regional quasigeoid mod-
eling (Sects. 5.2–5.4) based on the Stokes integral in the
frequency domain (program SPFOUR, see Sect. 4). For con-
sistent comparison with the actual RCR results (see next
paragraph) we again applied the Wong-Gore kernel mod-
ification up to degree 160. From that, we evaluated the
simulated closure differencewith respect to the directly com-
puted height anomaly differences. The result is shown in the
left panel of Fig. 4. In the electronic supplementary material
the propagation is computed without Wong-Gore modifica-
tion, resulting in a only slightly different picture.

Furthermore, we also compared the complete RCR quasi-
geoid computation using the actual gravity data as in
Sects. 5.2–5.4 for the global and the regional SH expansion
of the topography. The actual closure difference according
to that is shown in the right panel of Fig. 4. Simulated and
actual closure differences largely correspond except for the
areas void of terrestrial gravity stations. The magnitude in
the inner part of the study area (“geoid domain” as defined in
Sect. 4) remains in both cases below ±9mm. The respective
standard deviations are 1.8mm (simulated) versus 2.3mm
(actual). This includes a long-wavelength component but also
high-frequency features that seem to be correlated with the
terrain height. Zahorec et al. (2021, Fig. 10) demonstrates that
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Fig. 3 Difference between global and regional computation of the RSHTP reduction. Left panel: gravity disturbances, right panel: height anomalies
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Fig. 4 Simulated (left panel) and actual (right panel) closure differences in the remove-compute-restore computation of the height anomaly due to
the SH expansion of the topographic potential from global vs. regional topography data
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Fig. 5 RTM height (left panel) and HC for the height anomalies according to Eq. (4) (right panel) for the classic RTM with SH-filtered RTM
surface. Areas where the HC is zero (HP > HP̄ ) are shown in gray to demonstrate the characteristic truncation pattern of the RTM-SH surface
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Table 2 Descriptive statistics of residual fields, RTM topography and HC for height anomalies

Approach RTM surface Inner region (geoid domain) Outer region (gravity domain)

Mean STD Min Max Mean STD Min Max

Residual gravity (after gridding) (mGal)

RTM SH expansion (2160) −0.7 3.6 −18.5 +22.7 −0.8 3.8 −23.9 +29.4

RSHTP None −0.7 3.7 −19.2 +21.3 −0.9 4.1 −26.5 +29.0

Gridding residuals (mGal)

RTM SH expansion (2160) 0.0 0.74 −8.6 +8.9 0.0 0.72 −10.1 +8.9

RSHTP None 0.0 0.66 −7.7 +5.9 0.0 0.65 −8.8 +7.9

Residual height anomalies (cm)

RTM SH expansion (2160) +0.3 3.8 −10.7 +17.6 −0.3 3.6 −17.5 +19.3

RSHTP None +0.4 3.9 −9.8 +19.3 −0.3 3.7 −19.1 +20.9

RTM height (topography minus filtered topography, where negative) (m)

RTM SH expansion (2160) –135 174 –1130 0 –148 192 –1387 0

HC for the height anomalies (where applicable) (cm)

RTM SH expansion (2160) −0.6 1.3 −14.6 0.0 −0.7 1.6 −22.0 0.0

The inner region is represented by the orange rectangle in Figs. 5 and 6

the distant relief effect in the complete topographic reduc-
tion depends on the height of the computation point. Thus,
we presume that the two different topographic potentials in
the global and in the regional case might produce a residual
distant relief effect which is not fully absorbed through the
RCR technique.

The important observation is that the residual oscillations
due to the spectral leakage are diminished down to the mil-
limeter level in the closure differences. This confirms that
the total error due to the fixed-area implementation of the
RSHTP approach is acceptable in RCR computations. Also,
it should not affect the comparison between the RSHTP and
the RTM-SH approach in the following subsections.

5.2 HC for the height anomaly in the study area and
comparison of residual fields

Starting with our regional RCR study, let us first analyze and
compare the residual gravity data after reduction of GGM
and RTM according to the setup described in Sect. 4.

Firstly, Fig. 5 visualizes the situation for the RTM surface
derived from SH expansion up to degree 2160 (RTM-SH
surface). The left panels shows the respective negative RTM
heights HP − HP̄ according to Eq. (1), and the right panels
display the correspondingHC in terms of the height anomaly.
The typical truncation effect of the SH expansion in the space
domain becomes apparent in the RTM-SH surface. In some
valleys, the HC for the height anomaly attains values of up
to 10–20cm (Table 2).

Considering the residual gravity disturbances after the
restore step, both RTM-SH and RSHTP approach provide an
equally effective reduction of the observations, as displayed

in the left panels of Fig. 6 and confirmed by the statistics
in Table 2. Application of the compute step as described in
Sect. 4 provides the corresponding grids of residual height
anomalies (right panels of Fig. 6). In both methods they are
reduced to 4cm (standard deviation) or ca. 20cm (maxi-
mum), respectively. In that context, it should be considered
that the study area features the highest mountains (Dufour-
spitze, altitude 4634m) and steepest valleys in the region
where even latest high-resolution combined GGM are not
entirely underpinned by terrestrial gravity data. Compared to
the magnitude of the residual fields, the differences between
the methods (Fig. 6, bottom panels) are smaller by about the
factor 2 (gravity disturbances) to 4 (height anomalies).

On the other hand, if the gridding residuals of the residual
gravity data are considered, the RSHTP approach performs
about 10% better than the RTM-SH approach. From this we
suppose that the RSHTP approach provides a slightly better
smoothing of the observations at the very short scales. This
is in line with the observations made by Hirt et al. (2019,
Figs. 8a and 10b).

5.3 Comparison of quasigeoid results

Next, we compare the results of the height anomaly grids that
are obtained after restoring the contributions of the GGM
and of the topography. Figure 7 displays the respective dif-
ferences (RTM-SH minus RSHTP) before (left panel) and
after (right panel) the HC according to Eq. (4) is applied in
the RTM-SH approach. The related numerical statistics are
compiled in Table 3. From that, a number of observations
can be made.
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Fig. 6 Residual gravity (left panels) and height anomalies (right panels) for the classic RTM with SH-filtered RTM surface (top panels) and the
RSHTP approach (middle panels). The differences of these quantities for the two methods (RTM-SH minus RSHTP) are displayed in the bottom
panels

First, theHC shows up in the figures nearly one-to-one as a
systematic difference if not applied in the classic RTM. This
is also reflected in the numerical statistics in Table 3. Here,
the significantly larger standard deviation of about 20–30%

in the restore step is only one aspect when neglecting the HC
to the height anomaly in the restore step. More importantly,
a pronounced asymmetry in the minima and maxima (span
maximumminusmean beingmuch larger than the spanmean
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Fig. 7 Impact of the HC on the restored height anomalies in the classic RTM approach. Differences between RSHTP results and classic RTM with
SH-filtered RTM surface before (left panel) and after (right panel) application of the HC in the restore step

Table 3 Comparative statistics
of restored height anomaly grids

Solution 1– Solution 2 HC Inner region (geoid domain) Outer region (gravity domain)

Mean STD Min Max Mean STD Min Max

RTM-SH–RSHTP No −0.1 1.1 −2.5 +13.2 +0.3 1.7 −7.3 +23.7

RTM-SH–RSHTP Yes −0.4 0.6 −2.5 +1.5 −0.1 1.1 −8.2 +11.6

The inner region is represented by the orange rectangle in Fig. 7. Column “HC” refers to the HC for height
anomalies applied in the restore step for the classic RTM approach with SH-filtered RTM surface (RTM-SH).
All units in cm

minus minimum) is observed as well. Our conclusion is that
these results are manifestation of the systematic behavior of
the HC, taking on only negative values.

Apart from that, the results of the two approaches appear
very consistent. In the deep valleys some correlation with
topography is still noticeable, but at a much smaller mag-
nitude. Instead, as in the lowlands, the typical correlated
long-wavelength residuals known from RCR computations
prevail. As an example for the agreement on the very local
scale, Fig. 8 provides a zoom-in for the Swiss-Austrian bor-
der zone close to Bludenz (47.03° N, 9.80 ° E, mean altitude
ca. 1700m, max. altitude ca. 2940m) for which the restore
step was done at the original 3arc-second resolution of the
MERITDEM.Apart from amean difference of 11mm in that
region that was removed for the plot, the residual differences
between the classic RTM with SH-filtered reference topog-
raphy and the RSHTP approach have a standard deviation of
2.3mm and do not exceed 8mm. Considering the roughness
of the quasigeoid inmountainous regions (the restored height
anomalies in this area differ up to±7cm or±3.5cm from the
moving average over distances of 2km or 1km, respectively,
not shown here), this is remarkable.

5.4 Validation against GNSS/leveling data

Section 5.3 provides a first indication of the consistency
between the two methods and also of the importance of the
HC for the restored height anomalies in the classic RTM
approach. An independent validation is feasible by compar-
ison of the quasigeoid models with GNSS/leveling data.

To this end, the residual height anomalies after the
compute step were interpolated at the locations of the
GNSS/leveling points, and the contributions of the GGM
and the topographywas restored in these sites by direct point-
wise computation. Combined figures with geographical plots
and histograms per country are presented in Figs. 9, 10 and
11. Moreover, the descriptive statistics for each subarea and
country are summarized in Table 4.

Let us now study the impact of theHC for theRTMmethod
in detail. Figure 9 shows the results in the inner region (geoid
domain) before (top panel) and after (bottom panel) appli-
cation of the HC, whereas Figs. 10 covers the outer region
(gravity domain). Firstly, from the colored dots in the moun-
tainous regions of Austria and Switzerland it becomes clear
that, apart from areas with edge effects along the borders to
France and Italy, the residuals aremuch smaller and homoge-
nenous if the HC in terms of the height anomaly is applied in
the restore step. Secondly, the histograms confirm the obser-
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Fig. 8 Zoom-in of residual differences (mean offset of −1.1cm in the
area removed) between restored height anomalies (RSHTPminusRTM-
SH as in Fig. 7, right panel) in the Swiss-Austrian border zone close to
Bludenz

vation fromSect. 5.3 related to the symmetry of the residuals,
in particular for the areas of Austria and Switzerland.

Since no explicit HC is needed in the RSHTP approach,
Fig. 11 directly shows the results for the inner (geoid domain,
top panel) and outer (gravity domain, bottom panel) regions,
respectively. In general, the distribution of the residuals
resembles the classic RTMwith HC for the height anomalies
(bottom panels of Figs. 9 and 10), respectively.

The improvement in the GNSS/leveling comparisons is
also reflected in Table 4. Here we focus on Switzerland,
where several high mountain peaks are present and a large
number of GNSS/leveling points is available. As can be seen
from the highlighted fields in the table, application of the
HC in terms of the height anomaly lowers the standard devi-
ations by around 30%, and the residuals appear centered.
Finally, with a fit of less than 2cm (standard deviation) in
the inner region, both approaches seem to provide consis-
tent results. Thus, it is confirmed empirically that the classic
RTM approach is severely biased in mountainous regions if
the HC is neglected for the height anomalies in the restore
step.

Regarding the significance of the results in view of the
accuracy of the GNSS/leveling data we will limit ourselves
again to the dataset which is the most relevant for the main
focus area of the interpretation (see, e.g., Table 4, Figs. 9, 10
and 11), i.e., Switzerland. From Urs Marti (swisstopo), we
received by personal communication the information that the
points can be assigned to two categories. The first category
has an assumed accuracy of ca. 1cm and includes leveled
GNSS permanent stations as well as field points observed in
multiple GNSS campaigns and/or sessions of at least 24h.
These make up around 75 percent of the points. The second
category has an assumed accuracy of ca. 3cm and includes
field points that were observed only once in sessions between
4 and 20h. These make up around 25 percent of the points.
Considering the HC values in Switzerland of up to 20cm and
the reduction of the residuals of 30 to 40 percent in terms
of standard deviation and more than 50 percent in terms of
maximum residual for the inner region (Table 4), this should
still be sufficient to consider the comparisons between the
tested methods based on these data significant. Moreover,
this level of accuracy is also in line with the figures reported
for, e.g., theColorado experiment (Wang et al. 2021, Table 6).

6 Discussion

In this section, the results presented in Sects. 5.2–5.4 are
discussed in context. Besides the observation that the RTM
and the RSHTP approach provide consistent results at the
centimeter level in RCR computations of the quasigeoid, we
summarize the following findings related to some particular
questions:

6.1 Impact of the HC for the height anomaly in the
restore step

Through application of the HC according to Eq. (4) in the
restore step the agreement with GNSS/leveling data is sub-
stantially improved. Only then the results are also consistent
with the RSHTP approach at the centimeter level. Neglecting
it leads to a very localized systematic positive bias in the deep
valleys. This bias can attain 10–20cm for a degree 2160RTM
(scenario using a high-resolution combined GGM such as
EGM2008) and even larger numbers for, e.g., a RTM defined
according to a satellite-only model, say, degree 250–300. In
a fitted quasigeoid the bias would be shifted into the adja-
centmountain ridgeswith opposite sign sinceGNSS/leveling
benchmarks are available mostly in the valleys. Thus, fol-
lowing up on the work by Klees et al. (2023) and others, our
study now also provides the empirical proof that omitting the
HC for the height anomaly indeed gives flawed results. This
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Fig. 9 GNSS/leveling residuals hGNSS−Hlev−ζgrav in the inner region
(geoid domain) for the classic RTM approach with SH-filtered RTM
surface, before (top panel) and after (bottom panel) application of the

HC for the height anomaly. A mean offset per country was subtracted
to account for remaining datum differences in the national reference
frame realizations

is a relevant finding considering that the HC for the height
anomaly has been considered negligible for a long time (Fors-
berg and Tscherning 1981), and is still up to date in recent
studies (e.g., Lin et al. 2023, final paragraph in Section 2).

6.2 Applicability to“short-wavelength” RTM
surfaces

One specific question was related to the validity of the clas-
sic RTM approach and the HC for “short-wavelength” RTM
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Fig. 10 GNSS/leveling residuals hGNSS−Hlev−ζgrav in the outer region
(gravity domain) for the classic RTM approach with SH-filtered RTM
surface, before (top panel) and after (bottom panel) application of the

HC for the height anomaly. A mean offset per country was subtracted
to account for remaining datum differences in the national reference
frame realizations
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Fig. 11 GNSS/leveling residuals hGNSS − Hlev − ζgrav in the inner region (geoid domain) (top panel) and in the outer region (gravity domain)
(bottom panel) for the RSHTP approach. A mean offset per country was subtracted to account for remaining datum differences in the national
reference frame realizations

surfaces, e.g., in combination with a high-resolution GGM
of degree 2160. After all, Forsberg and Tscherning (1997)

postulated “luckily this HC is quite straightforward if the ref-
erence topography is long-wavelength, so that the reference
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Table 4 Descriptive statistics of GNSS/leveling residuals

Approach RTM surface HC Inner region (geoid domain) Outer region (gravity domain)

Med STD Min Max Med STD Min Max

Germany (39 points) (102 points)

RTM SH expansion (2160) No +0.4 1.1 −3.2 +1.4 +0.5 1.6 −4.0 +3.1

RTM SH expansion (2160) Yes +0.4 1.1 −3.3 +1.3 +0.5 1.6 −4.1 +3.0

RSHTP None – +0.1 1.0 −3.3 +1.5 +0.3 2.2 −4.2 +2.7

Austria (29 points) (51 points)

RTM SH expansion (2160) No +0.2 2.9 −6.7 +5.5 +0.7 2.9 −7.1 +7.2

RTM SH expansion (2160) Yes 0.0 2.4 −5.9 +3.9 −0.3 2.6 −7.2 +6.7

RSHTP None – +0.2 2.6 −6.2 +4.3 −0.3 3.0 −7.2 +7.9

Switzerland (86 points) (205 points)

RTM SH expansion (2160) No +0.5 2.5 −10.4 +4.9 +0.8 3.7 −15.7 +10.0

RTM SH expansion (2160) Yes −0.2 1.7 −4.0 +4.6 −0.2 2.7 −9.1 +14.6

RSHTP None – −0.2 1.8 −3.6 +5.1 −0.4 3.2 −10.3 +17.6

All (154 points) (358 points)

RTM SH expansion (2160) No +0.4 2.3 −10.4 +5.5 +0.6 3.1 −15.7 +10.0

RTM SH expansion (2160) Yes −0.1 1.7 −5.9 +4.8 −0.1 2.4 −9.0 +14.8

RSHTP None – +0.2 1.8 −6.2 +5.1 −0.1 2.8 −10.3 +17.6

A mean offset per country was subtracted to account for remaining datum differences in the national reference frame realizations. Column “HC”
refers to the HC for height anomalies in the restore step for the RTM approach. All units in cm

topography above the computation point P may be approxi-
mated by a Bouguer plate” – or in the context of Eqs. (6) and
(8) a Bouguer shell. However, based on the numerical results
we do not get the impression that the short-wavelength RTM
imposes any practical problems at all. On the contrary, it fea-
tures some practical advantages. Firstly, also pointed out by
Forsberg and Tscherning (1997), a higher-frequency refer-
ence topography implies smaller RTM effects and a quicker
decay of the far-zone effects in the first place, resulting a sig-
nificantly smaller integration radius. Secondly, theHC for the
height anomaly gets even larger for long-wavelength RTM
(Klees et al. 2022). For example, values up to 26cm are to be
expected in the study area assuming a 100km (Boxcar filter)
RTM surface.

Furthermore, pros and cons of both approaches can be
discussed as follows.

6.3 Pros of the RSHTP approach

No RTM surface is introduced at all. Thus, the explicit HC is
conceptually avoided. Instead, the RSHTP approach implic-
itly accounts for the HC since the SH expansion of the
topographic potential evaluated at the original data points
inherently provides harmonically downward continued func-
tionals, exactly what the HC aims at. In fact, theoretically the
RSHTP approach provides this harmonic downward contin-
uation even for the whole internal space of the topographic
masses, whichmakes it also applicable to compute the geoid.

Furthermore, the appliedmass reductions preserve a phys-
ically consistent Earth model insofar that exactly the same
topographic information is used for each computation point.
Opposed to that, although the closed-formexpressions for the
HC have now shown to be theoretically exact by Klees et al.
(2023), the HC is still computed from a different spherical
shell in each computation point.

The technique allows to directly combine the topographic
potential with the GGM at coefficient level up to the desired
nmax, i. e., it is inherently spectrally consistent. The assumed
linear relationship between RTM surface and the represen-
tation of the topographic spectrum included in the GGM is
avoided.

As a practical benefit, through computing the combined
term (·)GGM-SHT, only one additional SH analysis but no
additional SH synthesis is needed for the SH topographic
potential in addition to the GGM, and, unlike the SGM
described in Hirt et al. (2019), the SH expansion itself differs
from the standard case for the topographic height function
only by the additional massline integral. Also, the full-scale
part of the RSHTP reduction from the integration in the
space domain ((·)FST) has to be computed only once even
for different nmax of the GGM or of the SH expansion of the
topographic potential, respectively.

Furthermore, the absence of the RTM surface is especially
convenient in case of multiple large density contrasts (large
lakes, ice caps etc.) because the individual contributions of
various layers to the (·)FST and (·)SHT terms can be easily
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computed separately and stacked (see also the related con of
the classic RTM in this regard).

6.4 Cons of the RSHTP approach

Numerical implementation ismore sophisticated and requires
a fixed-area integration of the DEM to ensure mass con-
sistency between the SH analysis of topographic potential
coefficients and the full-scale topographic effect in the space
domain. Generally, SH expansions of the topography come
at high computation costs. On the other hand, this disad-
vantage is neutralized with regard to the classic RTM with
SH-filtered RTM surface which also requires SH analysis of
the topographic height function unless precomputed products
such as the MERIT2160 (Hirt et al. 2019) are available.

As discussed in Sect. 3, the SH analysis computed from
data of a regional domain violates the orthogonality of the SH
basis on the sphere and introduces spectral leakage. Accord-
ing to Slobbe et al. (2012), this error does not smoothly
approach zero as the regional domain size increases. Thus, if
the RSHTP approach is to be applied in a pure forward mod-
eling from GGM and topography data global SH analysis
is indispensable. On the other hand, as shown in Sect. 5.1,
the regional approach appears indeed viable in RCR com-
putations. In this real-world example, the total effect of the
fixed-area computation (see Fig. 4) is acceptable and does
not significantly affect the RCR results compared to the RTM
approach (Tables 1, 2, 3, 4).

6.5 Pros of the classic RTM

The far-zone effect of the classicRTMconverges to zero, thus
a fixed integration radius can be used (significantly larger
for the potential than for the gravity) instead of a fixed-area
computation. However, the additional HC in terms of the
height anomaly is still not yet implemented, e.g., in thewidely
used TC program of the GRAVSOFT package (Forsberg and
Tscherning 2014). Thus, we recommend to check whether
this is the case for any specific software in use. Adding it
manually is straightforward, either directly in the source code
or evaluated separately based on simple algebraic operations
on the DEM grids.

6.6 Cons of the classic RTM

In practical terms, the concept of the RTM surface compli-
cates the handling of different large-scale density contrasts
which may appear simultaneously and contribute equally to
the long-wavelength signal in the GGM. A prominent exam-
ple for this are the polar regions with ocean bathymetry,
ice caps and subglacial lakes. If applied rigorously, i. e., no
approximation like rock-equivalent topography etc. is intro-
duced, these density contrasts can be conveniently taken

into account by considering individual RTM surfaces for
each interface (e.g., rock/ice, ice/water, water/air) (Schwabe
et al. 2014). Although these interfaces can be stacked,
thereby even coinciding in places (for example, rock/ice and
ice/air interface would coincide over the ice-free mountains
of Antarctica), for very localized features (smaller lakes,
glaciers) this quickly becomes numerically inefficient. An
alternative would be to apply the RTM only to large-scale
features, similar to the topography/bathymetry where the so-
called “marine convention” is frequently used, and then to
remove and restore local density anomalies to their complete
topographic effect.

Furthermore, the classic RTM approach requires explicit
computation of the RTM surface and of the RTM reduction
in the space domain for each desired spectral resolution of
the RTM (usually according to nmax of the GGM). In case
of the SH-filtered reference topography this implies not only
an additional SH analysis but also an additional subsequent
SH synthesis for the heights. As discussed above, the advan-
tage of the RSHTP approach in that regard is that the nmax of
the SH topographic potential can be simply changed in the
joint SH synthesis with the GGM term as long as the coef-
ficients according to Eq. (17) for a certain DEM have been
precomputed once up to an arbitrary desired SH degree.

7 Conclusions

With this novel approach to model the topographic effect we
present an alternative to the classic RTM method in remove-
compute-restore computations of the quasigeoid. The resid-
ual spherical harmonic topographic potential (RSHTP) tech-
nique avoids the HC equally for all functionals of the gravity
field. It can be considered as a generalization of the “RTM
baseline technique” as described by Rexer et al. (2018) and
Hirt et al. (2019), where the full-scale effect of the topogra-
phy in the space domain is combined with an expansion of
the topographic potential into spherical harmonics. However,
while the “RTM baseline technique” implies a convolution
of the topographic height function H , RSHTP makes direct
use of a truncated SH expansion of the tesseroid formula,
which can be computed analytically.

A case study in the region of the central European Alps
demonstrated the practical feasibility of the RSHTP method.
This is based on real gravity data in the region of the Swiss
and Austrian Alps and external validation of the quasigeoid
solutions against independent GNSS/leveling data. Although
the intention was primarily to showcase the contribution to
improved gravity and quasigeoid computations, it could be
just as well applied to, e.g., deflections of the vertical or
gravity gradients. This will potentially support the improved
prediction or forward modeling of a set of gravity field func-
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tionals, e.g., in updates of regional or global data products
such as GGMplus (Hirt et al. 2013).

Furthermore, the validity of the classic RTM with HC
approach in quasigeoid computations was investigated. All
taken together, the significance of the HC for the height
anomaly according to Klees et al. (2023) in deep moun-
tain valleys could be confirmed. In our example, the RTM
method provides results consistent with the RSHTP method
at the centimeter level (i. e., standard deviation better 2cm,
max. residuals better 5cm in most cases), apart from edge
effects and data gaps. On the other hand, neglecting the
HC for the height anomalies leads to a systematic bias in
the deep valleys of up to 10–20cm, which is reflected in
asymmetric histograms of GNSS/leveling residuals. Thus,
the long-accepted assumption that the HC for height anoma-
lies is negligible (Forsberg and Tscherning 1981) is finally
disproven.

In principle, the RSHTP reduction is also valid at all inte-
rior points within the considered topography. In this context,
some similarity with the topographic bias as described by
Ågren (2004) is obvious. Thus, Eq. (23) should be readily
applicable also to derive the disturbing potential at the geoid,
provided themethod applied in the compute step includes any
form of downward continuation of the residual gravity field
down to the geoid. It is planned to study this aspect further in
the upcoming activities for the European Alps Geoid project
(EAlpG).

Finally, optimized implementation of the technique taking
into account both theoretical and practical aspects remains
for future investigations.

Appendix A Proposal for corrections to
Wichiencharoen (1982)

Based on MacMillan (1958, pp. 36–39), Wichiencharoen
(1982, Table 1) compiled the potential V ′ and attraction A′
on the inner and outer boundary of a spherical shell. The pur-
pose was to study the indirect effect on the geoid, thus, the
lower boundary (computation point P0) is the geoid, approx-
imated by a sphere with the mean Earth radius R, and the
upper boundary (computation point P) is r = R + h p. Also
presented are formulas for the respective effects V ′

s , A
′
s if

the spherical shell is condensed at the lower boundary. k (G)
is Newton’s gravitational constant, Ms is the total mass of
the spherical shell, and an auxiliary variable is defined as
u = h p/R. Furthermore, Taylor expansions for (1 + u)−1

and (1 + u)−2 are used.
It should be noted that the report contains some significant

errors:

• Equations 22 and 28
According to the sign convention in Eq. (20), the attrac-
tion A′ is defined as the gravitational effect − ∂V

∂r . Then,

Table 5 Proposal for corrections to Wichiencharoen (1982, Table 1)

Quantities Evaluated at P0 Evaluated at P

V ′ 4πkρRhp(
1 + u

2

)
kMs
R+h p

= 4πkρh p
(
1 + u2

3 − u3
3 + . . .

)

V ′
s 4πkρRhp(

1 + u + u2
3

) 4πkρh p(
1 + u2

3 − u3
3 + . . .

)

V ′ − V ′
s −4πkρRhp(

u
2 + u2

3

) 0

=
[
−2πkρh2p

]

(
1 + u

3

)

A′ 0 kMs

(R+h p)
2 = + 4πkρh p

(
1 − u + 4u2

3

− 5u3
3 + . . .

)

A′
s +4πkρh p(

1 + u + u2
3

) + 4πkρh p(
1 − u + 4u2

3

− 5u3
3 + . . .

)

A′ − A′
s − 4πkρh p(

1+u + u2
3

)

= −A′
s

0

Changes are marked in bold

Eqs. (21), (22) and (28) should have a positive sign on
the right-hand side, respectively. In Table 1, A′ at P has
the correct sign if written as kMs

(R+h p)
2 but not if written

as 4πkρh p · (. . . ). Note however that MacMillan (1958,
p. 39) defines his attraction A positive toward the center
as ∂V

∂r .• Equation 26
Equation (24) uses the formula derived by MacMillan
(1958, p. 39) for the potential in a running point between
the two bounding spheres, i. e., inside the masses of the
spherical shell. Inserting r = R, Eq. (25) for the potential
V ′ in P0 is correctly obtained. However, instead of going
out from Eq. (24) again and then inserting r = R, the
derivative is applied to Eq. (25). Hence, the substantial
conclusion fromMacMillan (1958, pp. 36–39) that inside
the spherical shell the attraction is

A′ = −∂V ′

∂r
= −4

3
πkρ

(
R3

r2
− r

)
, (A1)

and therefore A′ must vanish in P0, is ignored.
• Table 1 V ′ − V ′

s
In the simplified formula, the term u

3 is neglected without
indication.

To summarize, we propose that Wichiencharoen (1982,
Table 1) should read as presented in Table 5.
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