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Abstract
The Earth’s crust is exposed by tectonic processes and is not static over time. Modelling of the Earth’s surface velocities is of
utmost importance for research in geodesy, geophysics, structural geology, and other geosciences. It may support positioning,
navigation, seismic risk, and volcano notification services, for example. Space geodetic techniques can be used to provide
high-quality velocities in a network of geodetic sites. Velocity field modelling should, however, expand the velocities from
a discrete set of points to any location in-between. This paper presents four new methods for the Earth’s surface velocity
interpolation. Contrary to the widely used approach dividing the velocity field to the horizontal and vertical components, a
full 3D interpolation approach is proposed based on the Delaunay triangulation and the n-simplex interpolation. The use of
a combination of all three components is advantageous for geophysical interpretation. The proposed interpolation approach
is entirely local but enables global modelling, which does not suffer from map projection distortions and singularities at the
poles. Various global and regional position/velocity datasets are used to evaluate the performance of the proposed velocity
interpolation methods. The latter provide practically the same results when applied to regional velocity field modelling.
However, the so-called continuous piecewise quasi-radial 3D velocity field interpolation method is recommended for its
favourable properties. It introduces an ellipsoidal Earth model, appropriately considers vertical/up and horizontal velocity
components, tends to radial symmetry, and provides continuity for the interpolated velocity components as well as for the
estimated uncertainties.

Keywords Delaunay triangulation · Earth surface · Plate tectonics · Space geodesy · Velocity field · Velocity interpolation

1 Introduction

Velocity is the vector equivalent of speed and measures both
the rate and the direction of movement. Velocity field mod-
elling of the Earth’s surface has multiple engineering and
scientific applications, such as integration in the International
Terrestrial Reference Frame (ITRF), maintenance of a static
reference frame, realization of a semi-kinematic or kinematic
reference frame, and providing precise positioning and navi-
gation services, and iswidely used in the study of geophysical
phenomena. The latter includes interpretation of local-scale
or inter-regional land uplift, tectonic platemotions, intraplate
deformations, and strain rate analyses which are further used
for seismic and volcano hazard assessment studies, research
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in glacial isostatic adjustment, rock mechanics and struc-
tural geology, etc. (e.g. Grenerczy et al. 2000; Caporali et al.
2003; Kenyeres and Bruyninx 2004; Lidberg et al. 2007;
Avallone et al. 2010; Weber et al. 2010; Kierulf et al. 2013,
2019, 2021; Chatzinikos et al. 2015; Blick and Donnelly
2016; Snay et al. 2016; Bruyninx et al. 2017; Ronen and
Even-Tzur 2017; Kreemer et al. 2018; Poutanen and Häkli
2018; Kenyeres et al. 2019; Li et al. 2019; Azhari et al.
2020; Kall et al. 2021; Pagani et al. 2021; Serpelloni et al.
2022). Datasets of various global and regional (national or
continental) networks of sites with estimated positions and
velocities (position/velocity dataset) are available nowadays,
which are based either on passive (campaign-based) sites or
active (continuously operating) stations with the coordinate
time series obtained via space geodetic techniques, such as
Global Navigation Satellite System (GNSS), Satellite Laser
Ranging (SLR),DopplerOrbitography andRadiopositioning
Integrated by Satellite (DORIS), and Very-Long-Baseline
Interferometry (VLBI). In order to obtain reliable reference
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positions and velocities, a consistent terrestrial reference
frame should be used in a multi-year cumulative network
solution. Coordinates and velocities are estimated at inter-
vals defined for each individual site in the position/velocity
dataset. The endpoint of such an interval represents a sta-
tion coordinate discontinuity (jump in the coordinate time
series) and/or station velocity discontinuity (change in the
velocitymagnitude and/or direction). Discontinuities usually
coincide with measurement equipment or settings changes,
firmware upgrades, processing changes, earthquakes, vol-
cano eruptions, etc. (e.g. Lahtinen et al. 2022).

The velocity field modelling which is based on discrete
points with known positions and velocities (data points)
requires an interpolation or approximation of the velocity
of any point in the domain (interpolation point). Pure inter-
polation provides interpolated velocities which fully agree
with the known/estimated velocities at all data points. The
dilemma of approximation versus interpolation may arise
when balancing the quality of the velocities and the den-
sity of the data points. The approximation approach provides
smoother results by filtering out the noise (Steffen et al.
2022). This is crucial in case of dense but noisy data. On
the other hand, the interpolation approach seems to be an
appropriate solution for a dataset which is checked and ver-
ified.

Periodic signals which are not driven by tectonic pro-
cesses should be eliminated from the velocity determination.
This includes annual and semi-annual signals in a GNSS
time series and periodic patterns that resemble the repeat
time of a GNSS constellation, which could overestimate
the rate uncertainty (Amiri-Simkooei et al. 2007). A care-
ful visual inspection of coordinate time series is needed
to detect discontinuities and improve the quality of the
GNSS velocity estimates. Many semi-automatic positional
offset detection methods have also been developed (e.g.
Amiri-Simkooei et al. 2019; Khazraei and Amiri-Simkooei
2021; Lahtinen et al. 2022). Different approaches to remove
outlier velocities from the position/velocity datasets have
been investigated recently, for example, based on strain
rate patterns (Araszkiewicz et al. 2016) or robust Maha-
lanobis distance (Magyar et al. 2022). The above-mentioned
temporal discontinuities require a time-interval-based posi-
tion/velocity lookup table; an individual data point may
require more than one row in the table. This makes it difficult
to appropriately incorporate all information from the input
datasetwhen trying to create an adequate velocity fieldmodel
which is based on a point lattice—a regularly spaced array of
(virtual) points. To be able to access complete information on
the discontinuities, the interpolation should be based directly
on the locations where the observations are collected.

Each velocity consists of three components which are
usually divided into horizontal and vertical parts. If treated
separately, the modelling of each individual component will

be considered an interpolation on the reference surface in
the 3D space, with the domain in a projected or geodetic
coordinate system (e.g. Snay et al. 2016). This task is sim-
ilar to terrain modelling, for example. There are at least a
dozen of spatial interpolation and approximation methods
available, such as inverse distance to a power interpola-
tion, Kriging method, minimum curvature method, modified
Shepard’s method, natural neighbour interpolation, near-
est neighbour interpolation, polynomial regression, radial
basis function interpolation, triangle-based piecewise linear
interpolation, piecewise polynomial or spline interpolation,
moving average method, data metrics method, and least-
squares collocation (e.g.Yang et al. 2004; Steffen et al. 2022).
Most of these methods can be either approximate or exact
(interpolation); the latter can be achieved by assigning zero
smoothing parameters.

Some inconsistencies that may appear in the geodetic
velocity field modelling can be summarized as follows. The
original velocity components resulting from the cumulative
network solution are obtained in the geocentric system (Ẋ , Ẏ ,
Ż ) and are correlated. The corresponding variance–covari-
ance matrix is fully populated. Some stochastic information
is lost (i.e. ignored for simplicity) when converting the
velocities to the topocentric system (Ṅ , Ė , U̇ ) and divid-
ing them into the horizontal and vertical parts. Furthermore,
the heights of points are completely ignored in the velocity
field modelling when using a geodetic (ϕ, λ) or projected (e,
n) coordinate system as the domain for the velocity inter-
polation. Moreover, the horizontal velocity components (Ṅ ,
Ė) may be inconsistent with the projected coordinate system
due to ignoring the meridian convergence, and the interpo-
lation of all three velocity components may be affected by
map projection distortions. No matter which map projection
is used, a global or continental velocity field model should
not be based on projected coordinates due to large distor-
tions in the scale and direction. Also, there are singularities
at the poles where the horizontal velocity components are not
uniquely defined.

The aim of this work is to present a global triangulation-
based approach for 3D velocity field modelling with the
domain in the geocentric Cartesian coordinate system (X , Y ,
Z ). The interpolation domain contains not only the reference
ellipsoid surface but also the Earth’s surface with seabeds,
cryosphere, waterbodies, atmosphere, and outer space. Irreg-
ularly spaced and carefully validated input position/velocity
datasets are expected which are based on a long-term solu-
tionwith verified discontinuities and eliminated outliers. The
core idea is to use a tetrahedralization of data points so that
one of the corners of each irregular tetrahedron (triangu-
lar pyramid) touches the Earth’s centre with the assigned
zero velocity components. To enable extrapolation, such
tetrahedron can be extended to create an unbounded trian-
gular pyramid with its apex in the Earth’s centre. Piecewise
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linear 3D interpolation is used, also called the n-simplex
method (e.g. Hemingway 2002). It is a generalization of the
triangle-based piecewise linear 2D interpolation, which uses
barycentric coordinates—the normalized areas of the cor-
responding sub-triangles (e.g. Carfora 2007). The resulting
velocity components as well as the corresponding uncertain-
ties are continuous across the entire 3D space.

The idea is further developed with regard to the nature
of the geodetic velocity field at the Earth’s surface. The
Earth’s reference sphere is replaced by the Gaussian osculat-
ing sphere which is adapted to each individual interpolation
point. Next, the triangular faces of irregular tetrahedra rep-
resenting the Earth’s surface are replaced by the spherical
triangles. Thismodification provides the effect of radial inter-
polation (e.g. Bevilacqua et al. 2020) which is achieved
through an interpolation in the 2D domain and spreading
the velocity field over the 3D space. An advantage of this
approach is the ability to appropriately distinguish between
the vertical/up and horizontal velocity components. Only the
interpolated horizontal velocity components depend on the
height of the velocity vector initial point (since the Earth is
round), while the vertical/up component is assumed to be
height independent. Also, the vertical velocity component
cannot be simply modelled as a function of the horizontal
components. Recent research on the deformation mecha-
nisms in Europe confirmed that for regions with significant
vertical velocities, the latter cannot be explained by edge-
driven horizontal tectonic forces and therefore do not result
in crustal thinning/thickening processes (Piña-Valdés et al.
2022).

The above-given rough idea is explained in detail in the
following sections. Problems encountered in its implementa-
tion are discussed and solutions are proposed. Various global
and regional position/velocity and elevation datasets are used
to test the performance of the proposed geodetic velocity field
modelling approach.

2 Delaunay triangulation of the Earth’s
surface

A triangulated irregular network (TIN) is a special case of a
digital elevation model (DEM). The former is based on irreg-
ularly spaced terrain data. The terrain can be mathematically
modelled by a piecewise interpolating function based on a
subdivision of the 2D domain into triangles. A linear inter-
polating function adapted to each triangle (and elevations of
its vertices) can generate a continuous surface (De Floriani
and Magillo 2009). The relationship between the number of
points/vertices (p), edges (e), and triangles/faces (t) in a tri-
angle mesh is given by Euler’s formula:

t − e + p � 2. (1)

Fig. 1 Delaunay triangulation in three dimensions—the Delaunay con-
dition for a triplet of data points (Pa , Pb, and Pc) is met when the
minimum circumsphere (centred in Pm and with radius rm ) contains no
point from the set in its interior; the result is a triangle mesh in 3D space
(in red)

Equation (1) is valid for the sphere; for the plane the infi-
nite region which surrounds the convex hull of a set of points
is counted as a face (e.g. Green and Sibson 1978).

The most widely used subdivision into triangles is the
Delaunay triangulation (Delaunay 1934). This triangulation
approach provides triangles which are as much as possible
equiangular. This improves the quality of the terrain approxi-
mation and enhances the numerical stability (e.g. De Floriani
and Magillo 2009). A triplet of points in a plane will define a
Delaunay triangle if its circumcircle contains no point from
the set in its interior, which is called the Delaunay condition.
However, the Delaunay approach can also be implemented
literally as the Delaunay triangulation in three dimensions,
where the Delaunay condition is met with the minimum
circumsphere of a triplet of data points Pa(Xa , Ya , Za),
Pb(Xb, Yb, Zb), and Pc(Xc, Yc, Zc)which contains nopoint
from the set in its interior (Fig. 1). This triplet of points is
coplanar with the corresponding centre of the minimum cir-
cumsphere Pm(Xm , Ym , Zm). Its coordinates can be derived
from the system of three equations: ‖−−−→

Pa Pm‖� ‖−−−→
PbPm‖,

‖−−−→
Pa Pm‖� ‖−−−→

PcPm‖, and
−−−→
Pa Pm ·

(−−→
Pa Pb × −−→

Pa Pc
)

� 0

(Fig. 1). The solution can be written as follows:
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⎡
⎢⎣
Xm

Ym
Zm

⎤
⎥⎦

� 1

PXY Z

⎡
⎢⎣

PY Z Ybc PXY − Zbc PZX ZabPZX − YabPXY

PZX Zbc PY Z − XbcPXY XabPXY − ZabPY Z

PXY Xbc PZX − Ybc PY Z YabPY Z − XabPZX

⎤
⎥⎦

×
⎡
⎢⎣
PY Z Xa + PZXYa + PXY Za

(Paa − Pbb)/2
(Pbb − Pcc)/2

⎤
⎥⎦ ,

(2)

with the auxiliary parameters expressed as:
Xi j � Xi − X j , Yi j � Yi − Y j , Zi j � Zi − Z j ,
PXY � XabYbc − YabXbc, PY Z � YabZbc − ZabYbc,

PZX � ZabXbc − XabZbc,
PXY Z � P2

Y Z + P2
Z X + P2

XY , and Pii � X2
i + Y 2

i + Z2
i .

The minimum circumsphere of the triplet of data points
Pa , Pb, and Pc will be defined only if PXY Z > 0; otherwise,
the points are collinear. The squared radius of the minimum
circumsphere can be obtained as:

r2m � (Xm − Xa)
2 + (Ym − Ya)

2 + (Zm − Za)
2. (3)

A potential subset of more than three cospherical data
points causes non-uniqueness of the Delaunay triangula-
tion. Overlapping or intersecting Delaunay triangles can be
avoided by a modification of the Delaunay condition for the
triangle Pa PbPc by using strict inequality (less than):

r2m < (Xm − Xn)
2 + (Ym − Yn)2

+(Zm − Zn)
2 . . . n ∈ {1..p} \ {a, b, c} . (4)

Anomalies in the surface mesh, which is created by using
the proposed Delaunay triangulation of a set of 3D points on
the Earth’s surface, can be divided to:

• superfluous triangles which should be removed to provide
a unique surface mesh, and

• missing triangles (gaps) which should be fulfilled by non-
Delaunay triangles to provide a continuous surface mesh.

Superfluous triangles usually appear as dangling Delau-
nay triangles (see Fig. 2) which have:

• at least one side which is a boundary edge of the triangle
mesh (i.e. with no adjacent triangles), and

• at least one side which is shared by more than one triangle
(i.e. with more than one adjacent triangle).

Therefore, dealing with dangling Delaunay triangles is a
matter of topological operations; they can be detected by

Fig. 2 Dangling Delaunay triangle (Pa Pb Pc) is a triangle which fulfils
the Delaunay condition—its minimum circumsphere (centred in Pm )
contains no point from the set in its interior—but should be removed
when creating a surface mesh (in red)

checking the number of adjacent triangles for each triangle
side. A very simple solution to avoid other anomalies is mov-
ing the Delaunay triangulation process from the terrain to
the Earth’s reference ellipsoid. Instead of the original Carte-
sian coordinates of data points (X , Y , Z ), one can use the
corresponding foot-point coordinates (X ′, Y ′, Z ′) which are
calculated from the geodetic coordinates (ϕ, λ, h) of original
points by ignoring ellipsoidal heights (h � 0).

As shown in the numerical examples (Sect. 4.1.3), the
resulting triangle mesh is almost always topologically iden-
tical to the one created by the original point positions. The
advantage of the foot-point-based approach is that a unique
and continuous surface mesh is usually obtained (already
cleaned up). The absence of all anomalies in the final trian-
gle mesh should be confirmed by Eq. (1). Finally, the original
Cartesian coordinates of points can be used together with the
topology of the triangle mesh derived by the Delaunay trian-
gulation of their foot points.

Once providing an irregular trianglemesh for a given posi-
tion/velocity dataset, a tetrahedralization of the figure of the
Earth can be realized by irregular tetrahedra created from the
triangles in the mesh and the centre of the Earth as their inci-
dent fourth vertex. The resulting tetrahedral volume mesh
provides the domain for the velocity field interpolation. For
the extrapolation, these irregular tetrahedra can be extended
to the unbounded triangular pyramids. A global mesh of such
pyramids fills up the entire 3D space (Fig. 3).

Some details on the Delaunay triangulation, its algo-
rithms, uniqueness, generalizations and alternatives, on the
pros and cons of using different approaches, and on the
reference frame and epoch selection can be found in the
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Fig. 3 Tetrahedralization of the Earth—a volume mesh of triangular
pyramids (irregular tetrahedra) with the incident vertex in the centre of
the Earth and their bases forming a triangle mesh on the Earth’s surface
(in red); these tetrahedra can be extended to the unbounded triangular
pyramids which may (in case of a global dataset) span the whole 3D
space

Online Resource, Supplement S1, also pointing to some rel-
evant literature (Green and Sibson 1978; Lee and Schachter
1980; Watson 1981; Edelsbrunner et al. 1983; Dwyer 1987;
Fortune 1987; Chew 1989; Edelsbrunner and Mücke 1994;
Borouchaki and Lo 1995; Anglada 1997; Renka 1997; Su
and Drysdale 1997; Mücke 1998; Gudmundsson et al. 2002;
Sahr et al. 2003; Domiter and Žalik 2008; Črepinšek and
Mernik 2009; Petit and Luzum 2010; Centin and Signoroni
2015; Altamimi 2018).

3 3D velocity field interpolation based
on the Delaunay triangulation

The Earth’s surface velocities in the position/velocity
datasets are usually given in the geocentric system. For the
visualization of the velocities on the map and for the interpo-
lation purposes, their conversion from the geocentric system
(Ẋ , Ẏ , Ż ) to the local geodetic/topocentric system (Ė , Ṅ ,
U̇ ) is needed. The conversion of the velocity vector with its
initial point Pi (Xi , Yi , Zi ) can be determined in the same
manner as for the local accuracy estimates for coordinates
(e.g. Soler and Smith 2010) as follows:

⎡
⎢⎣
Ėi

Ṅi

U̇i

⎤
⎥⎦ � Ri

⎡
⎢⎣
Ẋi

Ẏi
Żi

⎤
⎥⎦, (5)

with Ri �
⎡
⎢⎣

−sinλi cosλi 0
−sinϕicosλi −sinϕi sinλi cosϕi
cosϕicosλi cosϕi sinλi sinϕi

⎤
⎥⎦ being the

corresponding rotation matrix.
The required curvilinear geographic/geodetic coordinates

of the velocity vector initial point (ϕi , λi ) can be obtained
from the Cartesian coordinates. In the spherical Earth model,
a solution avoiding indeterminacy and sensitivity to round-
off error around the antipodal meridian of Greenwich (λ �
±π ) can be obtained by following Vermeille (2004):

⎡
⎢⎢⎢⎢⎢⎣

ϕ � 2arctan Z√
X2+Y 2+

√
X2+Y 2+Z2

λ �

⎧⎪⎨
⎪⎩

π
2 − 2arctan X√

X2+Y 2+Y
. . . Y ≥ 0

2arctan X√
X2+Y 2−Y

− π
2 . . . Y < 0

(6)

Since the conversion of points on the Z -axis (e.g. poles)
leads to infinitely many solutions: λ ∈ (−π , π ] , the direc-
tions of the corresponding horizontal velocity components
(Ėi , Ṅi ) cannot be uniquely defined either. In the ellip-
soidal Earth model, one of the available exact/closed-form,
iterative, or approximate solutions (e.g. Borkowski 1989;
Fukushima 2006; Sjöberg 2008;Vermeille 2002, 2004, 2011;
Guo and Shen 2023) can be used instead of Eq. (6).

The law of variance–covariance propagation (e.g. Vaníček
and Krakiwsky 1986, pp. 196–197) should be applied in the
conversion of the corresponding velocity uncertainties from
the geocentric to the topocentric system. By neglecting the
impact of the uncertainties of the velocity vector initial point
coordinates, the variance–covariance matrix of the topocen-
tric velocity with its initial point Pi can be determined as
follows:

⎡
⎢⎢⎣

. . .

�Ė ṄU̇ i
. . .

⎤
⎥⎥⎦ � Ri

⎡
⎢⎢⎣

. . .

�Ẋ Ẏ Ż i
. . .

⎤
⎥⎥⎦RT

i , (7)

with

⎡
⎢⎢⎣

. . .

�Ẋ Ẏ Ż i
. . .

⎤
⎥⎥⎦ �

⎡
⎢⎣

σẊi Ẋi
σẊi Ẏi

σẊi Żi
σẎi Ẋi

σẎi Ẏi σẎi Żi
σŻi Ẋi

σŻi Ẏi
σŻi Żi

⎤
⎥⎦,

⎡
⎢⎢⎣

. . .

�Ė ṄU̇ i
. . .

⎤
⎥⎥⎦ �

⎡
⎢⎣

σĖi Ėi
σĖi Ṅi

σĖi U̇i

σṄi Ėi
σṄi Ṅi

σṄi U̇i

σU̇i Ėi
σU̇i Ṅi

σU̇i U̇i

⎤
⎥⎦, and σi i being the variance of the i-

th and σi j the covariance between the i-th and j-th velocity
components.
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Fig. 4 Rotation of the horizontal velocity (in red) around the Earth’s
centre Po from the data point Pa to the interpolation point Pi ; for clarity
reasons, the selected velocity points towards the interpolation point; its
rotation in the topocentric systemϑai is, however, direction independent
and can be determined from the forward and reverse azimuths between
both points—αia and αai

Like the horizontal velocities themselves (see above), their
uncertainties cannot be uniquely defined on the Z -axis.

Since the rotation matrix is orthogonal, the conversions
of the velocities and the corresponding variance–covariance
matrices from the topocentric to the geocentric system can
simply be obtained as:

⎡
⎢⎣
Ẋi

Ẏi
Żi

⎤
⎥⎦ � RT

i

⎡
⎢⎣
Ėi

Ṅi

U̇i

⎤
⎥⎦, (8)

and

⎡
⎢⎢⎣

. . .

�Ẋ Ẏ Ż i
. . .

⎤
⎥⎥⎦ � RT

i

⎡
⎢⎢⎣

. . .

�Ė ṄU̇ i
. . .

⎤
⎥⎥⎦Ri , (9)

with the rotation matrix Ri as in Eq. (5).
Furthermore, each topocentric velocity in a triplet of

data points (triangle vertices) should for the interpolation
purposes be rotated around the Earth’s centre from the cor-
responding data point to the interpolation point (i.e. along
the great circle or geodesics). It means that only the hor-
izontal velocity is rotated (Fig. 4); the vertical/up velocity
remains unchanged. This rotation may be small and neg-
ligible in a dense position/velocity dataset, especially for

regions close to the equator. However, it is crucial for an
adequate global velocity fieldmodellingwith inevitable large
(e.g. overseas) triangles and particularly in polar regions. An
appropriately modified topocentric velocity from the first tri-
angle vertex—with its initial point in Pa—can be obtained
by assigning the coordinates of the interpolation point Pi
and rotating around the normal to the reference surface as
follows:

⎡
⎢⎣
Ėai

Ṅai

U̇ai

⎤
⎥⎦ �

⎡
⎢⎣

cosϑai sinϑai 0
−sinϑai cosϑai 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣
Ėa

Ṅa

U̇a

⎤
⎥⎦, (10)

with the clockwise horizontal rotation ϑai , which is deter-
mined by the forward and reverse azimuths between the
interpolation and data points as follows:

ϑai � αia − αai + π. (11)

In the spherical Earth model, the azimuth (αi j ) can be
determined as (e.g. Sjöberg 2006):

αi j � arctan2
(
sin

(
λ j − λi

)
, cosϕi tanϕ j − sinϕi cos

(
λ j − λi

))
,

(12)

with arctan2(x , y) being the two-argument arctangent func-
tion with the codomain (−π , π ] . The azimuth is not defined
for points on the Z -axis. In the ellipsoidal Earth model,
the geodetic/ellipsoidal azimuth is required; Vincenty (1975)
formula or one of its alternatives (e.g. Thomas and Feather-
stone 2005; Sjöberg and Shirazian 2012; Karney 2013;Wang
et al. 2022) can be used instead of Eq. (12).

The law of variance–covariance propagation should be
applied to determine the variance–covariance matrix of the
appropriately rotated topocentric velocity as follows:

⎡
⎢⎢⎣

. . .

�Ė ṄU̇ ai
. . .

⎤
⎥⎥⎦ �

⎡
⎢⎣

cosϑai sinϑai 0
−sinϑai cosϑai 0

0 0 1

⎤
⎥⎦

⎡
⎢⎢⎣

. . .

�Ė ṄU̇ a
. . .

⎤
⎥⎥⎦

⎡
⎢⎣
cosϑai −sinϑai 0
sinϑai cosϑai 0
0 0 1

⎤
⎥⎦, (13)

with the rotation angle ϑai from Eq. (11).
Both required conversions of the velocities (rotations from

the geocentric to the topocentric system and around the nor-
mal to the reference surface) fail for points lying on the
Z -axis. Nevertheless, these points can still be used as data or
interpolation points. It can be checked that for a data point
Pa on the Z -axis, the appropriately rotated topocentric veloc-
ity can be obtained directly from the geocentric velocity by
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rotating it around the Z -axis as follows:

⎡
⎢⎣
Ėai

Ṅai

U̇ai

⎤
⎥⎦ �

⎡
⎢⎣

cosψai sinψai 0
−sinψai cosψai 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣
Ẋa

Ẏa
Ża

⎤
⎥⎦, (14)

with the clockwise horizontal rotation ψai equal to λi + π/2
for the data points on the Z -axis above the equatorial plane
and equal to −λi for the data points beneath the equatorial
plane, which can be written as:

ψai � π

4
+ sgnZa

(
λi +

π

4

)
. (15)

The variance–covariance matrix of the appropriately
rotated topocentric velocity can be obtained as follows:

⎡
⎢⎢⎣

. . .

�Ė ṄU̇ai
. . .

⎤
⎥⎥⎦ �

⎡
⎢⎣

cosψai sinψai 0
−sinψai cosψai 0

0 0 1

⎤
⎥⎦

⎡
⎢⎢⎣

. . .

�Ẋ Ẏ Ż a
. . .

⎤
⎥⎥⎦

⎡
⎢⎣
cosψai −sinψai 0
sinψai cosψai 0

0 0 1

⎤
⎥⎦, (16)

with the rotation angle ψai from Eq. (15).
If an interpolation point lies on the Z -axis, its interpo-

lation shall—contrary to the regular case—be done directly
in the geocentric system. The velocities of the corresponding
triplet of data points (triangle vertices) should—togetherwith
their variance–covariance matrices—regularly be converted
from the geocentric to the topocentric system using Eqs. (5)
and (7). For interpolation purposes, each topocentric velocity
should, however, further be converted directly to the geocen-
tric system. It should be rotated around the Earth’s centre
from the corresponding data point to the interpolation point
(i.e. along the meridian). It can be checked that the appropri-
ately rotated geocentric velocity with its initial point in Pa
can be obtained directly from the topocentric system by the
appropriate reflections (for the interpolation points beneath
the equatorial plane) and rotation around the normal to the
reference surface as follows:

⎡
⎢⎣
Ẋai
Ẏai
Żai

⎤
⎥⎦ �

⎡
⎢⎣
1 0 0
0 sgnZi 0
0 0 sgnZi

⎤
⎥⎦

⎡
⎢⎣

cosχai sinχai 0
−sinχai cosχai 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣
Ėa
Ṅa

U̇a

⎤
⎥⎦,

(17)

with the clockwise horizontal rotation χai equal to −λa −
π/2 for the interpolation point Pi on the Z -axis above the
equatorial plane and equal to λa + π/2 for the interpolation

point beneath the equatorial plane, which can be written as:

χai � −sgnZi

(
λa +

π

2

)
. (18)

After the multiplication of the reflection and rotation
matrices in Eq. (17), the variance–covariance matrix of the
appropriately rotated geocentric velocity can be obtained as
follows:

⎡
⎢⎢⎢⎣

. . .

�Ẋ Ẏ Ż ai
. . .

⎤
⎥⎥⎥⎦ �

⎡
⎢⎣

cosχai sinχai 0
−sgnZi sinχai sgnZi cosχai 0

0 0 sgnZi

⎤
⎥⎦

⎡
⎢⎢⎢⎣

. . .

�Ė ṄU̇ a
. . .

⎤
⎥⎥⎥⎦ ×

⎡
⎢⎣
cosχai −sgnZi sinχai 0
sinχai sgnZi cosχai 0

0 0 sgnZi

⎤
⎥⎦,

(19)

with the rotation angle χai from Eq. (18).

3.1 Method I: Continuous piecewise linear 3D
velocity field interpolation

The following approach is based on the spherical Earthmodel
and provides velocity fieldmodelling for the entire 3D space.
A continuous velocity field modelling can be achieved by
the piecewise linear 3D interpolation/extrapolation which
is based on the n-simplex interpolation (Hemingway 2002).
The latter is entirely local; every interpolation point is only
influenced by the vertices of the corresponding Delaunay
triangle. The coordinate origin Po(0, 0, 0) as the centre
of curvature of the Earth’s surface, with the assigned zero
velocities, is chosen as the incident fourth vertex of all irreg-
ular tetrahedra. The (signed) volume of the parallelepiped,
created by the three vectors between the vertices of the
irregular tetrahedron Pa PbPcPo, is determined by the scalar
triple/mixed product of the corresponding vectors, i.e.

−−→
Pa Pb ·(−−→

Pa Pc × −−→
Pa Po

)
. The volume of this tetrahedron is one sixth

of the volume of the parallelepiped and can be obtained as:

Vabco � 1

6
|PY Z Xc + PZXYc + PXY Zc|, (20)

with the auxiliary parameters PY Z , PZX , and PXY as in
Eq. (2).

The interpolated/extrapolated components Ėi ,Ṅi , and U̇i

of the velocity of the interpolation point Pi inside the
unbounded triangular pyramid determined by the triangle
Pa PbPc and the apex in the coordinate origin Po (with
the assigned zero velocities) can be obtained by using the
normalized volumes of the corresponding sub-tetrahedra as
follows:
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Fig. 5 Continuous piecewise linear 3D velocity field interpolation
(Method I) is based on the volumes of the irregular tetrahedra (in red)
which are created by the interpolation point Pi , the corresponding triplet
of data points Pa , Pb, and Pc, and the coordinate origin Po

⎡
⎢⎣
Ėi

Ṅi

U̇i

⎤
⎥⎦ � 1

Vabco

⎛
⎜⎝Vibco

⎡
⎢⎣
Ėai

Ṅai

U̇ai

⎤
⎥⎦ + Vaico

⎡
⎢⎣
Ėbi

Ṅbi

U̇bi

⎤
⎥⎦ + Vabio

⎡
⎢⎣
Ėci

Ṅci

U̇ci

⎤
⎥⎦

⎞
⎟⎠,

(21)

with the appropriately rotated topocentric velocities at the
triplet of data points from Eqs. (10) or (14) and Vabio, Vaico,
and Vibco being the volumes of the irregular tetrahedra cre-
ated by the interpolation point Pi , the coordinate origin Po,
and the triangle sides Pa Pb, Pa Pc, and PbPc, respectively
(Fig. 5). Equation (20) should be applied in their calculation,
mutatis mutandis.

In case of an interpolation point on the Z -axis, the inter-
polated velocity should be obtained directly in the geocentric
system as follows:

⎡
⎢⎣
Ẋi

Ẏi
Żi

⎤
⎥⎦ � 1

Vabco

⎛
⎜⎝Vibco

⎡
⎢⎣
Ẋai

Ẏai
Żai

⎤
⎥⎦ + Vaico

⎡
⎢⎣
Ẋbi

Ẏbi
Żbi

⎤
⎥⎦ + Vabio

⎡
⎢⎣
Ẋci

Ẏci
Żci

⎤
⎥⎦

⎞
⎟⎠,

(22)

with the appropriately rotated geocentric velocities at the
triplet of data points from Eq. (17).

If an interpolation point lies on the face of the unbounded
triangular pyramid determined by the triangle in the mesh,
one of the three tetrahedra involved in the calculation by
Eq. (22) will be degenerated (i.e. its volume will be zero)

and the corresponding data point (opposite to this edge) will
have no impact on the interpolated value. Since the volume of
each triangular pyramid can also be calculated as the product
of one third of the area of the selected triangular base and
the height of the pyramid (measured perpendicularly from
this base to the fourth vertex), the interpolation in this case
depends only on the areas of both triangles on the face of
the unbounded triangular pyramid (Fig. 12). Similarly, the
interpolation on the line segments inside, on the faces, or on
the edges of the unbounded triangular pyramid depends only
on the distances of both data points (i.e. endpoints) from
the interpolation point (Hemingway 2002). Starting from
these facts, one can prove the piecewise velocity interpo-
lation/extrapolation based on Eq. (21) is continuous across
the entire 3D space.

The law of variance–covariance propagation should be
applied to determine the uncertainties of the interpolated
velocities in the topocentric system. A practical approach
would be:

• to ignore the correlations between the velocities of the
triplet of data points used for the interpolation (which are
typically not contained in the position/velocity dataset) and

• to neglect the impact of the uncertainties of the data point
coordinates on the uncertainties of the volumes of the cor-
responding irregular tetrahedra.

The variance–covariance matrix of the velocity of the
interpolation point Pi can thus be obtained as follows:

⎡
⎢⎢⎣

. . .

�Ė ṄU̇ i
. . .

⎤
⎥⎥⎦ � 1

V 2
abco

⎛
⎜⎜⎝V 2

ibco

⎡
⎢⎢⎣

. . .

�Ė ṄU̇ ai
. . .

⎤
⎥⎥⎦

+ V 2
aico

⎡
⎢⎢⎣

. . .

�Ė ṄU̇ bi
. . .

⎤
⎥⎥⎦ + V 2

abio

⎡
⎢⎢⎣

. . .

�Ė ṄU̇ ci
. . .

⎤
⎥⎥⎦

⎞
⎟⎟⎠ ,

(23)

with the corresponding variance–covariance matrices of the
velocities at the triplet of data points from Eqs. (13) or (16).
For the interpolation points on the Z -axis with the velocities
obtained directly in the geocentric system using Eq. (22), the
variance–covariance matrix can be obtained as follows:

⎡
⎢⎢⎣

. . .

�Ẋ Ẏ Ż i
. . .

⎤
⎥⎥⎦ � 1

V 2
abco

⎛
⎜⎜⎝V 2

ibco

⎡
⎢⎢⎣

. . .

�Ẋ Ẏ Żai
. . .

⎤
⎥⎥⎦ + V 2

aico

⎡
⎢⎢⎣

. . .

�Ẋ Ẏ Ż bi
. . .

⎤
⎥⎥⎦
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+V 2
abio

⎡
⎢⎢⎣

. . .

�Ẋ Ẏ Ż ci
. . .

⎤
⎥⎥⎦

⎞
⎟⎟⎠, (24)

with the corresponding variance–covariance matrices of the
velocities at the triplet of data points from Eq. (19). The
resulting topocentric velocity from Eq. (21) and its vari-
ance–covariance matrix from Eq. (23) should finally be
converted to the geocentric system by applying Eqs. (8) and
(9).

It can be checked that Eqs. (23) and (24) guarantee conti-
nuity for the uncertainties of the velocity components on the
faces of the adjacent unbounded triangular pyramids. There
will be no abrupt changes in the dimensions and orientations
of the standard confidence ellipsoids of the velocities if their
initial points are located close enough.

The interpolation steps in the continuous piecewise linear
3D velocity field interpolation (Method I) are as follows:

• conversion of the geocentric velocity components and their
uncertainties at the data points to the topocentric system
(excluding data points on the Z -axis) using Eqs. (5) and
(7),

• rotation of the topocentric (exceptionally geocentric)
velocity components and their uncertainties at the data
points around the Earth’s centre to the corresponding inter-
polation point using Eqs. (10) or (14) and (13) or (16),

• determination of the topocentric (exceptionally geocen-
tric) velocity components and their uncertainties at the
interpolation point using Eqs. (21) or (22) and (23) or (24),
and

• conversion of the topocentric velocity components and
their uncertainties at the interpolation point to the geo-
centric system using Eqs. (8) and (9).

3.2 Method II: Piecewise quasi-linear 3D velocity
field interpolation

When replacing the sphericalEarthmodelwith the ellipsoidal
one, the coordinate origin does not coincide with the centre
of curvature of the Earth’s surface, anymore. The radii of
curvature at the selected geodetic latitude ϕi differ in the
north and east directions (e.g. Torge 2001, pp. 95–96) as
follows:

ρi � a
(
1 − e2

)
√(

1 − e2sin2ϕi
)3 , (25)

υi � a√
1 − e2sin2ϕi

, (26)

Fig. 6 Geometric derivation of the centre of the Gaussian osculating
sphere Ps (with the Cartesian coordinates Xs , Ys , and Zs , in red) which
is adapted to the interpolation point Pi (with the Cartesian coordinates
Xi , Yi , and Zi , and the geodetic coordinates ϕi , λi , and hi ); the normal
through it to the reference ellipsoid is expanded downwards from its
foot point P ′

i by the corresponding Gaussian radius of curvature Ri and
is drawn in the meridional plane (above) and projected to the equatorial
plane (below) with the reference ellipsoid centred in the coordinate
origin Po

where ρi is the radius of curvature in the meridian (merid-
ian radius of curvature) and υi is the radius of curvature in
the prime vertical (prime vertical radius of curvature), with
ϕi being the geodetic latitude, a the semi-major axis, and
e the first numerical eccentricity of the reference ellipsoid.
The ellipsoidal Earth model can be introduced in the velocity
fieldmodelling by employing theGaussian osculating sphere
adapted to each individual interpolation point Pi . Its radius is
determined as the Gaussian radius of curvature of the refer-
ence ellipsoid which can be obtained as the geometric mean
of both principal radii of curvature from Eqs. (25) and (26)
as follows (e.g. Torge 2001, p. 98):

Ri � √
ρiυi � a

√
1 − e2

1 − e2sin2ϕi
. (27)

The centre of the Gaussian osculating sphere lies on the
normal through the selected interpolation point Pi where the
height of the latter should be lowered by Ri +hi (Fig. 6). It is
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located within the area defined by the evolute of the merid-
ional ellipse; an upper bound of its offset from the Earth’s
centre is ae2/

√
1 − e2 which equals ~42.84 km. Also, there

is a singular disc in the equatorial plane with the radius of
ae2 which equals ~42.70 km and centred at the Earth’s centre
(Vermeille 2011).

The coordinates of the centre of the Gaussian osculating
sphere Ps adapted to the interpolation point Pi can be derived
geometrically (Fig. 6) as follows:

⎡
⎢⎢⎢⎢⎣

Xs

Ys

Zs

⎤
⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎣

Xi

Yi

Zi

⎤
⎥⎥⎥⎥⎦

−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

(Ri + hi )cosϕi cosλi

(Ri + hi )cosϕi sinλi

(Ri + hi )sinϕi

⎤
⎥⎥⎥⎥⎦

. . . X2
i + Y 2

i > 0

⎡
⎢⎢⎢⎢⎣

0

0
(
a2/b + hi

)
sgnZi

⎤
⎥⎥⎥⎥⎦

. . . X2
i + Y 2

i � 0

(28)

Equation (28) is based on geodetic coordinates which
may cause problems for the interpolation points closer than
~43 km from the Earth’s centre (see above). Apart from
potential singularity, the accuracy of the coordinate con-
version methods may be low since they usually focus on
points in the proximity of the reference ellipsoid surface (e.g.
Claessens 2019).

The velocity field can now be modelled by the quasi-
linear 3D interpolation/extrapolation which is very similar
to the n-simplex interpolation but uses the irregular tetrahe-
dron determined by the triangle Pa PbPc and the centre of the
interpolation-point-adapted Gaussian osculating sphere (Ps)
instead of the coordinate origin (Po) with zero coordinates
(Fig. 7). The volume of this tetrahedron can be obtained as:

(29)

Vabcs � 1

6
|PY Z (Xc−Xs)+PZX (Yc−Ys)+PXY (Zc−Zs)| ,

with the auxiliary parameters PY Z , PZX , and PXY as in
Eq. (2).

Except of replacing Eqs. (20) with (29) for the volume
calculation, the same Eqs. (21) and (23) or Eqs. (22) and
(24) can be used to determine the interpolated/extrapolated
velocity and the corresponding variance–covariance matrix
at the interpolation point Pi .

Contrary to the spherical Earth model approach (Method
I), the interpolation on the faces of the adjacent unbounded
triangular pyramids depends here also on the algorithm for
looking up appropriate pyramids (see Sect. 3.5) and con-
tinuity may not be achieved. The problem is a small angle
appearingbetween twonormal sections formedby thenormal

Fig. 7 Piecewise quasi-linear 3D velocity field interpolation (Method
II) is based on the volumes of the irregular tetrahedra (in red) which
are created by the interpolation point Pi , the corresponding triplet of
data points Pa , Pb, and Pc, and the centre of the Gaussian osculating
sphere Ps ; P ′

i is the foot point of the interpolation point on the reference
ellipsoid surface;Ri is the corresponding Gaussian radius of curvature
and Po is the coordinate origin

to the reference ellipsoid through a standpoint (an interpola-
tion point) and either an elevated target point (a data point) or
its foot point on the reference ellipsoid—the so-called skew-
normal reduction in a classical terrestrial geodetic network
(e.g. Torge 2001, pp. 243–244).

The interpolation steps in the piecewise quasi-linear 3D
velocity field interpolation (Method II) are as follows:

• conversion of the geocentric velocity components and their
uncertainties at the data points to the topocentric system
(excluding data points on the Z -axis) using Eqs. (5) and
(7),

• rotation of the topocentric (exceptionally geocentric)
velocity components and their uncertainties at the data
points around the Earth’s centre to the corresponding inter-
polation point using Eqs. (10) or (14) and (13) or (16),

• determination of the topocentric (exceptionally geocen-
tric) velocity components and their uncertainties at the
interpolation point using Eqs. (21) or (22) and (23) or
(24), but with the centre of the interpolation-point-adapted
Gaussian osculating sphere (Ps) instead of the coordinate
origin (Po) in the volume calculation, and

• conversion of the topocentric velocity components and
their uncertainties at the interpolation point to the geo-
centric system using Eqs. (8) and (9).
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Fig. 8 Linear (left) and radial (right) interpolation/extrapolation
approaches—a 2D presentation in the meridional plane with isolines
(in red), showing values of the selected velocity component—x , x/2,
and 3x/2—at the ellipsoid surface and at the distance equal to the Gaus-
sian semi-radius of curvature (Ri/2) beneath and above it, respectively;
for illustrative purposes, the interpolation point Pi and the correspond-
ing data points Pa , Pb are placed at the same height and the selected
velocity component is equal at these data points; Ps is the centre of the
Gaussian osculating sphere and Po is the coordinate origin

3.3 Method III: Piecewise radial 3D velocity field
interpolation

The piecewise linear and quasi-linear 3D interpolations
(Methods I and II) which are based on the n-simplex method
will be appropriate solutions if the density of data points
is high enough (see Sect. 4.3.2). Small flat triangular faces
in the triangle mesh approximating the Earth’s reference
surface do not differ much from the corresponding spheri-
cal/ellipsoidal triangular faces. However, in some areas (e.g.
oceans, polar zones, deserts, etc.) the density of data points
is much lower than in the rest of the globe. Therefore, the
accuracy of the proposed interpolation approach will further
be improved if the triangle mesh is blown into a spherical
shape. This approach is also referred to as the radial inter-
polation which preserves radial symmetry (e.g. Bevilacqua
et al. 2020), here with the centre of symmetry in the centre of
the Earth or in the centre of the interpolation-point-adapted
Gaussian osculating sphere (Fig. 8). Instead of the volumes of
the irregular tetrahedra (triangular pyramids) from Eq. (29),
the volumes of the triangular spherical/spheroidal pyramids
should be applied. Calculating the volume of such a pyra-
mid is not a trivial task, even if its base represents a cell of a
regular longitude-latitude grid on the reference ellipsoid sur-
face. Further complications arise from the fact that parallel
surfaces to the reference ellipsoid surface are non-ellipsoidal
surfaces (e.g. Kelly and Šavrič 2021), and things become
even more complicated when dealing with non-parallel sur-
faces.

Fig. 9 Angles (αabc,βabc, andγabc) and side angular lengths (aabc ,babc,
and cabc) of a spherical triangle (in red)with its vertices at the foot points
P ′
a , P

′
b, and P ′

c of the corresponding triplet of data points (Pa , Pb, and
Pc), which are further projected from the reference ellipsoid surface
to the surface of the interpolation-point-adapted Gaussian osculating
sphere—P

′′
a , P

′′
b , and P

′′
c ; P

′
i is the foot point of the interpolation point

(Pi ), Ri is the corresponding Gaussian radius of curvature and Po is the
coordinate origin

Let us focus first on the velocity field interpolation across
the 2D domain. Instead of the original coordinates of data
points and interpolation points, the corresponding foot-point
coordinates should be used as input data for the interpola-
tion. Data points Pa , Pb, Pc and interpolation point Pi which
are projected to the reference ellipsoid surface (h � 0) shall
be denoted as P ′

a , P
′
b, P

′
c, and P ′

i , respectively. Since the
ratio of the volume of a spherical pyramid to its spherical
base area is a constant (R/3), the volumes of the triangu-
lar spherical pyramids can in the interpolation formula be
replaced by the areas of the corresponding spherical trian-
gles on the interpolation-point-adapted Gaussian osculating
sphere which is introduced in the previous subsection. This is
an alternative way for the velocity field interpolation across
the 2D domain—directly on the reference surface (instead of
using planar/projected or curvilinear geodetic coordinates).

The area of the corresponding spherical triangle on the
interpolation-point-adapted Gaussian osculating sphere can
be obtained from its spherical excess (e.g. Sjöberg 2006) as:

Aabc � εabc R
2
i , (30)

with the interpolation-point-adapted Gaussian radius of cur-
vature of the reference ellipsoid Ri from Eq. (27).

The triangle side angular lengths (measured in radians) of
the spherical triangle defined by the foot points of the corre-
sponding data points (P ′

a , P
′
b, P

′
c)—angles 	 P ′

b Ps P
′
c (aabc),

	 P ′
a Ps P

′
c (babc), and 	 P ′

a Ps P
′
b (cabc), see Fig. 9—should be
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determined first. They can be determined by the dot products
of the corresponding vectors and the cosines of the triangle
side angular lengths (cab, cbc, and cca) can be expressed as:

⎡
⎢⎢⎢⎢⎣

cbc � cosaabc � X ′
bs X

′
cs+Y

′
bsY

′
cs+Z

′
bs Z

′
cs

dbsdcs

cca � cosbabc � X ′
as X

′
cs+Y

′
asY

′
cs+Z

′
as Z

′
cs

dasdcs

cab � coscabc � X ′
as X

′
bs+Y

′
asY

′
bs+Z

′
as Z

′
bs

dasdbs

(31)

with the coordinate differences X ′
i j � X ′

i − X ′
j , Y

′
i j �

Y ′
i − Y ′

j , and Z ′
i j � Z ′

i − Z ′
j , and the distances between the

data points and the centre of the interpolation-point-adapted
Gaussian osculating sphere (Ps)—all close to Ri—which

can be expressed as dis �
√
X ′2
is + Y ′2

is + Z ′2
is . By applying

the cosine rules for sides, one can now derive the angles of
the spherical triangle αabc, βabc, and γabc (e.g. Todhunter
1886, p. 20). The spherical excess (measured in steradians)
is the solid angle determined as εabc � αabc + βabc + γabc −
π (Todhunter 1886, p. 74). However, this simple straight-
forward formula is numerically poor for small spherical
triangles (as compared to the radius of the sphere). For exam-
ple, it is useless for calculating the parcel areas in the cadastre
(Berk and Ferlan 2018). An alternative formula based on
l’Huilier’s theorem is preferable (e.g. Carfora 2007), which
derives the spherical excess directly from the triangle side
angular lengths from Eq. (31) as follows (Todhunter 1886,
pp. 74–75):

εabc � 4arctan

√
tan

sabc
2

tan
sabc − aabc

2
tan

sabc − babc
2

tan
sabc − cabc

2
,

(32)

with the semi-perimeter of the spherical triangle calculated
as sabc � (aabc + babc + cabc)/2. This spherical excess
considerably improves the performance of the spherical
triangle area formula—Eq. (30). However, in case of a
sliver spherical triangle (nearly degenerate), the area based
on Eq. (32) becomes ill-determined, too. From the solu-
tion of the spherical triangle area for the unit sphere with
expansion (Lestringant et al. 2020, Appx. A), one can
derive this approximate formula for the triangle area on the
interpolation-point-adapted Gaussian osculating sphere:

Aabc ∼� 6V ′
abcs

Ri (1 + cab)⎛
⎝1 +

cab − cca
2(1 + cab)

+
(cab − cca)2 − (1+cab)(2+cab)(cbc−1)

1+cbc

3(1 + cab)
2

⎞
⎠,

(33)

with the interpolation-point-adapted Gaussian radius of cur-
vature of the reference ellipsoid Ri from Eq. (27), the cosines
of the triangle side angular lengths (cab, cbc, and cca) from

Eq. (31), and the volume (V ′
abcs) of the corresponding irregu-

lar tetrahedron (triangular pyramid) P ′
a P

′
b P

′
c Pscalculated by

applying Eq. (29).
Equation (33) is an optimal solution when cbc ≥ cab ∧

cbc ≥ cca ; to achieve the highest accuracy for a particular
spherical triangle, an optimal order of its vertices should be
determined by circular permutation (Lestringant et al. 2020,
Appx. A). This can be implemented by a recursive function
as follows:

Aabc �
{
Eq. (33) . . . cbc ≥ cab ∧ cbc ≥ cca
Abca . . . cbc < cab ∨ cbc < cca

(34)

which requires up to two levels of recursion.
To achieve full consistencyofEqs. (33)with (30), the coor-

dinates of the spherical triangle vertices should be modified
before calculating the volume of the tetrahedron. Instead of
the foot points of the triplet of data points lying on the ref-
erence ellipsoid surface (P ′

a , P
′
b, and P ′

c), the corresponding
points lying on the surface of the interpolation-point-adapted
Gaussian osculating sphere (P

′′
a , P

′′
b , and P

′′
c ) should be used

(Fig. 9). The modified coordinates of the triangle vertex (e.g.
P

′′
a ) can be calculated as follows:

⎡
⎢⎣
X

′′
a

Y
′′
a

Z
′′
a

⎤
⎥⎦ �

⎡
⎢⎣
Xs

Ys
Zs

⎤
⎥⎦ +

Ri√
X ′2
as + X ′2

bs + X ′2
cs

⎡
⎢⎣
X ′
as

X ′
bs

X ′
cs

⎤
⎥⎦, (35)

with the interpolation-point-adapted Gaussian radius of cur-
vature of the reference ellipsoid Ri from Eq. (27) and the
coordinate differences X ′

as , X
′
bs , and X

′
cs as inEq. (31).When

observed from Ps , P
′′
a points in the same direction as P ′

a but
lies at a distance equal to Ri .

The decision whether using the exact or recursive approx-
imate solution for the spherical triangle area should be based
on the minimum difference between the semi-perimeter of
the spherical triangle used in Eq. (32) and the triangle side
angular lengths; the condition can be written as follows:

min(sabc − aabc, sabc − babc, sabc − cabc) ≥ �, (36)

with the threshold value (�) given in angular measure (e.g.
0.000005 rad; see Sect. 4.2). The exact solution with Eq. (32)
shall be used if the condition in Ineq. (36) is met, and the
approximate solution with Eq. (34) otherwise. This criterion
can filter out sliver triangles (no matter of their size) but also
small triangles (no matter of their shape); a spherical triangle
with at least one side measuring less than 2� cannot meet
the condition in Ineq. (36).

To extend the proposed radial velocity field interpolation
from the ellipsoidal surface to the 3D domain, additional
conversions of the velocities and the corresponding vari-
ance–covariance matrices are needed, i.e.:
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• their reduction to the reference ellipsoid surface before the
interpolation (for the data points) and

• their restoration to the original position after the interpo-
lation (for the interpolation point).

These conversions introduce scaling of the horizontal
velocity which depends:

• on the ellipsoidal height of the velocity vector initial point
and

• on the principal radii of curvature of the reference ellipsoid
surface at the foot point of the velocity vector initial point.

This is an enhancement of the radial approach with a
more rigorous ellipsoidal earthmodel; instead of approximat-
ing the curvature of the reference ellipsoid surface with the
Gaussian radius of curvature (Fig. 8), both principal radii of
curvature are introduced. However, Eq. (34) for the spherical
triangle area should be replaced by an algorithm for calculat-
ing the geodetic/ellipsoidal triangle area (e.g. Sjöberg 2006;
Karney 2013; Nowak and Nowak Da Costa 2022) to imple-
ment a fully rigorous approach.

The reduction of the velocities and their uncertainties at
the data points should be carried out before their rotations
around the Earth’s centre from the corresponding data point
to the interpolation point. The conversion/reduction of the
velocity from the original data point (e.g. Pa) to the corre-
sponding foot-point position (P ′

a) can be accomplished as
follows:
⎡
⎢⎣
Ė ′
a

Ṅ ′
a

U̇ ′
a

⎤
⎥⎦ �

⎡
⎢⎣

υa/(υa + ha) 0 0
0 ρa/(ρa + ha) 0
0 0 1

⎤
⎥⎦

⎡
⎢⎣
Ėa

Ṅa

U̇a

⎤
⎥⎦, (37)

with the velocity from Eq. (5), the ellipsoidal height ha of
the original data point (Pa), and the corresponding radii of
curvature in themeridian ρa and in the prime vertical υa from
Eqs. (25) and (26). Both horizontal velocity components are
reduced with respect to the principal radii of the curvature of
the reference ellipsoid surface, while the vertical/up velocity
component remains unchanged (see argumentation in Intro-
duction section). The scaling is based on the proportionality
of the lengths of the legs in the pairs of the right-angled tri-
angles lying in the plane of the meridian or the prime vertical
and with their right angles at the interpolation point and at its
foot point on the reference ellipsoid, respectively. The same
Eq. (37) for the reduction to the reference ellipsoid surface
can be used for potential data points on the Z -axis, but with
original/geocentric velocities instead of the topocentric ones.
Obviously, Eq. (37) does not allow points on the evolute of
themeridional ellipse (i.e. ha � −ρa) or points on the Z -axis
inside this evolute (i.e. ha � −υa) to be used as data points.
But a ban on data points closer than ~43 km from the Earth’s

centre (see Sect. 3.2) is irrelevant for the geodetic velocity
field modelling.

Again, the law of variance–covariance propagation should
be applied in the conversion/reduction of the velocity uncer-
tainties. The corresponding variance–covariance matrix of
the velocity which refers to the foot-point position of the
data point (P ′

a) can be obtained as follows:

(38)

⎡
⎢⎢⎢⎣

. . .

�Ė ṄU̇
′
a

. . .

⎤
⎥⎥⎥⎦

�
⎡
⎢⎣

υa/ (υa + ha) 0 0
0 ρa/ (ρa + ha) 0
0 0 1

⎤
⎥⎦

⎡
⎢⎢⎣

. . .

�Ė ṄU̇ a
. . .

⎤
⎥⎥⎦

×
⎡
⎢⎣

υa/ (υa + ha) 0 0
0 ρa/ (ρa + ha) 0
0 0 1

⎤
⎥⎦ ,

with the corresponding variance–covariance matrix from
Eq. (7) or the original/geocentric variance–covariancematrix
instead (for potential data points on the Z -axis, see above).

The interpolated topocentric velocity components Ė ′
i ,Ṅ

′
i ,

and U̇ ′
i of the interpolation point projected to the reference

ellipsoid surface P ′
i can be obtained as follows:

⎡
⎢⎣
Ė ′
i

Ṅ ′
i

U̇ ′
i

⎤
⎥⎦ � 1

Aabc

⎛
⎜⎝Aibc

⎡
⎢⎣
Ė ′
ai

Ṅ ′
ai

U̇ ′
ai

⎤
⎥⎦ + Aaic

⎡
⎢⎣
Ė ′
bi

Ṅ ′
bi

U̇ ′
bi

⎤
⎥⎦ + Aabi

⎡
⎢⎣
Ė ′
ci

Ṅ ′
ci

U̇ ′
ci

⎤
⎥⎦

⎞
⎟⎠,

(39)

with the appropriately rotated topocentric velocities at the
triplet of data points fromEqs. (10) or (14), which are before-
hand reduced to the reference ellipsoid surface usingEq. (37),
and Aabc, Aabi , Aaic, and Aibc being the areas of the spherical
triangle and the corresponding sub-triangles created by the
interpolation point P ′

i and the corresponding triangle sides
P ′
a P

′
b, P

′
a P

′
c, and P ′

b P
′
c (Fig. 10). Equations (30) and (32)

or Eq. (34) should be used as alternatives for determining
the areas of small and/or sliver spherical triangles. Again,
the same Eq. (39) can be used for potential interpolation
points on the Z -axis, but with appropriately rotated geocen-
tric velocities (instead of the topocentric ones) from Eq. (17).
The interpolation on the side of two adjacent spherical tri-
angles depends only on the velocities of both data points on
this side (i.e. endpoints). The interpolated values, however,
do not agree when calculated from the left and right trian-
gles unless they are symmetrical about their common side.
In general, the continuity is not achieved.
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Fig. 10 Piecewise radial 3D velocity field interpolation (Method III) is
based on the areas of the spherical triangles (in red) with their vertices
at the foot point P ′

i of the interpolation point (Pi ) and the foot points
P ′
a , P

′
b, and P ′

c of the corresponding triplet of data points (Pa , Pb, and
Pc), which are further projected from the reference ellipsoid surface
to the surface of the interpolation-point-adapted Gaussian osculating
sphere—P

′′
a , P

′′
b , and P

′′
c ;Ri is the corresponding Gaussian radius of

curvature and Po is the coordinate origin

By analogy to Eq. (23), the variance–covariance matrix of
the velocity of the interpolation point projected to the refer-
ence ellipsoid surface P ′

i can be obtained as follows:

⎡
⎢⎢⎢⎣

. . .

�Ė ṄU̇
′
i

. . .

⎤
⎥⎥⎥⎦ � 1

A2
abc

⎛
⎜⎜⎜⎝A2

ibc

⎡
⎢⎢⎢⎣

. . .

�Ė ṄU̇
′
ai

. . .

⎤
⎥⎥⎥⎦ + A2

aic

⎡
⎢⎢⎢⎣

. . .

�Ė ṄU̇
′
bi

. . .

⎤
⎥⎥⎥⎦

+A2
abi

⎡
⎢⎢⎢⎣

. . .

�Ė ṄU̇
′
ci

. . .

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠, (40)

with the corresponding variance–covariance matrices of the
appropriately rotated topocentric velocities at the triplet of
data points from Eqs. (13) or (16), which are beforehand
reduced to the reference ellipsoid surface using Eq. (38), or
the variance–covariancematrix of the corresponding geocen-
tric velocity (for potential interpolation points on the Z -axis,
see above) fromEq. (19). Like the interpolated velocity in one
of the data points used for the interpolation, the obtained vari-
ance–covariance matrix is equal to the variance–covariance
matrix of this data point velocity. The interpolated variance—
covariancematrix componentsmay, however, not agree at the
sides of adjacent spherical triangles.

As an inverse to Eq. (37), the conversion/restoration of the
interpolated velocity from the foot point of the interpolation

point (P ′
i ) to its original position (Pi ) can be accomplished

as follows:

⎡
⎢⎣
Ėi

Ṅi

U̇i

⎤
⎥⎦ �

⎡
⎢⎣

(υi + hi )/υi 0 0
0 (ρi + hi )/ρi 0
0 0 1

⎤
⎥⎦

⎡
⎢⎣
Ė ′
i

Ṅ ′
i

U̇ ′
i

⎤
⎥⎦, (41)

with the velocity fromEq. (39), the ellipsoidal height hi of the
interpolation point (Pi ), and the corresponding radii of curva-
ture in the meridian ρi and in the prime vertical υi from Eqs.
(25) and (26). Again, the sameEq. (41) can be used for poten-
tial interpolation points on the Z -axis, but with appropriately
interpolated geocentric velocity (instead of the topocentric
one). The corresponding variance–covariance matrix of the
interpolated velocity which refers to the original position of
the interpolation point (Pi ) can be obtained as follows:

⎡
⎢⎢⎣

. . .

�Ė ṄU̇ i
. . .

⎤
⎥⎥⎦ �

⎡
⎢⎣

(υi + hi ) /υi 0 0
0 (ρi + hi ) /ρi 0
0 0 1

⎤
⎥⎦

⎡
⎢⎢⎢⎣

. . .

�Ė ṄU̇
′
i

. . .

⎤
⎥⎥⎥⎦

×
⎡
⎢⎣

(υi + hi ) /υi 0 0
0 (ρi + hi ) /ρi 0
0 0 1

⎤
⎥⎦ ,

(42)

with the corresponding variance–covariance matrix of the
interpolated velocity from Eq. (40) or the variance–co-
variance matrix of the corresponding geocentric velocity
(for potential interpolation point on the Z -axis, see above).
Finally, the conversion of the interpolated topocentric veloc-
ity and its variance–covariance matrix to the geocentric
system should be done by applying Eqs. (8) and (9).

Contrary to the piecewise linear and quasi-linear 3D
interpolations (Methods I and II), the radial interpolation
approach provides radial symmetry (Fig. 8). For example,
if the vertical velocity component is equal for all three trian-
gle vertices (a homogeneous land uplift or subsidence over
the region), the obtained vertical components for all interpo-
lated vectors within this triangle will be equal to this velocity
component, too.

The interpolation steps in the piecewise radial 3D velocity
field interpolation (Method III) are as follows:

• projection of the interpolation and data points to the ref-
erence ellipsoid surface (i.e. determination of their foot
points),

• conversion of the geocentric velocity components and their
uncertainties at the data points to the topocentric system
(excluding data points on the Z -axis) using Eqs. (5) and
(7),
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• conversion/reduction of the topocentric (exceptionally
geocentric) velocity components and their uncertainties
at the data points to the reference ellipsoid surface using
Eqs. (37) and (38),

• rotation of the topocentric (exceptionally geocentric)
velocity components and their uncertainties at the data
points around the Earth’s centre to the corresponding inter-
polation point using Eqs. (10) or (14) and (13) or (16),

• determination of the topocentric (exceptionally geocen-
tric) velocity components and their uncertainties at the foot
point of the interpolation point using Eqs. (39) and (40),

• conversion/restoration of the interpolated topocentric
(exceptionally geocentric) velocity components and their
uncertainties to the original position of the interpolation
point using Eqs. (41) and (42), and

• conversion of the topocentric velocity components and
their uncertainties at the interpolation point to the geo-
centric system using Eqs. (8) and (9).

3.4 Method IV: Continuous piecewise quasi-radial
3D velocity field interpolation

Adisadvantage of the piecewise radial 3Dvelocity field inter-
polation as proposed in the previous subsection (Method III)
is its discontinuity on the triangle sides in the mesh. A way
to solve this problem is combining linear and radial interpo-
lation approaches. The fact is that interpolated values will
be almost equivalent if one replaces spherical triangle areas
with the corresponding planar triangle areas within a dense
position/velocity dataset (e.g. Carfora 2007). By analogy, the
volume of a pyramid with a spherical/spheroidal triangular
base can be approximated by the volume of the correspond-
ing pyramid with a flat triangular base tied at its vertices on
the reference ellipsoid surface.

The interpolation process is very similar to the one used in
the piecewise radial 3D velocity field interpolation (Method
III). An important change is, however, introduced in the inter-
polation formula. Instead of using Eq. (39) like in Method
III, the interpolated velocity components Ė ′

i , Ṅ
′
i , and U̇ ′

i of
the interpolation point projected to the reference ellipsoid
surface P ′

i should be obtained as follows:

⎡
⎢⎣
Ė ′
i

Ṅ ′
i

U̇ ′
i

⎤
⎥⎦ � 1

V ′
ibcs + V ′

aics + V ′
abis

×
⎛
⎜⎝V ′

ibcs

⎡
⎢⎣
Ė ′
ai

Ṅ ′
ai

U̇ ′
ai

⎤
⎥⎦ + V ′

aics

⎡
⎢⎣
Ė ′
bi

Ṅ ′
bi

U̇ ′
bi

⎤
⎥⎦ + V ′

abis

⎡
⎢⎣
Ė ′
ci

Ṅ ′
ci

U̇ ′
ci

⎤
⎥⎦

⎞
⎟⎠,

(43)

with the appropriately rotated reduced topocentric (excep-
tionally geocentric) velocities at the triplet of data points and

Fig. 11 Continuous piecewise quasi-radial 3D velocity field interpola-
tion (Method IV) is based on the volumes of the irregular tetrahedra (in
red) which are created by the foot point P ′

i of the interpolation point
(Pi ), the foot points P ′

a , P
′
b, and P ′

c of the corresponding triplet of data
points (Pa , Pb, and Pc), and the centre of the interpolation-point-adapted
Gaussian osculating sphere Ps ; Ri is the corresponding Gaussian radius
of curvature and Po is the coordinate origin

V ′
abis , V

′
aics , and V ′

ibcs being the volumes of the triangular
pyramidswhich are created by the centre of the interpolation-
point-adapted Gaussian osculating sphere Ps and the foot
points of the interpolation point P ′

i and the corresponding
triplet of data points P ′

a , P
′
b, and P ′

c (Fig. 11). Equation (29)
should be applied in the volume calculation, mutatis mutan-
dis. Except of using the foot points of the interpolation and
data points, the difference as compared to Eq. (21) is that
the total volume of the pyramid V ′

abcs is replaced by the
sum of the volumes of the three sub-pyramids with the inci-
dent vertex at the foot point of the interpolation point. This
interpolation is continuous everywhere and smooth almost
everywhere; more information is available in the Online
Resource, Supplement S2, also referring to Sambridge et al.
(1995).

The variance–covariance matrix of the velocity of the
interpolation point projected to the reference ellipsoid sur-
face P ′

i should be obtained as follows:

⎡
⎢⎢⎢⎣

. . .

�
Ė ṄU̇

′
i

. . .

⎤
⎥⎥⎥⎦ � 1(

V ′
ibcs + V ′

aics + V ′
abis

)2

⎛
⎜⎜⎜⎝V

′2
ibcs

⎡
⎢⎢⎢⎣

. . .

�
Ė ṄU̇

′
ai

. . .

⎤
⎥⎥⎥⎦

+ V
′2
aics

⎡
⎢⎢⎢⎣

. . .

�
Ė ṄU̇

′
bi

. . .

⎤
⎥⎥⎥⎦ + V

′2
abis

⎡
⎢⎢⎢⎣

. . .

�
Ė ṄU̇

′
ci

. . .

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠, (44)
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with the corresponding variance–covariance matrices of
the appropriately rotated reduced topocentric (exceptionally
geocentric) velocities at the triplet of data points. It can be
checked that Eq. (44) guarantees continuity for the uncer-
tainties of the velocity components.

The interpolation steps in the continuous piecewise quasi-
radial 3D velocity field interpolation (Method IV) are as
follows:

• projection of the interpolation and data points to the ref-
erence ellipsoid surface (i.e. determination of their foot
points),

• conversion of the geocentric velocity components and their
uncertainties at the data points to the topocentric system
(excluding data points on the Z -axis) using Eqs. (5) and
(7),

• conversion/reduction of the topocentric (exceptionally
geocentric) velocity components and their uncertainties
at the data points to the reference ellipsoid surface using
Eqs. (37) and (38),

• rotation of the topocentric (exceptionally geocentric)
velocity components and their uncertainties at the data
points around the Earth’s centre to the corresponding inter-
polation point using Eqs. (10) or (14) and (13) or (16),

• determination of the topocentric (exceptionally geocen-
tric) velocity components and their uncertainties at the foot
point of the interpolation point using Eqs. (43) and (44),

• conversion/restoration of the interpolated topocentric
(exceptionally geocentric) velocity components and their
uncertainties to the original position of the interpolation
point using Eqs. (41) and (42), and

• conversion of the topocentric velocity components and
their uncertainties at the interpolation point to the geo-
centric system using Eqs. (8) and (9).

3.5 Point-in-pyramid algorithm and continuity
issues

Finding out whether the interpolation point Pi within the
unbounded triangular pyramid determined by the trian-
gle Pa PbPc lies inside or outside the irregular tetrahedron
Pa PbPcPs can be based on the volumes of the correspond-
ing sub-pyramids:

Vabcs �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Vabis + Vaics + Vibcs + Vabci
. . . Pi beneath the triangulated surface

Vabis + Vaics + Vibcs − Vabci
. . . Pi on or above the triangulated surface

(45)

where Vabci is the volume of the irregular tetrahedron created
by the interpolation point Pi and the triangle vertices Pa , Pb,

and Pc. The condition is met by adding this volume for an
interpolation point beneath the triangulated surface of the
Earth (interpolation) or subtracting this volume for a point
above the surface (extrapolation). This dilemma disappears
when using the foot points of the corresponding interpolation
and data points; the projected interpolation point P ′

i never
lies beneath the planar triangular face with the vertices at the
corresponding data points P ′

a , P
′
b, and P ′

c which are projected
to the reference ellipsoid. This fact leads to an unambiguous
criterion to be used in a point-in-pyramid algorithm:

V ′
abcs − V ′

abis − V ′
aics − V ′

ibcs + V ′
abci � 0. (46)

A fuzzy approach should be used, having in mind that
the interpolation point can be placed also at the face or edge
of the adjacent pyramids as well as that one cannot count
on achieving full equality in Eq. (46) when using standard
floating-point arithmetic. The sought unbounded pyramid
defining triplet of data points Ti � {Pa , Pb, Pc} to be used
to determine the velocity of the interpolation point Pi can be
obtained as:

(47)

Ti � argmin{
Pj , Pk , Pl

}
∣∣∣V ′

jkls − V ′
jkis − V ′

j ils − V ′
ikls + V ′

jkli

∣∣∣

. . .
{
Pj , Pk , Pl

} ∈ {‘triangles’ in the mesh} ,

where V ′
jkls , V

′
jkis , V

′
j ils , V

′
ikls , and V ′

jkli are the volumes of
the triangular pyramids which are created by the centre of the
interpolation-point-adapted Gaussian osculating sphere Ps ,
the foot point of the interpolation point P ′

i , and the foot points
of the corresponding triplet of data points P ′

j , P
′
k , and P ′

l .
Equation (29) should be applied in the volume calculations,
mutatis mutandis. Equation (47) works well for local and
global position/velocity datasets, except for the interpolation
points closer than ~43 km from the Earth’s centre (see also
Sect. 3.2).

The above introduced algorithm for looking up an
appropriate pyramid can be used in Methods II–IV (see
Sects. 3.2–3.4). In Method IV, the proof of strict continuity
of the velocity field interpolation on the reference ellipsoid
surface may be derived from the fact that the interpolation on
the side of the ellipsoidal triangle, which is implicitly defined
by Eq. (47), depends only on the velocities of both triangle
vertices and the areas of the corresponding adjacent planar
triangles (Fig. 12). Namely, the ratio between the volumes
of two pyramids with the common apex is equal to the ratio
between the areas of their (coplanar) bases. This implies that
the interpolated values at the (curved) common side of two
adjacent ellipsoidal triangles in the mesh are equal no matter
which of both triangles (at each individual point on this side)
is used for the interpolation (see also Sect. 3.1). Finally, this
continuous velocity field on the reference ellipsoid surface
can be spread over the 3D space by applying Eq. (41) and the
resulting velocity field is uniquely defined and continuous
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Fig. 12 Continuous piecewise quasi-radial 3D velocity field interpola-
tion (Method IV) on the side of the triangle in the mesh is based on
the areas of the adjacent triangles (in red) which are created by the foot
point P ′

i of the interpolation point (Pi ), the foot points P ′
a and P ′

b of
the corresponding pair of data points (Pa and Pb), and the centre of the
interpolation-point-adapted Gaussian osculating sphere Ps—i.e. with
no impact of the third data point (Pc); Ri is the corresponding Gaussian
radius of curvature and Po is the coordinate origin

everywhere except within the area close to the Earth’s centre
(see above).

An appropriately adapted algorithm can be used also in
Method I (see Sect. 3.1) where:

• the original interpolation and data points are projected to
the surface of a geocentric sphere and

• Eq. (20) is used instead of Eq. (29) for the volume calcu-
lation.

Since using a volume-based interpolation approach, the
volume of the reference sphere may be tied to the volume of
the reference ellipsoid which requires the so-called Earth’s
volumetric radius (e.g. Moritz 2000):

Ro � 3
√
a2b � a

6
√
1 − e2, (48)

where a and b are semi-major and semi-minor axes and e
is the first numerical eccentricity of the reference ellipsoid.
Before using Eq. (47), the interpolation and data points (e.g.
Pa) should be projected to the reference sphere surface; the
corresponding foot-point coordinates can be obtained as fol-
lows:

⎡
⎢⎣
X ′
a

Y ′
a

Z ′
a

⎤
⎥⎦ � Ro√

X2
a + Y 2

a + Z2
a

⎡
⎢⎣
Xa

Ya
Za

⎤
⎥⎦, (49)

with the Earth’s centred reference sphere with the radius Ro

from Eq. (48). When observed from the Earth’s centre Po,
P ′
a points in the same direction as Pa but lies at a distance

equal to Ro.

4 Numerical tests

All test computations are carried out using a prototype
software developed in C++. Double-precision floating-point
arithmetic is used. All results of the numerical tests are gen-
erated with no rounding at any computation step. Geometric
constants defining the Earth’s geocentric equipotential ellip-
soid are taken from the Geodetic Reference System 1980
(Moritz 2000). The Sjöberg (2008) strict solution for the
Cartesian to geodetic coordinate conversion is combined by
the Vermeille (2004) solution which avoids numerical prob-
lems around the antipodal meridian of Greenwich. Vincenty
(1975) formula is used for the geodetic/ellipsoidal azimuth
calculation. All graphics in this section are provided in KML
format and displayed in Google Earth (2022). Eight global
and regional position/velocity datasets are used to test the per-
formance of the proposed velocity field modelling approach,
which are given in Table 1.

The ITRF2014 Network datasets are all global, and the
ITRF14-GNSS dataset (Fig. 13) is the densest global dataset
(Tables 3 and 4). The ITRF14-SLR dataset (Fig. 14) creates
the largest Delaunay triangle containing entire Antarctica
(Fig. 19a). The ITRF14-DORIS dataset (Fig. 15) is the spars-
est dataset (Tables 3 and 4). The ITRF14-VLBI dataset
(Fig. 16) is the least problematic in terms of clustering of data
points (Table 2). The four regional position/velocity datasets
are all based on the EPN with a rather homogeneous den-
sity of GNSS stations—at least in the contiguous Europe
(Fig. 17a). The EPND dataset is complemented by different
national CORS networks (Fig. 17b). The CEGRN dataset
is densified by both, active (CORS) and passive (campaign-
based) networks of GNSS sites, especially in some southern
and eastern European countries (Fig. 18a). It is consistent
with the ETRF2000 and fulfils the criteria in the Guide-
lines for EUREF densifications, see Legrand et al. (2021)
for the latter. The EDV dataset is the densest regional dataset
(Tables 3 and 4). It is based on the active and passive network
contributions of the nationalmapping agencies and other data
analysis centres (Fig. 18b). This dataset creates the smallest
Delaunay triangle resulting from the test datasets (Fig. 19b).

The surface meshes resulting from the test datasets are
presented in Figs. 13, 14, 15, 16, 17 and 18. All distances
are calculated as spatial straight-line distances between the
corresponding pairs of foot points lying on the reference
ellipsoid surface. Also, the triangle areas are calculated as
the planar areas in the 3D space.
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Table 1 An overview of input
position/velocity datasets used in
the numerical tests (as data
points)

Abbreviation Dataset origin Download link Publication

ITRF14-GNSS ITRF2014 network, GNSS
part

ITRF14-GNSS
(2016)

Altamimi et al. (2016)

ITRF14-SLR ITRF2014 network, SLR part ITRF14-SLR (2016) Altamimi et al. (2016)

ITRF14-DORIS ITRF2014 network, DORIS
part

ITRF14-DORIS
(2016)

Altamimi et al. (2016)

ITRF14-VLBI ITRF2014 network, VLBI
part

ITRF14-VLBI
(2016)

Altamimi et al. (2016)

EPN EUREF permanent GNSS
network

EPN (2022) Bruyninx et al. (2019)

EPND EPN densification EPND (2021) Kenyeres et al. (2019)

CEGRN Central European GNSS
research network

CEGRN (2019) Zurutuza et al. (2019)

EDV European dense velocities EDV (2022) Lutz and Brockmann
(2019)

Fig. 13 The Delaunay triangulation of the ITRF14-GNSS (2016) dataset—a global surface mesh of 2006 triangles with areas between 1.4 m2 and
13.9 mil. km2; the average triangle side length is 622 km, and the average triangle area is 245,165 km2

Fig. 14 TheDelaunay triangulation of the ITRF14-SLR (2016) dataset (laser telescopes)—a global surfacemesh of 266 triangles with areas between
91.6 m2 and 33.7 mil. km2; the average triangle side length is 1547 km, and the average triangle area is 1536,628 km2
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Fig. 15 The Delaunay triangulation of the ITRF14-DORIS (2016) dataset (radio beacons)—a global surface mesh of 218 triangles with areas
between 37.2 m2 and 10.5 mil. km2; the average triangle side length is 2546 km, and the average triangle area is 2187,107 km2

Fig. 16 The Delaunay triangulation of the ITRF14-VLBI (2016) dataset (radio telescopes)—a global surface mesh of 304 triangles with areas
between 0.5 ha and 27.4 mil. km2; the average triangle side length is 1450 km, and the average triangle area is 1399,682 km2

Table 2 Number of data points
left after filtering out those under
the selected distance threshold

Threshold (m) ITRF14- EPN EPND CEGRN EDV

GNSS SLR DORIS VLBI

0 (no filtering) 1054 137 160 154 364 2592 1269 7131

1 1005 135 111 154 355 2578 1177 6904

10 982 130 100 153 343 2529 1177 6770

100 946 108 84 148 328 2490 1177 6236

1000 927 98 75 132 317 2454 1165 6051

All eight datasets are triangulated by applying four dif-
ferent filters removing points which are too close together;
the distance thresholds of 1 m, 10 m, 100 m, and 1000 m are
used. Reasons for close-lying points in the position/velocity
datasets can be new/renamed station after its rebuilding, col-
located stations at the global geodetic observatories (Boucher
et al. 2015) with twin radio telescopes, multiple GNSS sta-
tions, etc. However, the reason for filtering out the points is
also rounding their horizontal geodetic coordinates to two

decimals (0.01° ∼� 1.1 km) in the CEGRN dataset and to five
decimals (0.00001° ∼� 1.1 m) in the EDV dataset.

An insight into the characteristics of the test datasets is
provided by the basic statistics which describe the resulting
surface meshes when using different filters for close-lying
points. Numbers of original and remaining points are given
in Table 2. Although the ITRF14-DORIS dataset seems to
be the most homogeneously spaced global dataset (Fig. 15),
even 30.6%of the points are removedwhen using 1-m thresh-
old. The reason is that each DORIS station (radio beacon) is
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Fig. 17 a The Delaunay triangulation of the EPN dataset (EPN
2022)—a pan-European surface mesh of 698 triangles with areas
between 0.4 ha and 2.4 mil. km2; the average triangle side length is
267 km and the average triangle area is 37,738 km2. b The Delaunay

triangulation of the EPNDensification dataset (EPND2021)—a surface
mesh of 5143 triangles with areas between 18.9 m2 and 2.2 mil. km2;
the average triangle side length is 82 km and the average triangle area
is 5042 km2

Fig. 18 a The Delaunay triangulation of GNSS sites in the CEGRN
dataset (CEGRN 2019)—a pan-European surface mesh of 2343 trian-
gles with areas between 0.4 km2 and 2.4 mil. km2; the average triangle
side length is 107 km and the average triangle area is 11,248 km2.

b The Delaunay triangulation of GNSS sites in the EDV dataset (EDV
2022)—a surface mesh of 13,785 triangles with areas between 0.8 m2

and 0.5 mil. km2; the average triangle side length is 41 km and the
average triangle area is 1037 km2
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Table 3 Number of triangles in
the surface mesh obtained after
filtering out data points under the
selected distance threshold

Threshold (m) ITRF14- EPN EPND CEGRN EDV

GNSS SLR DORIS VLBI

1 2006 266 218 304 698 5143 2343 13,785

10 1960 256 196 302 675 5045 2343 13,517

100 1888 212 164 292 645 4967 2343 12,449

1000 1850 192 146 260 623 4895 2319 12,079

Table 4 Average data point
spacing (km) in the surface mesh
obtained after filtering out data
points under the selected distance
threshold

Threshold (m) ITRF14- EPN EPND CEGRN EDV

GNSS SLR DORIS VLBI

1 622 1547 2546 1450 267 82 107 41

10 628 1592 2668 1453 271 82 107 42

100 642 1802 2826 1478 278 83 107 44

1000 651 1889 2962 1588 280 84 107 44

Fig. 19 The largest Delaunay triangle with an area of 33.7 mil. km2 is
resulting from the ITRF14-SLR dataset and connects the SLR stations
7405 in Concepción, Chile, 7502 in Sutherland, South Africa, and 7843
in Tidbinbilla, Australia (left); the smallest Delaunay triangle with an

area of 0.8 m2 is resulting from the EDV dataset and connects three
GNSS stations GOP6, GOP7, and GOPE at the Pecný Geodetic Obser-
vatory, Czechia (right)

considered a new station (with a new ID) when the transmit-
ting antenna is changed—regardless of beingmounted above
the same ground mark. The second largest proportion (7.2%)
of removed points can be observed for the CEGRN dataset,
which is due to the aforementioned rough rounding of the
data-point coordinates which causes fusion of close-lying
GNSS stations.

Numbers of triangles in the final surface mesh (i.e.
resulting from the Delaunay triangulation but appropriately
modified to represent a unique and continuous surface—by
removing dangling triangles and filling up the gaps) are given
in Table 3. One can observe that the ratio of the number of
triangles to the number of data points is close to 2, especially
for large datasets (compare Tables 1 and 2).

123



16 Page 22 of 39 S. Berk

Table 5 Median data point
spacing (km) in the surface mesh
obtained after filtering out data
points under the selected distance
threshold

Threshold (m) ITRF14- EPN EPND CEGRN EDV

GNSS SLR DORIS VLBI

1 308 697 2746 715 179 53 50 30

10 313 715 2788 712 180 53 50 30

100 326 832 2862 745 183 53 50 31

1000 334 855 2996 831 185 53 51 32

The average and median side lengths of these triangles
(i.e. the average and median data point distances) are given
in Tables 3 and 4. The average data point spacing (Table 4)
is related to the density of points in a dataset. The EDV and
the ITRF14-DORIS datasets are the densest and the sparsest
datasets, respectively. However, the density of the “target
areas” can be better described by the median data point
spacing (Table 5), which significantly reduces the impact
of atypical triangles along the convex hull boundary (for
regional datasets), large triangles bridging the seas, and sliver
triangles with vertices in multiple stations installed at space
geodetic observatories. The largest differences between these
two statistics can be observed for the ITRF14-SLR and
CEGRN datasets with the average spacing being more than
twice as large as the corresponding median data point spac-
ing.

4.1 Original versus foot-point Delaunay
triangulation

The test position/velocity datasets are triangulated in two
ways:

• using data points with the original coordinates and
• using data points projected to the reference ellipsoid sur-
face (h � 0).

The results of the Delaunay triangulations when using the
original data points or the corresponding foot points can be
compared for all test datasets, except for the CEGRN and
EDV datasets (due to the lack of the height information).
Three types of anomalies in the resulting surface meshes are
analysed for the test datasets as follows:

• dangling Delaunay triangles,
• missing triangles, and
• topological differences.

4.1.1 Dangling Delaunay triangles

Dangling Delaunay triangles are triangles which should be
removed to achieve a unique surface mesh—see Fig. 2. The
numbers of such triangles resulting from the triangulation
of the test position/velocity datasets are given in Table 6.
Focusing first on the triangle meshes resulting from the tri-
angulation of the original data points (containing the height
information as well) with the lowest distance threshold of
1 m, dangling Delaunay triangles are the most frequent for
the ITRF14-DORIS dataset; seven such triangles correspond
to 3.21% of 218 triangles in the final surface mesh (Table 3).
Even though the largest number of 19 dangling Delaunay tri-
angles is detected in the EPND dataset, they correspond to
only 0.37% of 5143 triangles. The appearance of dangling
Delaunay triangles is conditioned to a specific spacing of
data points (Online Resource, Supplement S3, Fig. S3-1a).
As can be observed, they will be more frequent if close-lying
stations are present in the dataset; their number decreases
while the distance threshold increases. When using the dis-
tance threshold of 1000 m, their percentage reaches up to
0.16% (3 out of 1850) for the ITRF14-GNSS dataset. When
using the corresponding foot points instead of the original
data points as an input for the Delaunay triangulation, the
problem of dangling Delaunay triangles almost disappears.
The most persistent dangling Delaunay triangles are created
by the triple of points almost coplanar with the Earth’s centre
and are projected to the surface of the globe as an orthodrome
(Online Resource, Supplement S3, Fig. S3-1b).

4.1.2 Missing triangles (gaps)

Gaps may appear in the triangle mesh which is created
by using the Delaunay triangulation in three dimensions.
The missing triangles are considered non-Delaunay triangles
which should be added to achieve a continuous surfacemesh.
The numbers of such triangles resulting from the triangula-
tion of the test position/velocity datasets are given in Table 7.
Focusing first on the triangle meshes resulting from the tri-
angulation of the original data points (containing the height
information as well), gaps are detected only for the ITRF14-
GNSS and EPND datasets—the densest global and regional
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Table 6 The number of dangling
Delaunay triangles resulting
from the data points obtained by
filtering out those under the
selected distance threshold—a
comparison of using data points
with original coordinates and
data points projected to the
reference ellipsoid surface
(number in brackets, if different
from the former)

Threshold (m) ITRF14- EPN EPND CEGRN EDV

GNSS SLR DORIS VLBI

1 11 (0) 5 (0) 7 (0) 0 3 (0) 19 (0) — (1) — (1)

10 7 (0) 5 (0) 0 0 0 10 (0) — (1) — (1)

100 3 (0) 2 (0) 0 0 0 7 (0) — (1) — (1)

1000 3 (0) 0 0 0 0 7 (0) — (1) — (1)

Table 7 The number of missing
triangles (gaps) in the Delaunay
triangulation of the data points
obtained by filtering out those
under the selected distance
threshold—a comparison of
using data points with original
coordinates and data points
projected to the reference
ellipsoid surface (number in
brackets, if different from the
former)

Threshold (m) ITRF14- EPN EPND CEGRN EDV

GNSS SLR DORIS VLBI

1 2 (0) 0 0 0 0 1 (0) — (0) — (0)

10 0 0 0 0 0 1 (0) — (0) — (0)

100 0 0 0 0 0 0 — (0) — (0)

1000 0 0 0 0 0 0 — (0) — (0)

datasetswhen excluding theCEGRNandEDVdatasets (with
no height information). Like dangling Delaunay triangles,
they will be more frequent if close-lying stations are present
in the dataset (Online Resource, Supplement S4, Fig. S4-1).
When using the corresponding foot points instead of the orig-
inal data points as an input for the Delaunay triangulation,
no gap is detected in the resulting surface meshes.

4.1.3 Topological differences

Even though the number of Delaunay triangles may vary
considerably for a given number of data points, no differ-
ences in the total number of triangles are detected in the
pairs of final surface meshes resulting from the test posi-
tion/velocity datasets when using original or corresponding
foot points. All detected topological differences refer to the
quadrilaterals which are triangulated by taking the opposite
diagonal (Online Resource, Supplement S5, Fig. S5-1). The
numbers of such topological differences in the resulting test
position/velocity datasets are given in Table 8. Like the other
anomalies observed in the resulting surface meshes, topolog-
ical changes will be more frequent if close-lying stations are
present in the dataset.

4.2 Rigorous versus approximate spherical triangle
area calculation

Theareas of the spherical triangles in thefinal trianglemeshes
generating from the test position/velocity datasets are calcu-
lated by applying:

• the exact solution based on l’Huilier’s theorem—Eq. (32)
and

• the recursive approximate solution with expan-
sion—Eq. (34).

A comparison of the calculated spherical triangle areas is
made by using data points with the lowest distance thresh-
old of 1 m (i.e. the most adverse conditions). Seeking the
balance between the rigorous and approximate but numeri-
cally stable calculation of the area is done empirically. The
threshold referring to the minimum difference between the
semi-perimeter of the spherical triangle and the triangle side
angular lengths is investigated, see Ineq. (36). After testing
various candidates, the threshold value of 0.000005 rad is
proposed. This threshold value corresponds to ~1 arcsecond
or ~32 m on the GRS80 ellipsoid; a spherical triangle with
at least one side measuring less than double threshold value
(~64 m) cannot meet the condition in Ineq. (36), regardless
of its shape.

Some indicators of performance of the spherical trian-
gle area calculation by using the proposed threshold value
are given in Table 9. The proportion of small and/or sliver
spherical triangles (below the proposed threshold) in the test
datasets vary between 0.3% in theCEGRNdataset and 25.2%
in the ITRF14-DORIS dataset. But one should have in mind
that the interpolation of the velocities requires determination
of the areas of spherical sub-triangles as well. The largest rel-
ative error of the areas calculated by using the exact solution
with Eq. (32) is detected in the ITRF14-GNSS dataset. In
the spherical triangle WTZR-WTZZ-WTZS at the Wettzell
geodetic observatory (Online Resource, Supplement S4, Fig.
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Table 8 The number of
topological differences in the
Delaunay triangulations of the
data points obtained by filtering
out those under the selected
distance threshold—a
comparison of using data points
with original coordinates and
data points projected to the
reference ellipsoid surface

Threshold (m) ITRF14- EPN EPND CEGRN EDV

GNSS SLR DORIS VLBI

1 1 1 3 0 1 0 — —

10 1 0 3 0 0 0 — —

100 1 0 1 0 0 0 — —

1000 1 0 0 0 0 0 — —

Table 9 Indicators of the
performance of combining the
exact and approximate solutions
for the spherical triangle area
calculation using the proposed
threshold value of 0.000005

Indicator ITRF14- EPN EPND CEGRN EDV

GNSS SLR DORIS VLBI

Sml/Slv_Tr (%) 6.2 22.2 25.2 8.2 8.0 3.7 0.3 10.1

Errmax_Ex (%) 122.6 1.0 1.6 0.1 1.8 1.7 0.0 47.7

Errmax_App (%) 0.6 3.1 0.6 1.9 0.1 0.1 0.1 0.0

Trmax (km2) 96.8 81.3 185.6 138.2 6853.7 12.5 7085.7 528.5

Err_Trmax (ppm) 1.3 0.5 1.0 3.4 15.1 0.0 15.0 0.1

Trmin (km2) 1.1 2.3 141.8 0.4 3.8 0.1 0.4 0.0

Err_Trmin (ppm) 0.1 0.5 0.4 0.0 0.3 0.1 0.0 0.1

Indicator descriptions: Sml/Slv_Tr … the proportion of small and/or sliver spherical triangles (below the
threshold)—their areas should be calculated by using the approximate solution
Errmax_Ex … the maximum relative error of the areas of small and/or sliver spherical triangles (below the
threshold) when using the exact (instead of approximate) solution
Errmax_App … the maximum relative error of the areas of unproblematic spherical triangles (above the
threshold) when using the approximate (instead of exact) solution
Trmax … the maximum area of sliver spherical triangles (below the threshold)
Err_Trmax … the relative error of the largest sliver spherical triangle (see Trmax) when using the exact (instead
of approximate) solution
Trmin … the minimum area of unproblematic spherical triangles (above the threshold)
Err_Trmin … the relative error of the smallest unproblematic spherical triangle (see Trmin) when using the
approximate (instead of exact) solution
The identified maximum values for each individual indicator are marked in italics

S4-1b), the error reaches 122.6% of the area; the calculated
area would be more than twice as large as it should be.
Relative errors of the areas calculated by using the approx-
imate solution with Eq. (34) are considerably smaller. The
largest relative error of the approximate areas is detected
in the ITRF14-SLR dataset. In the third largest triangle in
this dataset, the error reaches 3.1% of the area; the calcu-
lated area would be too large. When combining the exact
and approximate solutions for the spherical triangle area cal-
culation, the largest relative errors of the calculated areas
can be expected for the largest triangles which are below
the selected threshold (i.e. sliver triangles). For the largest
sliver spherical triangles in each test dataset, relative differ-
ences between the exact and approximate solutions reach up
to ~15 ppm of the area in the EPN and CEGRN datasets. In
both cases, the worst triangle with the largest triangle side of
almost 2000 km and the area of ~7000 km2 appears at the
boundary of the convex hull of the points in the dataset. For
the smallest spherical triangles in each test dataset which are

above the selected threshold (i.e. unproblematic triangles),
the largest relative difference between the exact and approx-
imate solutions reaches 0.5 ppm of the area.

4.3 Analysis of the presented velocity field
interpolationmethods

The analysis of the geodetic velocity field modelling
approach considered in the paper (Methods I–IV) is focussing
on:

• the impact of the heights of points on the velocity field
interpolation and

• the comparison of the performance of the proposed veloc-
ity field interpolation methods.

Velocities from the latest interval in the position/velocity
lookup table with the corresponding coordinates of the data
points in the ITRF2014, epoch 2010.0, are used for testing.
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Table 10 Maximum absolute
ITRF2014 velocity components
and velocity magnitudes
(mm/year)

Component ITRF14- EPN EPND CEGRN EDV

GNSS SLR DORIS VLBI

Up 31.74 425.73 1106.68 132.38 10.92 20.85 213.32 302.10

North/east 90.87 376.41 190.79 517.93 28.94 31.03 174.63 249.86

2D (Hz) vector 91.16 423.00 210.30 611.60 33.69 40.05 225.79 286.10

3D vector 91.16 458.69 1126.49 625.76 33.70 40.09 309.97 412.11

The identified maximum values for each individual component are marked in italics, while the minimum
values are marked in bold

The extreme velocities detected in each individual test posi-
tion/velocity dataset are given in Table 10.

Formost of the test datasets, the obtained extreme velocity
components significantly exceed the expectations when hav-
ing in mind the most accurate velocities with the formal error
less than 0.2 mm/year (see Altamimi et al. 2016). Possible
reasons are that:

• the velocity for the latest interval in the position/velocity
lookup table is vague due to a short period of time since
a significant event (e.g. earthquake) causing discontinuity
in the coordinate time series,

• the velocity reflects not only tectonic- but also inflation-
driven components of deformation (addressed to volcanic
activity),

• the station lies at the plate boundary zone where the effects
of the interactions are unclear, and/or

• the station is locally unstable (e.g. mass wasting).

For the reasons stated above, only two test posi-
tion/velocity datasets which seem to be the most reliable are
chosen for testing the velocity field modelling methods—the
ITRF14-GNSS and EPN datasets. The determination of the
ITRF14-GNSS position/velocity dataset involved not only
the linear motions but also discontinuities, periodic signals,
and post-seismic deformation models to accurately describe
their actual trajectories and to adequately infer the linear part
of their motion (Altamimi et al. 2016). The largest absolute
vertical/up velocity component of 31.74 mm/year is detected
at the GNSS station BOGO in Bogotá, Colombia; all other
maximum velocity components (north/east, 2D, and 3D vec-
tors) are detected at the GNSS station TONG in Nuku‘alofa,
Tonga (in the boundary zone between the Australian and
Pacific Plates, see Fig. 20). The EPN dataset with the median
data point spacing of ~180 km (Table 5) is another example
of carefully validated and continuously improving dataset
(Bruyninx et al. 2012, 2019; Legrand 2022). The largest
absolute vertical velocity component of 10.92 mm/year is
detected at the GNSS station HOFN in Höfn, Iceland (vol-
canic area near the boundary between the North American

Fig. 20 The extreme velocity component correction for the height is
detected at the Horizon Deep (red star)—the very bottom of the Tonga
Trench in the PacificOcean,which is ~240kmsouth of theGNSS station
TONG inNuku‘alofa on Tongatapu Island; the Earth2014 elevation grid
is shown reduced to a cell size of 100 km × 100 km (approximately)
for clarity and the horizontal velocities are enlarged by the scale factor
of 1250,000, i.e. 100 km ∼80 mm/year

and Eurasian Plates); all other maximum velocity compo-
nents are detected at the GNSS station NSSP in Yerevan,
Armenia (near the boundary between the Eurasian and Ara-
bian Plates).

The topography-bedrock-ice (TBI) layer (i.e. without
waterbodies) of the Curtin University’s global 1-arcminute
resolution Earth2014 elevation dataset (Hirt and Rexer
2015) is used as interpolation points. The layer consists
of 233,280,000 points at heights between −10,847 m and
+8212 m. Data on about a hundred highest mountain
peaks from all continents, deepest places of the world’s
oceans, andgeostationary satellites orbiting above theEarth’s
continents (Wikipedia 2023; Stewart and Jamieson 2019) are
collected and used as additional interpolation points.
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4.3.1 Impact of the heights of points on the velocity field
modelling

The following analysis deals with:

• the impact of respecting heights of the velocity vector ini-
tial points on the interpolated velocities and

• the restoration of the interpolated velocities from the ref-
erence ellipsoid surface to their original positions (see
Sect. 3.3).

The ITRF14-GNSS position/velocity dataset with the data
points selected by considering the distance threshold of 1 m
is used in the tests presented in this subsection. Method
IV is used for the interpolation for its favourable proper-
ties, such as avoiding the impact of discontinuity (appearing
in Method III) and minimizing unjustified scaling effect
(appearing in Methods I and II)—see also Sect. 5.2. Orig-
inal heights/depths of interpolation points above/below the
sea level (in the local height/chart datums) are used instead
of the ellipsoidal heights (which should have no significant
impact on the results).

At first, the selected mountain peaks and ocean deeps
are used as the interpolation points. Interpolated topocen-
tric velocities with the initial points referred to the original
heights/depths of the interpolation points above/below the
reference ellipsoid surface and their errors when ignoring
the heights are given in Table 11. When ignoring the heights
of points, the errors of the horizontal velocity components
vary between −0.124 mm/year (i.e. 0.17% of the velocity
component) for the Horizon Deep (ϕ � 23°15′30′′S, λ �
174°43′36′′W), the deepest spot of the Tonga Trench in the
Pacific Ocean. The errors of the vertical/up velocity compo-
nents may be nonzero but are insignificant.

Interpolated topocentric velocities of the foot points of
the interpolation points on the reference ellipsoid surface and
their corrections for the heights of the interpolation points are
given in Table 12. The correction of the velocity due to the
height/depth of its initial point is only needed for its horizon-
tal components; no correction is needed for the vertical/up
component (see Sect. 3.3). The corrections of the veloci-
ties of points in high-altitude areas or deep under the oceans
(Table 12) are very similar to the errors obtained when using
zero heights of the interpolation and data points (Table 11),
because the impact of the heights of these interpolation points
prevails the impact of the heights of the data points used for
the velocity interpolation. However, the impact of the heights
themselvesmaynot always be the key factorwhen looking for
the extreme velocity component corrections. This conclusion
can be drawn from the relatively small velocity component
corrections for the Challenger Deep in the Mariana Trench,
which is the most distant point from the reference ellipsoid
surface.

To be able to detect the real extremes of the horizontal
velocity component corrections for the height of the interpo-
lation point, the topography-bedrock-ice (TBI) layer of the
Earth2014 elevation dataset is used. Interpolated topocentric
velocities of the foot points of the interpolation points on
the reference ellipsoid surface and their corrections for the
heights of the interpolation points are given for the locations
with the identified extreme velocity component corrections
in Table 13. In spite of checking 233,280,000 interpolation
points of the Earth2014 elevation grid, the obtained (abso-
lute) velocity component correction for the height of the
interpolation point does not exceed 0.124 mm/year which
is detected at the very bottom of the Tonga Trench (Fig. 20).

However, the velocity corrections for the heights of the
interpolation points can also be determined for an object in
outer space, for example as the correction of the orbital veloc-
ity of a geostationary satellite where the correction equals
~560% of the velocity component. Details can be found in
the Online Resource, Supplement S6.

4.3.2 Comparison of the proposed methods of the velocity
field modelling

The proposed interpolation methods of the geodetic velocity
field modelling were compared by focusing on:

• the differences in the interpolated velocities resulting from
the proposed interpolation methods and

• the impact of the density of the data points on these differ-
ences (above).

The ITRF14-GNSS and EPN position/velocity datasets
with the data points selected by considering the distance
threshold of 1000 m are used in the tests presented in this
subsection.

Global velocity field interpolation The ITRF14-GNSS posi-
tion/velocity dataset is used to analyse the differences in the
interpolated velocities when using global position/velocity
datasets, which include large gaps between the continents.
The preferable method when considering the pros and cons
from a theoretical point of view (Method IV)—see also
Table 25—is used as a reference to the other three interpola-
tion methods (Methods I–III). The topography-bedrock-ice
(TBI) layer of the Earth2014 elevation dataset is used as the
interpolation points.

A comparison of the interpolated velocities in the
ITRF2014 which are determined byMethods III and IV with
the identified largest velocity difference for each velocity
component is given in Table 14. The largest absolute differ-
ence of 2.287 mm/year (6.21% of the velocity component)
is detected for the east velocity component at the location
southeast of the Pitcairn Islands in the South Pacific Ocean
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Table 11 Interpolated ITRF2014
velocity components of the
selected mountain peaks and
ocean deeps obtained by
considering heights and the
corresponding errors obtained
when using zero heights for both
interpolation and data points (h
� 0)

Location h (m) Interpolated velocity (mm/year) Velocity error (mm/year)

Ṅ Ė U̇ δ Ṅ δ Ė δU̇

Mount Everest 8849 29.056 38.837 −4.037 0.029 0.049 0.000

Dhaulagiri 8167 32.082 36.712 −3.868 0.034 0.045 0.000

Manaslu 8163 32.159 36.716 −4.882 0.031 0.045 0.000

Java Trench −7290 34.856 33.500 −2.574 −0.040 −0.038 0.000

Tonga Trench −10,800 −1.601 72.926 0.771 0.003 −0.124 0.000

Mariana Trench −10,925 6.896 −16.341 −0.701 −0.012 0.029 0.000

The identified maximum velocity error components are marked in italics, while the minimum components
are marked in bold. The absolute maximum velocity error component is highlighted in bold italics

Table 12 Interpolated ITRF2014
velocity components of the foot
points of the selected mountain
peaks and ocean deeps on the
reference ellipsoid surface and
the corresponding corrections for
their heights/depths applying
Eq. (41)

Location h (m) Interpolated velocity (mm/year) Velocity correction
(mm/year)

Ṅ ′ Ė ′ U̇ ′ cṄ ′ cĖ ′ cU̇ ′

Mount Everest 8849 29.015 38.783 −4.037 0.040 0.054 —

Dhaulagiri 8167 32.040 36.665 −3.868 0.041 0.047 —

Manaslu 8163 32.118 36.669 −4.882 0.041 0.047 —

Java trench −7290 34.896 33.539 −2.574 −0.040 −0.038 —

Tonga trench −10,800 −1.603 73.050 0.771 0.003 −0.124 —

Mariana trench −10,925 6.908 −16.369 −0.701 −0.012 0.028 —

The identifiedmaximumvelocity correction components aremarked in italics,while theminimumcomponents
are marked in bold. The absolute maximum velocity correction component is highlighted in bold italics

Table 13 Interpolated ITRF2014
velocity components of the foot
points of the selected Earth2014
TBI layer points on the reference
ellipsoid surface and the
corresponding corrections for
their heights/depths applying
Eq. (41)

Location Interpolated velocity
(mm/year)

Velocity correction
(mm/year)

ϕ λ h (m) Ṅ ′ Ė ′ U̇ ′ cṄ ′ cĖ ′ cU̇ ′

25°29.5′N 128°47.5′E −7327 −37.057 31.152 0.064 0.043 −0.036 —

6°12.5′S 153°36.5′E −9019 46.172 2.207 −4.660 −0.066 −0.003 —

1°10.5′S 168°09.5′W −8289 35.277 −61.967 −1.305 −0.046 0.081 —

23°13.5′S 174°44.5′W −10,765 −1.719 73.401 0.777 0.003 −0.124 —

The identifiedmaximumvelocity correction components aremarked in italics,while theminimumcomponents
are marked in bold. The absolute maximum velocity correction component is highlighted in bold italics

(ϕ � 34°41.5′S, λ � 122°49.5′W). The largest difference
between Methods III and IV appears on a side of the largest
Delaunay triangle resulting from the ITRF14-GNSS dataset
(EISL-CHAT-ROTH)with an area of 13.9mil. km2 (Fig. 21).
As expected, this location is situated on a line of discontinuity
of Method III (a triangle side).

A comparison of the interpolated velocities in the
ITRF2014 determined by Methods II and IV with the identi-
fied largest velocity difference for each velocity component
is given in Table 15. The largest difference of 7.627 mm/year
(11.31% of the velocity component) is detected for the

east velocity component at the location near the Clipper-
ton Fracture Zone in the Pacific Ocean (ϕ � 2°33.5′N, λ

� 133°00.5′W), north of the Marquesas Islands in French
Polynesia. The largest difference between Methods II and
IV appears in the region with large horizontal velocities and
within one of the largest Delaunay triangles resulting from
the ITRF14-GNSS dataset (GAMB-GUAX-HILO) with an
area of 9.5 mil. km2 (Fig. 22).

A comparison of the interpolated velocities in the
ITRF2014 determined by Methods I and IV with the identi-
fied largest velocity difference for each velocity component

123



16 Page 28 of 39 S. Berk

Table 14 Interpolated ITRF2014 velocity components using Method IV and the corresponding velocity differences detected when using Method
III (Method IV minus Method III)

Location Method IV velocity (mm/year) Method III difference (mm/year)

ϕ λ h (m) Ṅ Ė U̇ δ Ṅ δ Ė δU̇

65°38.5′S 177°52.5′E −3370 6.348 −5.555 −0.752 1.063 −1.154 −0.007

41°24.5′S 105°36.5′E −3971 36.904 32.777 −0.440 −0.855 −0.632 0.009

25°23.5′S 124°15.5′W −3581 10.017 −14.057 −0.503 −0.634 2.129 −0.006

34°41.5′S 122°49.5′W −4126 −9.929 36.839 −0.774 0.332 −2.287 −0.004

28°31.5′S 82°44.5′W −3441 13.728 38.762 −8.230 −0.092 0.500 0.136

70°14.5′S 105°46.5′W −3537 −5.168 4.518 3.568 −0.379 −1.112 −0.117

The identified maximum velocity difference components are marked in italics, while the minimum components are marked in bold. The absolute
maximum velocity difference component is highlighted in bold italics

Table 15 Interpolated ITRF2014 velocity components using Method IV and the corresponding velocity differences detected when using Method
II (Method IV minus Method II)

Location Method IV velocity (mm/year) Method II difference (mm/year)

ϕ λ h (m) Ṅ Ė U̇ δ Ṅ δ Ė δU̇

49°03.5′S 126°47.5′W −2735 −9.963 15.200 0.683 1.404 −2.142 −0.096

3°33.5′N 136°52.5′W −4291 35.248 −67.894 −0.743 −3.876 7.465 0.081

2°33.5′N 133°00.5′W −4350 33.392 −67.408 −0.604 −3.778 7.627 0.068

43°44.5′S 108°54.5′W −3081 −5.052 44.582 1.102 0.523 −4.618 −0.114

28°34.5′S 83°53.5′W −3428 13.597 42.280 −8.105 −0.560 −1.740 0.329

67°16.5′S 111°13.5′W −4330 −6.848 5.415 3.361 0.765 −0.605 −0.373

The identified maximum velocity difference components are marked in italics, while the minimum components are marked in bold. The absolute
maximum velocity difference component is highlighted in bold italics

is given in Table 16. The largest differences of the hori-
zontal velocity components are similar to those obtained
by Method II; a bit larger differences are obtained for the
vertical/up velocity component with the largest absolute
difference of 0.429mm/year (12.78% of the velocity compo-
nent) detected in the Marie Byrd Seamount in the Southern
Ocean (ϕ � 68°52.5′S, λ � 117°50.5′W). The largest differ-
ence between Methods I and IV appears within the largest
Delaunay triangle resulting from the ITRF14-GNSS dataset
(EISL-CHAT-ROTH)with an area of 13.9mil. km2 (Fig. 23).

Regional velocity field interpolation The EPN posi-
tion/velocity dataset reduced by the distance threshold of
1000 m is used to analyse the differences in the inter-
polated velocities when using denser regional/continental
position/velocity datasets with more homogeneous spacing
between the data points. The median data point spacing in
this dataset is 185 km (see Table 5). Method IV is compared
to the other three interpolation methods (Methods I–III).
The interpolation is performed in the ITRF2014 (Online
Resource, Supplement S7, Figs. S7-1 and S7-2). A subset
of the topography-bedrock-ice (TBI) layer of the Earth2014

elevation dataset covering the selected test area in Central
Europe (45°N < ϕ < 52°N, 4°E < λ < 18°E) is used as the
interpolation points. The subset consists of 352,800 points
at heights between −133 m and +4182 m. As compared to
the examples of global modelling, the obtained differences
are much smaller and are given here in micrometres per year
(Tables 17, 18 and 19).

A comparison of the interpolated velocities in the
ITRF2014 determined byMethods III and IVwith the identi-
fied largest velocity difference for each velocity component
within the selected test area in Central Europe is given in
Table 17.

A comparison of the interpolated velocities in the
ITRF2014 determined by Methods II and IV with the identi-
fied largest velocity difference for each velocity component
within the selected test area in Central Europe is given in
Table 18. The largest absolute difference of 6.418 μm/year
(0.03% of the velocity component) is detected for the east
velocity component at the location in Voillecomte (Online
Resource, Supplement S7, Fig. S7-1), north of Chaumont,
France (ϕ � 48°29.5′N, λ � 4°49.5′E).
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Table 16 Interpolated ITRF2014 velocity components using Method IV and the corresponding velocity differences detected when using Method I
(Method IV minus Method I)

Location Method IV velocity (mm/year) Method I difference (mm/year)

ϕ λ h (m) Ṅ Ė U̇ δ Ṅ δ Ė δU̇

49°41.5′S 126°15.5′W −3429 −9.840 15.123 0.833 1.328 −2.120 −0.158

3°37.5′N 136°38.5′W −4261 35.121 −67.809 −0.743 −3.859 7.456 0.089

2°36.5′N 133°02.5′W −4326 33.398 −67.373 −0.607 −3.770 7.597 0.069

43°42.5′S 108°54.5′W −3073 −5.031 44.600 1.110 0.502 −4.586 −0.125

28°35.5′S 84°39.5′W −3653 13.182 43.199 −7.870 −0.559 −1.823 0.306

68°52.5′S 117°50.5′W −1857 −7.444 −1.667 3.360 0.812 0.219 −0.429

The identified maximum velocity difference components are marked in italics, while the minimum components are marked in bold. The absolute
maximum velocity difference component is highlighted in bold italics

Table 17 Interpolated ITRF2014 velocity components using Method IV and the corresponding velocity differences detected when using Method
III (Method IV minus Method III)

Location Method IV velocity (mm/year) Method III difference (μm/year)

ϕ λ h (m) Ṅ Ė U̇ δ Ṅ δ Ė δU̇

45°00.5′N 16°59.5′E 626 16.506 23.042 0.041 0.082 −0.000 −0.040

50°15.5′N 17°59.5′E 238 13.603 20.857 −0.376 −0.048 0.007 −0.018

45°22.5′N 14°47.5′E 717 17.662 21.684 −0.288 0.053 0.061 −0.021

45°42.5′N 17°15.5′E 175 15.878 22.659 0.134 −0.000 −0.033 −0.011

49°31.5′N 11°47.5′E 398 15.558 19.462 −0.169 0.001 0.044 0.044

48°37.5′N 6°25.5′E 252 15.956 19.110 0.915 0.003 0.040 −0.110

The identified maximum velocity difference components are marked in italics, while the minimum components are marked in bold. The absolute
maximum velocity difference component is highlighted in bold italics

Table 18 Interpolated ITRF2014
velocity components using
Method IV and the
corresponding velocity
differences detected when using
Method II (Method IV minus
Method II)

Location Method IV velocity
(mm/year)

Method II difference
(μm/year)

ϕ λ h (m) Ṅ Ė U̇ δ Ṅ δ Ė δU̇

45°03.5′N 7°39.5′E 254 15.788 20.397 0.250 −0.003 −0.003 0.002

48°30.5′N 4°47.5′E 127 16.052 18.749 0.137 −5.494 −6.416 −0.043

48°29.5′N 4°49.5′E 148 16.052 18.761 0.134 −5.493 −6.418 −0.042

46°23.5′N 13°01.5′E 300 16.559 21.106 0.742 −0.536 −0.668 0.212

46°46.5′N 10°54.5′E 3320 16.110 20.269 1.017 −0.106 −1.368 −0.526

The identifiedmaximumvelocity difference components aremarked in italics,while theminimumcomponents
are marked in bold. The absolute maximum velocity difference component is highlighted in bold italics

A comparison of the interpolated velocities in the
ITRF2014 determined by Methods I and IV with the identi-
fied largest velocity difference for each velocity component
within the selected test area in Central Europe is given in
Table 19. The largest difference of 61.562 μm/year (4.06%
of the velocity component) is detected for the vertical/up
velocity component at the location in Fratta Polesine (Online
Resource, Supplement S7, Fig. S7-2), west of Rovigo, Italy

(ϕ � 45°00.5′N, λ � 11°38.5′E), which is at the edge of the
selected test area.

Maps of the velocity differences between the proposed
methods were created, too. Two typical maps representing
their character can be found in the Online Resource, Supple-
ment S8, Figs. S8-1 and S8-2.

Similar comparisons of the interpolated velocities by
using the proposed interpolation methods are made in the
ETRF2000. A plot of horizontal velocities can be found in
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Table 19 Interpolated ITRF2014
velocity components using
Method IV and the
corresponding velocity
differences detected when using
Method I (Method IV minus
Method I)

Location Method IV velocity
(mm/year)

Method I difference
(μm/year)

ϕ λ h (m) Ṅ Ė U̇ δ Ṅ δ Ė δU̇

45°00.5′N 12°04.5′E 0 17.279 21.230 −2.712 8.608 −0.487 58.079

50°38.5′N 11°14.5′E 620 15.018 19.346 1.439 −7.227 −3.031 49.236

45°48.5′N 11°11.5′E 1719 16.726 20.652 0.176 1.139 0.150 51.879

48°29.5′N 4°49.5′E 148 16.053 18.761 0.080 −5.851 −6.427 53.433

45°00.5′N 11°38.5′E 3 18.315 21.563 −1.516 4.333 −0.779 61.562

50°42.5′N 17°59.5′E 157 13.314 20.698 −0.625 0.851 −1.763 43.869

The identifiedmaximumvelocity difference components aremarked in italics,while theminimumcomponents
are marked in bold. The absolute maximum velocity difference component is highlighted in bold italics

Fig. 21 The largest difference in the horizontal velocity components
determined by Methods III and IV is detected southeast of the Pitcairn
Islands in the South Pacific Ocean (red star)—at the Delaunay triangle
side connecting the GNSS stations CHAT on the Chatham Islands, New
Zealand, and EISL on Easter Island, Chile; the Earth2014 elevation grid
is shown reduced to a cell size of 200 km× 200 km (approximately) and
the horizontal velocities are enlarged by the scale factor of 5000,000,
i.e. 200 km ∼ 40 mm/year

the Online Resource, Supplement S7, Fig. S7-3. Tables with
the identified maximum velocity differences are available in
the Online Resource, Supplement S9.

4.3.3 Comparisons of results of the proposed velocity field
modelling with recently published models

Two recently published GNSS-based velocity field models
are used for comparisons of different velocity interpolation
approaches which are given in Table 20.

Fig. 22 The largest difference in the horizontal velocity components
determined by Methods II and IV is detected near the Clipperton Frac-
ture Zone in the Pacific Ocean (red star)—within the Delaunay triangle
created by the GNSS stations GAMB on the Gambier Islands, French
Polynesia, GUAX on Guadalupe Island, Mexico, and HILO on Hawai‘i
Island; the Earth2014 elevation grid is shown reduced to a cell size of
200 km × 200 km (approximately) and the horizontal velocities are
enlarged by the scale factor of 5000,000, i.e. 200 km ∼ 40 mm/year

The combined velocity field (CVF2022) solution cov-
ers entire Europe and includes ten complementary velocity
fields. Preferred filtered and smoothed combined velocity
field solution, rotated into the stable Eurasian plate (Piña-
Valdés et al. 2022, Supporting Information, Data Set S4) is
used as the input position/velocity dataset. The correspond-
ing combined horizontal and vertical output table referred to
as CVF2022hv (Piña-Valdés et al. 2022, Supporting Infor-
mation, Data Sets S5 and S6) is used for comparison of the
interpolated velocities.
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Table 20 An overview of the
velocity field models used for
comparisons

Abbreviation Dataset origin Download link Publication

CVF2022 Combined velocity field for Europe Supplement to → Piña-Valdés et al. 2022

EuVeM2022 EPN densification Lantmäteriet 2023 Steffen et al. 2022

Fig. 23 The largest difference in the vertical/up velocity component
determined byMethods I and IV is detected in theMarieByrd Seamount
in the Southern Ocean (red star)—within the largest Delaunay triangle
created by the GNSS stations CHAT on the Chatham Islands, New
Zealand, and EISL on Easter Island, Chile, and ROTH on Adelaide
Island in the Antarctica; the Earth2014 elevation grid is shown reduced
to a cell size of 200 km × 200 km (approximately) and the horizontal
velocities are enlarged by the scale factor of 100,000,000, i.e. 200 km∼
2 mm/year; yellow and red arrows show uplift and subsidence, respec-
tively

The European velocity model (EuVeM2022) is based
on the EPND dataset (Kenyeres et al. 2019). The input
position/velocity dataset in the ITRF2014 and the corre-
sponding grids generated by the extended least-squares collo-
cation—referred to as EuVeM2022ex—and by its improve-
ment applying moving variance technique—referred to as
EuVeM2022ex2—(Steffen et al. 2022; Lantmäteriet 2023)
are used for comparisons of the interpolated velocities.

Some statistics on both input position/velocity datasets are
given in Table 21.

The distance threshold of 1 m is used for the Delaunay
triangulation, which excludes three collocated stations in
the EuVeM2022 dataset (KUI2, RIS2, and ZTB3). Also, 32
duplicated stations in this dataset are reduced to one station
for each station name by taking variants with more accurate
velocities.

Resolution of the velocity grids is 0.1° × 0.1°. The same
test area in Central Europe is used as for testing regional
velocity field interpolation in Sect. 4.3.2 (45°N< ϕ < 52°N,
4°E < λ < 18°E), see also Online Resource, Supplement
S7, Figs. S7-1 to S7-3. The heights are not available (i.e.
zero heights are used). The test grid consists of 10,011 inter-
polation points. Only Method IV interpolation results are
compared with the selected three velocity field models since
the differences between the four proposed models are very
small (see Sect. 4.3.2).

A comparison of the CVF2022hv grid model with the
results of Method IV with the identified largest difference
for each velocity component is given in Table 22. The largest
absolute difference of 1.035 mm/year for the horizontal
velocity components is detected for the north component
at the location near Velika Kladuša, Bosnia and Herzegov-
ina (ϕ � 45°12′N, λ � 15°54′E), see Online Resource,
Supplement 10, Fig. S10-1. The median absolute velocity
component differences are 0.050 mm/year, 0.045 mm/year,
and 0.106 mm/year for the north, east, and up components,
respectively.

A map of horizontal velocities in the part of the selected
test area in Central Europe with the largest absolute veloc-
ity differences between the CVF2022hv grid model and the
interpolation results ofMethod IV can be found in the Online
Resource, Supplement S10, Fig. S10-1.

A comparison of the EuVeM2022ex grid model with the
results ofMethod IVwith the identified largest difference for
each velocity component is given in Table 23. The median
absolute velocity component differences are 0.035 mm/year,
0.036 mm/year, and 0.097 mm/year for the north, east, and
up components, respectively.

A comparison of the EuVeM2022ex2 grid model with
the results of Method IV with the identified largest dif-
ference for each velocity component is given in Table 24.
The largest differences in both horizontal and vertical com-
ponents refer to the same grid points than those detected
for the EuVeM2022ex model (Table 23). The median abso-
lute velocity component differences are 0.039 mm/year,
0.042 mm/year, and 0.122 mm/year for the north, east, and
up components, respectively.

4.4 Computation speed

A personal computer with 3 GHz Intel Core i5-9500 CPU,
8 GB RAM, 500 MB/s SSD, and Windows 10 Enterprise
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Table 21 Statistics on the input
position/velocity datasets used
for comparisons

Dataset Data points Triangle side (km) Triangle area (km2)

all used shortest longest median smallest largest median

CVF2022 4175 4175 0.052 3982.6 38.5 0.007723 868,221.6 454.5

EuVeM2022 2527 2492 0.001 4633.7 53.4 0.000016 1,400,554.5 971.7

Table 22 Interpolated velocity components in the CVF2022hv grid model (rotated into the stable Eurasian plate) and the corresponding velocity
differences detected when using Method IV (CVF2022hv minus Method IV)

Location CVF2022hv velocity (mm/year) Method IV difference (mm/year)

ϕ λ h (m) Ṅ Ė U̇ δ Ṅ δ Ė δU̇

45°36′N 11°12′E 0 1.030 −0.040 −0.177 0.789 0.284 0.437

45°12′N 15°54′E 0 2.470 0.600 −0.455 −1.035 −0.293 1.782

45°36′N 14°30′E 0 2.320 0.030 −0.444 0.387 1.010 −1.252

48°54′N 18°00′E 0 0.590 0.180 −0.378 −0.593 −0.791 1.758

45°12′N 15°48′E 0 2.580 0.580 −0.454 −1.021 0.248 1.870

45°12′N 15°30′E 0 2.530 0.430 −0.470 −0.441 0.094 −1.281

The identified maximum velocity difference components are marked in italics, while the minimum components are marked in bold. The absolute
maximum velocity difference component is highlighted in bold italics

Table 23 Interpolated ITRF2014 velocity components in the EuVeM2022ex grid model and the corresponding velocity differences detected when
using Method IV (EuVeM2022ex minus Method IV)

Location EuVeM2022ex velocity (mm/year) Method IV difference (mm/year)

ϕ λ h (m) Ṅ Ė U̇ δ Ṅ δ Ė δU̇

45°36′N 9°48′E 0 16.238 20.662 −0.294 0.416 0.303 −0.648

46°00′N 12°30′E 0 17.258 20.775 −0.383 −0.428 0.124 0.084

46°42′N 14°42′E 0 16.279 22.046 −0.355 −0.031 0.710 −0.537

45°24′N 12°18′E 0 17.132 20.494 −1.546 −0.231 −0.776 −0.270

46°54′N 10°42′E 0 16.105 20.479 1.578 0.038 −0.019 1.087

45°18′N 9°30′E 0 16.437 20.707 0.117 −0.006 −0.013 −1.334

The identified maximum velocity difference components are marked in italics, while the minimum components are marked in bold. The absolute
maximum velocity difference component is highlighted in bold italics

Table 24 Interpolated ITRF2014 velocity components in the EuVeM2022ex2 grid model and the corresponding velocity differences detected when
using Method IV (EuVeM2022ex2 minus Method IV)

Location EuVeM2022ex2 velocity (mm/year) Method IV difference (mm/year)

ϕ λ h (m) Ṅ Ė U̇ δ Ṅ δ Ė δU̇

45°36′N 9°48′E 0 16.236 20.625 −0.083 0.414 0.266 −0.437

46°00′N 12°30′E 0 17.264 20.784 −0.311 −0.422 0.133 0.156

46°42′N 14°42′E 0 16.288 22.020 −0.275 −0.022 0.684 −0.457

45°24′N 12°18′E 0 17.117 20.531 −1.556 −0.246 −0.739 −0.280

45°36′N 9°54′E 0 16.421 20.694 −0.236 −0.365 −0.424 1.436

45°18′N 9°30′E 0 16.435 20.698 −0.161 −0.008 −0.022 −1.612

The identified maximum velocity difference components are marked in italics, while the minimum components are marked in bold. The absolute
maximum velocity difference component is highlighted in bold italics
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Fig. 24 Computation time (T ) of creating a unique surface mesh (in
seconds) as a function of the number of data points (n); the time needed
to perform the Delaunay triangulation and the triangle mesh clean-
ing/fixing is estimated by a 3rd degree polynomial regression function;
blue dots represent the position/velocity datasets listed in Table 1

OS was used to perform computation speed tests. The pro-
posed new methods (Sects. 3.1–3.4) were tested on eight
position/velocity datasets (Table 1). The latter were used
with the distance threshold of 1000 m, see Table 2. Input
position/velocity datasets were accessed from RAM.

The tests were divided into two parts, focusing on:

• the speed of the surface mesh creation, and
• the speed of the velocity interpolation.

The speed of creating a unique surface mesh, which
includes the Delaunay triangulation and the triangle mesh
cleaning/fixing (i.e. removing potential dangling Delaunay
triangles) is limited by checking all possible candidates for
Delaunay triangles (i.e. brute-force search) with the time
complexity of O

(
n3

)
with n being the number of data points.

Computation time as a function of the number of data points
is given in Fig. 24.

Surfacemeshing took less than 0.01 swhen using ITRF14-
DORIS dataset (n � 75) but increased to 1 h 20 m 36 s
(4836 s) when using EDV dataset (n � 6051); the processing
of the CEGRN dataset (n � 1165) took 10 s.

The speed of the velocity interpolation is analysed by com-
paring computation time needed for processing 1000,000
interpolation points of the topography-bedrock-ice (TBI)
layer of the Earth2014 elevation dataset (Hirt and Rexer
2015) which were read from the original binary file stored on
the SSD. The interpolation speed is limited by the algorithm
for looking up appropriate pyramids—Eq. (47)—which has
the time complexity of O(n)with n being the number of data
points. Computation time as a function of the number of data
points (triangle vertices) is given in Fig. 25.

Interpolation of 1000,000 interpolation points took
between 15 and 21 s when using ITRF14-DORIS dataset
(n � 75) and between 4 m 33 s (273 s) and 4 m 46 s (286 s)

Fig. 25 Computation time (T ) of processing 1000,000 interpolation
points (in seconds) as a function of the number of data points (n);
the time needed to perform the interpolation is estimated by a linear
regression function; blue dots represent the position/velocity datasets
listed in Table 1

when using EDV dataset (n � 6051), which means 0.02 ms
and 0.3 ms per single interpolation point, respectively. The
proposedmethods arranged from the fastest to the slowest are
Method I > Method II > Method IV > Method III. The speed
difference between the fastest (I) and the slowest (III) meth-
ods is decreasing with the growing number of data points
(i.e. with the complexity of the model), reaching 44% when
using ITRF14-DORIS dataset and only 5%when using EDV
dataset.

5 Discussion and conclusions

The presented triangulation-based approach for 3D velocity
field modelling avoids separation to horizontal and verti-
cal components. This means that a full 3D domain is used;
the heights of the velocity vector initial points are appro-
priately considered, which spreads the applicability of the
model also beneath and above the reference ellipsoid sur-
face. The use of a combination of all three components can
more easily be converted to geophysically meaningful quan-
tities (Vaníček and Krakiwsky 1986, p. 655) and can provide
an adequate quality estimation. In the proposed solution, the
corresponding fully populated variance–covariance matrices
of the velocities at the data points can be used to estimate
the variance–covariance matrices of the interpolated veloci-
ties. Unfortunately, only standard deviations of the velocity
components are included in the standard position/velocity
dataset format (SSC); SINEX files should be used to access
the missing data. Velocity modelling, which is based on an
original, irregularly spaced dataset, enables access to com-
plete information on the discontinuities in the coordinates
and/or velocities of points and ensures the uniqueness of the
Delaunay triangulation.
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The proposed approach can be used in a global velocity
field modelling and—contrary to the projected (map-based)
or geodetic coordinate domain approach—does not suf-
fer from map projection distortions or singularities at the
poles. Very large gaps in input position/velocity datasets (e.g.
oceans, deserts, polar zones, etc.) can be handled. However,
the uncertainties of the velocity components at the data points
are not involved in the velocity interpolation. A disadvan-
tage of a(ny) pure interpolation approach is non-resistance
to noisy data. So, carefully validated input position/velocity
datasets are expected when using the proposed velocity field
modelling approach. Further discussion and conclusions are
divided into two parts (below) addressing triangulation and
interpolation issues.

5.1 Discussion on the triangulation of the Earth’s
surface

A 3D Delaunay triangulation using the minimum circum-
sphere condition is proposed to create a triangle mesh
approximating the Earth’s surface. The advantages of this
basic idea—as compared to other possible solutions, such
as higher-order Delaunay triangulations in a plane with ele-
vations or alpha shapes—are no need for mapping into the
plane and no input parameters affecting the resulting sur-
facemesh. Further straightforward tetrahedralization is based
on this surface mesh and the Earth’s centre as the common
apex of the resulting tetrahedra. Numerical tests show that
using foot points on the reference ellipsoid surface instead
of the original data points leads to a topologically identical
or almost identical surface mesh (Table 8) which is without
gaps (Table 7) and may contain only a few dangles (Table 6).
A simple triangulation algorithm based on elementary arith-
metic operations—Eqs. (2) to (4)—andmesh cleaning/fixing
based on topological checking is applied (no geometric cri-
teria involved). Both enhance the numerical stability—also
for non-uniform datasets with clusters of high density. How-
ever, a triangle-based interpolation works best with evenly
distributed data points (e.g. Yang et al. 2004) and uniform
spacing is desirable. Twin or multiple stations at a space
geodetic observatory are suggested to be pre-processed and
reduced to one, main reference point only. Following Egli
et al. (2007) or Steffen et al. (2022), the triangle-based inter-
polation approach could also be customized along an active
tectonic margin by introducing arbitrary chosen constrain-
ing edges. However, a constrained Delaunay triangulation is
limited by the availability of data points.

A drawback of the proposed Delaunay triangulation
approach is its speed. Since a position/velocity dataset usu-
ally contains a few hundred points only (Table 2), the triangle
mesh is generated by exhaustive search algorithm with the
time complexity of O

(
n3

)
with n being the number of data

points. It took 10 s for n ≈ 1000 but exceeded 1 h for n ≈

6000—see Sect. 4.4. Of course, the process of triangulation
on the surface of the rotational ellipsoid could be sped up
significantly. One possibility is adaptation of the spherical
approach (Renka 1997) which has the time complexity of
O(nlogn). However, a velocity interpolation method which
is implemented in a positioning application, for example,
skips the Delaunay triangulation procedure by providing the
topology information contained in the pregenerated triangle
mesh lookup table, which should be regenerated only in case
of changes in the input position/velocity dataset.

5.2 Discussion on the interpolation of the Earth’s
surface velocities

Pros and cons of using the proposed four methods of the
velocity field modelling can be identified from a theoreti-
cal point of view. Different properties of the interpolation
methods are presented in Table 25.

The continuous piecewise linear 3D velocity field inter-
polation (Method I) provides velocity field modelling across
the whole 3D domain. The resulting velocity field model is
based on the n-simplex interpolation which is continuous but
does not preserve radial symmetry; the absolute values of the
interpolated velocity components in the central parts of the
triangles are overestimated (see Fig. 8a) which introduces a
spurious land uplift or subsidence, for example.

The piecewise quasi-linear 3D velocity field interpolation
(Method II) is an improvement of Method I. Contrary to the
latterwhich considers the figure of theEarth as a sphere,more
accurate ellipsoidal Earthmodel is applied by introducing the
interpolation-point-adapted Gaussian osculating sphere. The
ellipsoidal Earth model does not allow interpolation and data
points closer than ~43 km from the Earth’s centre.

The piecewise radial 3D velocity field interpolation
(Method III) keeps the improvements obtained through the
ellipsoidal Earth model, which can here be implemented
in a fully rigorous way. It provides radial symmetry which
prevents the unjustified scaling of the interpolated velocity
components. The latter appears in the linear interpolation
approach (Methods I and II) and is usually noticeable in the
areas around the circumcentres of large Delaunay triangles
(Fig. 22). The interpolated velocities and their uncertainties
generated byMethod III do not agree at the faces of the adja-
cent unbounded triangular pyramids—the continuity is not
achieved.

The continuous piecewise quasi-radial 3D velocity field
interpolation (Method IV) combines both linear and radial
interpolation approaches. It improves the properties of
Method III by providing continuity while still trying to
preserve radial symmetry as much as possible in order to
minimize unjustified scaling effect. Method IV is not only
continuous but also smooth everywhere except along the
normals to the reference ellipsoid through the data points
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Table 25 Red/yellow/green rating of basic properties of the proposed four velocity field interpolation methods

(see Online Resource, Supplement S2). Methods III and IV
follow the key principle of the modern plate tectonic the-
ory; the interpolated horizontal velocity components depend
on the height since the Earth is round, while the vertical
velocity component is height independent. The proposed
approach can be used for tectonic-driven deformations;
inflation-driven components caused by volcanic activity (e.g.
Garibaldi et al. 2020) may require a different approach.

Some further insights into various aspects of the geodetic
velocity field modelling can be drawn from the results of the
numerical tests. Applying the radial interpolation approach
(Method III) is quite a challenge due to numerical instabil-
ity of the spherical triangle area calculation. Based on the
results of testing of the exact and approximate solutions, one
can conclude that only combining both solutions can ensure
the required calculation accuracy. The maximum relative
errors of the spherical triangle area expressed in percent-
ages can—by applying the proposed threshold value of 1
arcsecond—be reduced to those expressed in parts per mil-
lion (Table 9).

The impact of considering the height of the velocity vector
initial points is usually negligible. At the Earth’s surface, the
horizontal velocity component corrections for the height of
the interpolation point reach up to ~0.12 mm/year (Tables 11
and 12). However, these corrections exceed 13.6 cm/year at
the geostationary satellites (Online Resource, Supplement
S6).

Differences between Methods III and IV are below
2.3mm/year in the horizontal velocity components and reach
up to ~0.14 mm/year in the vertical/up component when
using the selected global position/velocity dataset (ITRF14-
GNSS, see Table 14). They are—no matter of modelling
ITRF2014 or ETRF2000 velocities—below 1 μm/year in all
three velocity components in the area ofCentral Europewhen
using the selected regional dataset (EPN, see Tables 17 and
20).

Differences between Methods I and II when compared
to Method IV reach up to ~7.6 mm/year in the horizontal
velocity components and ~0.4 mm/year in the vertical/up

component when using the selected global position/velocity
dataset (ITRF14-GNSS, see Tables 15 and 16). Again—no
matter of modelling ITRF2014 or ETRF2000 veloci-
ties—these differences are below 0.01 mm/year to Method
II (Tables 18 and 21) and below 0.1 mm/year to Method I in
all three velocity components in the area of Central Europe
when using the selected regional dataset (EPN, see Tables 19
and 22).

One can conclude that the accuracy of all four interpola-
tion methods is sufficient when applied to regional velocity
field modelling (with a relatively dense input dataset); the
obtained velocity component differences between them are
below 0.1 mm/year which is negligible when having in mind
the quality of the position/velocity datasets being achieved
from GNSS time series (e.g. Masson et al. 2019). In global
modelling, however, the interpolated velocity component dif-
ferences reach up to a few mm/year and the use of Method
IV is preferred for its favourable properties (see Table 25)
and for practical reasons, such as simplicity and numerical
stability. Even though the interpolation itself also depends on
the number of data points (n)—with the time complexity of
O(n)—the computation time per single interpolation point
did not exceed 0.3 ms for n ≈ 6000.

Comparisons of Method IV with some recently published
GNSS-based velocity field models show differences in the
obtained velocities which are larger in the areas of diverse
velocities. Statistical methods are more resistant to possible
outliers and provide smoothed velocity fields. The proposed
approach is, however, entirely local and exactly fits the data
points. This requires input datasets which are checked and
verified.

Further work may focus on dealing with noisy input data.
Velocity approximation may replace the proposed pure inter-
polation methods by involving velocity uncertainties at the
data points. Also, the smoothness (continuity of the first
derivatives) of the interpolation function is—having in mind
the most sophisticated Method IV—not achieved along the
normals to the reference ellipsoid through the data points.
Hermite- or Lagrange-type interpolations, which both use
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barycentric coordinates (e.g. Carfora 2007), may be adapted
to meet the specific requirements of the geodetic velocity
field modelling.

Supplementary Information The online version contains supplemen-
tarymaterial available at https://doi.org/10.1007/s00190-023-01817-y.
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Vaníček P, Krakiwsky EJ (1986) Geodesy: the concepts, 2nd edn.
Elsevier Science, Amsterdam. https://doi.org/10.1016/C2009-0-
07552-7

Vermeille H (2002) Direct transformation from geocentric coordinates
to geodetic coordinates. J Geod 76(8):451–454. https://doi.org/10.
1007/s00190-002-0273-6

Vermeille H (2004) Computing geodetic coordinates from geocen-
tric coordinates. J Geod 78(1–2):94–95. https://doi.org/10.1007/
s00190-004-0375-4

Vermeille H (2011) An analytical method to transform geocentric into
geodetic coordinates. J Geod 85(2):105–117. https://doi.org/10.
1007/s00190-010-0419-x

Vincenty T (1975) Direct and inverse solutions of geodesics on
the ellipsoid with application of nested equations. Surv Rev
23(176):88–93. https://doi.org/10.1179/sre.1975.23.176.88

Wang J, Sun Y, Dai Y (2022) Inverse geodetic problem for long
distance based on improved Vincenty’s formula. J Appl Geod
16(3):241–246. https://doi.org/10.1515/jag-2021-0057

Watson DF (1981) Computing the n-dimensional Delaunay tessellation
with application to Voronoi polytopes. Comput J 24(2):167–172.
https://doi.org/10.1093/comjnl/24.2.167
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