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Abstract
The “non-harmonicity” problem in residual terrain modelling (RTM) is a challenging issue, causing errors exceeding 200
mGal in the RTM gravity anomaly in rugged areas. Although various methods have been proposed to address this problem,
including the condensation method, regularized downward continuation methods with Taylor series expansions (TS) and
spherical harmonics (SH), complete harmonic correction (HC) method, closed-form complete HC method, and Kadlec’s
method, their performances in gravity field determination have not been directly validated. In this study, we reviewed and
evaluated these methods, especially for their performance in regional geoid determination. We found that the HC’s expression
for the closed-form complete method is identical to that under the unlimited Bouguer plate approximation, and Kadlec’s
method is equivalent to the condensation method with the same approximation for Bouguer masses. However, the HC
associated with the complete HC method shows large differences compared to other methods. This is because the upward and
downward continuations in the complete HC method consider an Earth with changing total mass. To address it, we propose
a new three-step approach, proved to be equivalent to the HC using the TS method. Then the performance of various HC
methods is evaluated in gravity anomaly synthesis and geoid determination over a select region in Colorado, USA. The best
result is achieved when using the SH method to compute RTM gravity anomalies, resulting in a geoid accuracy of ~ 1.62 cm.
Involving the HC for the height anomaly in the restore procedure slightly improves the accuracy to ~ 1.56 cm.
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1 Introduction

The Earth’s gravity field, reflecting the Earth’s mass dis-
tribution and changes in time, is a fundamental subject
in geodetic and geophysical studies (Hofmann-Wellenhof
and Moritz 2006). The residual terrain modelling (RTM)
technique (Forsberg 1984), which relies exclusively on the
density and geometric information of the Earth’s topography,
has been widely applied in the gravity field determination,
e.g. for extending the contents of the global gravity field
models (GGMs) with the accuracy at the mGal-level (Fors-
berg 1984; Hirt et al. 2013, 2019b; Rexer and Hirt 2015;
Bucha et al. 2019a; Yang et al. 2018, 2020; Zingerle et al.
2020), or for the regional gravity field determination in the
remove-compute-restore (RCR) framework (Forsberg and
Tscherning 1997; Sjöberg 2005; Schwabe et al. 2012; Lin
et al. 2014, 2019; Bucha et al. 2016;Willberg et al. 2019;Wu
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Fig. 1 Principle of the RTM technique (Forsberg 1984; Bucha et al.
2019a; Yang et al. 2022). DS and RS denote the Earth’s surface repre-
sented by a detailed digital elevation model (DEM) and the smoothing
reference topography, respectively. The computation points PD

1 , PD
2

are located on the Earth’s surface and their respective points PR
1 , PR

2
are on the reference topography

et al. 2019; Liu et al. 2020;Matsuo and Kuroishi 2020;Wang
et al. 2021; Lin and Li 2022). Therefore, accurate calcula-
tion of RTM-related gravity signals is of great significance
in gravity field determination.

The “non-harmonicity” problem occurs in the RTM tech-
nique when a computation point, e.g. PD

2 , is located below
the reference topography (Forsberg and Tscherning 1981)
(see Fig. 1), and some form of a harmonic correction (HC)
is needed. Various studies have shown that the magnitude
of HC would reach up to 200 mGal for the RTM gravita-
tional attraction and several centimetres for the RTM height
anomaly over rugged areas (Forsberg and Tscherning 1981;
Hirt et al. 2019a; Yang 2020; Klees et al. 2022).

Numerous studies have been implemented to handle the
“non-harmonicity” problem. The first method is the con-
densation method. It was first promoted by Forsberg and
Tscherning (1981), and provided the HC expression for the
RTM gravity anomaly. It has been widely applied for com-
puting the HC of the RTM gravity field (Wu et al. 2019).
However, it was proven to “underestimate the true value of
the HC” by Hirt et al. (2019a), and the errors would reach up
to more than 10 mGal over rugged areas. Hirt et al. (2019a)
proposed that the approximation errors of unlimited Bouguer
plate might be one of the reasons. Yang et al. (2022) devel-
oped the expressions of the HC for the RTM geoid height
under various approximations, i.e. the unlimited Bouguer
plate (UBP) approximation, the limited Bouguer plate (LBP)
approximation that would reduce the mass inconsistency
effect, the Bouguer shell (BS) approximation which reduces
the effect of plate approximation and the limited Bouguer
shell (LBS) approximation which could reduce both above-
mentioned effects. InYang et al. (2022), the expression under
the BS approximation achieved the best results because of
the remote mass effects. Up to the present, the effect of the

unlimited Bouguer plate approximation on the evaluation of
theHC for theRTMgravity anomaly has not yet been studied.

The regularized downward continuationmethod is another
way to handle the “non-harmonicity” problem. Based on the
provided equation for the RTM gravity anomaly by Fors-
berg and Tscherning (1981) and the regularized downward
continuation method, Omang et al. (2012) gave the expres-
sion of the HC for the RTM geoid height. The regularized
downward continuation method was also studied by Harri-
son and Dickinson (1989), Forsberg and Tscherning (1997),
Elhabiby et al. (2009), and Bucha et al. (2016). These meth-
ods generally require numerical evaluation of higher-order
derivatives at the computation point which would involve
complex calculations, leading to the lower efficiency. Hirt
et al. (2019a) developed an artificial method to compute the
RTM gravity field, named as the RTM baseline solution. In
this method, the gravity field generated by the topographic
masses below the reference surface is calculated by spectral
gravity forward modelling (SGM) (Bucha et al. 2019a; Hirt
et al. 2019a, b; Yang 2020) which involves spherical har-
monic analysis and synthesis of topographic masses. On the
other hand, the gravity field generated by the detailed Earth’s
surface is obtained based on the global numerical integra-
tion which requires large numerical costs. This method has
been successfully applied and validated in the RTM gravity
anomaly/disturbance recovery (Hirt et al. 2019a, b). Bucha
et al. (2016, 2019a) developed the cap-modified spectral
gravity forward modelling method and applied it to the RTM
technique (Bucha et al. 2019b) for harmonically downward
continuing the gravity field implied by the reference masses.
Klees et al. (2022) promoted the so-called complete method
to compute the gravitational effects due to RTM masses and
provided the expressions of the HC for RTM corrections to
both gravity anomalies and height anomalies. Their numer-
ical results suggested that the errors of the condensation
method to the gravity anomaly would reach up to 100 mGal
over rugged areas. In latest studies, Klees et al. (2023) pro-
vided exact and closed expressions of the complete RTM
corrections for the disturbing potential, gravity disturbance,
gravity anomaly and height anomaly. The closed-form com-
plete RTM correction for the gravity disturbance achieves
the same expression with the HC for the RTM gravity distur-
bance under the UBP approximation.

In addition, some studies (Kadlec 2011; Märdla et al.
2017) promote calculations of theRTMgravity field by divid-
ing it into four constituents, the effect of a Bouguer layer
having the thickness H that is derived from the detailed dig-
ital elevation model (DEM) and the corresponding terrain
effect referring to the Earth’s surface, and the Bouguer effect
of the thickness Href and the corresponding terrain effect
referring to the reference surface (Kadlec 2011; Ďuríčková
and Janák 2016). In this scenario, the computation point
is always located outside the terrain masses. Furthermore,
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Kadlec (2011) provided the expressions of the Bouguer grav-
itational effects when computation points are located in the
Bouguer masses.

Most of previous studies adopted the condensationmethod
based on the UBP approximation to resolve the “non-
harmonicity” problem in the RTM gravity field. The other
methods, such as the condensationmethod based on the LBP,
LBS and BS approximations, the downward continuation
method, the complete method, and the Kadlec’s method as
well as their performances in gravity field determination are
not yet compared directly in a unified manner.

The main contributions of this study are as follows: (1)
deriving the expressions of the HC for the RTM gravita-
tional attraction under LBP, BS, and LBS approximations
and investigating the error level in the classical condensa-
tion method, (2) evaluating the performance of various HC
methods in gravity field synthesis, and (3) thoroughly inves-
tigating the HC effect on the regional geoid determination in
the framework of RCR.

The remainder of this paper is organized as follows.
Brief reviews and introductions of the five HC methods are
given in Sect. 2. The unlimited Bouguer plate approxima-
tion errors including the mass inconsistency effect and the
planar approximation effect are investigated in Sect. 3. The
comparisons of various methods for the HC over Himalaya
mountains are given in Sect. 4. Section 5 investigates the
performances of various HCmethods in gravity field synthe-
sis and regional geoid determination over the Colorado area,
USA. Finally, discussions and main conclusions are given in
Sects. 6 and 7, respectively.

2 Methodology

In modern gravity field determination using the RTM tech-
nique, the real Earth’s topography is replaced by a smoother
reference topography, and the data are reduced by the gravita-
tional effects of the residual masses, which are defined as the
mass deficit or difference between the two topographies. For
the sake of convenience, we define here the RTM-reduced
Earth as the Earth after the RTM reduction with the outer
boundary being the reference topography, and call the grav-
itational effects implied by the residual masses as the RTM
effects. In a more generalized way, the RTM correction plays
the role of reducing the Earth gravity field functional to the
corresponding functional of the RTM-reduced Earth by sub-
tracting the RTM effect. The harmonicity of the reduced
gravity field functional should be guaranteed in order to
construct an accurate external gravity field with respect to
the Earth topography. Since the reference topography rep-
resents the long-wavelength part of the real topography, its
surface would be above or below the real topographic sur-
face. This results in cases that the point on the Earth’s surface

is located either above or below the reference surface. In the
former case, because the point is in free air with respect to
the reference topography, the corresponding RTM correction
is harmonic, and so is the reduced gravitational field func-
tional. In the latter case, since the point is buried inside the
masses of the RTM-reduced Earth, the corresponding RTM
correction for gravitational potential is not harmonic and the
reduced gravity field functional represents a functional of the
internal potential. This is the so called “non-harmonicity”
problem that exists in the RTM technique. To solve it, HC
is applied to transform the internal gravity field functional
into a regularized harmonically downward continued gravity
field functional.

Let δg̃RTM(P) and δṼRTM(P) be, respectively, the har-
monic corrected values of the RTM effect removed from the
gravity g(P) and gravity potentialW (P) measured at points
P on or above the Earth’s surface. Here the gravity is the
negative radial derivative of the potential. The gravity and
potential after the RTM reduction are then defined as:

gred(P) � g(P) − δg̃RTM(P), (1)

Wred(P) � W (P) − δṼRTM(P). (2)

Both gred(P) andWred(P) refer to theRTM-reducedEarth
which is mass-free outside the reference topography. For
points P located in the RTMmasses, they represent harmoni-
cally downward continued gravity field functionals. It is clear
that the key issue is how the harmonic RTM correction can
be obtained.

Since the original RTM correction is defined as the sub-
tracted gravitational effect implied by the residual masses,
its corrections to gravity and potential can also be described
as:

δgRTM(P) � δgDEM(P) − δgREF(P), (3)

δVRTM(P) � δVDEM(P) − δVREF(P). (4)

In the above equations, δgDEM(P) and δVDEM(P) are
the gravitational attraction and potential due to the real
topography represented by a global high-resolution DEM,
respectively, whilst δgREF(P) and δVREF(P) are the grav-
itational attraction and potential due to the terrain masses
bounded by the reference topography. For the point P below
the reference surface, formulas that also hold inside the RTM
masses should be used for computing the corresponding
potential and gravity.

Since the computation point P is either on or above the
real topography, the corresponding gravitational effects due
to the real topography (i.e. the first terms of the right-hand
side of Eqs. (3) and (4)) are always harmonic. Therefore, the
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harmonicity of the RTM corrections computed by Eqs. (3)
and (4) depends on the gravitational effects caused by the
reference topography (i.e. the second terms of the right-hand
side ofEqs. (3) and (4)). In the case that the computation point
P is outside the reference topography, δgREF(P) and δVREF
(P) are computed in space, where the gravitational potential
is harmonic. Therefore, the directly computed RTM effects
δgRTM(P) and δVRTM(P) are equivalent to δg̃RTM(P) and
δṼRTM(P), and can be used for Earth’s external gravity field
modelling.When P is inside the reference topography, δgREF
(P) and δVREF(P) are computed in the region, where the
gravitational potential is no longer harmonic. To circumvent
this problem, HC is necessary for the corresponding RTM
corrections when they are used for Earth’s external gravity
field modelling. Various methods were provided for such a
correction. In the following, we only discuss the case that
the computation point is located below the reference topog-
raphy. For a better explanation, we further define δg̃REF and
δṼREF as the harmonic corrected version of δgREF and δVREF,
respectively.

2.1 HC of the condensationmethod

In the classical condensation method as proposed by Fors-
berg and Tscherning (1981), the RTM masses above the
computation point are assumed to be an unlimited planar
Bouguer plate. The masses above the computation point are
first removed away, and then added back by compressing
them into a mass layer with the surface density ρ�h and
moving down just below the computation point. Then the
harmonic corrected gravitational attraction due to the refer-
ence topography follows:

δg̃REF(P) � δgREF(P) + 4πGρ�h (5)

�h � H(Q) − H(P) > 0 (6)

with G denoting the universal Newton’s gravitational con-
stant, ρ the density of topographic masses, and Q the
respective point for P on the reference topography.

Then the harmonic RTM correction to gravity follows:

δg̃RTM(P) � δgDEM(P) − δg̃REF(P)

� δgDEM(P) − δgREF(P) − 4πGρ�h

� δgRTM(P) − 4πGρ�h. (7)

The HC for the RTM correction to gravity is denoted as:

δgHC_ UBP(P) � −4πGρ�h. (8)

The sign convention of using the HC in this paper fol-
lows that, the HC is added to the originally computed RTM

effect to obtain its harmonic corrected value that is subtracted
from the measured gravity and recovered potential (Klees
et al. 2022). So, HC for the gravity disturbance is negative in
nature. The expression for the harmonic RTM correction to
gravity under the UBP approximation is finally given as:

δg̃RTM(P) � δgRTM(P) + δgHC_UBP(P). (9)

Another perspective of explaining this approach by
employing the concepts of upward and downward contin-
uations can be found in Page 3 of 25 in Klees et al. (2022).

In order to reduce the approximation errors due to pla-
nar approximation and mass inconsistency effect, the masses
between the computation point and the reference surface
are approximated by a limited Bouguer plate (LBP, Kadlec
2011), a Bouguer shell (BS, Vaníček et al. 2002; Kadlec
2011), and a limited Bouguer shell (LBS, Kadlec 2011), and
then compressed into their respectivemass layers of infinites-
imal thickness and moved down just below the computation
point. The HC terms are then obtained as the differences
between gravity fields induced by the RTMmasses generally
approximated by some regularly-shaped masses and their,
respectively, compressed masses. This is consistent with the
condensationmethod under UBP, LBP, BS, and LBS approx-
imations in Yang et al. (2022). However, the HC expressions
were only given for the RTM correction to geoid height in
Yang et al. (2022).As a continuousworkofYang et al. (2022),
the expressions of HC for the RTM correction to gravity
under various approximations are derived in this study. For
detailed derivations, please see Sects. S1-S3 of the Electronic
Supplementary Material (ESM), also Heck and Seitz (2007).
Only final expressions are given in the following.

The expressions of HC and the harmonic RTM correction
to gravity under the LBP approximation follow:

δgHC_LBP(P) � −4πGρ�h + 2πGρ

(√
η2 + �h2 − η

)
,

(10)

δg̃RTM(P) � δgRTM(P) + δgHC_LBP(P), (11)

where η indicates the radius of a limited Bouguer plate (ver-
tical cylinder) (Fig. S1).

The expressions of HC and the harmonic RTM correction
to gravity under the BS approximation follow:

δgHC_BS(P) � −4πGρ

(
�h +

�h2

r1

)
, (12)

δg̃RTM(P) � δgRTM(P) + δgHC_BS(P), (13)

where r1 � R+H(P) indicates the radius of the inner sphere
and R is the mean Earth’s radius.
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The expression of HC under the LBS approximation fol-
lows:

δgHC_LBS(P) � V LBS
r (P) − V LBSC

r (P), (14)

where V LBS
r and V LBSC

r denote the radial derivative of the
gravitational potential generated by the LBS and its com-
pressed mass layer, respectively. As a consequence, the
expressions for the harmonic RTM correction to gravity
under the LBS approximation are given as:

δg̃RTM(P) � δgRTM(P) + δgHC_ LBS(P). (15)

It depends on the opening angle ψ0 of the cone, which is
depicted in Fig. S3 of ESM.

2.2 HC of the regularized downward continuation
method of Taylor series expansions (TSmethod)

With assumption that the Taylor series of potential and its
derivatives don’t diverge, for the point P located below
the reference topographic surface, the corresponding grav-
ity field signals generated by the masses between the geoid
and the reference topographic surface are harmonically
calculated based on the regularized downward continu-
ation method of Taylor series expansion (Bucha et al.
2016, Eq. (10)). Here, the reference topographic surface is
expanded to degree nmax � 2159which equals themaximum
degree of the global gravity field geopotential model EIGEN-
6C4 (Förste et al. 2014) in the numerical experiments. In
such a case, the reference topography is rather smooth. The
Taylor series expansion can be truncated at k � 1 for grav-
ity and truncated at k � 2 for potential (Bucha et al. 2016).
This is reasonable considering the numerical test at Colorado
mountain areas with the values of the second-order term at
sub-mm level. Then the equations for gravitational attraction
and potential follow:

δg̃REF(P) � δgREF(Q) +
∂δgREF

∂r

∣∣∣∣
Q
(−�h), (16)

(17)

δṼREF (P) � δVREF (Q) +
∂δVREF

∂r

∣∣∣∣
Q
(−�h)

+
1

2

∂2δVREF
∂r2

∣∣∣∣
Q
(−�h)2 .

Since the point Q is on the reference topographic surface,
the computed gravitational effects of the reference topogra-
phy at this point (i.e. δgREF(Q) and δVREF(Q)) are external
gravitational field terms, and so are their downward contin-
ued functionals at P .

Then we have:

δg̃RTM(P) � δgDEM(P) − δg̃REF(P)

� δgDEM(P) − δgREF(Q) − ∂δgREF
∂r

∣∣∣∣
Q
(−�h)

� δgDEM(P) − δgREF(P) + δgREF(P)

− δgREF(Q) − ∂δgREF
∂r

∣∣∣∣
Q
(−�h)

� δgRTM(P) +

[
δgREF(P) − δgREF(Q)

+
∂δgREF

∂r

∣∣∣∣
Q
�h

]
, (18)

Similarly,

δṼRTM(P) � δVDEM(P) − δṼREF(P)

� δVDEM(P) − δVREF(Q)

− ∂δVREF
∂r

∣∣∣∣
Q
(−�h) − 1

2

∂2δVREF
∂r2

∣∣∣∣
Q
(−�h)2

� δVRTM(P) +

[
δVREF(P) − δVREF(Q)

+
∂δVREF

∂r

∣∣∣∣
Q
�h − 1

2

∂2δVREF
∂r2

∣∣∣∣
Q
�h2

]
. (19)

Accordingly, the expressions of HC for RTM corrections
to gravity and potential associated with the TS method are
given as:

δgHC_ TS(P) � δgREF(P) − δgREF(Q) +
∂δgREF

∂r

∣∣∣∣
Q
�h,

(20)

(21)

δVHC_TS (P) � δVREF (P) − δVREF (Q) +
∂δVREF

∂r

∣∣∣∣
Q

�h

− 1

2

∂2δVREF
∂r2

∣∣∣∣∣
Q

�h2.

Need to mention that, the purpose of this study is to
compute theRTMcorrections to gravity and potential. There-
fore, the harmonic RTM corrections to gravity and potential
(δg̃RTM and δṼRTM) are computed according to Eqs. (16)
and (17), and the first line of Eqs. (18) and (19). Then the
HC for RTM corrections are differences between δg̃RTM and
δgRTM, and δṼRTM and δVRTM. In Eqs. (16) and (17), the
gravitational potential and attraction can be computed on
the reference topography, while the high-order (≥ 2) radial
derivatives are not defined on the reference surface due to the
density discontinuity. As a remedy, Q can be moved upward
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with a constant value. In practical computations, the gradi-
ents can be obtained through a numerical differentiation of
gravity, for instance, using gravity at points that are radially
upward shifted by 100 and 200 m from Q as in Bucha et al.
(2016). More rigorously, the radial gradient components of
gravity and potential in this study are calculated using the
TGFsoftware (Yang et al. 2020).Besides, various truncations
of the Taylor series expansion and different shifted distances
of Q would also affect the final results, which are not further
discussed in this study.

2.3 HC of the regularized downward continuation
method of spherical harmonics (SHmethod)

In the baseline solution method (Hirt et al. 2019a), the full
topography generated gravitational field δVDEM and δgDEM
over the computation point P are computed by numeri-
cal integration using some spatial domain methods. The
long-wavelength signals δṼREF and δg̃REF are implied by
the reference topography with spectral gravitational forward
modelling (SGM) or cap-modified spectral technique (Bucha
et al. 2019a). Thus, the RTM correction is simply obtained
as their difference. In this case, the computation of δṼREF
and δg̃REF relies on the finite linear combination of external
spherical harmonics with all Earth’s masses encompassed
into the Brillouin sphere (Hotine 1969). Then the RTM cor-
rections to gravity and potential are given as:

δg̃RTM(P) � δgDEM(P) − δg̃REF(P)

� δgDEM(P) − δgREF(P) + δgREF(P)

− δg̃REF(P)

� δgRTM +
[
δgREF(P) − δg̃REF(P)

]
, (22)

δṼRTM(P) � δVDEM(P) − δṼREF(P)

� δVDEM(P) − δVREF(P) + δVREF(P)

− δṼREF(P)

� δVRTM +
[
δVREF(P) − δṼREF(P)

]
. (23)

Then the expressions of HC using the downward contin-
uation of spherical harmonics (SH) are:

δgHC_SH(P) � δgREF(P) − δg̃REF(P), (24)

δVHC_SH(P) � δVREF(P) − δṼREF(P). (25)

Same to the method in Sect. 2.2, the δg̃RTM and δg̃RTM are
firstly obtained with the first line of Eqs. (22) and (23). Then
the HC for RTM corrections to gravitational attraction and
potential couldbeobtained as differences between δg̃RTM and
δgRTM, and δṼRTM and δVRTM. The computation of δṼREF

and δg̃REF follows fromHirt et al. (2019a). The spherical har-
monic coefficients Hnm of a detailed topography are firstly
obtained through SH analysis. Then the heights of the refer-
ence topography HREF are computed via SH synthesis with
Hnm expanding to a maximum degree N which equals the
maximum degree of the adopted global gravity field model.
In this study, EIGEN-6C4 is applied and N equals 2159.
Another SH analysis is implemented on the topographic
height functions (HREF/R)p and expanded into related SH
coefficients H (P)

nm . Here R is the mean Earth’s radius and
p is the integer power. The SH coefficients of topographic
potential are obtained via the transformation between SH
coefficients of the topographic potential and the SH coeffi-
cients of the reference topography. The topographic potential
coefficient of degree n and orderm is given as Eq. (9) of Hirt
et al. (2019a):

V nm � 4πR3ρ

(2n + 1)M

pmax∑
p�1

∏p
i�1(n − i + 4)

p! (n + 3)
H (p)
nm . (26)

Here, M indicates the Earth’s mass and ρ is the mean
Earth’s mass density.

Then δVREF and δgREF are computed via SH synthesis
(Hirt et al. 2019a, Eqs. (9) and (10))

δgREF(P) � −GM

r2

pmaxN∑
n�0

(n + 1)

(
R

r

)n n∑
m�−n

V nmYnm(ϕ, λ)

(27)

and

δVREF(P) � GM

r

pmaxN∑
n�0

(
R

r

)n n∑
m�−n

V nmY nm(ϕ, λ) (28)

with r � R + H(P), and (ϕ, λ) indicating the latitude and
longitude of the computation point. Equations (27) and (28)
adapt to computing gravitational attraction and potential for
points located above the Brillouin sphere because the SH
series converges uniformly. For points on or below the Bril-
louin sphere, the SH series may diverge and produce gross
errors in the results (Hirt and Kuhn 2017; Rexer 2017; Šprlák
et al. 2020; Bucha and Kuhn 2023).

2.4 HC of the complete RTM correctionmethod

The complete RTM correction method provides harmoni-
cally downward continued gravity field functionals referring
to the RTM-reduced Earth bounded by the reference topo-
graphic surface (Klees et al. 2022). Ignoring the high-order
error terms, the complete method gives the expressions of
RTM corrections to gravity and potential from Eqs. (36) and
(40) of Klees et al. (2022):
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δg̃RTM(P) � δg+RTM(P) − δg−
RTM(Q)

+
∂δg−

RTM

∂r

∣∣∣∣∣
Q

�h

� δgRTM(P) +

[
δg−

RTM(P) − δg−
RTM(Q)

+
∂δg−

RTM

∂r

∣∣∣∣∣
Q

�h

]
, (29)

δṼRTM(P) � δV +
RTM(P) − δV−

RTM(Q)

+
∂δV−

RTM

∂r

∣∣∣∣∣
Q

�h − 1

2

∂2δV−
RTM

∂r2

∣∣∣∣∣
Q

�h2

� δVRTM(P) +

[
δV−

RTM(P) − δV−
RTM(Q)

+
∂δV−

RTM

∂r

∣∣∣∣∣
Q

�h − 1

2

∂2δV−
RTM

∂r2

∣∣∣∣∣
Q

�h2
]
.

(30)

Here, the subscript “RTM” means the residual masses for
integration. δg+RTM(P) and δV +

RTM(P) indicate the gravita-
tional attraction and potential at P due to the residual masses
above the reference topographic surface; δg−

RTM(P), δg−
RTM

(Q) and δV−
RTM(P), δV−

RTM(Q) indicate the gravitational
attraction and potential at P and Q due to the residual masses
below the reference topographic surface, respectively.

Then the expressions ofHC forRTMcorrections to gravity
and potential are obtained as (Klees et al. 2022, Eqs. (37) and
(41)):

δgHC_complete(P) � δg−
RTM(P) − δg−

RTM(Q) +
∂δg−

RTM
∂r

∣∣∣∣∣
Q

�h,

(31)

(32)

δVHC_complete (P) � δV−
RTM (P) − δV−

RTM (Q)

+
∂δV−

RTM

∂r

∣∣∣∣∣
Q

�h

− 1

2

∂2δV−
RTM

∂r2

∣∣∣∣∣
Q

�h2.

2.5 HC of the Kadlec’s method

In the Kadlec’s method (Kadlec 2011), the RTM correction
to gravity is split into four parts, the gravity field effect δgBP
of a Bouguer layer of thickness H and the corresponding ter-
rain effect δgTE referring to the Earth’s surface (see Fig. 2a,
c), and the Bouguer effect δggBP of thickness HREF and the

corresponding terrain effect δggTE referring to the reference
topographic surface (see Fig. 2b, d). With S indicating the
area of the Bouguer layer, and l the distance between the inte-
gration point of height Z and the computation point of height
Z ′, then the detailed expression (Kadlec 2011, Eqs. 3.3–3.9)
is given as follows:

δg̃RTM(P) � −Gρ

∫ ∫
S

∫ H

HREF

z′ − z

l3
dzdS

� Gρ

∫ ∫
S

(∫ HREF

0

z′ − z

l3
dz −

∫ H

0

z′ − z

l3
dz

)
dS

� Gρ

∫ ∫
S

( ∫ HREF(P)

0

z′ − z

l3
dz +

∫ HREF

HREF(P)

z′ − z

l3
dz

−
∫ H(P)

0

z′ − z

l3
dz −

∫ H

H(P)

z′ − z

l3
dz

)
dS

� δgTE(P) + δgBP(P) − δggTE(P) − δggBP(P) (33)

with

δgTE(P) � −Gρ

∫ ∫
S

(∫ H

H(P)

z′ − z

l3
dz

)
dS,

δgBP(P) � −Gρ

∫ ∫
S

(∫ H(P)

0

z′ − z

l3
dz

)
dS,

δggTE(P) � −Gρ

∫ ∫
S

(∫ HREF

HREF(P)

z′ − z

l3
dz

)
dS,

δggBP(P) � −Gρ

∫ ∫
S

(∫ HREF(P)

0

z′ − z

l3
dz

)
dS. (34)

In this procedure, the computation point P is located out-
side of two types of terrain masses, e.g. Fig. 2a, b for P
above the reference topographic surface, and Fig. 2c, d for
P below the reference topographic surface. In addition, P
is located above the Bouguer masses of thickness H for
δgBP(P). Therefore, the harmonic correction is not required
for terrain gravity effect δgTE(P), δggTE(P), and δgBP(P).
For computation of δggBP(P), the point P is located inside
the masses. The expressions of δggBP (P) are given in Kadlec
(2011) when the geometry of Bouguer masses is approxi-
mated by an unlimited Bouguer plate, limited Bouguer plate,
Bouguer shell and limited Bouguer shell.

Considering

δgTE(P) − δggTE(P)

� −Gρ

∫ ∫
S

(∫ H

H(P)

z′ − z

l3
dz

)
dS

+ Gρ

∫ ∫
S

(∫ HREF

HREF(P)

z′ − z

l3
dz

)
dS
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Fig. 2 Terrain masses of Kadlec’s method when the computation point P is located above the reference topographic surface (a, b) and below the
reference topographic surface (c, d)

� −Gρ

∫ ∫
S

(∫ H

H(P)

z′ − z

l3
dz +

∫ HREF(P)

HREF

z′ − z

l3
dz

)
dS

� −Gρ

∫ ∫
S

( ∫ H

H(P)

z′ − z

l3
dz +

∫ H(P)

HREF

z′ − z

l3
dz

+
∫ HREF(P)

H(P)

z′ − z

l3
dz

)
dS

� −Gρ

∫ ∫
S

(∫ H

HREF

z′ − z

l3
dz +

∫ HREF(P)

H(P)

z′ − z

l3
dz

)
dS

� δgRTM(P) + δgdBP(P) (35)

with

δgdBP(P) � −Gρ

∫ ∫
S

(∫ HREF(P)

H(P)

z′ − z

l3
dz

)
dS. (36)

Then Eq. (33) becomes:

δg̃RTM(P) � δgRTM(P) +
[
δgdBP(P) + δgBP(P) − δggBP(P)

]
.

(37)

The expression of HC for the RTM correction to gravity
associated with the Kadlec’s method is:

δgHC_Kadlec(P) � δgdBP(P) + δgBP(P) − δggBP(P). (38)

In the unlimited Bouguer plate approximation, δgdBP(P)

is computed by assuming an infinite Bouguer plate. For P
above the Earth’s surface and below the reference topo-
graphic surface, the expressions of δgBP, δggBP, and δgdBP
could be derived following Eqs. (2.78)–(2.80) of Kadlec
(2011).

δgBP(P) � −2πGρH(P), (39)

δggBP(P) � −2πGρ[HREF(P) + 2H(P) − 2HREF(P)]

� −2πGρ[2H(P) − HREF(P)], (40)

and

δgdBP(P) � −2πGρ[HREF(P) − H(P)]. (41)

Then Eq. (38) becomes

δgHC_Kadlec(P) � −4πGρ[HREF(P) − H(P)] � −4πGρ�h.

(42)

Obviously, the above equation is the same as the classical
condensation method. This means that the Kadlec’s method
achieves the same results with the classical condensation
method. This conclusion adapts for the condensation method
under various approximations.

3 The approximation errors of the classical
condensationmethod

In our experiments, a detailed DEM model—MERIT2017
(Yamazaki et al. 2017; Hirt 2018) at 3′′ resolution is used
to represent the Earth’s surface. It is developed based on
the SRTM (Shuttle Radar Topography Mission) V2.1 DEM
within ± 60° latitude, and AW3D DEMmodel above 60° N.
Compared with many other SRTM DEMs, voids, outliers,
radar errors, and tree canopy signals were better handled in
this model. A spherical harmonic expansion of MERIT2017
provides a smoothing reference topographic surface for this
study (Hirt et al. 2019b). It was obtained through SH analy-
sis and synthesis from MERIT2017 (Hirt et al. 2019a). It is

123



On the harmonic correction in the gravity field determination Page 9 of 20 106

expanded up to degree of 2160 (MERIT2160) which shares
the same order and degreewith thewidely used global gravity
field model EGM2008 (Pavlis et al. 2012) and EIGEN-6C4
(Förste et al. 2014). About 50.75% of continental points
reside in masses defined by the MERIT2160. The differ-
ences between MERIT2160 and MERIT2017 would reach
up to 1350m over points located in residual masses. Besides,
the constant value of 2670 kg/m3 is adopted to approximate
the density of residual masses, 6378.137 km for the Earth’s
radius, and 6.6743 × 10–11 m3 kg−1 s−2 for the Newton’s
gravitational constant.

Yang et al. (2022) studied the errors caused by the unlim-
ited Bouguer plate approximation and its effect on the RTM
geoid height. Similar to the experiment in Yang et al. (2022),
planar approximation effect is studied here in terms of the
gravitational attraction by comparisons between HC_UBP
and HC_BS, and between HC_LBP and HC_LBS. From
Eqs. (7) and (11), it is obvious that the magnitude differences
between HC under UBP and HC under BS have positive cor-
relation with the value of residual heights. This means that
the planar approximation effect would be less than 0.07mGal
for the RTM correction to gravity when magnitude of resid-
ual height is less than 1350 m. This is negligible in many
practical applications. However, this is different, in that the
planar approximation would involve significant effect in HC
for the RTM correction to geoid height (Yang et al. 2022).
It is reasonable when considering different attenuation char-
acters of the geoid height and gravitational attraction with
distance increasing. The distant masses produce much more
significant effect on the geoid height than its first-derivatives.
Figure 3 displays the planar approximation on HC for the
RTM correction to gravity (the left panel of Fig. 3). It is obvi-
ous that the planar approximation effect onHC increaseswith
integration radius growth first and then tends to be sluggish.
The errors due to planar approximation would be less than
0.06 mGal for δgHC, when the integration radius is extended
up to 110 km from the computation point.

The mass inconsistency effect is investigated through
comparisons between HC_UBP and HC_LBP, and between
HC_BS andHC_LBS. The results from comparison between
HC_BS and HC_LBS show the same trend with results
from comparison between HC_UBP and HC_LBP. There-
fore, only results from comparison between HC_UBP and
HC_LBP (the right panel of Fig. 3) rather than both com-
parisons are displayed in this study. It is obvious that the
magnitudes of mass inconsistency effect decrease first with
integration radius increasing and then tends to be sluggish
around 0.9 mGal. The mass inconsistency would involve
larger than 1 mGal effect in HC when the integration radius
is less than 100 km.

4 Comparisons of various methods for HC
over Himalayamountains

The values of HC with four methods are computed and com-
pared over theHimalayamountains. It is themost rugged area
on theEarth and is here bounded by latitudes of 27°N and 28°
N, and longitudes of 87° E and 88° E. MERIT2017 and its
respective reference topographic surface MERIT2160, and
constant density assumption of 2670 kg/m3 are used tomodel
the RTM masses. The computation points are arranged on a
15′′×15′′ grid on the Earth’s surface defined byMERIT2017.
Figure 4 gives the MERIT2017 topography (panel a) and
respective RTM topography over this area (panel b). Then
50.70% of the computation points are located below the ref-
erence topographic surface defined by theMERIT2160. HCs
over these points are calculated and compared.

Table 1 and Fig. 5 provide the statistical information of
HCs with various methods and their comparison results. The
magnitudes of HCs for RTM corrections to gravity would
reach up to hundreds mGal over the study area. Therefore,
HCs for the RTM corrections to gravity should be carefully
considered. The values of HCs for RTM corrections to grav-
ity are negative with the condensation method as shown in
Fig. 5a, while there might be positive values using the other
methods. This might be caused by the fact that the con-
densation method assumed that all masses indicated by the
reference topography are all above the level of the compu-
tation point while other methods consider the reality that
masses might located below the computation point. This has
also been reported in Klees et al. (2022).

In the framework of the condensation method, the differ-
ences of HCs under various approximations, i.e. UBP, LBP,
UBS, and LBS, are at sub-mGal-level. This is consistent with
the results shown in Sect. 3. There are biases between UBP
and LBP, UBP and LBS being larger than 0.1 mGal. Consid-
ering that a 0.1 mGal gravity bias might yield a geoid error in
the order of 1 cm (Heiskanen and Moritz 1967; Märdla et al.
2017), the effects of these approximations in geoid determi-
nation should be carefully investigated.

In terms of comparison of HCs with various methods, the
differences between HCs with UBP and HCs with continu-
ation methods are within ~ 11.20 mGal for the TS method,
and within ~ 10.87 mGal for the SH method. The STD of
differences are ~ 0.94 mGal and ~ 1.30 mGal, respectively.
The large differences, shown in Fig. 5b, c, are mainly located
in very rugged areas. HC using the complete method shows
the largest difference with the HC under the UBP approxi-
mation (see Fig. 5d). The corresponding STD values reach
up to ~ 11.81 mGal.

From this experiment, it is easy to see that large differences
are involved when using various HC methods for RTM cor-
rections to gravity, especially over very rugged areas. This
suggests a substantial discrepancy among current HCs based
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Fig. 3 Errors due to planar approximation (left panel) andmass inconsistency (right panel). δgHC indicates the HC for the RTM correction to gravity.
δgHC_LBP, δgHC_LBS, δgHC_UBP, and δgHC_BS denote the HC under the LBP, LBS, UBP, and BS approximation, respectively

Fig. 4 The topography and RTM topography over Himalaya areas. H indicates the elevation given by MERIT2017, while HRTM the RTM height
given as the height differences between MERIT2017 and MERIT2160

Table 1 The statistical
information of HCs with various
methods and their comparison
with the classical condensation
method (Units are in mGal)

Variants Min Max Mean STD RMS

δgHC_UBP −282.11 0.00 −37.03 52.43 64.02

δgHC_TS −274.35 0.01 −36.60 51.89 63.58

δgHC_SH − 279.56 0.64 − 36.68 51.77 63.34

δgHC_complete − 222.39 59.28 − 28.23 43.01 51.44

δgHC_LBP − δgHC_UBP 0.0 0.93 0.10 0.13 0.16

δgHC_BS − δgHC_UBP − 0.05 0.00 0.00 0.01 0.01

δgHC_LBS − δgHC_UBP − 0.05 0.00 0.00 0.01 0.01

δgHC_TS − δgHC_UBP − 0.38 11.20 0.44 0.94 1.04

δgHC_SH − δgHC_UBP − 5.79 10.87 0.70 1.30 1.48

δgHC_complete − δgHC_UBP − 4.01 83.55 8.80 11.81 14.73

δgHC_UBP, δgHC_LBP, δgHC_BS, δgHC_LBS, δgHC_TS, δgHC_SH, δgHC_complete, and δgHC_complete_closed indicate
the HC with the classical condensation method under UBP, LBP, BS, and LBS approximations, with the
regularized downward continuation method of TS, with the regularized downward continuation method of
SH, and with the complete method, respectively
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Fig. 5 Values of HCs over the Himalaya and the comparison results
depend on various methods. δgHC_UBP, δgHC_TS, δgHC_SH, and
δgHC_complete indicate the HC for the RTM correction to gravity with

the UBP approximation, with the regularized downward continuation
method of TS, with the regularized downward continuation method of
SH, and with the complete method, respectively

on various methods which will subsequently affect the accu-
racy of gravity field modelling. Therefore, related numerical
experiments should be implemented to validate the perfor-
mances of variousHCmethods in gravity field determination.

5 The effects of HC on gravity fieldmodelling
studies

The following experiments are implemented over the Col-
orado area. It is the study area of “the 1 cmgeoid experiment”
(Wang et al. 2021). Over this area, the RTM height (Fig. 6)
ranges from ~ − 830 to ~ 1043 m. There are ~ 51.03%
points with negative residual heights and locating below
the reference topographic surface defined by MERIT2160.
Besides, there are 58,913 terrestrial gravity measurements
which would provide the numerical datasets for this study.

And 222 GSVS17 (Geoid Slope Validation Survey 2017, van
Westrum et al. 2021) GNSS/levelling measurements would
provide geoid undulations with an accuracy of ~ 1.5 cm and
height anomalies with accuracy of ~ 1.2 cm for evaluation
purposes. All these make it a good place for studying the
effect of HC on gravity field synthesis and on regional geoid
determination. The details about the terrestrialmeasurements
are given in Wang et al. (2021).

5.1 The effect of various HCmethods on gravity field
syntheses

RTM technique has been widely applied to augment the
GGMs at high-frequency bands and to get an ultra-high-
resolution global and regional gravity field models (Voigt
and Denker 2007; Hirt et al. 2013; Ďuríčková and Janák
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Fig. 6 Heights (a), residual heights (b) and terrestrial gravity measurements (c) over the Colorado area

2016; Zingerle et al. 2020). Here, the high-frequency grav-
ity anomalies from the RTM with various HC methods
are combined with long-wavelength signals of EIGEN-6C4
expanded up to degree and order (d/o) 2159 to recover the
gravity signals over the Colorado area. Based on this method,
a synthesized gravity anomaly field is obtained. And it is
compared with the terrestrial gravity measurements to eval-
uate the performance of various HC methods.

Over this area, the synthesized gravity anomalies are cal-
culated over 58,913 points andHCs are considered for 34,493
points. Figure 7a shows the values of HCs for RTM cor-
rections to gravity anomalies with the UBP method. The
magnitudes of HCs range up to ~ 180.54mGal, which should
be carefully considered in gravity anomaly syntheses. This
is obvious in Table 2, which gives the statistical informa-
tion of gravity measurements and the residuals as differ-
ences between measured and synthesized gravity anomalies.
The EIGEN-6C4 expanded up to d/o 2159 could recover
~ 63.71% of gravity signals; however, the combination of
EGM2008 and the RTM without HC could only recover
~ 45.98% of gravity signals. This demonstrates the impor-
tance of including HCs in RTM corrections. The recovery
capacity is greatly improved after involving HCs for RTM
corrections to gravity anomalies. This is obvious from the
decreased RMS of residual signals, e.g. ~ 9.10 mGal when

involving HCs associated with the complete method, ~ 3.80
mGal when involving HCs associated with the UBP method,
~ 3.74 mGal when involving HCs associated with the TS
method, and ~ 3.64 mGal when involving HCs associated
with the SH method from ~ 20.74 mGal without HCs.

Although the involvement of HCs would improve the syn-
thesized results, there are great differences between various
methods. Here, the improvement rate is involved as an indi-
cator of the performance of the synthesized gravity anomaly.
With �gsyn indicating the synthesized gravity anomaly and,
�gobs the terrestrial measurements, then the improvement
rate is defined as: κ � [

RMS(�gobs)−RMS
(
�gsyn

)]
/RMS

(�gobs). The improvement rates under various conditions
are given in Table 2. The HC associated with the SH method
achieves the best performance with the largest improvement
rate of ~ 90.52%, then followed by the HC associated with
the TS method and the HC associated with the UBP method
with the improvement rates more than 90%. The HCwith the
complete method achieves the smallest improvement rate of
~ 76.30%. The condensation methods with various approx-
imation achieve equivalent results. In addition to method-
ologies of various methods for HC, the methods adopted for
numerical evaluation of Newton’s integration will also affect
the performance of HCs. Here the spectral domain method is
applied in SH for gravitational field calculation induced by
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Fig. 7 Performance comparisons of various HC methods in gravity
field syntheses. a HC under the UBP approximation, b residual grav-
ity anomaly when HC under the UBP approximation, c–e magnitude
differences between residual gravity anomalies when involving HCs

under the UBP approximation, with the TS method, with the complete
method and residual gravity anomalies when involving HCs with the
SH method

reference topographic masses, while the spatial numerical
evaluation method for the TS, UBP, and complete methods.

Figure 7b–e displays the residual gravity anomalies when
HC associated with the UBP method (panel (b)) and the
magnitude differences between residual gravity anomalies
when involving HCs associated with the UBP method, TS
method, complete method, and residual gravity anomalies

when involving HC associated with the SH method. In pan-
els (c)–(e), the red and yellow colours indicate the better
performance of considering the HC with the SH method.
As shown in Fig. 7b, c, most of the magnitude differences
between gravity anomaly residuals when involving HCswith
the UBP method, TS method, and gravity anomaly residuals
when involving the HC with the SH method are within 10
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Table 2 Statistical information of
gravity anomaly and gravity
anomaly residuals compared to
the synthesized gravity field from
EGM2008 and RTM without and
with HC terms

Variants Min (mGal) Max
(mGal)

Mean
(mGal)

STD
(mGal)

RMS
(mGal)

κ(%)

�gobs − 113.55 211.78 5.05 38.06 38.39

�gobs −
�gEGM2008

− 110.87 83.70 − 3.35 13.52 13.93 63.71

�gRTM_d
res − 181.17 55.09 − 10.11 18.11 20.74 45.98

�gUBPres − 65.84 55.09 0.04 3.80 3.80 90.10

�gLBPres − 65.98 55.09 0.04 3.79 3.79 90.13

�gBSres − 65.83 55.09 0.04 3.80 3.80 90.10

�gLBSres − 65.96 55.09 0.04 3.79 3.79 90.13

�gTSres − 68.94 55.09 − 0.01 3.74 3.74 90.26

�gSHres − 28.68 55.09 − 0.01 3.64 3.64 90.52

�gcomplete
res − 153.06 55.09 − 0.80 9.07 9.10 76.30

With �gobs indicating gravity anomaly measurements, �gEGM2008 gravity anomaly of EGM2008, �gRTM_d
res

gravity anomaly residuals when RTM without HC, �gUBPres gravity anomaly residuals when RTM with HC

under the UBP approximation, �gLBPres gravity anomaly residuals when RTMwith HC under the LBP approx-

imation, �gBSres gravity anomaly residuals when RTM with HC under the BS approximation, �gLBSres gravity

anomaly residuals when RTMwith HC under the LBS approximation, �gTSres gravity anomaly residuals when

RTM with HC using the TS method, �gSHres gravity anomaly residuals when RTM with HC using the SH

method, �gcomplete
res gravity anomaly residuals when RTM with HC using the complete method, and κ the

improvement rate

mGal. HCs with the TSmethod show a slightly better perfor-
mance over rugged area (Fig. 7d). Themagnitude differences
between gravity anomaly residuals when involving HCswith
the TS method and gravity anomaly residuals when involv-
ing HCs with the SH method are mainly happened around
rugged areas with values up to more than ~ 100 mGal.

5.2 The effect of various HCmethods on local geoid
determination

In the remove-compute-restore procedure, GGM and RTM
corrections to gravity anomalies are first removed from
gravity measurements. Then various methods, such as least-
squares collocations (Moritz 1980; Tscherning and Rapp
1974) and radial basis functions (Klees and Wittwer 2007;
Schmidt et al. 2007; Li 2018) can be applied to obtain
the residual height anomalies. Here, we use the truncated
Stokes’s kernel (Wong and Gore 1969) to obtain the resid-
ual height anomalies, considering that far zone contributions
are negligible after removing GGM and RTM (Li and Wang
2011). Finally, the height anomalies derived from GGM and
RTMare added to obtain the height anomalies. In the removal
procedure, theHCs for RTMcorrections to gravity anomalies
are generally considered and correctedwith the classicalUBP
method. However, the HCs for RTM corrections to height
anomalies in the restore procedure are rarely studied.

The main purposes of the following experiments are to
evaluate the performances of various HC methods in local
geoid model determination and to investigate the effect of
HCs for RTM corrections to height anomalies in the restore
procedure. Therefore, 14 numerical experiments are imple-
mented over the Colorado area. The definition of variables
of 14 experiments is listed in Table 3.

In this study, height anomaly grid is the summation of
long-wavelength signals indicated by EIGEN-6C4 on the
Earth’s surface, short-wavelength signals of RTM on the
Earth’s surface, and residual wavelength signals from the
classical Stokes’s integration with truncated kernels (Wong
and Gore 1969). The height anomaly is transformed into the
geoid height (Fig. 8) as indicated in Wang et al. (2021). The
GSVS17 GNSS/levelling data (222 benchmarks) provide the
reference values for the validation of computed geoidmodels
with various parameters (Wang et al. 2021). Each computed
geoid grid is interpolated to the GNSS/levelling points to
obtain the geoid heights that are then compared with the
GNSS/levelling measurements. STD values of differences
between GNSS/levelling data and interpolated geoid heights
indicate the performance of computed geoid heights with
various parameters. As suggested in studies, e.g. Wong and
Gore (1969), kernels with low degree terms removed would
improve the results.Here, the geoid heightswith various trun-
cation degrees are calculated and validated.

Figure 9 gives the STD values of differences between
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Table 3 Number of various HC
methods Types Removal procedure Restore

procedure
Types Removal procedure Restore procedure

1 HC with UBP None 8 HC with UBP HC with UBP

2 HC with LBP None 9 HC with LBP HC with LBP

3 HC with BS None 10 HC with BS HC with BS

4 HC with LBS None 11 HC with LBS HC with LBS

5 HC with TS None 12 HC with TS HC with TS

6 HC with SH None 13 HC with SH HC with SH

7 HC with complete
method

None 14 HC with complete
method

HC with complete
method

Fig. 8 The geoid height over the Colorado area. Here the RTM correc-
tion to gravity anomaly is computed with HC of UBP

Fig. 9 STD values with the increasing of the truncation degree of
Wong and Gore modified Stokes kernel. �NHC_UBP

OBS , �NHC_complete
OBS ,

�NHC_SH
OBS , and �NHC_TS

OBS indicate the STD values of differences
between estimated geoid heights and GNSS/levelling measurements
when involving the HC using the UBP method, complete method, SH
method, and TS method, respectively

GNSS/levelling data and interpolated geoid heights with var-
ious variation of truncation degrees when using different HC
methods. It is obvious that the STD values drop dramatically
first and then tend to be stable with the truncation degree
increasing. The case of the HC with the SH method achieves
the best results with the smallest STD values, then is the
condensation method and the TS method (Fig. 9). The case
of the HC with the complete method achieves the largest
STD values (Fig. 9). In the case of involving the HC with
the SH method, the smallest STD value of ~ 2.04 cm is
achieved when the truncation degree is chosen as 700. For
various approximations based on the condensation method,
the geoid height differences are at sub-mm level and could
be ignored. The STD gets the smallest value of ~ 2.05 cm
when the truncation degree is 700. When involving the HC
with the TS method, the smallest STD value of ~ 2.10 cm is
achieved at the truncation degree 700. When the truncation
degree is larger than 1400, the HCs with the condensation
method, with the TSmethod andwith the SHmethod achieve
almost the equivalent performance. When considering the
HC with the complete method, the smallest STD value of
~ 2.29 cm is achieved at truncation degree 2500. This indi-
cates the poor performance in long-wavelength correction of
the completemethod, which affects the accuracy of corrected
gravity anomalies and then the accuracy of determined geoid
heights.

In types 8–14, theHC for theRTMcorrection to the gravity
anomaly in the removal procedure and the HC for the RTM
correction to the height anomaly in the restore procedure are
both considered. The consideration of the HC for the RTM
correction to the height anomaly would slightly improve the
results. The case using the HC with the BS method achieves
the best result with the STD value of ~ 2.00 cm, then is the
SH method with the STD value of 2.02 cm, the condensa-
tion method under UBP, LBP, and LBS approximations of
2.03 cm, the TSmethod of 2.08 cm and the complete method
of 2.28 cm.
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6 Discussions

6.1 The new expressions in the framework
of the complete method

From the above numerical experiments, it is obvious that
there is a large difference between HC with the complete
method and HC with other methods. Klees et al. (2023) indi-
cated that the adoption of “upper bounds based on the exterior
gravity field of a homogeneous mean Earth sphere, and nth
Taylor series for upward continuation” would involve large
errors over deep valleys (Klees et al. 2023). This might be
the underlying reason. In order to improve the method, Klees
et al. (2023) adopted the superposition principle of gravitat-
ing masses, and derived the corrected and closed-form of
expression for HC for the RTM correction to gravity distur-
bance (Klees et al. 2023, Eq. (36)) and disturbing potential
(Klees et al. 2023, Eq. (26)). Considering the definition of
HC in this study and HC in Klees et al. (2023) have oppo-
site signs, the expressions of HC with closed-form complete
method to gravitational attraction and potential are:

δgHC_ complete_ closed(P) � −4πGρ�h, (43)

δVHC_complete_closed(P) � −2πGρ�h2 (44)

It is obvious that δgHC_ complete_ closed equals δgHC_ UBP,
while the δVHC_ complete_ closed is double of δVHC_ UBP (Yang
et al. 2022). Therefore, the HC associated with the closed-
form complete method and the HC associated with the UBP
method will show almost the same results and achieve nearly
equivalent performance in gravity synthesis. However, when
considering the HC to the height anomaly in the restore pro-
cedure, the Klees et al. (2023) achieves almost equivalent
results with the BS method, resulting in the STD value of ~
2.00 cm.

Besides, it is worth to mention that, the expression of HC
to the gravity anomaly is also provided byKlees et al. (2023):

�gHC_complete_closed(P) � −4πGρ�h

(
1 − �h

r

)

� −4πGρ�h + 4πGρ
�h2

r
, (45)

It is obvious that, the difference between
�gHC_complete_closed and δgHC_UBP is only the second
term 4πGρ �h2

r , which involves up to ~ 0.02 mGal dif-
ferences over the Colorado study area. It is possible to
be ignored and therefore is not further discussed in the
manuscript.

In the following, we will discuss the complete method
(Klees et al. 2023) with respect to Klees et al. (2022) from a
new perspective.

Consider point P on the Earth’s surface and its respective
point Q on the reference surface, where point P is located
below the reference surface (see Fig. 2c, d). As indicated
in Klees et al. (2022), the HC is achieved by splitting the
RTM masses into two parts, the exact masses above the ref-
erence topographic surface, and the filled masses below the
reference topographic surface but above the Earth’s surface.
Ignoring the error term, the expressions of HC for RTM
corrections to gravity and potential are Eqs. (31) and (32),
respectively.

As the basic idea of the regularized downward continu-
ation method of TS, the gravity field functional generated
by reference topographic masses at point P is computed as
the downward continuation of the gravity field functional at
point. The expressions of HC for RTM corrections to gravity
and potential are Eqs. (20) and (21), respectively.

It is obvious that Eqs. (20) and (31), and Eqs. (21) and
(32) have similar form. The difference is that only the �−
masses are considered for Eqs. (31) and (32), while the
reference topographic masses are considered for Eqs. (20)
and (21). The four-step method in Klees et al. (2022) gives
some insights about the underlying reasons. In the four-step
method, the masses above the reference topographic surface
are removed in the first step and the gravity continuation
follows.Therefore, the gravity continuation is actually imple-
mented in a space corresponding to the Earth with changed
masses. This might be one of the main reasons why the HC
computed by the complete method of Klees et al. (2022)
differs much from those computed by the other methods as
shown in Sects. 4 and 5. To deal with this, in the frame-
work of the complete method, we derive a new three-step
approach (TSA) implemented in the space of unchanged
Earth’s masses. The detailed derivations can be found in
Appendix D, and its equivalence to the TS method will be
given as follows.

The expressions of HC with the TSA are given as (see
Appendix D):

δgHC_TSA(P) � −
(

δgRTM(P) − δgRTM(Q) +
∂δgRTM

∂r

∣∣∣∣
Q

�h

)
.

(46)

δVHC_TSA(P) � δVRTM(Q) − δVRTM(P)

− ∂δVRTM
∂r

∣∣∣∣
Q

�h +
1

2

∂2δVRTM
∂r2

∣∣∣∣
Q

�h2.

(47)

Considering

δgRTM(Q) � δgDEM(Q) − δgREF(Q)

δgRTM(P) � δgDEM(P) − δgREF(P)
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∂δgRTM
∂r

∣∣∣∣
Q
�h �

(
∂δgDEM

∂r

∣∣∣∣
Q

− ∂δgREF
∂r

∣∣∣∣
Q

)
�h (48)

and

δgDEM(P) � δgDEM(Q) − ∂δgDEM
∂r

∣∣∣∣
Q
�h, (49)

Equation (46) then becomes

δgHC_TSA(P) � δgREF(P) − δgREF(Q) +
∂δgREF

∂r

∣∣∣∣
Q
�h,

(50)

which is the same as Eq. (20).
In a similar way, Eq. (47) can be rewritten as:

δVHC_TSA (P) � δVREF (P) − δVREF (Q)

+
∂δVREF

∂r

∣∣∣∣
Q

�h − 1

2

∂2δVREF
∂r2

∣∣∣∣
Q

�h2,

(51)

which is the same as Eq. (21).
In conclusion, the three-step complete method and the TS

method should achieve equivalent results.

6.2 Computation of geoid heights at stations
with the RCRmethod

As introduced in Sect. 5.2, the geoid grid at 1′ × 1′ reso-
lution is computed first. Then the geoid heights at stations,
such as GSVS17 GNSS/levelling benchmarks, are interpo-
lated from such a geoid grid. This is the general method in
regional/local geoid determination with limited computation
capability. However, this would involve interpolation errors
(Roman 1993, 1999; Smith 2022). At the present stage, super
computers provide supercomputing capability. It allows us to
compute the geoid heights at a large number of stations in
the framework of RCR. Here, long-wavelength signals indi-
cated by EIGEN-6C4, short-wavelength signals of RTM, and
the residual wavelength signals from the classical Stokes’s
integral with truncated kernels (Wong and Gore 1969; Li
and Wang 2011) are directly calculated on the 222 GSVS17
GNSS/levelling benchmarks. The summation of these three
parts is height anomalies at benchmarkswhich are then trans-
formed into geoid heights. The geoid heights at benchmarks
are compared with GNSS/levelling measurements.

Here, the SH method is used to make the HC for the RTM
correction to the gravity anomaly in the removal procedure.
This is made because that the gravity anomaly with the HC
based on the SH method achieves the best performance in
geoid height determination.

As shown in Fig. 10, the STD values fluctuate first and

Fig. 10 STD values with the increasing of the truncation degree of
the Wong and Gore modified kernel. �NHC_SH_station

OBS indicates the
STD value of differences between directly estimated geoid heights
at stations and GNSS/levelling measurements, �NHC_SH

OBS is the STD
value of differences between interpolated geoid heights at stations and
GNSS/levelling measurements. �NHC_SH

OBS is the same as that as shown
in Fig. 9

Table 4 Truncation degree ofWong and Gore modified kernel and min-
imum value of STDs when geoid heights are directly calculated at
stations

Types Truncation degree Value of STD (cm)

6 630 1.62

13 630 1.56

then tends to stabilize with increasing truncation degree. It
is obvious that the geoid heights directly calculated in the
RCRframeworkhave a higher accuracy than that interpolated
from a geoid grid. This is seen from the smaller STD values
of �NHC_SH_station

OBS compared to STD values of �NHC_SH
OBS

with the truncation degree larger than 380. The geoid height
directly calculated at the station achieves the best accuracy at
truncation degree 630 with the STD value of ~ 1.62 cmwhen
only considering theHC for theRTMcorrection to the gravity
anomaly (Table 4). This value reduces to ~ 1.56 cm when
additionally considering theHCfor theRTMcorrection to the
height anomaly. These values are much improved compared
to results obtained from the interpolation of a geoid grid.
Therefore, it is recommended to compute the geoid heights
at GPS/levelling stations directly.

7 Conclusions

The harmonic correction is one of the main quantities that
affects the accuracy of RTM technique in high-frequency
gravity field recovery and subsequently affects the results of
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geoid determination. This study reviews and compares the
expressions of HC for RTM corrections to gravity anomaly
and height anomaly with various methods, i.e. the condensa-
tion method, the regularized downward continuation method
of TS, the regularized downward continuationmethod of SH,
the complete method, and the Kadlec’s method. In addition,
the effects of HC on gravity field synthesis and on regional
geoid determination in the RCR framework are firstly studied
in this work.

In the framework of the condensation method, we have
derived expressions of HC for the RTM correction to gravita-
tional attraction using various approximations. In addition to
the expression of HCwith the UBP approximation (Forsberg
1984), we have derived the HC expressions under the LBP,
BS, and LBS approximations firstly. These derivations pro-
vide a comprehensive understanding of errors in HC due to
various approximations. The comparisons among HCs under
various approximations indicate that errors due to the UBP
approximation could be ignored in the mGal-level gravity
field determination. This is confirmed in the extreme cases
of the Himalaya area and in the gravity field determination
of the Colorado area with approximation errors of 0.01 mGal
in terms of RMS.

Numerical experiments were conducted to assess the per-
formance of various HC methods, i.e. condensation method,
TS method, SHmethod, and complete method, in the gravity
field synthesis over the extreme rugged Himalaya moun-
tain area. The results indicate that the HCs based on the TS
method and the SH method are in the same order of mag-
nitude with the HC based on the condensation method. The
largest differences are within ~ 30 mGal for the HC based on
the TS method and ~ 10 mGal for the HC based on the SH
method in extreme cases. Large differences mainly occurred
over very rugged areas. The HC based on the SH method
shows the best performance in the gravity field synthesis.
However, the HC based on the complete method shows a
large difference with that based on the condensation method,
TS method and SH method and achieve the worse results in
the gravity field synthesis. The differences would be larger
than 100mGal over very rugged areas. In an effort to enhance
the results obtained from the complete method, both Klees
et al. (2023) and our study independently investigated the
underlying reasons behind the large differences involved by
the original complete method. Subsequently, new formulae
were separately in each study to address these issues. InKlees
et al. (2023), they focused on resolving the error associated
with the boundary problemandderived a closed-formexpres-
sion for HC that was found to be almost equivalent to the HC
obtained using the UBP method. In our study, we introduce
a new procedure to improve the original complete method.
Our method involves a three-step approach within the frame-
work of the complete method, as described in detail in S4 of
ESM. A key improvement of our method is that it addresses

the errors caused by changes in Earth’s masses during the
downward/upward continuation processes. Importantly, our
method yields results that are consistent with those obtained
using the TSmethod. The performance of UBP and TSmeth-
ods in the gravity field synthesis confirms the effectiveness
and reliability of these approaches.

In addition, the performances of HCwith variousmethods
in the RCR procedure for regional geoid determination are
studied over the Colorado area. The geoid height grids at 14
cases are determined and validated through the comparison
with GNSS/levelling measurements at 222 benchmarks. In
the general case that the HC is made only for the RTM cor-
rection to gravity anomaly in the removal procedure, the HC
with the SHmethod achieves the best performance, followed
by the HC with the condensation method. The results could
be slightly improved when the HC for the RTM correction to
the height anomaly is included in the restore procedure. The
accuracy of determined geoid heights is ~ 2 cm when using
BSmethod.However, the geoid heights at specific points, e.g.
geoid heights at GNSS/levelling points, are actually obtained
from the geoid grids. This involves interpolation errors in
the geoid heights at station points. With rapid development
of computing power, it is possible to compute geoid heights
directly at stations. This is tested and proved that computing
geoid heights at stations improved the results. The accuracy
is improved to ~ 1.56 cm. However, the validation results and
conclusions are limited by the minority, non-homogeneously
distribution, and accuracy ofGPS/levelling datasets. Further-
more, the geoid height are computed from height anomaly
with the quasigeoid-to-geoid method in Wang et al. (2020),
which depends on the constant density assumption. This also
affects the final results.

Based on the principles and numerical experiments of dif-
ferent methods, it is evident that the classical condensation
method is not only the most efficient but also achieves mod-
erate results. Furthermore, both Kadlec’s method and the
closed-form complete method yield the same equation as the
classical condensation method but from different theoreti-
cal frameworks. This confirms the validity of the expression
of HC obtained using the classical condensation method.
Although the SH method for HC demonstrates the best
performance in gravity field synthesis and regional geoid
determination when the indirect effect is ignored, its imple-
mentation involves significant costs, and the improvement
compared to the classical condensation method is minimal,
e.g. sub-mGal improvement for gravity synthesis and sub-cm
for geoid. Considering the indirect effect involved by HC in
the restore procedure would slightly improve the results, and
the BS method and the closed-form complete method yield
the best results using a simple formula. They are much more
efficient compared to the SHmethod. Consequently, the clas-
sical condensationmethod is still sufficient for computing the
HC for gravitational attraction in most practical applications.
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However, it is advisable to consider the SH method when
sub-mGal-level accuracy is required for gravity synthesis.

Supplementary Information The online version contains supplemen-
tarymaterial available at https://doi.org/10.1007/s00190-023-01794-2.
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Ďuríčková Z, Janák J (2016) RTM-based omission error corrections for
global geopotential models: case study in Central Europe. Stud
Geophys Geod 60(4):622–643. https://doi.org/10.1007/s11200-
015-0598-2

ElhabibyM, Sampietro D, Sanso F, Sideris M (2009) BVP, global mod-
els and residual terrain correction. In: Observing our changing
earth. Springer, pp 211–217. https://doi.org/10.1007/978-3-540-
85426-5_25

ForsbergR, TscherningCC (1981) The use of height data in gravity field
approximation by collocation. J Geophys Res 86(B9):7843–7854.
https://doi.org/10.1029/JB086iB09p07843

Forsberg R, Tscherning CC (1997) Topographic effects in gravity field
modelling for BVP. Springer, Berlin, pp 239–272. https://doi.org/
10.1007/BFb0011707

Forsberg R (1984) A study of terrain reductions, density anomalies
and geophysical inversion methods in gravity field modelling.
OSU report 355, Ohio State University, Columbus, Department
Of Geodetic Science and Surveying

Förste C, Bruinsma SL,AbrikosovO, Lemoine JM,Marty JC, Flechtner
F, Balmino G, Barthelmes F, Biancale R (2014) EIGEN-6C4 the
latest combined global gravity field model including GOCE data
up to degree and order 2190 of GFZ Potsdam andGRGSToulouse.
GFZ Data Services. https://doi.org/10.5880/icgem.2015.1

Harrison J, Dickinson M (1989) Fourier transform methods in local
gravitymodeling. BulletinGéodésique 63(2):149–166. https://doi.
org/10.1007/BF02519148

Heck B, Seitz K (2007) A comparison of the tesseroid, prism and point-
mass approaches for mass reductions in gravity field modelling.
J Geodesy 81(2):121–136. https://doi.org/10.1007/s00190-006-00
94-0

HeiskanenWA, Moritz H (1967) Physical geodesy. W. H. Freeman and
Company, San Francisco

Hirt C (2018) Artefact detection in global digital elevation mod-
els (DEMs): the maximum slope approach and its application
for complete screening of the SRTM v4. 1 and MERIT DEMs.
Remote Sens Environ 207:27–41. https://doi.org/10.1016/j.rse.
2017.12.037

Hirt C, Kuhn M (2017) Convergence and divergence in spherical har-
monic series of the gravitational field generated by high-resolution
planetary topography—a case study for the Moon. J Geophys Res
122:1727–1746. https://doi.org/10.1002/2017JE005298

Hirt C, Claessens S, Fecher T, Kuhn M, Pail R, Rexer M (2013) New
ultra-high resolution picture of Earth’s gravity field. Geophys Res
Lett 40(16):4279–4283. https://doi.org/10.1002/grl.50838

Hirt C, Bucha B, Yang M, Kuhn M (2019a) A numerical study of
residual terrain modelling (RTM) techniques and the harmonic
correction using ultra-high-degree spectral gravity modelling.
J Geodesy 93:1469–1486. https://doi.org/10.1007/s00190-019-01
261-x

Hirt C, Yang M, Kuhn M, Bucha B, Kurzmann A, Pail R (2019b)
SRTM2gravity: an ultra-high resolution global model of gravi-
metric terrain corrections. Geophys Res Lett 46(9):4618–4627.
https://doi.org/10.1029/2019GL082521

Hofmann-Wellenhof B, Moritz H (2006) Physical geodesy. Springer
Hotine M (1969) Mathematical geodesy. U.S. Department of Com-

merce, Washington
Kadlec M (2011) Refining gravity field parameters by residual terrain

modeling. PhD thesis, University of West Bohemia, Pilsen, Czech
Republic

Klees R, Wittwer T (2007) Local gravity field modelling with mul-
tipole wavelets. In: Tregoning P, Rizos C (eds) Dynamic planet
monitoring and understanding a dynamic planet with geodetic and
oceanographic tools. In: International association of geodesy sym-
posia, vol 130, pp 303–308

Klees R, Seitz K, Slobbe D (2022) The RTMharmonic correction revis-
ited. J Geodesy 96(6):39. https://doi.org/10.1007/s00190-022-01
625-w

Klees R, Seitz K, Slobbe C (2023) Exact closed-form expressions for
the complete RTM correction. J Geodesy 97(4):33. https://doi.org/
10.1007/s00190-023-01721-5

Li X (2018) Using radial basis functions in airborne gravimetry for
local geoid improvement. J Geodesy 92:471–485. https://doi.org/
10.1007/s00190-017-1074-2

Li X, Wang Y (2011) Comparisons of geoid models over Alaska com-
puted with different Stokes’ kernel modifications. J Geodetc Sci
1(2):136–142. https://doi.org/10.2478/v10156-010-0016-1

Lin M, Li X (2022) Impacts of using the rigorous topographic gravity
modeling method and lateral density variation model on topo-
graphic reductions and geoid modeling: a case study in Colorado,
USA. Surv Geophys 43:1497–1538. https://doi.org/10.1007/s1
0712-022-09708-1

LinM,DenkerH,Müller J (2014)Regional gravity fieldmodeling using
free-positioned point masses. Stud Geophys Geod 58:207–226.
https://doi.org/10.1007/s11200-013-1145-7

Lin M, Denker H, Müller J (2019) A comparison of fixed- and free-
positioned point mass methods for regional gravity fieldmodeling.
J Geodyn 125:32–47. https://doi.org/10.1016/j.jog.2019.01.001

Liu Q, Schmidt M, Sánchez L, Willberg M (2020) Regional gravity
field refinement for (quasi-) geoid determination based on spheri-
cal radial basis functions inColorado. JGeodesy 94(10):99. https://
doi.org/10.1007/s00190-020-01431-2

Märdla S, Ågren J, Strykowski G, Oja T, Ellmann A, Forsberg R,
Bilker-KoivulaM,OmangO, Paršeliūnas E, Liepinš I, Kaminskis J
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