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Abstract
The idea of moving mass calibration (MMC) of relative gravity meters dates back to the seventies of the last century. Probably
theMMC apparatus built in the undergroundMátyáshegy Gravity and Geodynamics Laboratory Budapest has been used most
extensively and several spring type instruments (LaCoste and Romberg and Scintrex) have been investigated and calibrated
by it. Its test mass is a cylindrical ring having a weight of 3 tons. Its main advantage is simplicity in terms of metrology.
The same principle and technology can be used to test compact tilt sensors having nanoradian resolution capability. Up to
now rigorous testing methods below microradian range were not available in practice. The analysis of the so-called off-axis
variation of the gravitational vector generated by the vertical movement of the cylindrical ring mass of the Mátyáshegy MMC
device, however, showed that a sufficiently accurate reference signal having (15 ± 0.02) nrad peak-to-peak amplitude can be
provided for calibration. It is just in the range of tilt induced by earth tide effect, which is a “standard” signal component in
the time series recorded in observatory environment. In the first part of the paper, a discussion of the proposed methodology
of tilt meter calibration is given. Then the analysis of the effect of volumetric discretization of the cylindrical ring on the
accuracy of calibration is provided. Finally, possible material inhomogeneities of the ring mass and their gravitational effects
are investigated by forward simulations and inversion. For this purpose the results of 300 gravimeter calibration experiments,
analysed and published earlier, were utilized.

Keywords Moving mass calibration · Newtonian gravitational attraction · Tilt meters · Nanoradian resolution · Gravity
meters · Prisms · Polyhedrons

1 A short introduction to the history of MMC
and its recent application

The birth of the idea of moving mass calibration probably
coincides with the time of invention of gravity meters, how-
ever, the first publication of the application of a device using
a spherical test mass is given by Warburton et al. (1975).
Thereafter the feasibility of test mass geometries different
from the sphere (e.g. toroidal mass) were investigated (e.g.
Bartha et al. 1986) and some devices were constructed apply-
ing e.g. cylindrical ring (Achilli et al. 1995). TheMátyáshegy
MMC device, operated by Mining and Geological Survey of
Hungary, was built in 1990 based on the ideas of Péter Varga
and used extensively by the scientific community (Varga et al.
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1995, personal communications of B. Meurers and P. Varga).
The primary aim was to provide reliable scale factors (at
0.1–0.2% level) for gravity meters used in the earth tide
research (Csapó and Varga 1991). Due to size constraints,
only LaCoste and Romberg gravity meters (both G and D
types) could be tested at that time. Just recently Koppán et al.
(2020) have tested successfully Scintrex CG-5 instruments
too. It has to be mentioned that ring masses (as perturbing
gravitational sources) have also been used for the laboratory
determination of the universal gravitational constant G (e.g.
Schwarz et al. 1998; Rothleitner and Francis 2014), which is
a kind of “inverse” problem. For gravimeter calibration, the
value of G has to be known in order to calculate the disturb-
ing gravitational effect of the ring mass and then compare
it to the one observed by the instrument being calibrated.
ForG determination, only the mass and geometry of the ring
mass have to be known, the value of G can be derived from
the exact measurements of the trajectory perturbations of a
free falling test mass. Koppán et al. (2020) showed that the
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Mátyáshegy device is excellent for gravimeter testing at real
sub microGal (1μGal � 10 nm/s2) level since the careful
and complex analysis of the accuracy of the reference sig-
nal generated by the cylindrical mass provided a maximum
uncertainty of ±3 nm/s2 in absolute sense. This analysis,
however, could not be a complete study. Therefore, it did not
include either the modelling of possible material inhomo-
geneities inside the cylindrical ring mass or the investigation
of its effect on the uncertainty of the calibrating signal.More-
over, it did not discuss the numerical approximation aspects
of the off-axis computation of mass attraction components
(axis means the vertical/rotation axis of the cylindrical ring),
which is unavoidable for ensuring the necessary precision in
gravimeter calibration. In fact, the investigation of this latter
problem led to the idea of Newtonian tilt meter calibration,
since nonzero horizontal mass attraction components can be
generated by the cylindrical ring of the MMC device only in
off-axis (eccentric) position of the sensor.

Consequently, the first part of this recent paper gives an
overview on both the traditional way of tilt meter (spirit
level) calibration and the theoretical foundation of a new
method based on the Newtonian approach. Its second part
is dedicated to those practical and numerical considerations
which have been missing from the related previous studies.
Therefore, it systematically compares two possible ways of
discretization (prisms and polyhedrons) of the cylindrical
ring mass in terms of accuracy and computational efficiency
and investigates the effect of mass inhomogeneites utiliz-
ing both forward and inverse gravitational modelling tools.
The results will be summed up and concluded at the end of
the paper. Certain details referring to numerical aspects of
the investigations are discussed in the Appendix to help the
reader to keep the focus on the main achievements and save
time for non-specialists.

2 Two in one - feasibility of theMMC device
to calibrate compact tilt sensors

2.1 Limits of the application of traditional
mechanical spirit level balances

The ancestors ofmodern electronic tilt sensors were the spirit
(bubble) levels used to set horizontal or vertical position of
elements of surveying instruments, parts ofmachines,mount-
ing platforms, etc. The most accurate tubular spirit levels
providing a few tenth of 4.85 μrad (1 arcsec) sensitivity
were used in geodesy and astronomy where angle measure-
ments required very fine alignment of the mechanical axes
connected to the divided reading circles. These levels were
extensively tested in so-called level balances (or mechanical
tilt platforms). A level balance consists of a firm and heavy
base construction supporting a hinge (or a horizontal axis)

of a rigid arm and a vertical micrometre screw threaded very
finely. The screw can lift or sink the end of the arm by turn-
ing it, respectively, so the tilt of the arm can be changed
precisely. Depending on the length of the arm and the pitch
of the micrometre screw (i.e. the number of threads per mil-
limetre) reference tilts can be applied on the tested levelswith
sufficient resolution (usually around 0.484 μrad). Theoret-
ically, the resolution can be improved by increasing either
the length of the arm and/or the pitch. Both possibilities have
their own limits due to structural and elaboration (finishing)
constraints so the supply of accurate angles smaller than 0.5
μrad is not a common task at all for calibration.Moreover, the
measuring method can be applied only in a restricted range
of tilts due to the approximation of the circular movement
(i.e. rotation of the balance arm) by a linear (tangential) one
implicitly applied in the mechanical construction.

The new tilt sensors, however, provide angle resolution
either with four orders of magnitude higher so new methods
have to be applied if one wants to check their capabilities and
characteristics below μrad level.

2.2 Testing of Lippmann-type pendulum tilt sensors
by a traditional level balance

In the past, the predecessor of the Institute of Earth Physics
and Space Science (EPSS), the Geodetic and Geophysical
Research Institute of the Hungarian Academy of Sciences,
as an independent, non-profit oriented national laboratory,
had strong professional relations to the Hungarian Optical
Works (Magyar Optikai Művek/MOM). MOM had a more
than 100-year-old history in the development of optics and
fine mechanics applied to different surveying and measuring
instruments and devices until its reorganization in the 1990s.
So EPSS still has a well-maintained level balance which was
used extensively in the 1960s, 1970s and 1980s to provide
small vertical angles for the investigation of surveying instru-
ments and levels. Its native resolution capability is 2.42μrad
(0.5 arcsec) but it could be increased by one order of mag-
nitude according to the needs. Although the resolution of
the Lippmann-type tilt sensors (LTS HRTM series) is much
better than this, some experiments were done only to check
the general characteristics of the HRTM series in their whole
measuring range (about ± 1.9 mrad). One should note that
LTS is a biaxial sensor so it provides a 2D vector quantity
τ � (

τx , τy
)
in its own coordinate frame marked by Ch#1

and Ch#2 (x‖Ch#1, y‖Ch#2). In a specific case when any
of the axes of LTS is parallel with the direction of tilt defined
by, e.g. the structure of the level balance

τx � 0 ∨ τy � 0 (1)

holds. In the following, τ means the nonzero component of
the tilt for the sake of simplicity. Equation 1 can be provided
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by the proper orientation of the sensor during the measure-
ments.

Three sensors (named SOP1, SOP2 and HRTM1) were
tested using the balance. In these tests steps of 24.2 μrad (5
arcsec) were applied to go through gradually the measuring
rangewhich is equal to± 800micrometer unit (1micrometer
unit (m.u.) � 1 dial unit � 0.5 arcsec). The measured tilt
data were recorded at 1 Hz sampling rate and 20 readings
were used to provide an average tilt in each position of the
balance arm. Although the old and new tests were made at
different places (SOP1/2015: SopronbánfalvaGeodynamical
Observatory, SOP2/HRTM1/2021: the laboratory of EPSS
in the town of Sopron) having very different background
noise the results (Figs. 1, 2, 3 and 4) show basically the
same characteristics for all the three sensors in themeasuring
range:

1) Beyond ± 400 m.u. the residual tilt

δτ � τ − τ̂ � τ − (sτ dial + τ0), (2)

where τ is the observed tilt in any of the examined
coordinate direction Ch#1 or Ch#2, τ̂ is a proper refer-
ence model, τdial is the dial reading (i.e. the applied tilt
regarded as reference) of the level balance, s is the scale
factor and τ0 is the constant parameter of the regression
model, indicates slight nonlinear characteristics.

2) Between –400 and + 400 m.u. the scale factors between
the reference tilt provided by the level balance and the
tilt observed by any LTS seem to be mainly constant. In
this interval, neglecting the periodicity of δτ , the relation
between δτ and τdial is considerably linear.

3) The so-called periodical error of the micrometre screw
with the period of 360 m.u. (1 full dial rotation) can
be identified by applying a higher (e.g. 3rd) degree
regression model in Eq. 2 even if the background noise
observed in 2021 was higher than in 2015, due to differ-
ent locations of the experiments.

4) The scale factors derived from the corresponding lin-
ear regression computations (Table 1) processed by L2
norm adjustment (Mikhail and Ackermann 1976) are
very close to the nominal value of the level balance (2424
nrad/m.u.). The deviation is around 2% for any of the
sensors.

There can be a few reasons of the nonlinearity of the residual
tilts. First, there is a trigonometric approximation applied in
the mechanical construction of the level balance:

arc(α) ≈ tan(α), (3)

where α is the tilt of the balance arm (Fig. 5a). Whereas the
dial of the micrometre screw, the rotation of whichmoves the

end of the arm of the balance up and down, displays angles
on a divided circle the screw itself moves linearly. So the
measure of this tangential displacement is approximated by
the length of the arc, which is assumed to be equal to α given
in radians. The difference

�α � tan(α) − arc(α) (4)

between them monotonically increases (Fig. 5b).
Figure 5b, however, shows that the calculated �α is def-

initely smaller by almost four orders of magnitude than the
observed residuals δτ displayed in Figs. 1, 2, 3 and 4. There-
fore, the systematic components of the residuals, except the
periodical signal, are resulted by the transfer characteristics
of the capacitive transducer built in the tilt sensor.

The periodical component of the residuals indicates the
uneven pitch of the thread of the micrometre screw. This is a
consequence of the precision limits of manufacturing of fine
threads. Until the recent experiments its exact measure could
not be determined because the amplitude of this error signal
(∼ 0.2 arcsec ≈ 1μrad) is well below of the resolution and
reading capabilities of the traditional spirit levels.

2.3 A possibility to generate gravitational tilt
at nrad level by theMMC device

The off-axis computations (Koppán et al. 2020) of the grav-
itational effect (̃g � (g̃x , g̃y, g̃z)) of the cylindrical ring
of Mátyáshegy MMC device defined by parameters r1 �
160 mm, r2 � 385 mm and L � 1030mm (Fig. 6) showed
that near to its innermantle, a significant change of horizontal

mass attraction g̃xy �
√

(g̃x )2 +
(
g̃y

)2 can be observed dur-
ing the verticalmovement of themass. Following the notation
of the paper (see Fig. 2a, Koppán et al. 2020) the height of
the mass is marked by l (0 mm ≤ l ≤ 1300 mm). The height
l � 0 mm refers to the start position of the lifting process,
when the top face of the cylindrical ring is below the sensor.
The height l � 1300 mm is the highest position when its
bottom face is above that (see the horizontal dashed lines on
Fig. 6b). By definition, in case of homogenous mass density,
the horizontal mass attraction is zero (̃gx � g̃y � 0) in the
axis of symmetry of the cylindrical ring due to the circular
symmetry of the mass distribution therefore

g � (0, 0, gradW + g̃z) (5)

defined as a sum of the gradient of the gravity potentialW of
the Earth and the vertical attraction component g̃z generated
by the cylindrical mass. In an eccentric position, when d > 0
(Fig. 6) the nonzero horizontal components, however, deflect
the local gravity vector given by (5)

g � (
g̃x , g̃y , gradW + g̃z

)
, (6)
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Fig. 1 The results of the level balance experiments with LTS SOP1 tilt sensor. The left vertical axes refer to the measured tilt values (magenta/dark
grey points), right vertical axes scale the tilt residuals (green/light grey points) after removing the linear trend (Eq. 2). Location: SOPGO; year:
2015

Fig. 2 The results of the level balance experiments with LTS SOP1 tilt sensor. The left vertical axes refer to the measured tilt values (magenta/dark
grey points), right vertical axes scale the tilt residuals (green/light grey points) after removing the linear trend (Eq. 2). Location: EPSS, year: 2021

by angle τ from its along axis (i.e. vertical) direction which
results in gravitational (Newtonian) tilt τN (Meurers et al.
2021). τN , as a function of the height z (Fig. 6), changes
between well-defined extrema and increases (in absolute
sense) as the distance d of the computation point from the
axis of symmetry increases. One should note that axis z is
fixed to the cylindrical ring (that is z � 0 at its lower hor-
izontal plane). The gravitational components discussed in
this paper are always computed at a point moving along or
parallel to this coordinate axis. The other vertical axis l, how-
ever, indicates the instantaneous vertical position of the upper
horizontal plane of the cylinder during its movement. When
l � 0 the cylindrical ring mass rests on the floor and the sen-
sor of either the gravity or the tilt meter is above the upper
horizontal plane of the cylinder by about 15 cm (Fig. 2a,
Koppán et al. 2020). A simple vertical shift can be applied to
transform the vertical positions from one system to the other
one (Fig. 6).

Eventually, if all the physical and geometrical parameters
of the cylindrical ring are fixed then

τN � cos−1(g(z, d) · g(z, 0)/|g(z, d)|/|g(z, 0)|) � τ N (z, d),
(7)

where

τN � |τ N | (8)

τ N � (
τNx , τNy

)

�
(
tan−1

(
g̃x

gradW + g̃z

)
, tan−1

(
g̃y

gradW + g̃z

))
. (9)

The peak-to-peak change of τN generated by the MMC
device inMátyáshegyObservatory,Budapest is about 15 nrad
(Fig. 6b) when the upper or the lower face of the cylindri-
cal ring is just close (l ≤ 0.35 m or l ≥ 0.95 m) to the
vertical position of the test point (i.e. the reference point
of the sensor) and d � 120 mm. In case of the compact
(ca. 80 mm x 60 mm x 120 mm) Lippmann-type tilt sen-
sors (LTS) this is a maximum radial distance (eccentricity)
which can be applied since the inner radius of the ring r1
is 160 mm. It, however, is sufficient because the theoret-
ical amplitudes θ f of the main diurnal ( f ≈ 1 day) and
semidiurnal ( f ≈ 0.5 day) tidal constituents in N-S and
E-W directions are 3.1 nrad ≤ θN−S

f ≤ 38.2 nrad and

6.5 nrad ≤ θ E−W
f ≤ 51.4 nrad, respectively, according to

both the Dehant body tide model (see, e.g. Meurers et al.

123



Newtonian (moving mass) calibration of tilt and gravity meters and the investigation… Page 5 of 20 98

Fig. 3 The results of the level balance experiments with LTS SOP1 tilt sensor. The left vertical axes refer to the measured tilt values (magenta/dark
grey points), right vertical axes indicate the tilt residuals (green/light grey points) after removing the linear trend (Eq. 2). Location: EPSS, year:
2021

Fig. 4 The δτ residuals (green/light grey points) after the removal of a 3rd degree polynomial model from the observations and their error bars
(grey I-shaped markers). a LTS SOP1 sensor, b LTS HRTM1 sensor

Table 1 The results of the
determinations of the scale factor
s and its reliability (variance) μs .
Data are provided by the L2
norm adjustment of tilt
observations (Eq. 2) obtained
from level balance tests of
HRTM1, SOP2 and SOP1
Lippmann-type tilt sensors

Tilt sensors

HRTM1 (2021, EPSS) SOP2 (2021, EPSS) SOP1 (2015, SOPGO)

s(nrad/m.u.) μs (nrad/m.u.) s(nrad/m.u.) μs (nrad/m.u.) s(nrad/m.u.) μs (nrad/m.u.)

Ch#1(x) + 2445 0.4 + 2449 0.3 + 2416 0.6

Ch#2(y) + 2446 0.8 + 2450 0.4 + 2442 0.4

EPSS—laboratory of the Institute of Earth Physics and Space Science (Sopron), SOPGO—Sopronbánfalva
Geodynamic Observatory

2021) and the in situ tidal tilt time series recorded, e.g. at the
Conrad Observatory, Austria by LTS SOP2 sensor (Fig. 7).

Further details on the off-axis computations of the gradi-
ents (̃gx , g̃y, g̃z) of the gravitational potential Ṽ generated by
the cylindrical ring can be found in Sect. 3 of the paper.

2.4 Disturbing effects: ground loading and tidal tilt

The pillar, on which the investigated instruments are set up,
is not perfectly immobile during the calibration process. The
vertical movement of the cylindrical ring generates slightly
varying ground loading (gl) effect which results in some
ground deformation tilt τ gl because of the coupling between

the ground and the support frame of the lifting apparatus. For
the description of the device and its geological environment,
see Koppán et al. (2020).

The observed tilt τ generally consists of someother effects
too:

τ � τ gl + τ N + τ θ + τ drift + e, (10)

where τ θ is the tide induced tilt, τ drift is the apparent tilt
induced by instrumental drift and e is the measurement noise
(e.g. microseisms, city noise, the noise generated by the lift-
ing device).
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Fig. 5 a The LTS SOP1 sensor on the level balance of EPSS operated
at SOPGO in 2015. The red disc on the left side of the device is the
micrometre dial with 360 divisions (1 div. � 1 m.u.). b The difference
between the arc length and the tangent belonging to the same central

angle α in the half measuring range of LTS instruments. Nominally
1 m.u. � 2.425 μrad � 0.5 arcsec. Left and right scales are given in
nrad and milliarcsec (mas), respectively

Fig. 6 a Explanation of off-axis (eccentric) position of a test point and
the change g̃xy of the gravitational vector g as it is shifted by distance d
away from the axis of rotation, where d � 0. τ � τ N is the gravitational
(Newtonian) tilt caused by the horizontal force g̃xy . b The change of
tilt τN along the vertical in function of z and the eccentricity d. Green
(light grey): d � 100 mm, magenta (dashed dark grey): d � 120 mm,
black: d � 140 mm) inside the ring (d < 160mm). The geometrical

parameters of the cylindrical ring: r1 � 160 mm, r2 � 385 mm and
the height of the cylinder L � 1030 mm (for further details see Koppán
et al. 2020). The computations were performed in the coordinate system
fixed to the cylindrical ring. The thick horizontal black lines represent
the vertical positions of its bottom and top faces along the z axis. The
horizontal dashed lines define the range of mass movement
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Fig. 7 Onemonth long time series of N-S (magenta/dark grey) and E-W
(green/light grey) tidal tilt components recorded by a Lippmann-type
pendulum tilt sensor (LTS SOP2) at the Conrad Observatory, Austria.
The data are low pass filtered and decimated from 1 s samples to 1 min
samples. The linear trend has been removed

Assuming that in a specific case

τ θ + τ drift + e � 0 (11)

holds and the steel pillar is sufficiently rigid, its motion (i.e.
tilt) during the experiments is uniform for all of its points.
Consequently τ gl can be accurately determined if the tilt
sensors investigated are centred to the axis of symmetry of the
cylindrical ring. In this position, the horizontal gravitational
effect

g̃xy � 0 ⇒ τN � 0, (12)

so the detected tilt signal in Eq. 10 is purely deformation

τ � τ gl . (13)

Since the same signal τ gl is expected during the calibra-
tion of the tilt sensor positioned off-axis (d > 0) the residual
�τ (z, d) is

�τ (z, d) � τ (z, d) − τ gl(z, d) � τ N (z, d), (14)

eventually.
Recalling that the Lippmann-type tilt sensors are biaxial so
they provide two independent (perpendicular) components
(Ch#1 and Ch#2) of the full horizontal tilt vector:

τ � τ gl + τ N � 〈τglx , τgl y 〉 + 〈τNx , τNy 〉, (15)

if x‖Ch#1 and y‖Ch#2, for instance. With a proper testing
configuration, when the investigated component (x or y) is

aligned in any radius of the inner circle of the ring mass
Eq. 15 is reduced to:

τ � τ gl + τ N � 〈τglx , 0〉 + 〈τNx , 0〉 or
τ � τ gl + τ N � 〈0, τgl y 〉 + 〈0, τNy 〉 (16)

provided that τ gl‖τ N . This condition can be easily fulfilled
if the corresponding sensor axis (x or y) always aligned in the
same radius vector regardless the sensor is placed in the axis
of symmetry of the ring mass or in off-axis position (Fig. 8a).

During the experiments described by Koppán et al. (2020)
the tilt of the gravimeters placed on the instrument pillar
(Fig. 8b) was also recorded continuously as the built in elec-
tronic levels (X /cross, Y /long) of the LCR gravity meters
measured that. These time series, however, can only give a
rough estimate on the size and characteristics of geometric
tilts since no detailed information is available about their
resolution capabilities and reliability. The sensitivity of the
levels (i.e. the scale factors for both directions X /cross and
Y /long in arcsec/mV unit) indicating the actual tilts in mV
unit were determined a priori to the moving mass experi-
ment using the level balance of EPSS. Although these levels
are not designed to measure tilts below microradian range
some general tendencies can be outlined from the average
τ gl (z, 0) observations

(
τ gl X

)
i �

Ni∑

j�1

(
τgl X

)
i j/Ni ,

(
τ glY

)
i �

Ni∑

j�1

(
τglY

)
i j/Ni ,

(17)

where
(
τgl X

)
i j and

(
τglY

)
i j are the i th tilt observation at the

height position li (i � li ) given in (mm) in the j th testing
series and Ni is the number of the available observations at
the i th height position as Fig. 9 shows:

(1) τ gl(z, 0) is neither constant nor linear in the investi-
gated height range (0 mm ≤ l ≤ 400 mm), and their
amplitudes are higher by one order of magnitude then
that of τ N (z, d). One should note that the height range
defined above corresponds to the length of the interval
containing two consecutive extrema (a maximum and a
minimum). So the investigations can be restricted to this
specific interval (see Fig. 6b) regarding the viewpoints
of calibration.

(2) The scatter of the τ gl (z, 0) curves from one mass lifting
to the next one is not negligible as the green (light grey)
curves show.
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Fig. 8 aThe proper alignment of the investigated sensor (here axis x) for
the determination of tilts generated purely by the ground load τ gl and
the Newtonian mass attraction τ N . In this alignment τNy � 0 anywhere
along the ray starting at point O (dotted line). r1 is the inner radius

of the ring. b The orientation of the coordinate system XY in which
the instrumental tilts of the gravity meters calibrated by Koppán et al.
(2020)were recorded. Themediumgrey ring and the dark hatched circle
represent the cylindrical ring and the instrument pier, respectively

Fig. 9 a–c X/cross and Y/long-level instrumental tilts assumed to be
identical to τgl (z, 0) of the LCR G949 gravity meter in function of
the lifting height l as it was indicated by the electronic levels of the
instrument during the calibration in years a 2014, b 2016 and c 2017.
The green (light grey) curves show the tilt time series recorded one
by one whereas the magenta (dark grey) curves are defined by Eq. 17

as the interval average of the tilts. l � 0 ≡ z � −145 mm. d The
short periodic part of the spectra of X tilt (green/light grey) and Y tilt
(magenta/dark grey) recorded during the calibration of LCRG949 grav-
ity meter in 2014 by the Mátyáshegy MMC device. The discrete peaks
show the Tgravimeter_heating � 13 sec cycle time and its harmonics.
0.1 mV � 1018 nrad
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(3) The scatter strongly depends on the direction. In the X
direction (actually it is the so called cross-level direction
of the LCR gravity meters), it is significantly larger than
in the Y direction (so-called long-level direction).

The scatter of τ gl (z, 0) curves probably depends on the
change of ambient temperature in the room of the MMC
device (Fig. 10). Although it is an underground laboratory
facility operated in a natural cave system, consequently, the
daily thermal stability is better than 0.1 C°/day, the opera-
tion of the lifting device consisting of an electromotor and
a winch system provides extra heat, which rises temporarily
the temperature by even (0.4–0.5) C° during the experiments.
One, however, must consider that whereas the sampling rate
of gravity and tilt signals was 1 sample/sec that of the tem-
perature, humidity and air pressure was only 1 sample/min.
Moreover, the measured values of the gravimeter tilts are
affected by the heating process of the gravimeter sensor
which keeps the sensor at a stable working temperature.
Unfortunately, its on–off state modulates the output voltage
of the electronic levels periodically (Fig. 9b) according to a
square function. So, taking into account also the low reso-
lution (0.1 °C) of the recorded temperature, these auxiliary
data are certainly insufficient to investigate such a relation in
detail.

The scatter of τ gl (z, 0) curves depends also on the direc-
tion, which comes probably from the structure of the lifting
apparatus (see the figures and images in the papers by Varga
et al. 1995; Csapó and Szatmári 1995). The cross-level (X
direction) of the gravimeter was always oriented to the direc-
tion of the winch system pulling/lifting the heavy mass by a
pulley system. Since the winch is fixed to the floor and the
top of the support frame where the pulling direction turns
to vertical is at about 2.5 m high, the horizontal component
of the rope force certainly bends the whole support frame
towards the winch. Therefore τ gl X is certainly more influ-
enced and disturbed by the lifting process than τ glY . It means
that rather the Y direction, which is eventually perpendicular
to the plain defined by the rope force and the direction of the
vertical (Fig. 8b) can be used for calibration.

In case of gravimeter calibration the time duration of lift-
ing or sinking of the test mass of the MMC device is around
15min. Although it is not long time a proper measuring strat-
egy based on the methodology given by Koppán et al. (2020)
is needed to minimize the tilt effect of the earth tide τ θ. One
can easily justify from Fig. 7 that the most suitable observa-
tion periods are defined by the condition ∂τ θ

∂t ≈ const. where
the change of τ θ is sufficiently linear. In practice it means
that time intervals around the inflexion points as well as local
extrema of the tidal curves (Fig. 7) are suitable for testing.
In these intervals both the tidal effects and the instrumental

drift can be modelled by a single linear component τ̂ θ , drift

(Koppán et al. 2020) since the variation is linear either we
formulate the connection in time t or lifting height l:

τ̂ θ , drift(l) � τ θ (l) + τ drift(l), (18)

where l � vt and the lifting speed v � const. This way
Eq. 11 can be rewritten:

τ (l) � τ gl(l) + τ N (l) + τ̂ θ , drift(l) + e. (19)

Eventually, the tilt effect (Newtonian tilt) of the gravita-
tional change τ N (l) generated by the vertical movement of
the cylindrical ring is obtained:

τ N (l) + e � τ (l) − τ gl(l) − τ̂ θ , drift(l). (20)

Applying the proper instrument orientation required ful-
filling the conditions of Eq. 17 and considering the anisotropy
of τ gl discussed above, the x (Ch#1) and y (Ch#2) sensors
of LTS can be calibrated separately (cf. Fig. 8b):

(21)

τNx (l) + ex � τx (l) − τgl y (l) − τ̂θ , dri f t x (l),

where x ‖Y , consequently τNy (l) � 0

and

(22)

τNy (l) + ey � τy (l) − τglY (l) − τ̂θ , dri f t x (l),

where y ‖Y , consequently τNx (l) � 0.

3 Computation of the gravitational
attraction of the cylindrical mass in off-axis
(eccentric) positions

As the previous sections demonstrated, the accurate com-
putation of the components of the gravitational acceleration
generated by the test mass g̃ � (g̃x , g̃y, g̃z) in any point
inside the cylindrical ring (d < r1) is crucial. The calculated
tilt effects are hardly larger by one order of magnitude than
the nominal resolution capability of the tilt sensors so some
further investigation is needed to complete the results already
provided by Koppán et al. (2020).

The gravitational potential Ṽ and its first and higher order
derivatives (e.g. g̃x � ∂ Ṽ

∂x , g̃y � ∂ Ṽ
∂y , g̃z � ∂ Ṽ

∂z ,
∂2 Ṽ
∂x2

, . . . )
of the cylindrical ring can analytically be described only in
points of the axis of symmetry. At an off-axis (i.e. eccen-
tric) point, however, these parameters can be evaluated either
numerically (Sung Ho Na et al. 2015; Singh 1977; Nagy
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Fig. 10 The relationship between temperature and a X/cross and b Y/long tilts after the last experiments of measurement days (actually during
night time) in 2014 (23th of April–30th of April)

1966; Nabighian 1962), or by the application of an approx-
imate mass model consisting of volume elements having
analytically described gravitational potential (Koppán et al.
2020).

Based on the theory of superposition one can compute the
gravitational field of the cylindrical ring with arbitrary accu-
racy by increasing the resolution of its approximate model.
For a given geometrical resolution, an algorithm developed
by the authors builds up the model with optimal number of
elements constrained by the base geometry of the elemen-
tary volume element. The right rectangular geometry of the
prism, however, is less optimal for modelling of cylindrical
bodies than that of the general polyhedron so the application
of the latter is discussed in the following as well.

3.1 Volumetric approximation of the cylinder
by polyhedrons and prisms

Thehomogeneous cylindrical ringmass (r1 � 0.160 m, r2 �
0.385 m, H � 1.03 m, massMMC � 3.103765 · 103 kg ⇔
ρ = 7822.0883 kg/m3) described in the paper by Csapó and
Szatmári (1995) is approximated by a set of special polyhe-
dral volume elements (right triangular prisms). Each element
has the sameheight as that of the cylindrical ring (see Fig. 8/b,
Csapó and Szatmári 1995). The bases of the right triangular
prisms are similar in both size and shape. The prisms extend
vertically from the lower to the upper base of the cylindrical
ring. The total number of these elementary volume elements
was successively increased using equal angular division β of
the circular base of the cylinder providingn sectors, each con-
taining three triangles. n is called “model resolution” of the
polyhedron model

(
Mph

)n
i j in the following discussion. For

each n four models, notated by indices i j ∈ {00, 01, 10, 11}
were generated where digits 0 and 1 refer to the modality of
approximation of the circular arc. Digit 0 stands for the case
of approaching by the adherent chord and 1 for the case of
approaching by the corresponding tangent segment (Fig. 11).

Fig. 11 The scheme of the sectorial division of the cylindrical ring by
angle β (nβ � 360°) and the further division of the sectors by three
triangles (dashed lines). The Fig. also explains the way of the approx-
imation of the circular arcs by secants and tangential segments. The
cases are marked by 0 (chord) and 1 (tangent). The first and second
positions of these numbers indicate their location on the outer and the
inner mantle of the cylindrical ring, respectively

The row order of digits indicates which mantle of the ring
is approximated by the chord or tangent. The first and sec-
ond digits stand for the inner and outer mantles, respectively.
Obviously, the discretization of the curved surface of the
mantles (inner and outer) of the cylindrical ring (Mcr ) results
in a geometrical misfit defined as

(ε)n � max
i , j∈{0, 1}

{
dist{Mcr ;

(
Mph

)n
i j }

}
. (23)

The influence of the increasing model resolution on the
differences between 1) the volumes (ν)ni j and νcr and 2)
the mantles of the cylindrical ring and its approximations(
Mph

)n
i j , respectively, can be seen in Table 2.

Although the idea of modelling of a cylinder by a set
of joining right rectangular parallelepipeds seems nonsense
from geometrical point of view it is yet worth to demonstrate
its inefficiency in this special case, especially compared to
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the application of polyhedrons. The smallest volume element
generated by the algorithm developed to fill the cylinder by
prisms has

2r2/2
m × 2r2/2

m × H (24)

dimension,where r2 and H are the outer radius and the height
of the cylindrical ring, respectively. The computations were
performed for m � 8, . . . , 13, where the model discretiza-
tion (quad-tree) parameter m is the number of predefined
quartering steps eventually. For a detailed description of the
methodology, see Appendix.

3.2 The effect of sensor eccentricity on the vertical
component of gradV

The computation of mass attraction effects were performed
in a coordinate system the z axis of which is situated in the
axis of symmetry of the cylindrical ring and the origin (x �
y � z � 0) located on its bottom face (Fig. 6/b). Based on
the definition of maximum norm ‖‖ the accuracy estimates
(gravitational misfits)

δ(gz)
n
i j �

∥∥∥g̃z − (g̃z)
n
i j

∥∥∥ (25)

and

δ(gz)
n �

∥∥∥∥g̃z − (g̃z)n00 + (g̃z)n11
2

∥∥∥∥ (26)

of the first derivatives of the gravitational potential gen-
erated by approximate polyhedron models

(
Mph

)n
i j were

investigated as a function of n (Table 3) in points P of the
computation domains detailed in Fig. 16.

Figure 17a shows the vertical variation of (g̃z)ni j generated
in-axis by different approximate polyhedron models. Based
on the data given in Table 3 the model

(
Mph

)n�7200
i j provides

a gravitational misfit better than ± 0.1 pm/s2 in all of the
investigated domains, which is orders of magnitude smaller
than the limits of achievable measurement accuracy in
gravimetry: μg ≈ 10nm/s2 and μ�g ≈ 0.1 nm/s2 for free-
fall absolute and superconducting relative gravity meters,
respectively. Consequently the ring can be approximated suf-
ficiently by the polyhedron model

(
Mph

)n�450
i j because it

already provides a gravitational misfit δ(gz)ni j ≤ 0.01nm/s2

in all the investigated domains for i j ∈ {00, 01, 10, 11}.

The same models were used to simulate the gravita-
tional tilts (̃τN )ni j which were referenced to (̃τN )n�36000

i j tilts

generated by
(
Mph

)n�36000
i j at d � 120 mm eccentricity.

Figure 17b shows that the accuracy of (̃τ )n�450
i j is also suf-

ficient because its application limits the errors far below the
sensitivity of the sensors, below 0.1 picorad (prad).

4 The gravitational effect of mass
inhomogeneity of the cylindrical ring
material

Although the mass of the MMC device is made of multiple
milled iron plates, some inhomogeneity of itsmaterial cannot
be excluded. For the estimation of the effect of mass inho-
mogeneity on g̃z both a polyhedron

(
M̂ph

)n�450
00 and a prism

(
M̂p

)m�8
models were used. In order to obtain

(
M̂ph

)n�450
00

the volume elements of
(
Mph

)n�450
00 were divided further ver-

tically so finally the number of elements was 135,000 having
a vertical resolution of ≈ 10 mm. This model provides an
accuracy better than 0.004 nm/s.2 for in-axis (domain a) sim-
ulations of g̃z (Table 3).

(
M̂p

)m�8
contains 258,176 adaptive

volume elements applying a modification of (24)

r2
2m

× r2
2m

× H

2m
. (27)

Based on the technical data given by Csapó and Szat-
mári (1995), highly overestimated but still realistic (see, e.g.
Wilzer et al. 2013) density variations with normal

�ρi � N (0; 10 kg/m3) (28)

and uniform

�ρi � U (0; 17 kg/m3) (29)

distribution were applied to assign various density values to
each elementary polyhedral and prismvolume element. From
the mass determination of the cylindrical ring, the uncer-
tainty of the total mass was 0.021 kg (Csapó and Szatmári
1995). So the estimated uncertainty of the mass density is
only σρMMC � 0.055 kg/m3.

Even if the assumed density uncertainties (Eqs. 28 and 29)
are 100 times larger than the value of σρMMC the maximum
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Fig. 12 a The effect δ(g̃z) of density inhomogeneity �ρ along the
axis of symmetry of cylindrical ring. Applied models: magenta/dark

grey-
(
M̂ph

)n�450
00 , �ρ ∈ N (0; 10 kg/m3), green /light grey-

(
M̂p

)m�8
,

�ρ ∈ U (0; 17kg/m3) and dashed green/dashed light grey-
(
M̂p

)m�8
,

�ρ ∈ N (0; 10 kg/m3). b The density inhomogeneities (dashed thin
magenta/dark grey: Eq. 32, dashed thick magenta/dark grey: Eq. 33)
and their gravitational effects (solid thin and thick magenta/dark grey
lines respectively). The same line styles are used for the gravitational
effects as for the corresponding density contrast models

gravitational difference (δ(g̃z)) along the axis of symmetry
generated by themass inhomogeneity�ρ (Fig. 12/a) satisfies

max(|δ(g̃z)|) � max(|̃gz(�ρ)|) < 0.05 nm/s2 (30)

where

g̃z(�ρ) � f
((

M̂ph
)n�450
00

)
∨ g̃z(�ρ) � f

((
M̂p

)m�8
)
.

(31)

The δ(g̃z) curves, interestingly, show non-random features
(Fig. 12). Koppán et al. (2020) indicated also non-random
residual signals provided by the least squares adjustment of
the gravitational change observed by LCR gravity meters
related to the theoretical calibrating signal (see Fig. 15,
Koppán et al. 2020). They concluded that it is linked to
the speed of vertical gravity change ∂gz/∂z reflecting the
elasto-mechanical rheology of the spring sensors. Now this
conclusion is supported because the amplitude of adjustment
residuals is about 10 nm/s2 which is more than two order of
magnitude higher than what is obtained from the recent sim-
ulations of δ(g̃z) from density inhomogeneities.

In order to study the effect of systematic �ρ vertical
density inhomogeneites height dependent density contrast
functions in forms of first- and second-order polynomials
(Fig. 12/b) were used:

�ρ1(z) � 34.7z − 17.87 kg/m3 (32)

�ρ2(z) � 125.0z2 − 128.75z + 22.1 kg/m3 (33)

satisfying the conditions

∫ z�1.03

z�0
�ρ(z) � 0 (34)

−20 kg/m3 ≤ �ρ1(z), �ρ2(z) ≤ +20 kg/m3. (35)

Based on metallurgic investigations (e.g. Wilzer et al. 2013),
the range of density perturbations defined by Eq. 35 is realis-
tic. Figure 12b shows that the gravitational effect g̃z(�ρ) of
such systematic density perturbations (i.e. inhomogeneities)
is typically less than 1.0 nm/s2 along the axis of symmetry
of the cylindrical ring.

Another systematic but discrete density distributionmodel
was applied using the trial and error method to simulate the
amplitude (~ 20 nm/s2 peak-to-peak) of the residual signal
presented by Koppán et al. (2020) and discussed above. For
this, the whole cylinder was divided vertically into three seg-
ments (Fig. 13a) with the following geometrical parameters:
z1 − z0 � 0.4 m, z2 − z1 � 0.38 m, z3 − z2 � 0.25 m
(H � ∑3

i�1 zi − zi−1 � 1030 mm). As Fig. 13b shows an
adequate anomalous density distribution:

�ρ1 � −60 kg/m3, �ρ2 � 220 kg/m3, �ρ3 � −160 kg/m3

(36)
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Fig. 13 a The sketch of the
simple anomalous mass model
(Eq. 36) of the cylindrical ring.
b The black continuous curve
shows the anomalous
gravitational signal of it.
Different colours/shades of grey
indicate both the constituting
cylindrical ring segments
(coloured/dashed grey squares)
and their single gravitational
effects. Green/medium grey
dashed line: �ρ1, violet/strong
grey dashed line: �ρ2 and
yellow/light grey dashed line:
�ρ3

can produce a systematic (signal like) vertical gravitational
anomaly δ(g̃z) having an amplitude around 10 nm/s2 whereas
(34) holds. This specific density model, however, repre-
sents so big density inhomogeneities the existence of which
is excluded by the modern technology of steel metallurgy
(Wilzer et al. 2013).

The effect of the mass inhomogeneities (Eqs. 28, 32, 33
and 36) on τN was also calculated (Fig. 14). The results show
that the tilt signals generated by realistic models (Eqs. 28, 32
and 33) is much less than 100 prad (0.1 nrad) in the off-axis
position d � 120 mm.

5 Inversion of the residual gravity signals
obtained from gravimeter calibration
using theMMC device

The results presented in Koppán et al. (2020) show that the
observation residuals provided by Full-Fit adjustment pro-
cess (as described by Eqs. 6 and 7, Koppán et al. 2020) is not
random exclusively. It still contains a systematic constituent
with amplitude of (10–20) nms−2, which correlates well with
the second vertical derivative of the calibrating signal, as it is
indicated by a previous study (Eq. 8, Koppán et al. 2020). The
most probable reason of the systematic residuals (see Fig. 15,
Koppán et al. 2020) determined by the Full-Fit method is the
response characteristics (rheology) of the spring type sensors.
Based on the discussion in Sect. 4, it seems that a realistic,

either random or systematic, density inhomogeneity of the
cylindrical ring cannot explain the residual signal at all. This
guess, however, can be justified using the gravity inversion
method.

If the cylinder consists of m vertical sections (z0 � 0, z1,
. . . , zm � H � 1030mm) a discrete, vertically anomalous
density distribution of the cylindrical ring can be described
by a series of (ρ1, z2 − z1),…., (ρm , zm − zm−1) parameter
couples, where

ρ j � ρ + �ρ j ( j � 1,m) (37)

and ρ � 7822.0883 kg/m3 is the density of the homogeneous
cylindrical ring determined by the right hand side of Eq. 13
given in the paper by Koppán et al. (2020) and �ρ j denotes
the density inhomogeneity of the jth section.

Introducing the new unknown parameters �ρ j ( j � 1,
m) the observation equation (Eq. 6, Koppán et al. 2020) can
be modified to:

δ(g̃z)i � ei � g̃
(
�ρ1, ..., �ρm , h0 − li , g0

)
, (38)

where ei is the correction of the ith observation obtained
from a previous adjustment providing the scale factor of the
investigated gravimeter (Koppán et al. 2020) and li is the
height of the top face of the cylindrical ring. This way the
δ(g̃z)i residuals are exclusively determined by the density
inhomogeneities discretized by a set of joining cylindrical

123



98 Page 14 of 20 G. Papp et al.

Fig. 14 The effect of a random like and b, c, d systematic density inho-
mogeneities defined by Eqs. 28 and 32, 33, 36 on τN , respectively.

The bottom and top scales on a refers to τN defined by
(
M̂ph

)n�450
00 ,

�ρ ∈ N (0; 10 kg/m3) and
(
M̂p

)m�8
, �ρ ∈ N (0; 10 kg/m3),

respectively. Off-axis positions: d � 120 mm (solid line), d � 150

mm (dashed line). Applied models: magenta/dark grey-
(
M̂ph

)n�450
00 ,

�ρ ∈ N (0; 10 kg/m3) and green/light grey-
(
M̂p

)m�8
, �ρ ∈ N (0;

10 kg/m3)

Fig. 15 a Average residual gravity signals (plot symbols) provided by
the Full-fit mehod (Koppán et al. 2020) and averaged on �l � 10 mm
height intervals and the responses (solid lines) of the respective discrete
density inhomogeneity models containing 6 sections (A,B,C,D,E,F) fit-
ted to the averages given by Eq. 40. b The sketch of the density model

(left panel) and the adjusted density inhomogoneities (right panel). The
colours (grey shades) indicate different years of the calibration of LCR
G949 gravity meter. The thin vertical grey stripe on the right panel
shows the range of realistic density inhomogeneities of±20 kg/m3(e.g.
Wilzer et al. 2013)

rings and the two additive parameters h0 and g0. These latter
quantities are practically providedby the previous adjustment
of the observations therefore Eq. 38 can be further simplified
to:

δ(g̃z)i � ei � g̃
(
�ρ1, ..., �ρm

)
. (39)

Since the density distribution and consequently the density
inhomogeneity of the cylindrical ring is time invariant, δ(g̃z)i
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in Eq. 39 can be replaced by data averaged from the observa-
tion series recorded by the gravimeter at�l � 10 mm height
intervals along the total lifting height range of 1300 mm

δ
(
gz

)a
j � 1

Ka

Ka∑

k�1

δ(g̃z(li ))k , i � 1, N ; j � 1, . . . , 130,

(40)

where N is the number of observations in a specific cali-
bration experiment (typically N � 900, . . . , 1000), Ka is
the number of experiments in a given year a (K2014 � 106,
K2016 � 100, K2017 � 124) meanwhile

( j − 1)�l ≤ li < j�l

sorting rule is followed.
Thisway three sets (δ

(
gz

)2014
j , δ

(
gz

)2016
j , δ

(
gz

)2017
j )were

computed for LCR G949 gravity meter and used as observ-
ables (Fig. 15/a) to solve Eq. 39 for six unknown density
inhomogeneities (�ρ1, ..., �ρ6) the result of which can be
seen in Fig. 15/b. It shows that the residual signal can be
modelled only by the application of unrealistic density inho-
mogeneities.

6 Discussion and conclusions

Based on thorough investigations Koppán et al. (2020) stated
that the MMC device is an excellent tool to test and calibrate
local area scale of both LCR’s and Scintrex’s spring type
gravity meters at a few nm/s2 accuracy level. This recent
paper absolutely confirms their conclusions extending the
accuracy analysis of the method to the investigation of 1)
some numerical problems related to the discretization of the
cylindrical ring mass and 2) the gravitational effect of possi-
ble density inhomogeneities of the material of the cylindrical
ring.

The discretization of the ring mass is unavoidable due
to the rigorous calculations required to determine the effect
of off-axis position of the gravity sensor during the calibra-
tion experiments. The exact position of the effective point of
the sensor of an LCR gravity meter, however, is not known
because of the complexity of its sensor mechanics. There-
fore, one should give a worst-case estimation to quantify
the limit on the largest possible effect of sensor eccentricity
related to the axis of symmetry of the cylindrical test mass.
Analytical expression for off-axis computation of its gravi-
tational attraction is, however, not available, so the division
of the mass to simple volume elements having closed grav-
itational formula is also unavoidable. Rectangular prisms
and polyhedrons possessing triangular base were applied to
fill (i.e. discretize/approximate) the volume of the cylindri-
cal ring and a kind of convergence analysis was performed

to see the effect of the increasing spatial resolution of the
respective models. Based on in-axis investigations which let
the comparison of gravitational effects obtained by exact
(analytical) and approximate (analytically generated by the
discrete model) computations possible a polyhedron model(
Mph

)n�7200
00 was selected as reference. It was shown that

with this grade of discretization an accuracy of g̃z better
then 10–4 nm/s2 can be achieved for both in- and off-axis
computations. Table 4 proves that on one hand any of the
applied and tested prism models (e.g.

(
Mp

)m�12 contain-
ing 23,852 prisms) can provide only much lower accuracy
(~ 1 nm/s2) and on the other, even for the generation of such
a model (m > 10) needs much higher computational efforts
related to polyhedron modelling. This accuracy, however, is
already provided by a very low resolution polyhedron model(
Mph

)n�60
00 containing 180 volume elements which proves

its efficiency against prisms.
The possibility of the presence of density inhomogeneities

inside the mass of cylindrical ring could not be considered
by Koppán et al. (2020) in details so it left an open question
regarding its effect on the absolute accuracy of the MMC
device. In this paper, an extensive and detailed analysis of the
problem was also given. It was shown that realistic density
inhomogeneities (±20 kg/m3) proved by metallurgic inves-
tigations (Wilzer et al. 2013) cannot modify the calibrating
signal significantly. Its contribution is less than 0.05 nm/s2

and 1 nm/s2 in terms of gravity acceleration, 20 prad and
100 prad in terms of tilt in case of random like and system-
atic distributions of density inhomogeneities, respectively.

In order to explain the residual gravity signal provided
by the least squares adjustment of the gravity variation
recorded during MMC experiment, as it is described by
Koppán et al. (2020), both direct and inverse gravitational
computations were performed. This signal has a 20 nm/s2

peak-to-peak amplitude showing systematic characteristics.
In the direct computations, fictive density contrasts (related
to ρ � 7822.0883 kg/m3) were applied in the form of
segmented cylindrical ring. Based on the characteristics of
the residual signal a model consisting of 3 joining seg-
ments supplied with high and different density contrast
(�ρ=(-60, 220, -160) kg/m3) was selected. Indeed, such a
model can generate a gravitational signal having an ampli-
tude similar to that of the residual signal indicated byKoppán
et al. (2020). The size of these density inhomogeneities are,
however, unrealistic based on both the error estimate on the
totalmass of the cylindrical ring given byCsapó andSzatmári
(1995) and the data obtained from metallurgic investigations
(Wilzer et al. 2013). The L2 norm inversion of the residual
signal solved for 6 joining cylindrical rings results in also
very high (i.e. unrealistic) density variations along the ver-
tical providing excellent fit (2014: ±3.5 nm/s2, 2016: ±3.4
nm/s2, 2017: ±2.5 nm/s2) between the observables and the
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gravitational effect of the 6 cylinder model. Consequently,
the residual signal cannot be interpreted as the gravitational
effect of the mass inhomogeneities of the cylindrical ring.

Based on the achievements described in Sect. 3 the the-
oretical feasibility of the MMC device to test and calibrate
high (nrad) resolution compact tilt meters is also demon-
strated. To the knowledge and experience of the authors, this
has been a quite challenging and unsolved technical prob-
lem because the traditional mechanical level balances could
have been used only in the range above μrad. Now, how-
ever, a Newtonian method to generate tilt signals in the order
of magnitude of the solid earth tidal effect is grounded and
its accuracy analysis is also presented in Sect. 4. It shows
that the discretization of the volume/mass of the cylindrical
ring by

(
Mph

)n�450
00 provides a model resolution sufficient

to calculate gravitational tilts with 0.1 prad accuracy. The
maximum contribution of realistic density inhomogeneities
to its error budget is probably larger but still below 0.1 nrad
because rather random than systematic density variations are
expected in the steel material of the cylindrical ring. One
should consider the segmented structure of the MMC device
(Csapó and Szatmári 1995) and the method how the uniform
segments were weighted one by one before those were put
together to form a single cylindrical ring. This excludes the
existence of significant systematic, either vertical or hori-
zontal density inhomogeneities. The practical feasibility of
the MMC device to test high resolution tilt sensors, however,
needs further investigations and experiments.

As Koppán et al. (2020) concluded the accuracy of the
MMC device could be further improved if a new device was
built. Beyond its favourable metrological aspects, it would
have a double benefit. Due to the increased diameters and
mass proposed for the cylindrical ring the device could be
used to test GWR iGrav (R.Warburton personal communica-
tion) superconducting and Muquans (B. Desruelle personal
communication) absolute quantum gravity meters. Beyond
this it would also increase the peak-to-peak amplitude of the
reference tilt signal to 30 nrad in off-axis positions near to
the inner mantle of the ring.
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Appendix

A1Volumetric approximation of the cylinder
by polyhedrons

See Table 2.

Table 2 The geometrical misfit
(ε)n defined by Eq. 23 and the
differences of volumes provided
by approximate models (ν)ni j and

the exact volume of the
cylindrical ring (νcr �
0.396794933121 m3). The index
0 denotes the approximation of
arc by the secant belonging to the
arc whereas index 1 denotes the
approximation by the tangential
segment (Fig. 11)

Model
resolution n

Volumetric approximation model Mn
ph

(ε)n(mm) 1 − (ν)n00/νcr
(%)

1 − (ν)n01/νcr
(%)

1 − (ν)n10/νcr
(%)

1 − (ν)n11/νcr
(%)

60 0.219 1.7e-2 7.4e-2 – 6.6e-2 – 8.5e-3

200 1.975e-2 1.5e-3 6.7e-3 – 5.9e-3 – 7.7e-4

450 3.900e-3 3.0e-4 1.3e-3 – 1.1e-3 – 1.5e-4

600 2.193·10–3 1.7·10–4 7.4·10–4 – 6.6·10–4 – 8.5·10–4
1200 0.548·10–3 4.5·10–5 1.9·10–4 – 1.6·10–4 – 2.1·10–5
2400 0.137·10–3 1.1·10–5 4.6·10–5 – 4.1·10–5 – 5.3·10–6
7200 0.015·10–3 1.2·10–6 5.2·10–6 – 4.6·10–6 0.6·10–6
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Fig. 16 Domains of simulations of horizontal (̃gx ,̃gy) and vertical (̃gz)
gravitational accelerations generated by the mass of cylindrical ring are
marked by medium grey hatched areas. The concentric rings show the
top view of the cylindrical ring (dark grey areas). a d � 0 mm (in-axis),
�z � 135mm,b d ≤ 80mm,�z � 135mm, c d ≤ 150mm,�z � 485
mm and d d ≤ 1000 mm, �z � 135 mm

A2 The effect of sensor eccentricity on the vertical
component of gradV

See Figs. 16, 17 and Table 3.

A3Volumetric approximation of the cylinder
by prisms

See Figs. 18, 19 and Table 4.
Table 4 contains the model characteristics (number of

volume elements, volume deficiency) and the influence of
the value of m on error of vertical gravitational acceleration
(g̃z)m generated by the approximate prism model

(
Mp

)m .
In order to obtain descriptive statistics its value is refer-
enced to (g̃z)n�7200

00 for any of the domains of computations
investigated. In each consecutive step of the construction of(
Mp

)m the algorithm generates uniform square base prisms
(2r2×2r2×H , 2r2/2×2r2/2×H , . . . , 2r2/2k×2r2/2k×H ,

. . . , 2r2/2m ×2r2/2m × H ) halving the edges defined in the
previous step. Any prism satisfying the conditions

2r2/2
k × 2r2/2

k × H ⊂ cylindrical ring (41)

and

2r2/2
k × 2r2/2

k × H /∈ 2r2/2
l × 2r2/2

l × H (l < k) (42)

is identified as a building element of themodel. If Eqs. 41 and
42 are false and true, respectively, the investigated prism is
sorted for further processing (i.e. quartering) in the next step
k � k + 1. Based on this scheme this adaptive algorithm fills
the remaining space between the mantle of the cylindrical
ring and its cubic approximation step by step by smaller and
smaller prisms until k � m. Eventually the process defines a
set of vertically joining prisms having the same height as that
of the cylindrical ring. The sizes of their bases are different
but strictly defined by Eq. 24. All the square bases of these
prisms, however, are fully involved in the area determined
by the base of the ring (Fig. 18). The geometrical misfit

(ε)m � 2r2/2
m (43)

of the prism model is characterized by the smallest prism
dimension (Table 4). For example m � 8 gives 256 uni-
form divisions of edges resulting in (ε)8 � 2r2/28 � 3mm
(r2 � 0.385m). Figure 18 shows the results of adaptive prism
model generation using m � 8 andm � 11.

It is obvious that the volume deficiency and the geometri-
cal misfit of polyhedron model belonging to n � 600 are
more than two orders of magnitude smaller compared to
those of the prism model belonging to m � 13 (c.f. Tables 2
and 4). It means that in this specific case the efficiency of
polyhedron modelling is superior related to prism modelling
because much less number of polyhedron volume elements
gives much better approximation in terms of both modelled
volume and geometrical misfit than what is provided by
prisms. It also has its benefits regarding the computational
aspects, especially thememory usage and runtime.Moreover
in domain b (Fig. 16b) the gravitational misfit

δ(gz)
m �

∥∥∥(g̃z)
n�7200
00 − (g̃z)

m
∥∥∥ (44)

obtained from the comparison of comparison of (g̃z)m�13

and (g̃z)n�7200
00 is two orders of magnitude larger than that of

obtained from the comparison of the first vertical derivatives
of gravity potential (g̃z)n�600

00 and (g̃z)n�7200
00 (c.f. Tables 3

and 4):

δ(gz)
m�13 ≈ 100

(
δ(g)z

)n�600
00 . (45)
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Fig. 17 a The difference of gravity vector components (g̃z)ni j and g̃z

generated by two polyhedron models
(
Mph

)n�450
i j and

(
Mph

)n�7200
i j

(i j ∈ {00, 01, 10, 11}) and the cylindrical ring along the axis of sym-
metry (d � 0), respectively. b The difference between tilts (̃τN )ni j
generated by the same polyhedron models (n � 450, n � 7200) and

reference (̃τN )n�36000
i j in off-axis position (d � 120 mm). The solid and

dotted lines represent the tilt differences δ(̃τN )n�450
i j and δ(̃τN )n�7200

i j ,
respectively.Horizontal thick black lines indicate the positions of the top
and bottom faces of the cylindrical ring at z � 0m and at z � 1.03m,
respectively. The horizontal dashed black lines define the range of mass
movement indicated by axis l

Table 3 The accuracy estimates (gravitational misfits) of the first vertical derivative of the potential (g̃z)ni j generated by approximate polyhedron

models as function of 1) model resolution n and 2) different ways of approximation of the inner and outer arcs of the cylindrical ring i j ∈
{00, 01, 10, 11}. The table refers to different domains explained in Fig. 16. The estimates were derived by Eqs. 25 and 26. g̃z and (g̃z)n�7200

00 were

used as reference for in-axis (Fig. 16a) and off-axis (Fig. 16b,c,d) computations, respectively. All the data in the table are given in nm/s2 unit

n Domain (a) reference
model: Mcr

Domain (b) reference

model:
(
Mph

)n�7200
i j

Domain (c) reference

model:
(
Mph

)n�7200
i j

Domain (d) reference

model:
(
Mph

)n�7200
i j

δ(gz)n00 δ(gz)n11 δ(gz)
n

δ(gz)n00 δ(gz)n11 δ(gz)
n

δ(gz)n00 δ(gz)n11 δ(gz)
n

δ(gz)n00 δ(gz)n11 δ(gz)
n

60 0.2185 0.1095 0.0546 0.2504 0.1253 0.0626 0.4863 0.2443 0.1210 0.4863 0.2442 0.1210

200 0.0197 0.0100 0.0049 0.0225 0.0113 0.0056 0.0437 0.0220 0.0108 0.0437 0.0219 0.0109

450 0.0039 0.0019 0.0010 0.0045 0.0023 0.0012 0.0086 0.0045 0.0021 0.0086 0.0043 0.0021

600 0.0022 0.0011 0.0006 0.0025 0.0015 0.0007 0.0050 0.0025 0.0012 0.0048 0.0025 0.0012

1200 0.0006 0.0003 0.0002 0.0006 0.0004 0.0002 0.0012 0.0007 0.0003 0.0025 0.0007 0.0004

2400 0.0002 0.0003 0.00001 0.0002 0.0001 0.00007 0.0003 0.0002 0.0001 0.0003 0.0004 0.0003

7200 < 0.00005* < 0.00005* < 0.00005* < 0.00005*

*As a super control of the accuracy (g̃z)n�7200
00 was also compared the (g̃z)n�36000

00 in all the domains considered
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Fig. 18 Graphical presentation of two results of adaptive prism model generation using a m � 8 (1512 prism elements) b m � 11 (12,004 prism
elements). For more details see Table 4

Fig. 19 The gravitationalmisfits δ(gz)m defined byEq. 44 in function of
m (model resolution) and d (eccentricity) in domain defined in Fig. 16d.
The coordinate axes define a radial cross section (actually a vertical
plane) of the cylindrical ring the axis of symmetry of which is located

at d � 0. The rectangles marked by black lines indicate the vertical
half-section of the cylindrical ring and its position in (d, z) coordinate
system. a m � 8, contour interval is 0.5 nm/s2, b m � 11, contour
interval is 0.1 nm/s2 and c m � 13, contour interval is 0.05 nm/s2

Extrapolating the results one can easily realize that m � 20
has to be applied in order to achieve the same accuracy
(~ 0.005 nm/s2) provided by the solution by n � 600 in terms
of gravitational attraction. The number (actually ∼ 5.7 · 106
adaptive prisms) of volume elements necessary for that is
4.5 orders of magnitude greater than the number of neces-
sary polyhedrons (1800 right triangular prisms). The average

accuracy of (g̃z)m�12 solution based on 23,852 adaptive vol-
ume elements is around 1 nm/s2 in domain (b) (Fig. 16b).
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Table 4 The characteristics of the prism models investigated. The reference volume of the cylindrical ring νcr � 0.396794933121 m3. The domain

of computations of the vertical accelerations (g̃z)n�7200
00 and (g̃z)m generated by the reference polyhedron model

(
Mph

)n�7200
00 and the approximate

prism model
(
Mp

)m , respectively, is defined by Fig. 16d. The geometrical (ε)m and gravitational δ(gz)m misfits are defined by Eqs. 43 and 44,
respectively. The value of m denotes the model discretization parameter as defined by Eq. 24

Model Volume deficiency
1 − (ν)m/νcr (%)

Number of volume elements in
adaptive/elementary models

(ε)m (mm) δ(gz)m (nm/s2)

Domain
Fig. 12/b

Domain
Fig. 12/d

(
Mp

)m
m � 8 1.82% 1512/51500 3.00 10.5 20.2

m � 9 0.87% 3124/20580 1.50 5.1 10.1

m � 10 0.43% 6120/823000 0.75 2.5 5.0

m � 11 0.21% 12004/3300000 0.37 1.3 2.8

m � 12 0.11% 23852/13170000 0.19 0.6 1.6

m � 13 0.05% 47068/52700000 0.09 0.3 0.8

However, as one can see from Table 3, the same accuracy can
be achieved by only 180 polyhedrons (n � 60). Figure 19
shows the distributions of δ(gz)m(m � 8, 11, 13) defined
by Eq. 44 in domain d ≤ 1 m (Fig. 16d).
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