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Abstract
Integer ambiguity resolution (IAR) is one of the key techniques in GNSS high precise positioning. However, an overlooked
incorrect integer ambiguity solution may cause severe biases in the positioning results. The optimal integer aperture estimator
(IAE) has the largest possible success rate given a certain fail rate. An alternative approach that take advantage of ambiguity
integer nature to minimize the solution’s mean squared error (MSE) is known as the best integer equivariant (BIE) estimator.
Both ofwhich are associatedwith the posterior probability of theGNSS integer ambiguity. It is therefore of great significance to
calculate posterior probability precisely and efficiently. Due to the occurrence of infinite sums, practical calculation approaches
approximate the exact value by neglecting sufficiently small terms in the sum. As a result, they can only produce posterior
probability calculation result, information about the result’s accuracy cannot be produced. In this contribution, the value of the
posterior probability is bounded from below and from above by dividing the infinite sum into two parts: the major finite part
and the minor infinite part. They are calculated partly by enumeration and partly by algebraical bounding. The obtained upper
and lower bounds are rigorous and in closed form, so that can be conveniently used. Based on both of the bounds, a method of
posterior probability calculation with controllable accuracy is proposed. It not only produces posterior probability calculation
result, but also calculation error, which is always smaller than the user-defined acceptable error. Numerical experiments have
verified that the proposed approach has advantages on both controllable calculation accuracy and adjustable computational
workload.

Keywords GNSS · Integer ambiguity estimation · Integer ambiguity validation · Posterior probability · Upper and lower
bounds · Calculation accuracy

1 Introduction

Global Navigation Satellite Systems (GNSS) positioning
via carrier-phase observation can achieve centimeter-sized
precision (Samama 2008; Leick et al. 2015). One of the
preconditions of GNSS high precise positioning is that
the unrecorded integer cycles of the carrier-phase must be
correctly estimated (Dermanis and Rummel 2008). This pro-
cedure is referred to as GNSS integer ambiguity resolution
(IAR). The linearized GNSS models on which IAR is relied
can be cast in the frame of the followingmixed-integermodel
(Teunissen 1995; Xu et al. 1995)
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E( y) � Aa + Bb; D( y) � Qyy (1)

where E(·) and D(·) are expectation and dispersion opera-
tors, respectively, y ∈ R

l is a vector of carrier phase and
code observables, a ∈ Z

n is an unknown integer ambiguity
vector, b ∈ R

m is a vector of unknown real-valued param-
eters such as baseline and atmosphere errors, A and B are
designmatrices associated with the unknown parameters and
the observables, Qyy is the variance–covariance (VC)matrix
of observations in y.

TheGNSSmodel canbe solvedbyfirst discarding the inte-
ger nature of ambiguities (Teunissen 1993; Xu et al. 1995).
The user performs a standard least square (LS) adjustment,
and the real-valued estimates of all the unknown parameters
and their VC matrix can be obtained as follows[
â
b̂

]
,

[
Qââ Qâ̂b
Qb̂̂a Qb̂̂b

]
(2)
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Then, the real-valued â is adjusted to an integer-valued

vector by a certain estimator � : Rn → Z
n|∨a � � (̂a). It

is usually realized by a combination of proper estimation
method and efficient decorrelation (reduction) technique.
Algorithms can be enumerated such as minimum pivoting
method (Xu et al. 1995), multi-frequency spatial overlay
resolution (Wu et al. 2015), lattice reduction resolution (Gra-
farend 2000; Xu 2012; Wu et al. 2017), and the most famous
andwidely used least squares ambiguity decorrelation adjust-
ment (LAMBDA) (Teunissen 1993, 1995; Chang et al. 2005;
Verhagen et al. 2013). Teunissen (1999) introduces a class
of ‘admissible’ integer estimators (IE), and summarizes the
commonly used estimators: rounding (Taha 1975), bootstrap-
ping (Blewitt 1989; Dong and Bock 1989) and integer least
squares (ILS) (Teunissen 1993) into the framework of IE
theory.

The integer ambiguity solution is subject to uncertainty
caused by the randomness of the data. An overlooked incor-
rect integer ambiguity solution may cause severe biases in
the positioning results (Teunissen 2003a; Xu 2006). So, it
is important to validate the quality of the integer ambiguity
estimation. Early proposed validation approaches compare
the minimum and the second minimum quadratic form of
the residuals by different criterions. They are such as R-ratio
test (Euler and Schaffrin 1991), F-ratio test (Frei and Beutler
1990), difference test (Tiberius and de Jonge 1995), projec-
tor test (Han 1997) and monitoring validation measure (Xu
1998). Motivated by making the probability of accepting the
wrong ambiguity solution under control, Teunissen (2003a)
introduces a class of integer aperture estimators (IAE). After
that, Verhagen and Teunissen (2006) re-expresses the R-
ratio test, F-ratio test, difference test and projector test in
the framework of IAE. Moreover, Teunissen and Verhagen
(2009), Verhagen and Teunissen (2013) suggest that the val-
idation tests would better be used in the fixed-failure-rate
way. Different IAEs perform differently, the optimal IAE in
sense ofmaximizing the estimation success rate subjecting to
a given failure rate is first introduced by Teunissen (2005a),
and later by Wu and Bian (2015) in an alternative frame-
work of Bayesian statistics. In the view of Bayesian statistics,
this optimal IAE is the ambiguity posterior probability based
on the observed GNSS data (Wu and Bian 2015). Wu and
Bian (2015) further proposes to validate the fixed ambiguity
solution by directly checking its posterior probability. The
posterior probability provides a very intuitive and solid indi-
cator in mathematics, it is therefore also reasonable to apply
the validation test based on a fixed posterior probability.

An alternative approach of integer ambiguity solution is
that the user never fixes the real-valued ambiguity solution
to some integer, but adjusts it according to the criterion of
minimizing the solution’s mean square error (MSE). This
estimator is referred to as the best integer equivariant (BIE)

estimator proposed by Teunissen (2003b). It takes advantage
of the integer nature of the ambiguities coming up with a
baseline estimator that is always superior to (integer equivari-
ant) IE andLSestimator (Teunissen2020). TheBIEestimator
comes out as the sum of all the integer vectors multiplying
their posterior probabilities.

It can be seen that posterior probability plays an impor-
tant role both in the optimal IAE and in the calculation of
BIE estimator. It is therefore of great significance to calcu-
late posterior probability precisely and efficiently. However,
we cannot obtain the exact value of posterior probability
due to the occurrence of infinite sums. Practical calculation
approaches approximate the exact value by neglecting suffi-
ciently small terms in the sum. Teunissen (2005b) replaces
the sum of all over the integers space with the sum of a finite
set according to the distribution property of the quadratic
formof the ambiguity residuals.Wu andBian (2015) presents
another method to enumerate the integer vectors based on a
lower limit defined by exponential function. The obtaining of
enumerated integer vectors of Teunissen (2005b) andWu and
Bian (2015) relies on a search in the ambiguity space. These
approaches, although have achieved good approximations,
can only serve as upper bounds of posterior probability. Yu
et al. (2017) introduces an approach to calculate the upper
and lower bounds of posterior probability. These bounds can
be useful in practical calculation, but not theoretically rig-
orous, because the derivations are based on approximated
equation transformations that may bring ambiguous influ-
ences in accuracy evaluation. In brief, these approaches can
only produce a calculation result of posterior probability, but
cannot produce accuracy information about the result. As a
consequence, the user do not know (i)whether the calculation
accuracy is acceptable, (ii) whether the calculation accuracy
is too much higher than the required level at the expense of
unnecessary computational burden.

In this contribution, a pair of theoretically rigorous upper
and lower bounds of the posterior probability are developed,
based on which, a method of posterior probability calcula-
tion with known and controllable accuracy is proposed. In
Sect. 2, the posterior probability of GNSS integer ambiguity
is introduced. Then, some existing approaches of posterior
probability calculation are introduced in Sect. 3. In Sect. 4,
the approach of the derivation and the calculation of the upper
and lower bounds are discussed in detail. Based on the pair of
upper and lower bounds, a posterior probability calculation
approach with controllable accuracy is introduced in Sect. 5.
In Sect. 6, numerical experiments are used to verify the pro-
posed approach and compare with the existing approaches.
And finally, we conclude the contents of the article and stress
the advantages of the proposed method in Sect. 7.
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2 Posterior probability of GNSS integer
ambiguity

Posterior probability is a concept of Bayesian statistics. In
Bayesian statistics, not only the vector of observables is
assumed to be random, but the vector of unknown parameters
as well. The sampling probability distribution of observation
vector y in GNSS model (1) is denoted as p( y|a, b), a and b
are also supposed to be vectors of randomquantities and have
a joint prior distribution p(a, b). So, the posterior probability
of a and b can be expressed as (Koch 1990, p.4)

p(a, b| y) � p( y|a, b)p(a, b)∑
a∈Zn

∫
b∈Rmp( y|a, b)p(a, b)d(b) (3)

with
∑

a∈Zn the sum of all the integer values within Z
n ,∫

b∈Rm the integral of b allover Rm . Bayesians treat a and
b as varieties independent with each other, the joint prior
distribution of which equals to the multiplication of their
prior distribution (Lacy et al. 2002; Wu and Bian 2015)

p(a, b) � p(a)p(b) (4)

where p(a) and p(b) are the prior distributions of a and b,
respectively. Although a must be an integer vector, we do
not know a priority which integer vector a is more likely to
be. That means a can be any value within the integer space
with identical chance. Similarly, there is also not any prior
information of parameter b. Therefore, researchers always
treat the non-informative parameters a and b as independent
and evenly distributed as (Teunissen 2001; Zhu et al. 2001;
Lacy et al. 2002; Verhagen 2005; Wu and Bian 2015)

{
p(a � N) ∝ 1 N ∈ Z

n

p(b) ∝ 1
(5)

where p(·) is the probability density function (pdf) of the
variable in the bracket; “∝” means “is proportional to.” On
the other hand, the sampling distribution of the GNSS obser-
vation model is regarded to be Gaussian as (Koch 1990, p.4)

p( y|a, b) � (2π)
−n
2
∣∣Qyy

∣∣−1
2 exp{−1

2
‖ y − Aa − Bb‖2Qyy

},
a ∈ Z

n , b ∈ R
m (6)

where “‖·‖2Qyy
” stands for (·)T Q−1

y y (·), “|·|” is the determi-

nant of a matrix. The orthogonal decomposition of the least
squares principle for GNSS model is (Teunissen 1993)

‖ y − Aa − Bb‖2Qyy
� ‖̂e‖2Qyy

+ ‖̂a − a‖2Qââ
+ ‖̂b(a) − b‖2Qb̂(a)̂b(a)

(7)

where ê is the LS residual vector, which is independent with
a and b. b̂(a) and Qb̂(a)̂b(a) are

{
b̂(a) � b̂ − Qb̂̂a Q

−1
ââ (̂a − a)

Qb̂(a)̂b(a) � Qb̂ − Qb̂̂a Q
−1
ââ Qâ̂b

(8)

If (7) is substituted into (6), the posterior probability of a
can be obtained as the marginal posterior distribution

p(a|̂a) �
∫

b∈Rm
p(a, b| y)d(b) �

exp{ −1
2 ‖̂a − a‖2Qââ

}∑
a∈Zn exp{ −1

2 ‖̂a − a‖2Qââ
} (9)

3 Existing approaches of posterior
probability calculation

Equation (9) shows that posterior probability of the integer
ambiguity is a likelihood ratio of a and the sum of all the inte-
ger vectors. The sum in the denominator of (9) is infinite, the
exact value of which is incomputable. Fortunately, the likeli-
hood of integer vector decays very fast with the increment of
the “distance” between the integer vector and the float solu-
tion â, most of the likelihoods concentrate in a small subset
of the ambiguity space. Teunissen (2005b) limit the subset
by

ST (a) �
{
a|‖̂a − a‖2Qââ

≤ χ2
1−α(n)

}
(10)

where χ2(n) is a Chi-square distribution with n degrees
of freedom, and α means the significance level. Verhagen
(2005) chooses α � 10−16, while Odolinski and Teunissen
(2020) suggests α � 10−9 to avoid heavy computational
burden. This approximation is based on the normal distri-
bution assumption of â. Similar approximations for other
elliptically contoured distributions can be found in Teunis-
sen (2020). In this contribution, we focus on the assumption
of normal distribution only.

Alternatively,Wu andBian (2015) simply select the subset
empirically as

(11)

SW (a) �
{
a(p)|exp{−1

2
‖̂a − a(p)‖2Qââ

}

≥ δ ·
∑p−1

q�1
exp{−1

2
‖̂a − a(q)‖2Qââ

}
}

where a(p) is the p-th successive minimum ambiguity vector
of min

a∈Zn
‖̂a − a‖2Qââ

; δ is a fading factor. Wu and Bian (2015)

suggest that δ � 10−8. To obtain all the integer vectors in
ST (a) or SW (a), one must carry out a search in the ambi-
guity space. The methods of Teunissen (2005b) and Wu and
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Bian (2015) can produce useful approximations, which can
serve as the upper bounds of posterior probability. However,
they cannot tell how tight these upper bounds are. Posterior
probability is a fundamental criterion in the calculation of
the optimal IAE, and the BIE estimator. The user thus has
the motivation to know how close the approximated value
is. In other words, the calculation accuracy is an information
that the user is interested in, but cannot be produced by these
approaches.

Another approach is developed by Yu et al. (2017), in
which the infinite sum in the denominator of (9) is divided
into two parts as

∑
a∈Zn

exp

{−1

2
2‖â − a‖2Qââ

}
� KS + KS̄ (12)

with

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

KS � ∑s
i�1exp

{−1
2 ‖̂a − ai‖2Qââ

}

KS � ∑+∞
i�s+1exp

{−1
2 ‖̂a − ai‖2Qââ

} (13)

where ai�1...s are integer vectors within a user-defined
subset. This subset is designed as a cube which is centrosym-
metric to the nearest integer of â, and the length of whose
j-th dimension is (Yu et al. 2017)

(14)

�

⎛
⎝max

i�1:s
ai ( j) + 1

2 − [[̂
a( j)

]]
σâ( j)

⎞
⎠

− �

⎛
⎝

[[̂
a ( j)

]] − min
i�1:s

ai ( j) + 1
2

σâ( j)

⎞
⎠ ≥ 1 − β

where ai ( j) is the j-th entry of vector ai , σâ( j) is the stan-
dard deviation of â( j), “[[•]]” means rounding to the nearest
integer, β is a user-defined significance level, and

�(x) �
∫ x

−∞
1√
2π

exp(−1

2
t2)dt (15)

After the integer subset is defined, KS can be calculated
precisely. And KS is evaluated by transforming it from based
on ai�s+1···+∞ to based on ai�1...s . Yu et al. (2017) suggests
an approach of evaluating it by regional integration. The
result is further used to develop a pair of upper and lower
bounds of the posterior probability. However, the integration
result in the derivation is approximated rather than strict,
which leads to the upper and lower bounds less theoretically
rigorous. The error caused by the approximated integration

is neglected in general when β is smaller than 0.3% (Yu et al.
2017).

4 A pair of bounds of the posterior
probability

In this section, we bound the value of the posterior probabil-
ity from below and from above. Obviously, an upper bound
of posterior probability can be obtained from either Teunis-
sen (2005b) or Wu and Bian (2015), by directly dropping
the likelihoods outside the enumerating region (10) or (11).
Compared with upper bound, a proper lower bound of the
posterior probability would be more important in applica-
tion, because an appreciated lower bound can prevent the
user from validating the ambiguity resolution result by using
an over optimistic criterion.

In some degree, the basic ideal of bounding the upper and
lower bounds is similar to that of Yu et al. (2017), in dividing
the infinite sum of likelihoods in (9) into two parts: the major
finite part and the minor infinite part. The finite part can be
calculated by an enumeration of the elements. The infinite
part is bounded algebraically. The division of the upper and
lower bounds is based on the following space partitioning.

4.1 Space partitioning

All the integer points in the n-dimensional space can be par-
titioned into the following two parts

Z
n � {a|a ∈ S(x) + S(x)} (16)

where S(x) is a cuboid whose length equals to Ni − 1 as

S(x) � ⋂n
i�1{x ∈ R

n||x(i)| ≤ Ni − 1}, Ni ∈ N
∗ (17)

and S(x) is the remaining space as

S(x) �
⋃n

i�1

{
x ∈ R

n||x(i)| ≥ Ni
}

(18)

Obviously, the space S(x) satisfies the following inequal-
ity

S(x) <
∑n

i�1
Si (x) (19)

where

Si (x) � {x ∈ R
n||x(i)| ≥ Ni } (20)

A sketchmap of the partitioning ofS(x) andSi (x) in space
R
2 is shown in Fig. 1.
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Fig. 1 A sketch map of partitioning of S(x), S1(x) and S2(x) in space
R
2, where N1 and N2 are both chosen equal to 3, the corners (top left,

top right, bottom left, bottom right) are overlapped by S1(x) and S2(x),
simultaneously

As a consequence, the likelihoods in the space Z
n can

be divided into different regions. Based on this partitioning,
upper and lower bounds of posterior probability will be dis-
cussed.

4.2 4.2 Upper and lower bounds

4.2.1 Upper bound

As interpreted in the previous subsection, the infinite sum in
the denominator of (9) can be divided into different parts BS

and BS , which are the sum of likelihoods within the region
S(x) and S(x), respectively, as

{
BS � ∑

a∈S(x) exp{−1
2 ‖̂a − a‖2Qââ

}
BS � ∑

a∈S(x) exp{−1
2 ‖̂a − a‖2Qââ

} (21)

Note that, S(x) defined in (17) is a cuboid with finite
integer vectors in it. Thus, BS can be easily obtained by enu-
merating all the likelihoods within S(x). As a result, an upper
bound of the posterior probability can be directly obtained
by dropping the likelihoods outside S(x), as

p(a|̂a) �
exp{−1

2 ‖̂a − a‖2Qââ
}

BS + BS
<

exp{−1
2 ‖̂a − a‖2Qââ

}
BS

(22)

4.2.2 Lower bound

Unlike the upper bound, the lower bound of the posterior
probability is not such straightforward to get. According to

(19), the sum of likelihoods in S(x) is smaller than the sum in∑n
i�1Si (x). Therefore, a lower bound of the posterior prob-

ability can be expressed as

p(a|̂a) �
exp{−1

2 ‖̂a − a‖2Qââ
}

BS + BS
>

exp{−1
2 ‖̂a − a‖2Qââ

}
BS + B∑n

i�1Si (x)

(23)

where B∑n
i�1Si (x) is the sum of likelihoods in space∑n

i�1Si (x). Note that,
∑n

i�1Si (x) contains infinite integer
vectors, which means B∑n

i�1Si (x) cannot be calculated like
BS by enumerating. In this contribution, B∑n

i�1Si (x) is alge-
braically bounded from above, the bounding discussion of
which goes as follows.

Without loss of generality, we define that

â :� â − [[̂
a
]]

(24)

in the following discuss, where “[[•]]” means rounding to
the nearest integer. The eigenvalue decomposition of Q−1

ââ is
introduced as (Shores 2007)

Q−1
ââ � V T�σV (25)

where V is a unitary matrix and �σ is a diagonal matrix
whose elements σ 2

i are the eigenvalues of Q−1
ââ , with σ 2

1 ≥
σ 2
2 · · · ≥ σ 2

n . Therefore,

‖̂a − a‖2Qââ
� (̂a − a)T VT�σV (̂a − a) ≥ σ 2

n ‖̂a − a‖2
(26)

and the following inequalities can be obtained from (26)

(27)

B∑n
i �1Si (x)

�
∑

a∈∑n
i�1Si (x)

exp{−1

2
‖̂a − a‖2Qââ

}

≤
∑

a∈∑n
i�1Si (x)

n∏
i�1

exp{−1

2
σ 2
n (̂ai − ai )

2}

where âi and ai are the i-th entry of â and a, respectively.
The sum in the region Sk(x) can be unfolded as a continued
product of the sum of the ambiguity entries as

∑
a∈Sk (x)

n∏
i�1

exp{−1

2
σ 2
n (̂ai − ai )

2}

�
∑+∞

a1�−∞ . . .
∑+∞

ak−1�−∞
∑+∞

ak+1�−∞ . . .
∑+∞

an�−∞∑
ak /∈(−Nk , Nk )

n∏
i�1

exp{−1

2
σ 2
n (̂ai − ai )

2}
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�
∑n

i�1, i ��k

∑+∞
ai�−∞exp{−1

2
σ 2
n (̂ai − ai )

2}
∑

ak /∈(−Nk , Nk )

exp{−1

2
σ 2
n (̂ak − ak)

2} (28)

Note that, |̂ai | ≤ 1/2 from (24), thus

(̂ai − ai )
2 � a2i + â2i − 2̂aiai > a2i − |ai | (29)

Therefore,

∑
ak /∈(−Nk , Nk )

exp{−1

2
σ 2
n (̂ak − ak)

2}

< 2
∑+∞

ak�Nk
exp{−1

2
σ 2
n

(
a2k − ak

)
}

< 2
∑+∞

k�N2
k −Nk

exp{−1

2
σ 2
n k} � 2exp{−1

2 σ 2
n

(
N 2
k − Nk

)}
1 − exp{−1

2 σ 2
n }

(30)

where the factor 2 in front of the summation notation is owing
to that the sum of ak from −∞ to −Nk equals to the sum
from Nk to +∞. And

(31)

∑+∞
ai �−∞exp{−1

2
σ 2
n (̂ai − ai )

2}

< exp{−1

2
σ 2
n â

2
i } + exp{−1

2
σ 2
n (̂ai − 1)2}

+ exp{−1

2
σ 2
n (̂ai + 1)2}

+ 2
∑+∞

ai�2
exp{−1

2
σ 2
n

(
a2i − ai

)
}

< 	i +
2exp{−σ 2

n }
1 − exp{−1

2 σ 2
n }

with

	i � exp{−1

2
σ 2
n â

2
i } + exp{−1

2
σ 2
n (̂ai − 1)2} + exp{−1

2
σ 2
n (̂ai + 1)2}

(32)

Inserting (30) and (31) into (28), and repeating this oper-
ation to the remain entries of a yields

∑
a ∈S1(x)

n∏
i �1

exp{−1

2
σ 2
n (̂ai − ai )

2}

<
2exp{−1

2 σ 2
n

(
N 2
k − Nk

)}
1 − exp{−1

2 σ 2
n }

(
	 +

2exp{−σ 2
n }

1 − exp{−1
2 σ 2

n }

)n−1

(33)

where	 � max
i�1:n

	i is the maximum value of	i , i � 1 . . . n.

Thus, the likelihoods in
∑n

i�1Si (x) can be bounded from
above by

B∑n
i �1Si (x)

≤
∑

a∈∑n
i�1Si (x)

n∏
i�1

exp{−1

2
σ 2
n (̂ai − ai )

2}

<
2
∑n

i�1exp{ −1
2 σ 2

n

(
N 2
i − Ni

)}
1 − exp{ −1

2 σ 2
n }

(
	 +

2exp{−σ 2
n }

1 − exp{ −1
2 σ 2

n }

)n−1

(34)

Finally, we can obtain a lower bound of the posterior prob-
ability as

p(a|̂a) >
exp{−1

2 ‖̂a − a‖2Qââ
}

BS + B∑n
i�1Si (x)

>
exp{−1

2 ‖̂a − a‖2Qââ
}

BS + B
′
S

(35)

where B
′
S
is the upper bound of B∑n

i�1Si (x) as

B
′
S

� 2
∑n

i�1exp{ −1
2 σ 2

n

(
N 2
i − Ni

)}
1 − exp{ −1

2 σ 2
n }

(
	 +

2exp{−σ 2
n }

1 − exp{ −1
2 σ 2

n }

)n−1

(36)

Note that, the size of the cuboid S(x) in (17) is defined by
the user, if Ni , i � 1 . . . n, are set equal, namely, N , S(x)
becomes to a cube, and a simplified lower bound of p(a|̂a)
can be calculated by

B
′
S

� 2nexp{−1
2 σ 2

n

(
N 2 − N

)}
1 − exp{−1

2 σ 2
n }

(
	 +

2exp{−σ 2
n }

1 − exp{−1
2 σ 2

n }

)n−1

(37)

The upper bound (22) and lower bound (35) are theoret-
ically rigorous and in closed form, so that they would be
easily calculated and conveniently used. Moreover, a poste-
rior probability calculationmethodwith guaranteed accuracy
would be developed based on both of the bounds.

5 Posterior probability calculation
with controllable accuracy

Existing approaches, such as Teunissen (2005b) and Wu
and Bian (2015), calculate posterior probability by directly
dropping the likelihoods outside the enumerating region
(10) or (11). Therefore, how large the enumerating region
should be set is of great significance. However, the cho-
sen of these “significance level” in (10) “fading factor” in
(11) are mostly empirical. For example, Verhagen (2005)
chooses α � 10−16, Odolinski and Teunissen (2020) sug-
gests α � 10−9 to avoid heavy computational burden, Wu
and Bian (2015) suggest δ � 10−8.

More importantly, there is not any obvious evidence about
the relationship between the chosen “significance level” or
“fading factor” and the calculation accuracy of the poste-
rior probability. In other words, we do not know whether
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these parameters are set too optimistic or too conservative.
As a result, the following two aspects are unknown: (i) how
precise the calculated posterior probability is; (ii) how large
the enumerating region is enough for the predefined calcula-
tion accuracy, because an unessential large region will lead
to unnecessary heavy computational burden for enumerating
the integer points in it.

Fortunately, given rigorous upper and lower bounds, a
method of posterior probability calculation with known and
controllable accuracy could be developed. Theoretically, the
upper and lower bounds could be infinitely close to the true
value of the posterior probability, according to the expression

exp{−1
2 ‖̂a − a‖2Qââ

}
BS + B

′
S

< p(a|̂a) <
exp{−1

2 ‖̂a − a‖2Qââ
}

BS

(38)

as B
′
S
fading to 0 with the increment of the enumerating

region

lim
N→+∞B

′
S

� 0 (39)

Luckily enough, B
′
S
fades to 0 rather quickly with the

expanding of N because of

B
′
S

∝ O(exp{−N 2}) (40)

where “O(x)” means “comparable to x .”
However, the major issue hampering (38) in practical cal-

culation is the complexity of enumerating all the integers in
S(x) in order to obtain the value of BS . It is obvious that
there are (2N − 1)n integer vectors in a n-dimensional cube
S(x) with side length 2N −1, enumerating all of themwould
be a heavy workload if N or n going to large. An alterna-
tive method to treat this problem is just enumerating a part
of integer vectors within S(x). Without loss of generality,
we assume m most likely integer vector candidates within
S(x) are found as a(1), a(2)…a(m), which can be conveniently
obtained by LAMBDA or other reduction-and-search soft-
ware (Verhagen et al. 2013; Xu 2012). They are listed in
decreasing order with respect to their likelihoods. We use
the following inequality

(41)BS ≤
∑m

i�1
exp{ −1

2
‖̂a − a(i)‖2Qââ

} + [
(2N − 1)n − m

]
exp{ −1

2
ξ2}

where the squared distance ξ2 is chosen as

‖̂a − a(m)‖2Qââ
≤ ξ2 ≤ ‖̂a − a(m+1)‖2Qââ

(42)

to ensure (41) always being satisfied and BS not being
enlarged too much, simultaneously. In this approach, only
m most likely integer vectors are needed to be enumerated.

Fig. 2 A sketch map of E(x) S(x), S1(x) and S2(x) in space R
2, the

corners (top left, top right, bottom left, bottom right) are overlapped by
S1(x) and S2(x), simultaneously

As a consequence, the upper and lower bounds in (38) are
changed to

exp{−1
2 ‖̂a − a‖2Qââ

}
BSm + BSm + B

′
S

< p(a|̂a) <
exp{−1

2 ‖̂a − a‖2Qââ
}

BSm

(43)

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

BSm � ∑m
i�1exp{−1

2 ‖̂a − a(i)‖2Qââ
}

BSm � [
(2N − 1)n − m

]
exp{−1

2 ξ2}

B
′
S

� 2nexp{ −1
2 σ 2

n
(
N2−N

)}
1−exp{ −1

2 σ 2
n }

(
	 + 2exp{−σ 2

n }
1−exp{ −1

2 σ 2
n }

)n−1

(44)

Figure 2 is a sketch map of this approach of calculation in
two-dimensional case. The enumerated m most likely inte-
ger vectors a(1), a(2)…a(m) belongs to the ellipseE(x) within
S(x). Likelihoods of other integer vectors in S(x) but out of
E(x) are bounded by BSm rather than enumerated. Likeli-
hoods of integer vectors out of S(x), namely, in S1(x) or
S2(x), are bounded by B

′
S
.

Based on (43), we discuss the posterior probability calcu-
lation method with under-controlled accuracy. If an accept-
able calculation error, γ, is given, the upper and lower bounds
must satisfy

exp{−1
2 ‖̂a − a‖2Qââ

}
BSm

−
exp{−1

2 ‖̂a − a‖2Qââ
}

BSm + BSm + B
′
S

< γ (45)
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to guarantee calculation accuracy. Note that, BSm and B
′
S
can

be viewed as functions of N , it yields from (45) that

BSm (N ) + B
′
S
(N ) <

γB2
Sm

exp{−1
2 ‖̂a − a‖2Qââ

} − γBSm

(46)

Although there is not straightforward approach to resolve
(46), it is easy to observe that (46) is satisfied when the fol-
lowing equation is satisfied

(2N − 1)nexp{−1

2
ξ2} + B

′
S
(N ) � γB2

S1

exp{ −1
2 ‖̂a − a‖2Qââ

} − γBS1

(47)

where BS1 means BSm with parameter m � 1. So, ξ2 can be
obtained when N is given, as

(48)

ξ2 � 2nlog (2N − 1)

− 2log

(
γB2

S1

exp{−1
2 ‖̂a − a‖2Qââ

} − γBS1

− B
′
S
(N )

)

The problem now is that N is not actually given. Never-
theless, value in the “log” operator must be positive, thus

B
′
S
(N ) <

γB2
S1

exp{−1
2 ‖̂a − a‖2Qââ

} − γBS1

(49)

Inserting (44) into (49) yields

(50)

N 2 − N > β � 2 (n − 1)

σ 2
n

log

(
	 +

2exp{−σ 2
n }

1 − exp{ −1
2 σ 2

n }

)

− 2

σ 2
n
log

γB2
S1

(
1 − exp{ −1

2 σ 2
n })

2n
(
exp{ −1

2 ‖̂a − a‖2Qââ
} − γBS1

)

Therefore,

N ≥
⌈
1 +

√
1 + 4β

2

⌉
(51)

where “�•�” means rounding up to the nearest integer. Keep-
ing in mind that B

′
S
fades rapidly with the increment of N ,

so we can try the smallest value of N as (51), then test
whether the correspondingm integer vectors a(1), a(2)…a(m)

are within S(x), and adjust the value of N according to the
result. For example, the distance ξ2 can be directly obtained
from (48) with N being given as the smallest value of (51).
Then, we search all the integer vectors whose squared dis-
tance are smaller than ξ2. It is easy to observe whether these
integer vectors belong to a cube or not. If the searched vectors
are all in cube S(x), (46) and (47) are both satisfied; other-
wise, we enlarge size N until the vectors are within region
S(x).

Another important aspect is the reparameterization of
ambiguities. The eigenvalues of Qââ are adjusted by the
parameterization of the ambiguities, so does the upper and
lower bounds of posterior probability. This observation
allows one to use reparameterization techniques to obtain
tighter bounds. In this contribution, we suggest to apply
LAMBDA decorrelation (Teunissen 1995) or lattice reduc-
tion techniques (Grafarend 2000; Xu 2012; Wu et al. 2017;
Wu and Bian 2022) before bounding the posterior probabil-
ity.

Finally, the process of the posterior probability calculation
with controllable accuracy can be summarized as follows

Algorithm: Posterior probability calculation with controllable accuracy

Input: Solution â, VC matrix Qââ , integer vector a and acceptable error γ

Output: Posterior probability p(a|̂a) upper and lower bounds, calculated error

Step 1: Decorrelating (reducing) the ambiguity solution â and VC matrix Qââ;

Step 2: Calculating N by (51), then calculating ξ2 by (48);

Step 3: Enumerating all the integer vectors whose squared distance is smaller than ξ2; If not all the vectors are in cube S(x), N � N + 1 and back
to step 2;

Step 4: Calculating BSm by (44), and the upper bound of p(a|̂a) by (43);

Step 5: Calculating BSm and B
′
S
by (43), the lower bound by (44), and calculation accuracy by the upper and lower bounds
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6 6. Experimental validation

6.1 6.1 A numerical example

This numerical example is selected from data of single-
frequency-single-epoch double differenced GPS positioning
based on carrier phase and code observables. After a standard
least squares resolution is performed, the float solution â and
its VC matrix Qââ are obtained as

â � [−1.6885 1.6169 − 0.2531 − 0.7284 2.1540 − 0.4375]T

and

Qââ �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.7837 −0.2526 −0.0412
−0.2526 0.5410 0.0360
−0.0412 0.0360 0.3797

0.3189 −0.6593 0.0169
−0.1086 0.4116 −0.1367
0.0470 −0.1945 0.0180

0.3189 −0.1086 0.0470
−0.6593 0.4116 −0.1945
0.0169 −0.1367 0.0180

0.1440 −0.3167 0.0083
−0.3167 0.8160 −0.0759
0.0083 −0.0759 0.0497

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6.1.1 Calculation process

In the following, the posterior probability of the ILSestimator
∨
a is calculated. The predefined calculation accuracy is set
as γ � 10−6. In order to illustrate our method clearly, the
process of calculation will be shown step by step.

Step 1 Decorrelating the ambiguity solution and VC
matrix by reduction techniques. The decorrelation matrix Z
is

Z �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2 2 2
1 0 −1

−1 1 1

0 1 1
0 −1 −1
0 1 1

6 −5 −5
0 0 0
3 0 −3

2 −1 −1
1 1 1
1 −1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

the decorrelated float solution â and its VC matrix Qââ are
obtained as

â � [−0.4359 0.0119 − 0.2925 0.2597 − 0.2386 0.1989]T

and

Qââ �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.1074 −0.0322 −0.0119
−0.0322 0.1017 −0.0030
−0.0119 −0.0030 0.0604

−0.0018 0.0024 −0.0080
0.0103 0.0155 0.0052

−0.0186 0.0031 0.0052
−0.0018 0.0103 −0.0186
0.0024 0.0155 0.0031

−0.0080 0.0052 0.0052

0.0563 −0.0081 0.0015
−0.0081 0.0437 0.0060
0.0015 0.0060 0.0180

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The ILS estimator
∨
a is

∨
a � [0 0 0 0 0 0]T

Step 2: From (51), the value of N is obtained as

N ≥ 3

Setting N � 3, then ξ2 is obtained from (48) as

ξ2 � 55.8808

Step 3: Enumerating all the integer vectors whose squared
distance is smaller than ξ2, 305 integer nodes are searched
and 127 integer vectors are found. All of the vectors are in
cube S(x) � ⋂n

i�1{x ∈ R
n||x(i)| ≤ 2}, algorithm goes

down.
Step 4: Calculating BSm by (44) as

BSm � 0.02396575

and then the upper bound of p
(∨
a |̂a

)
is obtained by (43) as

p
(∨
a |̂a

)
< 0.79589659

step 5: Calculating BSm and B
′
S
as

BSm � 1.19 × 10−8 and B
′
S

� 7.61 × 10−9

and the lower bound is obtained by (44) as

p
(∨
a |̂a

)
> 0.79589594

From the upper and lower bounds above, we know that
the calculation error is 6.5 × 10−7. It is smaller than the
predefined acceptable error γ � 10−6.

6.1.2 Calculation performances under different acceptable
errors

In the previous content, the posterior probability of the ILS

estimator
∨
a is calculated, with the acceptable error being

fixed as γ � 10−6. In order to show the accuracy controllable
property of the proposed approach, calculation accuracy and
complexity under different acceptable errors are investigated
in the following content. Integer search is the heaviest work-
load in the calculation, a canonical complexity measurement
of which is the amount of searched integer points during
the search process (Chang et al. 2013; Wu and Bian 2022).
Therefore, number of searched integer nodes is used as the
measurement of calculation complexity in this contribution.

The results of calculation accuracy and complexity under
acceptable errors from γ � 10−4 to γ � 10−8 are shown in
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Table 1 calculation accuracy and
complexity under different
acceptable errors

Required error Upper bound Lower bound Calculated error Searched points

γ � 10−4 0.795897 0.795828 6.9 × 10−5 173

γ � 10−5 0.7958966 0.7958902 6.4 × 10−6 231

γ � 10−6 0.79589659 0.79589594 6.5 × 10−7 305

γ � 10−7 0.795896589 0.795896526 6.8 × 10−8 412

γ � 10−8 0.7958965887 0.7958965821 6.6 × 10−9 491

Table 1. It reveals that the calculation accuracy is enhanced
with the increment of required accuracy, and all of the calcu-
lated errors are smaller than their required counterparts. For
example, the calculation errors decrease from 6.9 × 10−5

to 6.6 × 10−9 as the acceptable errors going from 10−4 to
10−8. At the same, the searched points only increase from
173 to 491, which means this approach can produce calcula-
tion results with satisfied accuracy at the expense of a very
low computational burden.

6.1.3 Comparisons with existing approaches

In this part, we calculate the posterior probability of the
top five most likely integer vectors using the new method.
Then, the results are comparedwith the corresponding results
obtained by Teunissen (2005b) with α � 10−16 (Verhagen
2005), α � 10−9 (Odolinski and Teunissen 2020), and Wu
and Bian (2015) with δ � 10−8. The result of Yu et al. (2017)
is not theoretically rigorous, so it is not contained in the com-
parison.

Using the search algorithm in LAMBDA software, top
five most likely integer vector candidates can be easily found
(Verhagen et al. 2013). They are listed in Table 2 in descend-
ing order with respect to their likelihoods.

Their posterior probabilities, calculated by the new
approach and by Verhagen (2005), Odolinski and Teunis-
sen (2020), Wu and Bian (2015), respectively, are shown
in Table 3. It reveals that all of the results produced these
approaches have achieved high accuracy. However, only the
new approach can produce the lower bound of the poste-
rior probability and evaluate the accuracy of the calculation
result. In this example, the required accuracy is γ � 10−6,
and all of the calculation accuracy obtained by the new
approach is higher than 10–6. Results of other approaches
are actually the lower bound of posterior probability. There-
fore, accuracy of these approaches cannot be evaluated by
themselves. Although the obtained result may be very accu-
rate, the user still does not know how accurate it is, whether
it can meet the required accuracy. On the contrary, the calcu-
lation accuracy of the new method can be produced and can
always meet the requirements.

On the aspect of computational complexity, Verhagen
(2005) enumerates the most integer points, followed by

Odolinski and Teunissen (2020), and then by Wu and Bian
(2015). The new approach searches comparable number of
integers with Odolinski and Teunissen (2020) in order 1
and 2, and comparable number of integers with Wu and
Bian (2015) in order 3 to 5. In the existing approaches, the
amount of enumerated integer points cannot be adjusted by
the required accuracy, because the “significance level” α and
“fading factor” δ are fixed to the empirical values. It means
that theymight enumerate toomany integers if the acceptable
accuracy is not set that high.On the contrary, the enumerating
region of the new method can be adjusted flexibly according
to the predefined accuracy. For example, if γ equals to 10−6,
method ➀, ➁, ➂ and the new method search 986, 270, 165
and 305 points, respectively. If γ changes to 10–4, method
➀, ➁ and ➂ still search 986, 270 and 165 points, respec-
tively; while the searched points of new method reduce to
173 (seen Table 1). It shows that Verhagen (2005), Odolin-
ski and Teunissen (2020) search an unessential large region
leading to unnecessary heavy computational burden for the
required accuracy. Another issue needed to be clarified is that
the new method searches different amount of integer points
for different integer vectors. For example, the new method
searches 305, 248, 203, 165, 163 points for integer vector in
order 1, 2, 3, 4, 5, respectively. The reason is that the search
region ξ2 is a function of integer vector a, which has been
shown in (48).

6.2 Experimental verification by real collected data

In this subsection, experimental verification is made using
GPS data collected from two Hong Kong continuously oper-
ating reference stations (CORS) sites. A 7.8-km-long short
baseline is formed by the two stations. Performance of pos-
terior probability calculation method is verified using the
integer ambiguities and functions produced in baseline pre-
cise positioning.

GNSS single-epoch double-differenced RTK functional
model is used in data processing. The standard deviations
of code and phase observations are set 0.3 and 0.003 m,
respectively, and a simple equal-weighted model is used. We
apply single frequency ambiguity resolution by the means
that all the ambiguities in each epoch are fixed as new ones.
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Table 2 Top five integer vectors
in decreasing order with respect
to their likelihoods

Order Integer vector (a)

1 0 0 0 0 0 0

2 − 1 0 0 0 0 0

3 0 0 − 1 0 0 0

4 0 − 1 0 0 0 0

5 − 1 1 0 0 0 0

Table 3 Posterior probability
results of top five integer vectors
obtained by different approaches
(Methods: ➀ Teunissen (2005b)

with α � 10−16 (Verhagen
2005); ➁ Teunissen (2005b) with

α � 10−9 (Odolinski and
Teunissen 2020 2020); ➂ Wu and

Bian (2015) with δ � 10−8)

Order Method Upper bound Lower bound γ Actual error Searched points

1 ➀ 0.79589659 – – – 986

➁ 0.79589659 – – – 270

➂ 0.79589664 – – – 165

New 0.79589659 0.79589594 10−6 6.5 ×10−7 305

2 ➀ 0.16721342 – – – 986

➁ 0.16721342 – – – 270

➂ 0.16721343 – – – 165

New 0.16721342 0.16721279 10−6 6.3 ×10−7 248

3 ➀ 0.01990610 – – – 986

➁ 0.01990610 – – – 270

➂ 0.01990610 – – – 165

New 0.01990610 0.01990545 10−6 6.5 ×10−7 203

4 ➀ 0.00658890 – – – 986

➁ 0.00658890 – – – 270

➂ 0.00658890 – – – 165

New 0.00658890 0.00658810 10−6 8.0 ×10−7 168

5 ➀ 0.00498010 – – – 986

➁ 0.00498010 – – – 270

➂ 0.00498010 – – – 165

New 0.00498010 0.00498036 10−6 6.5 ×10−7 165

As an essential procedure in posterior probability calcula-
tion of Teunissen (2005b), Wu and Bian (2015) and the new
method, integer search strategy used herein is determinate-
region search in LAMBDA software (Verhagen et al. 2013).
Specifications of the processing strategy are summarized in
Table 4.

During the experiment, changes of the visible satellites
and the geometry dilution of precision (GDOP) are presented
in Fig. 3. It shows that the visible satellites are between 6
and 12, and the GDOP is below 8. The ambiguity dilution of
precision (ADOP) and the dimension of the ambiguities are
demonstrated inFig. 4. TheADOP is definedby the following
equation (Teunissen 1997)

ADOP � (
det(Qââ)

) 1
n (52)

The dimensions of the ambiguities are between 4 and 10,
while most of the ADOP values are smaller than 0.02. Fig-
ures 3 and 4 have revealed that the strength of the GNSS
positioning model is strong. As a result, 2846 out of 2880
epochs are resolvable, posterior probability calculation is car-
ried on in theses epochs, then comparisons are made. The
comparisons are mainly twofold: (i) performance of the new
approach under different acceptable accuracies, and (ii) per-
formance of the new approach and the existing ones, such as
Verhagen (2005), Odolinski and Teunissen (2020), Wu and
Bian (2015).

6.2.1 Performance under different acceptable accuracies

In the experiment, the posterior probability of the ILS estima-

tor
∨
a in each epoch is calculated. We first set the predefined

calculation accuracy as γ � 10−4. The calculated upper and
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Table 4 Specifications of the processing strategy

Item Specification

GNSS system GPS

Basic observations Double differenced observations

Single selection L1 P1

Sampling rate 30 s

Elevation mask 15°

Time span 2021/1/2 00:00–24:00

Valid epochs 2846

CORS stations HKKT HKLT

Baseline length 7787.344 m

Function model Single-epoch double-differenced RTK

Stochastic model Equal-weighted model

Standard deviations 0.3 m and 0.003 m of undifferenced code
and phase observers, respectively

Ambiguity fixing All ambiguities fixed each epoch anew

Search strategy Determinate-region search (Verhagen et al.
2013)

Fig. 3 GDOP and the number of common-view satellites

Fig. 4 ADOP values and dimensions of the ambiguity

Fig. 5 Upper and lower bounds of the posterior probability under γ �
10−4

lower bounds of the posterior probability in all of the 2846
epochs are shown in Fig. 5, which reveals that the posterior
probability value vibrates severely, even in adjacent epochs.
It is due to the fact that posterior probability not only refers
to the model strength, such as the GODP and ADOP, which
changes mildly with time, it also determined by the intro-
duced observation noise which changes randomly each time.
The doted red line and the aqua line in Fig. 5 are almost over-
lapped, which means the calculated values of the upper and
lower bounds are close. The calculation error, obtained by
upper bound minus lower bound, is plot in Fig. 6(a). None of
the calculation error surpass the predefined acceptable error
γ � 10−4, which demonstrates that the calculation accuracy
meets the requirement.

The predefined accuracy is now changed to γ � 10−6 and
γ � 10−8, respectively, in order to investigate the calculation
accuracy and calculation complexity under different accept-
able accuracies. As interpreted in the previous subsection,
number of searched integer nodes is used as the measure-
ment of calculation complexity. The calculation error, under
required error γ � 10−6 and γ � 10−8, is plotted in Fig. 6
(b) and (c), respectively. Similar with the plot in Fig. 6 (a),
none of the calculation error exceeds the predefined γ, which
demonstrates the proposed approach, as shown in Algorithm
1, can adjust the calculation according to the user defined
accuracy.

This adjustment results in different search region and
therefore different computational workload. The number
searched integer points under acceptable error γ � 10−4,
γ � 10−6 and γ � 10−8 is plotted in Fig. 7, in which the
green line lies above the red line and below the blue line. The
percentage distribution of searched nodes under γ � 10−4,
γ � 10−6 andγ � 10−8 is shown in Fig. 8(a–c), respectively.
They show that the number of searched nodes concentrated
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(a)

(b)

(c)

Fig. 6 Posterior probability calculation error under different acceptable
errors: a γ � 10−4, b γ � 10−6, c γ � 10−8

in three clusters. The clusters are 0–1000, 1000–2000, and
6000–7000 under γ � 10−4; 0–2000, 2000–4000, and
8000–10,000 under γ � 10−6; and 0–2000, 3000–4000, and
12,000–14,000 under γ � 10−8. These results show that the
searched integer nodes increase with the enhancement of the
required accuracy, which finally leads to computation burden
increment.

Fig. 7 Searched integer nodes during posterior probability calculation
under different acceptable errors

6.2.2 Computational burden adjustment comparison
with existing approaches

Compared with the existing approaches such as Verha-
gen (2005), Odolinski and Teunissen (2020), Wu and Bian
(2015), a major advantage of the proposed approach is that
it can produce calculation result and calculation accuracy,
simultaneously, while other approaches can only produce
calculation result, without knowing its calculation accuracy.
This advantage is explicit and has shown in the 3rd part of
Sect. 6.1. So, it will not be compared again in the following.

Another advantage is that the proposed method can pro-
duce calculation result always satisfying the user required
accuracy, by adjusting the search region. On the contrary,
search region of other approaches cannot be adjusted by the
required accuracy. As a result, they might enumerate too
many or too few integers compared with the acceptable accu-
racy. We are now focusing on comparison of this issue.

Assuming acceptable errors γ � 10−4 and γ � 10−8,
the searched integer nodes of these approaches are plotted
in Fig. 9(a) and (b). It shows in Fig. 9(a) that the black line
lies above, followed by the blue line, red line, and green
line, respectively, which means the computational burden
is arranged by Verhagen (2005) > Odolinski and Teunis-
sen (2020) > new method > Wu and Bian (2015). Note
that, the results of Verhagen (2005), Odolinski and Teunissen
(2020), Wu and Bian (2015) are obtained by only adding the
likelihoods of the enumerated integer points rather than the
likelihoods of all the integer points in the space. Approaches
ofVerhagen (2005),Odolinski andTeunissen (2020) enumer-
ate too many integer points than the user required accuracy
(γ � 10−4) need, which leads to a waste of computational
resource and a degrade of computational efficiency. On the
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(a)

(b)

(c)

Fig. 8 Percentage distribution of searched integer nodes under different
acceptable errors: a γ � 10−4, b γ � 10−6, c γ � 10−8

(a)

(b)

Fig. 9 Searched integer nodes during posterior probability calculation
using different approaches: a γ � 10−4, b γ � 10−8

contrary, using the proposed approach, this part of computa-
tional resource is reserved and time efficiency could therefore
be guaranteed.

It shows inFig. 9 (b) that the black line lies above, followed
by the red line, blue line, and green line, respectively, which
means the computational burden is arranged by Verhagen
(2005) > new method > Odolinski and Teunissen (2020) >
Wu and Bian (2015). Note that, the searched nodes amount
of Verhagen (2005), Odolinski and Teunissen (2020), Wu
and Bian (2015) remain the same as the experiment under
γ � 10−4 (seen in Fig. 9 (a)), because the “significance
level” α and “fading factor” δ are unchanged. As a conse-
quence, approaches of Odolinski and Teunissen (2020), Wu
andBian (2015)may enumerate too few integer points,which
has a risk of calculation accuracy lower than required. On the
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contrary, using the proposed approach, calculation accuracy
could always be guaranteed.

7 Conclusions

GNSS high precise positioning requires correct estimation of
the integer ambiguity. However, the integer ambiguity solu-
tion is subject to uncertainty caused by the randomness of
the data. So, it is important to validate the quality of the inte-
ger ambiguity estimation. The optimal validation criterion, in
sense ofmaximizing the estimation success rate subjecting to
a given failure rate, is the ambiguity posterior probability. An
alternative approach is giving up fixing the real-valued ambi-
guity solution to some integer, but adjusting it according to
the criterion of minimizing the solution’s mean square error
(MSE) instead. This estimator comes out as the sum of all
the integer vectors multiplying their posterior probabilities.

It is therefore of great significance to calculate posterior
probability precisely and efficiently. However, we cannot
obtain the exact value of posterior probability due to the
occurrence of infinite sums. Practical calculation approaches
approximate the exact value by neglecting sufficiently small
terms in the sum. These calculations, although have achieved
good approximation, can only serve as the upper bounds of
posterior probability. Compared with upper bound, a proper
lower bound of the posterior probability would be more
important in application. An appreciated lower bound can
prevent the user from validating the ambiguity resolution
result by using an over optimistic criterion. However, these
approaches can only produce an upper bound as the posterior
probability calculation result, but cannot produce accuracy
information about the result.

In this contribution, a pair of upper and lower bounds of
the posterior probability is derived by dividing the infinite
sum into two parts: themajor finite part and theminor infinite
part. The finite part can be calculated by an enumeration of all
the elements in it. The infinite part is bounded by algebraical
derivation. As a result, theoretically rigorous upper and lower
bounds of the posterior probability are obtained. Based on
the bounds, a posterior probability calculation approach with
controllable accuracy is proposed. Meanwhile, the compu-
tational burden of the proposed approach can be adjusted
flexibly according to the required accuracy. The process of
the algorithm is summarized,which can be conveniently used
by the user. Numerical experiments have verified the cal-
culation accuracy and computational workload adjustment
properties of the proposed approach under different accept-
able error levels, which are superior to existing approaches.

The significances of this research are mainly of twofold.
Theoretically, the posterior probability is bounded from
below and from above simultaneously, both of the bounds are
in closed form and can achieve very high precision. As far as

we are concerned, it is the first theoretically rigorous lower
bound of the posterior probability ever reported. Practically,
compared with the existing approaches, the calculation accu-
racy of the proposed approach is known and under control;
at the same time, the computational burden can be adjusted
flexibly according to the required accuracy.
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