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Abstract
The associated Legendre functions constituting the kernel function of spherical harmonics have a wide range of applications 
in geodesic and geophysical fields, such as calculating the Green’s functions for a spherical Earth model. The analytical 
expressions for the infinite series involving the associated Legendre functions are useful. In this paper, starting with the 
generating function, we present a set of analytical equations for an infinite series involving associated low-order (m = 0, 1, 2) 
Legendre functions. After careful verification, the accuracy and effectiveness of the nearly sixty listed equations are con-
firmed. The open-source code written using the Wolfram language, GNU octave/MATLAB, and Fortran-90 are available 
through GitHub (https://​github.​com/​UCASt​anghe​2014/​analy​tical_​sums_​assoc​iated_​Legen​dre).
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1  Introduction

Some geophysical issues, such as the deformations of the 
Earth induced by the loading force imposed by the ocean 
and atmosphere and by the seismic forces of earthquakes, 
can be simplified by obtaining the corresponding Green’s 
functions for a spherical Earth model first and then applying 
the convolution of the actual two-dimensional sources in 
combination with these Green’s functions (Longman 1962; 
Goad 1980; Sun and Okubo 1993; Sun and Okubo 1998; 
Wang 1999; Martinec 2003; Watanabe and Watanabe 2014; 
Pan 2019). The accurate calculation of the Green’s functions 
has mostly been investigated in theoretical studies (Dong 
and Schmitt 1994; Wang and Wang 2007; Xu et al. 2007; 
Johnson 2010; Zhou et al. 2019).

Several scientists have presented effective methods of 
calculating Green’s functions using both analytical and 
numerical approaches (e.g., Farrell 1972; Okubo 1988; Sun 
and Okubo 1993; Tang and Sun 2018b). For spherical Earth 
models, the associated Legendre functions are the most 
widely used mathematical functions for calculating Green’s 

functions due to their suitable properties and appropriate 
performance on a sphere (Freeden and Schreiner 2008). For 
instance, when investigating seismic deformation using the 
dislocation theory (e.g., Sun and Okubo 1993; Piersanti 
et al. 1995, 1997; Pollitz 1996; Vermeersen et al. 1996; 
Tanaka et al. 2006, 2007; Melini et al. 2008; Cambiotti and 
Sabadini 2015; Tang and Sun 2019; Zhou et al. 2019) and 
loading deformations using the loading theory (e.g., Far-
rell 1972; Vermeersen and Sabadini 1997; Piersanti et al. 
1997; Guo et al. 2004; Spada and Boschi 2006), the Green’s 
functions for the displacement, gravity, tilt, and strain are 
expressed as a weighted infinite series of the associated Leg-
endre functions and their derivatives. The weights of the 
series are the Love numbers (Farrell 1972; Sun et al. 1996; 
Guo et al. 2004), which depend on the source type and the 
Earth’s structure.

As was highlighted by Okubo (1988), the brute force 
summation approach of obtaining such a series inevitably 
fails. Instead, Kummer’s transform (Singh et al. 1990) and 
the analytical expressions of the Legendre functions (e.g., 
Singh and Ben-Menahem 1968) can be used to obtain 
numerically stable Green’s functions (e.g., Farrell 1972; 
Sun and Okubo 1993; Guo et al. 2004) or approximately 
analytical Green’s functions (e.g., Sun 2003, 2004a; Tang 
and Sun 2017, 2018a, b).

Specific analytical summation equations of the associ-
ated Legendre functions have been introduced in previous 
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studies; however, these equations were published in separate 
papers (e.g., Singh and Ben-Menahem 1968; Farrell 1972; 
Sun 2003). A few researchers have focused on deriving new 
analytical equations for the associated Legendre functions 
and their derivatives. Using the well-known generating func-
tion of the Legendre functions (McBride 2012; Wan and 
Zudilin 2013) and several integral table books, Singh and 
Ben-Menahem (1968) were the first to determine the recur-
rence relationships for the sums of infinite series of the form 
∑

Pm
n
(x)tn+l∕(n + k) . For ready reference, Singh and Ben-

Menahem (1968) also provided the explicit expressions for 
k = 0, 1, 2, 3 and m = 0, 1, 2 . In Appendix B of Martinec 
(2003), the analytical equation of the form 

∑

Pn(x)t
n∕(n + k) 

with k = −1, 0, 1, 2 and their first and second derivatives 
with respect to x are given. Later, Guo et al. (2004) pro-
vided eight analytical equations for the forms in Appen-
dix B: 

∑

Pn(x)t
nnk with k = −1, 0, 1 , 

∑

tn
d

d�
Pn(cos�) , 

∑ tn

nk
d

d�
Pn(cos�) with k = 1, 2 , and 

∑ tn

nk
d2

d�2
Pn(cos�) with 

k = 1, 2 . However, the factor " cos� − l " in the third term 
of Eq. (B9) in Guo et al. (2004) includes a typo, and it 
should be “ cos� − 1 .” Other authors such as Sun (2003), 
Sun (2004a), Sun (2004c), and Tang and Sun (2017) have 
also listed several analytical equations with similar forms in 
their supporting appendices.

These analytical equations are beneficial, but it is not easy 
to find them in the vast number of papers. Furthermore, the 
equations for the series of associated Legendre functions and 
their first and second derivations are not yet available, but 
they are required for studying the Green’s functions of other 
variables such as the strain, stress, and gravity gradients. A 
paper focusing on providing these equations and an open-
source code for calculating them would be quite valuable for 
other related studies. More broadly, as long as the spherical 
harmonic function is involved, these analytical equations 
may be useful for solving the Green’s functions.

This issue motivated us to list the useful equations and 
their open-source calculation codes for the analytical sums 
of the associated low-order (m = 0, 1, 2) Legendre func-
tions. In this paper, the principles of the derivation of these 
equations are given in Sect. 2. Then, nearly sixty equations 
are listed following a careful verification. Two application 
cases to geodesy and geophysics are also presented. The final 
Mathematica, GNU Octave/MATLAB, and Fortran calcula-
tion codes can be accessed on GitHub (https://​github.​com/​
UCASt​anghe​2014/​analy​tical_​sums_​assoc​iated_​Legen​dre).

2 � All of the equations involving 
the Legendre functions

2.1 � Two examples with detailed derivations

First, we briefly introduce the relationship between the 
Legendre functions Pn(x) and the associated Legendre func-
tions Pm

n
(x) (Müller 1966a, b). The Legendre functions can 

be given in a compact form by Rodrigues’ equation (Askey 
2005)

The low-order ( m ≤ 2 ) associated Legendre functions can 
be written explicitly as follows (Freeden et al. 2010; Bosch 
2000):

Therefore, the closed-form equations of the associated 
Legendre functions can be obtained through a combination 
of the Legendre functions. In principle, all of the analytical 
sums of the Legendre functions can be directly or indirectly 
obtained from the generating function of the Legendre func-
tions (Singh and Ben-Menahem 1968; McBride 2012; Weis-
stein 2002):

Here, we avoid the singularity of Eq. (4) by preventing the 
definition at � = 0 . The singularity of the analytical equa-
tions at this point will be discussed later.

If all of the equations are explained in detail, the inter-
ested readers can easily retrace the derivation steps using 
pen and paper. Thus, all of the steps in the process are given 
below. First, as can be seen, differentiating the generating 
function with respect to � generates a factor n , and integrat-
ing with respect to � results in a factor of 1∕n on the left-hand 
side of Eq. (4). Repeated the integration or differentiation 
operations produces different infinite series. This is the pro-
cess for constructing a new equation based on the generating 
function.

We take 
∑∞

n=0
�nnPn(cos�) and 

∑∞

n=1

�n

n
Pn(cos�) as two 

examples. According to Eq. (4), we obtain

(1)Pn(x) =
1

2nn!

dn

dxn

(

x2 − 1
)n
.

(2)P1
n
(cos�) = −

dPn(cos�)

d�
,

(3)P2
n
(cos�) = −2cot�

dPn(cos�)

d�
− n(n + 1)Pn(cos�).

(4)

G(𝜀, 𝜃) ≡

∞
�

n=0

𝜀nP
n
(cos𝜃)

=
1

√

1 − 2𝜀cos𝜃 + 𝜀2
, 0 < 𝜀 ≤ 1, 0 < 𝜃 ≤ 𝜋.
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and its derivative with respect to � is

Thus,

This is the equation labeled as ID = 2 in Table 2, except 
for one constant factor.

Similarly, from Eq. (4), we have

The integration of Eq. (8) from 0 to � ( 0 < 𝜀 ≤ 1 ) with 
respect to x will result in another fundamental equation. To 
obtain the result for the right-hand side of Eq. (8), we have 
to find the original function for the following expression:

Its original function, F(x), can be obtained by referring to 
a typical integral table book (Gradshteyn and Ryzhik 2000):

with C1 is a constant of integration.
Using the relationship sinh−1(x) = ln

�
√

x2 + 1 + x
�

 , one 
arrives at

with C2 is another constant of integration. One can gets

Then, we have

(5)
∞
∑

n=1

�nPn(cos�) = G(�, �) − 1,

(6)
∞
∑

n=1

�n−1nPn(cos�) =
�G(�, �)

��
.

(7)
∞
∑

n=0

�nnPn(cos�) = �
�G(�, �)

��
=

�(cos� − �)

(1 + �2 − 2�cos�)3∕2
.

(8)
∞
∑

n=2

xn−1Pn(cos𝜃) =
G(x, 𝜃) − 1

x
− cos𝜃, 0 < x ≤ 1.

(9)
f (x) =

G(x, 𝜃) − 1

x
− cos𝜃 =

1

x
√

x2 − 2xcos𝜃 + 1

−
1

x
− cos𝜃, 0 < x ≤ 1, 0 < 𝜃 ≤ 𝜋.

(10)

F(x) = −sinh−1

�

−2xcos� + 2

x
√

4 − (−2cos�)2

�

− ln(x) − xcos� + C1

= −sinh−1
�

1 − xcos�

xsin�

�

− ln(x) − xcos� + C1,

(11)

F(x) = −ln

�

1 − xcos�

xsin�
+

√

x2 − 2xcos� + 1

xsin�

�

− ln(x) − xcos� + C1

= −ln
�

1 − xcos� +
√

x2 − 2xcos� + 1
�

− xcos� + C2,

(12)lim
x→0+

F(x) = −ln(2) + C2.

The integration of Eq. (8) from 0 to � ( 0 < 𝜀 ≤ 1 ) with 
respect to x for the left-hand side results in

By showing that the right-hand side of Eq. (8) is indeed 
integrable, we show simultaneously that the Weierstrass 
M-Test is fulfilled such that the exchange the operation of 
integration and summation can be done. In addition, for the 
above definite integral, it is not an improper integral because 
nor the upper nor the lower limits of the integrand goes to 
infinite.

Finally, we obtain the analytical expression by combining 
Eqs. (8, 13, 14):

2.2 � All of the analytical equations

Using the scheme above (Singh and Ben-Menahem 1968) 
and the basic expressions (Eqs. 4 and 15), one can find all 
of the similar closed-form infinite series. It would be easier 
to follow if the process were formulated. Thus, the detailed 
process is given in Table 1 using the Wolfram Language 
(Wolfram 1999; Schmied 2020).

To ensure the correctness of this process, we partly used 
Mathematica (Wolfram 1999; Abell and Braselton 2017) to 
complete several of the integrals and differential operations. 
First, we obtained the original function for the definite inte-
gral, and then, we calculated the limit values’ difference at 
the end of the integral interval. The details of the Mathemat-
ica code used to derive each equation are given in column 
3 of Table 1.

Taking the derivative of these analytical expressions will 
result in the analytical sums of the derivatives of the Leg-
endre functions. This can be done using pen and paper or 
using a symbolic calculator. We partly used Mathematica 
in the verification, simplification, and derivation processes. 
It is advantageous, can ensure the accuracy of the results, 
and facilitate the checking of the compatibility of the vari-
ous equations. However, it should be noted that Mathe-
matica sometimes presents very long expressions that are 

(13)

�

∫
0

f (x)dx = F(�) − lim
x→0+

F(x)

= −ln
�

1 − �cos� +
√

�2 − 2�cos� + 1
�

− �cos� + ln(2).

(14)

�

∫
0

[

∞
∑

n=2

xn−1Pn(cos�)

]

dx

=

∞
∑

n=2

[(

�

∫
0

xn−1dx

)

Pn(cos�)

]

=

∞
∑

n=2

�n

n
Pn(cos�).

(15)

∞
�

n=1

�n

n
Pn(cos�) = ln(2) − ln

�

1 − �cos� +
√

1 − 2�cos� + �2
�

.
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not expected. We had to simplify many of the equations 
by hand and finally obtained the final equation with a rela-
tively tight form (Tables 2, 3, 4). In the tables, several short-
hand notations are used: w = (1 − 2�c + �2)1∕2 , c = cos� , 
s = sin� , P[n,m] = Pm

n
(cos�) , dP[n,m] = dPm

n
(cos�)∕d� , 

and ddP[n,m] = d2Pm
n
(cos�)∕d�2.

2.3 � Verification and visualization

In order to thoroughly verify the above equations, we calcu-
lated the sum of the series using numerical methods and the 
above analytical equations. We wrote several Fortran 90 rou-
tines using double precision to calculate the first N terms of 
the series, and then, we summed them to obtain an approxi-
mate sum. For simplicity, but without losing generality, � 
was set as 1/2. It can be inferred that without considering 
the rounding error, the more terms involved in the summa-
tion, the closer the numerical results will be to the analytical 
values. As an example, we calculated the 600 terms of the 
series and sum them to approximately express the sum of the 
series (Figs. 1, 2, 3, 4, 5, 6). The result was written to the 
files with 16 significant figures. Then, we compared these 
approximate sums with the analytical sums in Figs. 1, 3, and 
5. Under various angular distances discretely sampled within 
[0.5◦, 179.0◦] , the results of the numerical summation and 

that of the analytical equation are highly consistent, and their 
curves almost overlap.

To further analyze the differences between them, we 
calculated the relative errors of the approximate sums in 
Figs. 2, 4, and 6. Because the relative error was very small, 
we took the logarithm of it. Note, hereafter when the abso-
lute error with a reservation of 16 significant digits is zero, 
we set the logarithm relative error to 14.0 in his paper. As 
can be seen, the results of the numerical calculation and the 
analytical equation are very consistent, and the relative error 
between them is less than about 10−10.

We carefully checked the Legendre function and the 
summation program of the numerical calculations. We also 
compared the results under other values of � and found the 
consistency to be excellent. The comparison of the numeri-
cal methods and analytical formulas when � = 1∕8 is shown 
in Appendix. Thus, the correctness of the analytical equa-
tions given in Tables 1, 2, 3, 4 was confirmed.

2.4 � Explanation of the possible singularity

From the generating function of the Legendre functions, 
i.e., Eq. (4) and other analytical equations in Tables 2, 3, 
4, we found that a singularity may exist for � = 0 , � = 1 , 
� = 0 , and � = � . There are four cases involving the possible 

Table 1   The Mathematica code used to derive the analytical equations of the infinite series involving Pm

n
 . The abbreviated variables w , s , c , 

g[�, �] , and Pn2 are defined in the first line. Note: opt is a parameter of the built-in function Lim[x]
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singularities: (a) for � = 0 and � = 0 ; (b) for � = 0 and 
� = � ; (c) for � = 1 and � = 0 ; (d) for � = 1 and � = � . For 
cases (a) and (b), there is no physical meaning in the scope 
of this paper. In addition, in the actual derivation and cal-
culation process, we also defined that � can be an arbitrarily 
small positive number, but cannot be 0. In view of the above 
reasons, we only discuss the possible singularities for the 
last two cases.

2.4.1 � Singularity when " = 1 and � = 0

W h e n  � = 1 ,  t h e  i n f i n i t e  s e r i e s  s u ch  a s 
∑ 1

n±1
Pn(cos�) and

∑ 1

n±1

d

d�
Pn(cos�), but not 

∑ 1

n2
Pn(cos�) 

are not convergent at � = 0 because Pn(1) = 1 and the har-
monic series is the divergent infinite series. Although they 
are divergent series, to show their characteristics more 
clearly, we give their series expansion form using s = sin� 
around the point � = 0 in Table 5. Here, only the leading 
terms were retained.

Because of the singularity at this point, the above formu-
las in Tables 2, 3, 4 do not apply to this case when is � very 
small. The singularity at this point is not only mathemati-
cal. In actual physical research, this point usually means the 
observation point coincides with the source; it is usually 
irregular in physics. When dealing with practical problems, 
we usually need to know the physical properties near the 
singular point. When calculating the deformation Green’s 
function of an earthquake or loading near the source point, 
we will encounter this situation. For instance, Sun and Dong 
(2013) discussed this type of singularity when calculating 
the co-seismic Green’s functions for a surface seismic rup-
ture. When � = 1 and � → 0 , some Green’s functions tend 
to diverge in physics. But in the actual calculation, we need 
to calculate the Green’s function at a relatively very small 
value of � . At this case, the approximate series formula in 
Table 5 can be used to as some very good approximate for-
mulas when � is small.

To make it clear, we compared the analytical formulas in 
Table 2 with the approximate series formulas in Table 5. We 
set � to 1 and calculated the ratios of two kinds of formulas 
for different � values near 0. In Fig. 7, the y-axis denotes 

Table 2   Analytical sums of the series of Legendre functions



	 H. Tang, W. Sun 

1 3

86  Page 6 of 26

the result calculated by the approximate series formula 
divided by the analytical formula, and the black, red and 
blue line denotes formula involving Pn(cos�) , ��Pn(cos�) 
and ���Pn(cos�) , respectively. We can see clearly that when 
� → 0 , they tend to be consistent.

In addition to approximate the analytical expressions, the 
series formulas in Table 5 can also be used to conveniently 
analyze the orders of these analytical expressions approach-
ing infinity when � → 0 , which is also useful in the discus-
sion of physical problems (Okubo 1988; Pan 2019) near the 
source.

2.4.2 � No singularity, then " = 1   and � = �

Unlike the situation described in Sect. 2.4.1, all of the equa-
tions at this point are regular because Pn(−1) = −1 and the 
alternating harmonic series is a convergent series. Once we 
have obtained the analytical expression of the Legendre 

functions series, by setting � = 1 and calculating the limit 
value when � approaches � , the nature around point � = � 
can be fully demonstrated. The accurate limit value at � = � 
is given in Table 6.

However, one cannot guarantee a correct result using a 
double-precision calculation code, such as the Fortran pro-
gram, when � approaches � due to the numerical calcula-
tion error. This is easy to explain because sin(�) appears in 
the denominator of some of the calculation equations. Our 
double-precision Fortran program can give the correct result 
within [0.01°, 179.99°] using our test. For calculations out-
side of this interval, higher precision calculations are needed 
to obtain the correct results. This can be achieved using the 
quad-precision Fortran program or using Mathematica’s or 
MATLAB’s symbolic calculation functions.

Table 3   Analytical sums of the series of the first derivatives of the Legendre functions
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Table 4   Analytical sums of the series of the second derivatives of the Legendre functions
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3 � Two application in the fields of geodesy 
and geophysics

3.1 � Calculating the load Green’s function

A typical application of the above analytical summation 
equation is calculating the loading deformation on the 
Earth (Longman 1963; Farrell 1972; Goad 1980; Han and 

Wahr 1995; Agnew 1997, 2012; Boy et al. 1998; Tromp 
and Mitrovica 1999; Spada et al. 2011; Wijaya et al. 2013; 
Lu et al. 2018; Zhou et al. 2019; Tang et al. 2020). We take 
the radial displacement as an example. A 1 kg surface point 
mass at the North Pole will cause the elastic solid Earth to 
deform globally, and the radial displacement (Farrell 1972) 
is written as

Fig. 1   Verification of the Legendre summation equation corresponding to Table 2. In each subfigure, P
i
 denotes the i-th equation in Table 2
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Here, � denotes the angular distance from the loading 
point; and Pn(cos�) are the Legendre functions. h′

n
 are the 

load Love numbers, which are responsible for the elastic 
response of the Earth. The Love numbers h′

n
 are usually cal-

culated for each degree n by numerically solving ordinary 
differential equations (Longman 1963, 1962). However, it is 

(16)U(�) =

n=∞
∑

n=0

h�
n
Pn(cos�).

challenging to obtain numerically stable values of very high 
degree Love numbers. Moreover, the above series Eq. (16) 
usually converges slowly, especially when � is small (Farrell 
1972; Fowler et al. 2019).

As was pointed out by Okubo (1988), due to the fact that 
lim
�→0

Pn(cos �) = 1 , h�
n
→ O(1) where n → ∞ , the brute force 

summation approach fails. Farrell (1972) and Guo (2000) 
derived the asymptotic expression for the Load Love number 

Fig. 2   Relative error (RE) of the corresponding numerical calculation in Fig. 1. Note that the relative error is a common logarithmic function
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when n → ∞ , h′
n
 as lim

n→∞
h�
n
= h�

∞
= −

g0me(�+2�)

4�a2(�+�)�
 . Here, � and 

� are the Lamé constants of the outermost layer’s elastic 
parameters; g0 and me are the surface gravitation and mass 
of the Earth, respectively; and a is the Earth’s mean radius. 

Then, the convergence difficulty can be circumvented by 
using a new series (Okubo 1988):

(17)U(�) =

n=∞
∑

n=0

h�
∞
Pn(cos�) +

n=∞
∑

n=0

(

h�
n
− h�

∞

)

Pn(cos�).

Fig. 3   Verification of the first derivatives of the Legendre summation equation corresponding to Table 3. In each subfigure, ��Pi
 denotes the i-th 

equation in Table 3
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Here, the first term on the right-hand side of the above 
expression can be analytically obtained using Eq. (1) in 
Table 1 by setting � = 1 . The second term in Eq. (17) can be 
numerically handled quickly since h�

n
− h�

∞
 is of the order 

O(1∕n) , and the new series converges much faster. Using 
this strategy, we rewrite the above equation as

This type of transformation is called Kummer’s transform 
(Singh et al. 1990). Because with the increase of degree n , 
(

h�
n
− h�

∞

)

Pn(cos�) approaches to 0 gradually, so the sum-
mation of the above series can be approximately replaced 
by the first N terms of it. We set different truncation degree 

(18)U(�) =
h�
∞

2sin(�∕2)
+

n=∞
∑

n=0

(

h�
n
− h�

∞

)

Pn(cos�).

Fig. 4   Relative error (RE) of the corresponding numerical calculation in Fig. 3. The relative error is a common logarithmic function
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N to observe the convergence performance. We calculated 
and plotted the radial displacement using Eqs. (16) and (18) 
with a truncation of the series at N in Fig. 8. For simplicity, 
we only calculated the first 10,000 terms of the series and 
their partial sums.

Here, all of the parameters were obtained from the Pre-
liminary Reference Earth Model (PREM) model (Dziewon-
ski and Anderson 1981). In this figure, the blue lines denote 

the brute force numerical summation using Eq. (16), the 
horizontal green lines represent the analytical partition in 
Eq. (18), and the orange line represents the analytical parti-
tion plus the numerical residue in Eq. (18). Take Fig. 8b as 
an example to illustrate the influence of the second part of 
Eq. (18). The difference between the orange line and the 
green line reflects the effect of the second part, the sum of 
the residue series, of Eq. (18). It can be seen that in Fig. 8b, 

Fig. 5   Verification of the second derivatives of the Legendre summation equation corresponding to Table 4. In each subfigure, ���Pi
 denotes the 

i-th equation in Table 4
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the sum of the residue series is about 500, the estimated true 
value is approximately -6500, and its relative error is 7.7%. 
Other graphs have similar meanings. It can be seen that with 
the increase in angular distance, the importance of residue 
series of Eq. (18) increases gradually.

We found that the direct summation method still can-
not achieve convergence after using 10,000 Love numbers, 

especially when � is less than 0.5°. The convergence speed 
of the residue series is greatly improved. The analytical par-
tition plays a leading role when the angular distance � is very 
small. For the sake of simplicity, sometimes the analytical 
part can be directly used to replace the true Green’s function 
in near field deformation, such as at 𝜃 < 0.01◦.

Fig. 6   Relative error (RE) of the corresponding numerical calculation in Fig. 5. The relative error is a common logarithmic function
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3.2 � Calculating the co‑seismic Green’s deformation

Here, we take the co-seismic areal strain Green’s functions 
on the Earth’s surface as another example.

We suppose a point dislocation (Sun 2004b) with an area 
of dS undergoing a strike-slip U on a vertical fault trending 
in the direction of the Greenwich meridian with the location 
of the radius r = rs below the North Pole � = 0◦ . The areal 
strain Ξarea on the surface ( r = a ) of the Earth at co-latitude 
� and longitude � can be expressed as

Here, h12
n

 and l12
n

 are the dislocation Love numbers for 
a vertical strike-slip source (Sun et al. 1996) of degree n . 
They depend on the source location and the Earth model 
structure (Sun et al. 1996). The shorthand notations c = cos� 
and s = sin� are used in Eq. (19).

The asymptotic expansion of the dislocation Love number 
(Okubo 1988; Sun 2003) when the degree n is extremely 
large cannot be easily obtained. To save space, we give 
them directly here. Interested readers can refer to previous 
papers for details (Okubo 1988; Sun 2003). When n → ∞ , 
the asymptotic form of the dislocation Love numbers can 
be written as

(19)Ξarea(a, �,�) = 2sin(2�) ⋅

n=∞
∑

n=2

[

−2h12
n
P2
n
(c) + l12

n

(

4

s2
P2
n
(c) −

c

s

dP2
n
(c)

d�
−

d2P2
n
(c)

d�2

)]

×
UdS

a3
.

y12
kmn

 represents the variables determined by the Earth’s 
elastic parameters and by the seismic source, and their 
explicit expressions can be found in previous papers (Sun 
2003, 2004a, b; Tang and Sun 2017). Because the asymp-
totic solution expresses the property of the Love number 
of degree n by expanding it as a series of 1∕ni when n is 
infinitely large. Comparing with the real value, the error 
caused by this approximation can be ignored in the near field 
(Okubo 1988). Therefore, we can make a further approxima-
tion, that is, changing 1∕ni into other form but keeping its 
order and this operation will not affect its coefficient (see the 
main text below Eq. (9) in Tang et al. (2020)). It should be 
noted that the third item in parentheses, lasy−12n  , was modified 
by replacing 1∕n3 with 1∕

(

n3 − n
)

 in order to simplify the 
following analytical summation process.

To show that it is difficult to calculate the convergence 
of the strain Green’s function in the near field, we conduct 
a simple analysis here. A truncated Taylor series expan-
sion of the Legendre functions near the North Pole up to 
the second order will help us understand its property when 
� → 0 . This can be obtained by using Mathematica code 
“Series[LegendreP[n, 2, Cos[\[Theta]]], {\[Theta], 0, 3}]” as

It means P2
n
(cos�) can be approximately replaced by a 

simple polynomial of � and has an order of O
(

n4
)

 when 
� → 0.

Thus, the general term in Eq.  (19) is of the order of 
�n−1O

(

n4
)

 . This results in the slow convergence of the series 
in Eq. (19) when � → 1 because � is slightly smaller than 1 
under normal circumstances. As was shown in the above 

subsection, the brute force approach fails when the dislo-
cation’s location approaches the observation point, that is, 
when � → 1 and � → 0.

For the deformation Green’s functions in the near field, 
the contributions of the high degree Love numbers abso-
lutely dominate compared to the case with low degrees. 
After replacing the dislocation Love numbers h12

n
 and l12

n
 

with their asymptotic expansions hasy−12n  and lasy−12n  (Eq. 20), 
and using the above analytical equations involving the asso-
ciated Legendre functions and their derivatives (Tables 2, 3, 
4), the Green’s functions of the areal strain can be written in 

(20)

⎧
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⎨

⎪

⎩

h
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1

n2
y12
232
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1
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y12
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1
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y12
332

+ O
�

n−3
�

� , � = rs∕a.

(21)P2
n
(cos�) = n

(

n2 − 1
)

(n + 2)�2∕8 + O
(

�4
)

, � → 0.

Table 5   Series expansion of the Legendre summation equations with 
s = sin� around point � = 0 when � = 1 . The leading term is retained 
here

ID about P
n
(cos �) About ��Pn

(cos �) About ���Pn
(cos �)

1 1/s − 1/s^2 2/s^3
2 − 1/(2 s) 1/(2 s^2) − 1/s^3
3 − 1/s^3 3/s^4 − 12/s^5
4 3/(2 s^3) − 9/(2 s^4) 18/s^5
5 ln(2/s) − 1/s 1/s^2
6 ln(2/s) − 1/s 1/s^2
7 − 1 + ln(2/s) − 1/s 1/s^2
8 − 3/s^4 12/s^5 − 60/s^6
9 − 1/(2 s^2) 1/s^3 − 3/s^4
10 1/s^2 − 2/s^3 6/s^4
11 1/s − 1/s^2 2/s^3
12 1/s − 1/s^2 2/s^3
13 1 − 3/4 + ln(4)/4− ln(s)/2 − 1/(2 s)
14 − 3/(2 s^3) 9/(2 s^4) − 18/s^5
15 3/s^3 − 9/s^4 36/s^5
16 2/s^2 − 4/s^3 12/s^4
17 2/s^2 − 4/s^3 12/s^4
18 2/s^2 − 4/s^3 12/s^4
19 1/s − 1/s^2 2/s^3
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a closed-form as a good approximation of Eq. (19) when � is 
small. Submitting Eq. (20) into Eq. (19), one gets

Here, Pi , P′
i
 , and P′′

i
 denote the i-th equations of the 

Legendre functions and their derivatives with respect to � 
(Tables 2, 3, 4). It should be noted that y12

kmn
 can be found in 

a previous paper (e.g., Tang and Sun 2017).
As a case study, we considered a dislocation with a 

depth of d = a − rs = 32 km in a homogeneous sphere. 

(22)
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.

The parameters of a slightly modified PREM model (Dzie-
wonski and Anderson 1981; Sun and Okubo 2004) are 

used here: the mean radius of the Earth a = 6371 km , 
Lame constants of � = 34.2 GPa and � = 26.6 GPa , and 
a density of � = 5.5 × 103 kg∕m3 . By assuming a factor of 
106UdS∕a3 = 1 , the areal strain was calculated and is shown 
in Fig. 9.

Fig. 7   Comparison of the analytical formula in Table 2 with the approximate series formulas in Table 5 when � = 1 . x-axis for sin (�) and y-axis 
for the ratio of the series formulas and the analytical formula. Each subfigure is labeled by a number (i) denoting the i-th expression in Table 5
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To validate our analytical expressions, we compared our 
analytical results with those calculated using the numerical 
method (Liu et al. 2018). The main point of this numeri-
cal method is to obtain the dislocation Love number by 
numerically solving the differential equations for the seis-
mic deformation and then to obtain the Green’s function by 
numerically summing the Love number using Eq. (19). The 
numerical result is shown in Fig. 9a, the analytical result is 
shown in Fig. 9b, and the difference is shown in Fig. 9c. The 
pattern and magnitude of the two results are in good agree-
ment and their absolute errors are small.

This consistency indicates that our analytical expres-
sion for the areal strain is a good approximation when the 
angular distance � is small. If one wants to obtain more 
accurate results, one should add the difference between the 

asymptotic Love number and the exact Love number was 
done in the previous subsection, i.e., the second term of 
Kummer’s transform should be added (Eq. 18).

4 � Discussion and conclusions

In this paper, starting with the Legendre functions’ generat-
ing function, nearly sixty analytical equations of an infinite 
series were presented through rigorous verification involving 
the associated Legendre functions Pm

n
(cos�) with m ≤ 2 and 

their first and second derivatives. To make it accessible to 
all readers, we published our Mathematica, GNU Octave/
MATLAB, and Fortran codes on GitHub. We recommend 
using Mathematica to calculate them if possible because it 
can provide a correct value for any � in the open interval 
(0,�) . Other numerical programs written using Fortran and 
MATLAB with double-precision are recommended when 
0.01 ◦ < 𝜃 < 179.99◦ . If quad-precision is used, then the 
situation will be improved.

Here, we present the equations for the series of second 
derivatives of the associated Legendre functions, and their 
higher derivatives can be quickly obtained through differen-
tiation. Using a process similar to that described in Sect. 2, 
similar infinite series, such as 

∑

�n−1∕nkPm
n
(cos�) with k > 3 

and its derivatives, can be easily written as a definite inte-
gral. If these definite integrals are obtained, one will get 
a new summation expression for the Legendre functions. 
The expansion and promotion of these equations are left for 
follow-up research.

Alternatively, several complex series such as 
∑

�n−1∕nkPm
n
(cos�) can be replaced with a simpler form to 

avoid this problem in practical applications. For instance, 
one can replace the factor 1∕n3 with 1∕

(

n3 − n
)

 , and then, 
the new series’ analytical summation can be easily obtained 
through the linear combination of the equations listed in 
Sect. 2.

Table 6   Limit values of all of the analytical equations at point � = � 
when � = 1

ID About P
n
(cos �) About ��Pn

(cos �) About ���Pn
(cos �)

1 − 1/2 0 1/8
2 − 1/4 0 − 1/16
3 0 0 − 1/16
4 1/8 0 1/8
5 − ln(2) 0 3/8
6 ln(2) 0 − 7/8− ln(2)
7 − 1 + ln(2) 0 1/8
8 0 1/16 0
9 0 1/16 0
10 0 − 1/8 0
11 0 − 3/8 0
12 0 − 1/8 0
13 0 − 1/4− ln(2)/2 0
14 0 0 − 3/32
15 0 0 3/16
16 0 0 11/32
17 0 0 45/32
18 0 0 5/32
19 0 0 ln(2)/2
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(a) (b)

(c) (d)

Fig. 8   Comparison of the convergence speeds of the different meth-
ods used to calculate the loading Green’s function for the radial 
displacement. The blue lines denote the brute force numerical sum-

mation truncation at N . The horizontal green lines represent the ana-
lytical partition in Eq.  (18). The orange lines indicate the analytical 
part plus the numerical residue in Eq. (18)
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Fig. 9   Areal strain resulting from a vertical strike-slip motion with a 
depth of 32 km: a calculated using the numerical method (Liu et al., 
2018), b calculated using the analytical expressions using Eq.  (22) 
and c = a–b. Both were normalized by assuming 106UdS∕a3 = 1

▸
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Appendix: Further verification 
of the formulas listed in Tables 2, 3, 4

To verify the correctness of our formulas in Tables 2, 3, 4, 
we also calculate the results of the analytical expressions and 
the numerical summation of the series when � have different 
values (Figs. 10, 11, 12, 13, 14, 15). Different from � = 1∕2 
in the main text, here we give the comparison between the 
analytical and numerical results when � = 1∕8 in Figs. 10, 

12 and 14. Here, the y-axis is for the analytical and numeri-
cal summation of the series. The numerical results here are 
the direct summation of the 600 terms of the series as that in 
the main text. It can be seen that the analytical results (blue 
lines) are in good agreement with the numerical results (gray 
dots). The relative errors of the numerical summations are 
analyzed in Figs. 11, 13 and 15.

Fig. 10   Verification of the Legendre summation equation corresponding to Table 2 when � = 1∕8 . In each subfigure, P
i
 denotes the i-th equation 

in Table 2
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Fig. 11   Relative error (RE) of the corresponding numerical calculation in Figure 10. In each subfigure. Note that the y-axis is scaled by a com-
mon logarithmic function
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Fig. 12   Verification of the first derivatives of the Legendre summation equation corresponding to Table 3 when � = 1∕8 . In each subfigure, ��Pi
 

denotes the i-th equation in Table 3
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Fig. 13   Relative error (RE) of the corresponding numerical calculation in Figure 12. Note that the y-axis is scaled by a common logarithmic 
function
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Fig. 14   Verification of the second derivatives of the Legendre summation equation corresponding to Table 4 when � = 1∕8 . In each subfigure, 
���Pi

 denotes the i-th equation in Table 4
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