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Abstract
GNSS observations stochastic model influences all subsequent stages of data processing, from the possibility to reach the 
optimal parameters estimation, to the reliability and quality control of the solution. Nowadays, an uncontrolled use of GNSS 
stochastic models is common for both data processing and simulation missions, especially in commercial GNSS software 
packages. As a result, the variance–covariance matrices that are derived in the processing are inadequate and cause incor-
rect interpretations of the results. A proper method to evaluate the reliability of the stochastic model is needed to reflect the 
confidence level in statistic testing and simulation mission efforts. In this contribution, a novel method for evaluating the 
statistical nature of GNSS stochastic model is presented. The method relies on the deterministic nature of the integer ambigu-
ity variable to examine and express the expected multinormal distribution of the double-difference adjustment results. The 
suggested method was used with a controlled experiment and 24 h of observations data to investigate how the statistical nature 
of the stochastic model is affected by different baseline lengths. The results indicate that as the baseline length increases, the 
stochastic model is less predictable and exposed to irregularities in the observation’s precision. Additionally, the reliability 
of the integer ambiguity resolution success rate (SR) was tested as part of the stochastic model evaluation. The results show 
a dramatic degradation in the SR prediction level when using an inadequate stochastic model, which suggests using extra 
caution when handling this parameter unless high-confidence reliable stochastic model is available.

Keywords  Global navigation satellite system (GNSS) · Stochastic modeling · Reliability testing · Integer ambiguity 
resolution · Success rate

1  Introduction

High-precision GNSS positioning and navigation data are 
mostly processed based on the well-known least-squares 
(LS) principle. In the absence of any unmodeled systematic 
errors in the observations’ functional model, the LS solution 
is expected to result with the best linear unbiased estima-
tion (BLUE) of the unknown parameters (Grafarend and 
Schaffrin 1974). Nevertheless, real BLUE solution will not 
be available unless reliable stochastic model of the GNSS 
observations is in use (Koch 1988; Teunissen 1998b; Teunis-
sen et al. 2008; Li et al. 2011). The GNSS observations’ 

stochastic model has an important role in the LS procedure. 
While the functional model links the GNSS observables to 
the unknown parameters, such as baseline coordinates, car-
rier phase ambiguities and atmospheric delays, the stochastic 
model is used to specify the observations weights through 
their accuracies and dependencies to each other (Teunissen 
1998b).

A proper choice of the stochastic model influences all 
subsequent stages of data processing, from the possibility to 
reach ‘minimum variance’ in the LS solution, to the reliabil-
ity and quality control of the solution. The variance–covari-
ance (VC) matrix, for example, is involved in the overall 
statistic for model validation and the w-statistic for outlier 
detection, and both statistics are sensitive to the stochastic 
model (Koch 1988; Teunissen 2006; Teunissen et al. 2008). 
In GNSS application, the stochastic model forms the basis 
for the reliable ambiguity resolution. Adequate stochastic 
model is necessary to define the proper search area of both 
integer least-squares and integer bootstrapped ambiguity 
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resolution methods, and for making a reliable prediction of 
their success rate (Teunissen 2000, 2007).

In the last two decades, a significant research effort has 
been made for shaping and refining the GNSS stochastic 
model (Teunissen et al. 1998; Bona 2000; Tiberius and 
Kenselaar 2000; Liu 2002; Wang et al. 2002; Li et al. 2008; 
Amiri-Simkooei et al. 2009, 2013). Most studies agree that 
a realistic GNSS stochastic model consists of the following 
characteristics: (1) different variances for different observa-
tion types, together with satellite elevation dependence of 
the observations’ precision; (2) cross-correlation between 
different observation types; and (3) temporal correlation of 
the observables. Nevertheless, most GNSS software pack-
ages [for instance, Bernese (Dach and Walser 2015) and 
Gamit (Herring et al. 2010)] consider only the elevation-
dependent variance model and ignore correlation between 
observables, as an easy implementation of the stochastic 
model. As a result, the VC matrices estimated from the 
GNSS processing software are very optimistic and cause 
incorrect interpretations in the statistical analyses and incor-
rect quality assessment of the results (Han and Rizos 1995a, 
b; El-Rabbany and Kleusberg 2003; Erdogan and Dogan 
2019). Several studies have suggested using a scale factor 
(SF) with the basic VC matrix to achieve a more realistic 
stochastic results (Geirsson 2003; Kashani et al. 2004; Cetin 
et al. 2018; Erdogan and Dogan 2019). For better perfor-
mance, Li et al. (2008) suggested applying a pre-adjusted 
variance model according to the measurement types. Fur-
thermore, to reach the highest realistic VC matrix estima-
tion, a variance component estimation (VCE) procedures 
can be implemented with a full structured GNSS stochastic 
model (Teunissen 1988; Koch 1986, 1999; Yang et al. 2005; 
Amiri-Simkooei 2007; Li et al. 2011).

Although the literature holds significant studies on the 
GNSS stochastic model, the vast majority have been focused 
on the improvement in the positioning precision caused by 
the refined stochastic model. Considering that the stochastic 
model is also used for statistic testing and quality assess-
ment, even more important from its effect on the positioning 
precision is its statistical nature reliability. Reliable stochas-
tic model is important as a planning tool since it allows to 
simulate and predict positioning accuracy without having 
real observations in hand. A few studies have analyzed the 
impact of the stochastic model on statistical procedures 
that involve GNSS positioning. Li et al. (2015) investigated 
the GNSS elevation-dependent modeling and its impact on 
w-statistic testing. In Amiri-Simkooei et al. (2016), the effect 
of the realistic stochastic model on the ambiguity resolution 
success rate was evaluated. Li (2016) and Li et al. (2017) 
studied the influence of the stochastic model on the statisti-
cal tests with triple-frequency BeiDou. Unfortunately, far too 
little attention has been paid to authenticate the statistical 

characteristic of the refined stochastic model in GNSS 
positioning, and no controlled research has been found to 
investigate how this statistical nature is affected by different 
baseline lengths.

This paper focuses on testing the reliability of the GNSS 
stochastic model through its statistical nature in different 
baseline lengths. Section 2 presents the general form of LS 
adjustment. The procedures for evaluating a general stochas-
tic model using Chi-distribution and binomial distribution 
tests are presented in Sect. 3. A realistic GNSS stochastic 
model estimation using the least-squares variance compo-
nent estimation (LS-VCE) is then presented in Sect. 4. Sec-
tion 5 presents a novel procedure for evaluating the GNSS 
stochastic model based on the statistical nature of the GNSS 
ambiguity vector solution. In Sect. 6, a numerical analysis is 
made based on the implementation of the proposed method 
in different baseline configurations. The conclusions are then 
summarized in Sect. 7.

2 � Least‑squares estimation

Consider the general formulation of linear(ized) observation 
equations

where E(⋅) and D(.) are the mathematical operators for 
expectation and dispersion. y is m × 1 observations vector, 
A is m × n design matrix of full column rank to the n × 1 
unknown parameters vector x , and � is m × 1 random noise 
vector with VC matrix Qy.

If � is normally distributed, we can use the inverse of 
the observations’ variance–covariance matrix as a weight 
matrix to obtain the least square solution of Eq. (1) as fol-
lows (Koch 1988):

Assuming both functional and stochastic models are clear 
from errors misspecifications, x̂ is the best linear unbiased 
estimation (BLUE) of x with Qx̂ as the corresponding esti-
mated VC matrix, resulting from the law of variance–covari-
ance propagation. The estimated Qx̂ has an important role 
in reflecting the quality of the estimated vector x . In survey 
applications, one can use it to assess the statistical con-
fidence region in which the true value of x is located. In 
that manner, we should expect that a realistic model of the 
observation VC matrix would lead to Qx̂ that reflects the 
true statistical characteristic of the estimated parameters in 
x̂ (Cooper 1987).

(1)y = Ax + �,E(�) = 0; D(�) = Qy

(2)x̂ =
(
ATQ−1

y
A
)−1

ATQ−1
y
y,Qx̂ =

(
ATQ−1

y
A
)−1
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An inadequate stochastic model will result with poor 
quality assessment and nonreliable statistical analysis in the 
solution. Nevertheless, a realistic VC matrix is not always 
available, and assumptions concerning the stochastic model 
are made in the data processing. Hence, a testing procedure 
is required to assess the reliability level of the assumed VC 
matrix.

3 � Stochastic model testing procedures

Two methods for testing the reliability of the stochastic 
model are presented here: (1) using the Chi-square distri-
bution to test whether a true reference is compatible with 
the estimated dataset under the assumption of normal dis-
tribution behavior, and (2) using the binomial distribution 
to obtain the true coverage probability of a dataset, regard-
less of its error distribution behavior, and compare it with a 
normal distributed one. The different approaches are in the 
heart of the GNSS stochastic model’s testing procedures that 
will be described in Sect. 5.

3.1 � Testing stochastic model using Chi‑squared 
distribution

The Chi-squared distribution is used for testing hypoth-
eses about variances. In particular, it may be used to test 
whether or not a sample is compatible with a postulated 
probability density function in the so called ‘goodness-of-
fit’ test (Cooper 1987). This test is acceptable only under the 
premise that the observations noise elements are normally 
distributed, and the functional model is clear from biases 
(Tiberius and Borre 2000). In that case, x̂ in (2) holds a 
multinormal-distribution behavior with the following prob-
ability density function

Here, the expression

represents a family of hyper-ellipsoids centered at (x − x̂) , 
bounding the possible errors in x̂ with a statistical signifi-
cance level distributed as Chi-squared with n degrees of 
freedom. In case that x is known, Eq. (4) may be used to test 
whether x̂ and Qx̂ meet the criterion of normal distribution 
through hypotheses.

Consider � =
[
�1,�2,… ,�n

]T as the true values vector 
of x , we can use the following hypothesis to test whether x 
is adequate with � under x̂ and Qx̂:

(3)
f(x) =

1

(2𝜋)
n

2

√||Qx̂
||
e−

1

2
(x−x̂)tQ−1

x̂
(x−x̂)

(4)(x − x̂)t ⋅ Q−1
x̂

⋅ (x − x̂) ∼ 𝜒2
n

where the hypothesis test

is rejected if T > 𝜒2
n,1−𝛼

 for a given significance level �.
Notice that using (6) to test individual set of x̂ and Qx̂ 

will not result with deductions about the reliability of the 
stochastic model, rather the possibility that the specific set is 
acceptable with � as the true value of x . Too pessimistic Qx̂ 
for example, will result with deceptively higher probability 
of accepting H0 , even though Qx̂ is not realistic. Therefore, 
in order to test the reliability of the model, Eq. (6) should 
be reused with numerous independent sets of x̂ and Qx̂ . The 
histogram of the test results should be compared with the �2

n
 

distribution to evaluate if the current stochastic model yields 
the expected statistic characteristic for T .

3.2 � Testing stochastic model with binomial 
distribution

The binomial distribution is used here to obtain the empirical 
confidence interval (CI) of a binomial process. A binomial 
process, also referred to as a Bernoulli test, is a success–fail-
ure experiment with a certain probability of success. The CI 
aims to predict this probability for a given significance level 
by repeating the Bernoulli test with a series of true inde-
pendent datasets. A common approach to estimate the CI 
value using the binomial distribution is the so-called Wald 
approach (Brown et al. 2001; Sauro and Lewis 2005). Using 
this approach, the CI is extracted as follows:

where Ŝ is the accepted success rate in the Bernoulli tests, 
M is the number of tests and za∕2 is the standard normal 
distribution coefficient used to define the confidence level 
according to � as follows

with Φ(.) being the standard normal distribution function 
(Brown et al. 2001).

In controlled survey applications, one can use the 
obtained CI value to ratify the stochastic nature of a variable 
(Luo et al. 2011). This is done by implementing a series of 
Bernoulli tests that examine whether the area that is defined 
by Qx̂ around an estimated variable x̂ is indeed holding the 

H0 ∶ x = �

(5)H1 ∶ x ≠ �

(6)T = (𝜇 − x̂)t ⋅ Q−1
x̂

⋅ (𝜇 − x̂) ∼ 𝜒2
n

(7)CI = Ŝ ±
za∕2

�
Ŝ
�
1 − Ŝ

�
√
M

(8)za∕2 = Φ−1
(
1 −

�

2

)
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true reference value in a suspected rate (see Fig. 1 for two-
dimensional x̂ illustration). In reference to GNSS applica-
tions, the Bernoulli tests were used through Monte Carlo 
simulation to study the empirical (realistic) integer ambigu-
ity resolution success rate (Hou et al. 2016). To this end, Ŝ 
in Eq. (7) equals the fix rate of the integer ambiguity from 
M independent baselines solution, and � is chosen for the 
tolerance measurement of the CI. When the CI value is close 
to the expecting success rate, it implies that the GNSS sto-
chastic model is reliable.

4 � GNSS stochastic model estimation

The geometry-based single-difference (SD) model is used 
here to evaluate the GNSS stochastic model (Liu 2002; Li 
et al. 2008, 2015). The SD model absents from mathematical 
correlation between different satellites making it more suit-
able for estimating the satellite-specific variance compared 
to the double-difference (DD) model. Though, both models 
were studied and successfully employed for estimating the 
stochastic model (Amiri-Simkooei et al. 2009; Li 2016). 
Here, an adjustment was added to the SD functional model 
formation in Li et al. (2015) in order to account for the iono-
spheric influence in the medium- and long-range baselines 
observations. After presenting the functional model develop-
ment in matrix form, the related stochastic model is given 
and the LS-VCE method is described for evaluating the sto-
chastic model’s components.

4.1 � The functional model

The general SD phase and code observations equations for a 
single-epoch and single-frequency case are formulated with 
the additional ionospheric element to Li et al. (2015) as

where subscripts k and j represent the epoch number and the 
frequency, respectively; �k,j =

[
�1
k,j
,… ,�m

k,j

]T
 and 

Pk,j =
[
P1
k,j
,… ,Pm

k,j

]T
 are the SD phase and code observa-

tions vectors with superscript of the satellite number; 
�k =

[
�1
k
,… , �m

k

]T is the SD satellite distance vector; em is 
an m-column vector with all elements equal to 1 and �tk is 
the SD receiver clock error; Nj =

[
N1
j
,… ,Nm

j

]T
 is the SD 

ambiguity vector with Ni
j
= zi

j
+ �0

j
 , where zi

j
 is an integer 

and �0
j
 is the initial phase bias, and �j is the corresponding 

wavelength; �k =
[
�1
k
,… , �m

k

]
 is the SD ionosphere delay vec-

tor in TEC units and �j = 40.3 ⋅ 1016∕f 2
j
 is the ionospheric 

factor for frequency fj ; Tk =
[
T1
k
,… , Tm

k

]
 is the SD tropo-

spheric delay vector; and ��k,j
=
[
�1
�k,j

,… , �m
�k,j

]
 and 

�Pk,j
=
[
�1
Pk,j

,… , �m
Pk,j

]
 are the phase and code observations 

noise vectors.
Following Liu (2002) and Li et al. (2008), Eq. (9) can be 

reparametrized to assimilate prior information of DD inte-
ger ambiguities while preserving their integer nature. The 
observation then take form as

with

where �tk,j serve as a new parameter equivalent to the 
receiver clock error;Nj is the reparametrized ambiguity 
vector; aj is the DD integer ambiguity vector; and D is the 
differential matrix with the first satellite as reference.

In order to maintain adequate matrix rank in multi-epoch 
solution, an element is added here to represent a common 
temporal change in the receiver clock error for both phase 
and code observations. Equations (10) and (11) are then 
reparametrized as

(9)

�k,j = �k + em�tk − �jNj − �j�k + Tk + ��k,j
,E

(
��k,j

)
= 0;

D
(
��k,j

)
= Q�k,j

(10)
Pk,j = �k + em�tk + �j�k + Tk + �Pk,j

,E
(
�Pk,j

)
= 0; D

(
�Pk,j

)
= QPk,j

(11)�k,j = �k + em�tk,j − �jNj − �j�k + Tk + ��k,j

(12)�tk,j = �tk − �jN
1
j

(13)Nj =
[
0, aT

j

]T

(14)aT
j
= DTNj

(15)DT =
[
−em−1, Im−1

]

Fig. 1   Stochastic model evaluation with Bernoulli tests. For two-
dimensional x̂ , an area defined by Qx̂ should succeed in holding the 
true reference value with a suspected rate of CI = 39%
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and

with �t0 and �t0,j the time constant variables representing the 
receiver clock equivalents in the first epoch and Δtk being the 
temporal change in the receiver clock error.

Permanent stations with known coordinates in addition 
to precise ephemeris can be used to enhance the functional 
model’s strength during the stochastic model estimation pro-
cess. In this case, the geometric parameter �k can accurately 
be calculated and the DD ambiguities can be obtained from 
a baseline solution with fixed coordinates. The float ambi-
guities from this solution can be fixed to their integer value 
using the well-known LAMBDA approach with very high 
success rate (Teunissen 1995; Verhagen and Li 2012). In 
addition, the tropospheric delays can be obtained using com-
monly used tropospheric models, as, for example, the Vienna 
Mapping Function (VMF) in Landskron and Böhm (2018).

By shifting all the extracted values to the left side, Eqs. 
(16) and (17) become

and

Arranging Eqs. (18) and (19) in matrix form, as in Eq. (1), 
results in the following

where ⊗ denotes the Kronecker product; 0m is an m-column 
vector with all elements equal to zero; and QSD

y
 is the SD 

code and phase observations VC matrix. The degrees of 
freedom (3m − 1)k − 2 follow from 4mk observations minus 
three time-constant unknowns, k − 1 receiver clock’s tempo-
ral drift unknowns and mk ionosphere delay unknowns. The 
form of QSD

y
 and its estimation process are discussed next.

(16)Pk,j = �k + em
(
�t0 + Δtk

)
+ �j�k + Tk + �Pk,j

(17)�k,j = �k + em

(
�t0,j + Δtk

)
− �jNj − �j�k + Tk + ��k,j

(18)Pk,j = Pk,j − �k − Tk = em
(
�t0 + Δtk

)
+ �j�k + �Pk,j

(19)
�k,j = �k,j − �k + �jNj − Tk = em

(
�t0,j + Δtk

)
− �j�k + ��k,j

(20)

⎡⎢⎢⎢⎢⎣

𝜑[0…k−1],1

𝜑[0…k−1],2

P[0…k−1],1

P[0…k−1],2

⎤
⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

em⋅k
03m⋅k

,

0m⋅k
em⋅k
02m⋅k

,
02m⋅k
e2m⋅k

, e4 ⊗

�
eT
k−1

⊗ 0m
Ik−1 ⊗ em

�
,

⎡⎢⎢⎢⎣

−𝜇1

−𝜇2

𝜇1

𝜇2

⎤⎥⎥⎥⎦
⊗ Im⋅k

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

𝛿t0,1

𝛿t0,2
𝛿t0

Δt[1…k−1]

𝜄[0…k−1]

⎤⎥⎥⎥⎥⎥⎦

+ 𝜀; E(𝜀) = 0, D(𝜀) = QSD
y

4.2 � The stochastic model

In this contribution, the DD realistic stochastic model is con-
sidered as (Amiri-Simkooei et al. 2009, 2013, 2016)

where matrices ΣC,ΣT and ΣDD
E

 are defined as

and

and

with ΣC as cross-correlation matrix, consisting of ten VC 
elements for dual-frequency phase and code observation 
types; ΣT as k × k time correlation matrix, consisting of k VC 
unknowns for k-epochs and assuming that the correlation is a 
function of the time difference alone, e.g., �(ij) = �(�) = �(i−j) ; 

and last, ΣDD
E

 as (m − 1) × (m − 1) elevation-dependent sat-
ellite weight matrix, where m is the satellites number and 
satellite #1 is assumed to be the reference satellite.

In order to use (21) with the SD functional model pre-
sented here, a modification is needed. The DD notation 
implies that ΣDD

E
 encapsulates the DD correlations between 

different satellites and thereby it should be modified to be 
integrated in the SD version of the stochastic model, whereas 

(21)QDD
y

= ΣC ⊗ ΣT ⊗ ΣDD
E

(22)ΣC =

⎡
⎢⎢⎢⎢⎣

�2
�1

��1�2

��1�2 �2
�2

��1P1 ��1P2
��2P1 ��2P2

��1P1 ��2P1
��1P2 ��2P2

�2
P1

�P1P2
�P1P2 �2

P2

⎤
⎥⎥⎥⎥⎦

(23)ΣT =

⎡⎢⎢⎢⎣

�(0) �(1)
�(1) �(0)

… �(k−1)
… �(k−2)

⋮ ⋮

�(k−1) �(k−2)

⋱ ⋮

… �(0)

⎤⎥⎥⎥⎦

(24)

ΣDD
E

= 2

⎡
⎢⎢⎢⎢⎣

�2
[1]

+ �2
[2]

�2
[1]

�2
[1]

�2
[1]

+ �2
[3]

… �2
[1]

… �2
[1]

⋮ ⋮

�2
[1]

�2
[1]

⋱ ⋮

… �2
[1]

+ �2
[m]

⎤⎥⎥⎥⎥⎦
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ΣC and ΣT may remain as in Eqs. (22) and (23). Since a sin-
gle SD observation is a linear combination of two raw obser-
vations, its variance can easily be expressed using the error 
propagation law. Assuming both base and rover share the 
same variance �2

[m]
 for a given satellite in a specific epoch, 

the variance for the related SD observation is then expressed 
as �2

SD
= 2�2

[m]
 . Applying this for all satellites, and assuming 

that the correlation between channels is absent, the eleva-
tion-dependent satellite weight matrix for the SD is then

and the overall stochastic form of the SD observation is read 
by

Notice that using the differential matrix D from Eq. (15), 
one can express the relation between ΣSD

E
 and ΣDD

E
 as

The formulation of the stochastic model in Eqs. (21) 
and (26) is considered to be more realistic compared to the 
general diagonal structure used by many researches (Amiri-
Simkooei 2007).

It should be mentioned, however, that this model assumes 
that time correlation and satellite elevation dependence is 
identical for all observation types which may not always be 
the case (Amiri-Simkooei et al. 2009). For a more general 
stochastic model presentation regarding the SD observation 
form, the readers are referred to Li (2016). Furthermore, due 
to the changes in time of the satellite’s elevation, together 
with code and phase variance, this structure should be 
restricted for a limited number of adjacent epochs. Therefore, 
over a long time span, the observations are to be divided into 
subgroups with a relatively small number of k-epochs.

The unknown VC components in Eq. (26) may be esti-
mated using the LS-VSE method, which will be described in 
the following section. Once estimated, the VC components 
may be used to obtain parameters for a given predefined 
covariance function. Here, a commonly used elevation-
dependent and time correlation covariance functions were 
implemented through ΣSD

E
 and ΣT estimations. The satellite 

elevation-dependent variance matrix, ΣSD
E

 , may employ the 
exponentially based elevation-dependent model as (Euler 
and Goad 1991)

where �[s�] is the standard deviation of satellite s with � as 
an elevation angle; a0 , a1 and �0 . are the model parameters to 
be estimated. The time correlation matrix, ΣT , may employ a 

(25)ΣSD
E

= 2 ⋅ diag
(
�2
[1]
,… , �2

[m]

)

(26)QSD
y

= ΣC ⊗ ΣT ⊗ ΣSD
E

(27)ΣDD
E

= DT
⋅ ΣSD

E
⋅ D

(28)�[s�] = felv(�) = a0 + a1e
(−�∕�0)

first-order Gauss–Markov process with autocovariance func-
tion as Odolinski (2012)

where � is the time interval, b0 is the covariance amplitude 
and �0 is the correlation length.

The predefined functions in (28) and (29) should be care-
fully handled as they form a specific pattern for the covari-
ance behavior. Incompatible pattern, if chosen, will lead to 
fault stochastic model (Li et al. 2015). For comparison with 
(29), the logarithmic process is suggested here to handle the 
time correlation, with the autocovariance function as

where c0 and c1 are the unknown parameters for estimation.
The unknown parameters of the nonlinear models given in 

Eqs. (28)–(30) can be obtained by a nonlinear least-squares 
fit to the estimated variance components from LS-VCE.

4.3 � Least‑squares variance component estimation 
(LS‑VCE)

Several variance component estimation (VCE) methods may 
be implemented for estimating the unknown VC components 
(Rao 1971; Koch 1986, 1999; Yang et al. 2005; Li et al. 
2011). Among them, the LS-VCE method utilizing least-
squares adjustment to estimate the variance–covariance (VC) 
matrix components (Teunissen 1988). Under the assumption 
of normally distributed observations, the LS-VCE method 
should result in identical estimation with those of many of 
the existing VCE methods (Amiri-Simkooei 2007; Teunis-
sen and Amiri-Simkooei 2008; Amiri-Simkooei et al. 2016).

In LS-VCE method, the VC matrix of the linear(ized) 
observation equation in Eq. (1) is expressed as the following 
linear combination

where �i, i = 1,… ,P are the unknown VC components and 
Qi , i = 1,… ,P , are the known cofactor matrices construct-
ing the observations covariance matrix Qy.

The calculation of the unknown VC components is read by

where 𝜎̂ =
[
𝜎1,… , 𝜎p

]T is a p-column vector with the esti-
mated VC components; N is a p-squared matrix and l is a 
p-vector, both obtained as (Amiri-Simkooei 2007; Teunissen 
and Amiri-Simkooei 2008)

(29)�(�) = ftime1(�) = b0e
−�∕�0

(30)�(�) = ftime2(�) = c0 + c1 log (�)

(31)D(�) = Qy =

p∑
i=1

�iQi

(32)𝜎̂ = N−1l

(33)nij =
1

2
tr
(
QiQ

−1
y
P⊥
A
QjQ

−1
y
P⊥
A

)
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and

where nij and li ( i = 1,… ,P and j = 1,… ,P) are the com-
ponents of N and l, respectively, tr denotes the action of trace 
of a matrix, and ê = P⊥

A
y is a vector of the least-squares 

r e s i d u a l s ,  w i t h  t h e  o r t h o g o n a l  p r o j e c t o r 
P⊥
A
= I4km − A

(
ATQ−1

y
A
)−1

ATQ−1
y

.
For practical manners, when using LS-VCE with long 

observations time span, it was suggested to divide the entire 
observations time span into K multi-epoch solution groups 
(Amiri-Simkooei et al. 2009). This strategic allows to estimate 
the time-variant components and overcomes the problems of 
computational burden and memory for the VCE methods. 
Since the design matrix and the covariance matrix remain 
the same among the groups, the resulted variance–covariance 
components may average over time or be used in a time-vari-
ant model adjustment, as, for example, in Eqs. (28) and (29).

5 � GNSS stochastic model testing

Once estimating the GNSS stochastic model, a reliability 
testing procedure is suggested to assure that the stochastic 
model properly encapsulates the statistical properties of the 
observations. As shown in Eq. (6), testing a stochastic model 
is a statistical procedure that relies on a true reference value 
for the comparison with the estimated variables. Therefore, in 
GNSS solution, one can utilize the deterministic nature of the 
integer ambiguity variables. After fixing the integer ambiguity 
vector with a considerably high confidence level, the fix solu-
tion can serve as a true reference data in the analysis.

5.1 � Testing the integer ambiguity float solution

To test the stochastic model through the integer ambigu-
ity vector, the estimated ambiguity float solution, 𝛼̂ , and its 
covariance matrix, Q𝛼̂ , should be extracted as a function of 
the observation VC matrix Qy . For this purpose, the general 
formulation of the observation equations given in Eq. (1) is 
partitioned as

where a ∈ Zn is the unknown DD integer ambiguities n-col-
umn vector; b ∈ Rq is the unknown baseline components 
q-column vector, including atmospheric delays and clock 
errors; and A1 , and A2 are their corresponding design matrices 
derived from the observation model. The above formulation 
may form either SD or DD observation model: for the SD 
case, when y represents SD code and phase observations as in 
Eqs. (16) and (17), the observation VC matrix is equivalent to 

(34)li =
1

2
êTQ−1

y
QiQ

−1
y
ê

(35)y = A1a + A2b + �,E(�) = 0; D(�) = Qy

the estimated one, thus Qy = QSD
y

= ΣC ⊗ ΣT ⊗ ΣSD
E

 . For the 
DD case, when y represents DD code and phase observations, 
as, for example, in the long baseline implementation in Odijk 
et al. (2014), the observation VC matrix should be calculated 
using Eqs. (21) and (27) as

From Eq. (36), the float ambiguities vector estimation can 
be expressed as (Teunissen 1993)

with A1 = P⊥
A2
A1 and P⊥

A2
= I − A2

(
AT
2
Q−1

y
A2

)−1

AT
2
Q−1

y
 as 

an orthogonal projector. Applying the error propagation law 
to Eq. (37) gives after simplification the following expres-
sion for the float ambiguities VC matrix

Since it is assumed that the float ambiguity solution is 
normally distributed, having both the float ambiguity vector 
𝛼̂i and its covariance matrix Q𝛼̂i

 for i = 1… k independent 
epochs, together with the true reference fix value a , enables 
to execute k times the hypothesis testing in Eq. (6) as

where n is the number of ambiguity elements in a . For 
large k , the histogram for all the test values Ti ( i = 1… k ) 
is expected to form the shape of the �2

n
 distribution. Incom-

patibility between the histogram and the �2
n
 distribution 

graph indicates a poor reliability of the stochastic model. 
Figure 2, for example, shows two histograms of a simulated 
test values with comparison to the �2

10
 distribution graph. 

In the simulation, two sets of 1000 normal distributed float 
ambiguities vectors were randomized with 0.1-diagonal VC 
matrix according to Teunissen (1998a). Each vector consists 
of ten float ambiguities that distribute as N

(
0, 0.1 ⋅ I10

)
 . The 

float ambiguities vectors from Set #1 were used with the 
original VC matrix to obtain the test values, whereas Set #2 
used the more optimistic VC matrix with 0.5 factorization 
to the original one. It is clear that the histogram of Set #1 
fits to the �2

10
 distribution graph, implying that the stochas-

tic model is admissible. Contrary to this, the histogram of 
Set #2 shows relatively large test values, implying that the 
stochastic model is too optimistic as expected.

The procedure presented here is based on a visual impres-
sion to test the reliability of the stochastic model. To enrich 
the procedure with numerical score, a test for the ambigu-
ity resolution success rate using the binomial distribution 
is suggested.

(36)Qy = QDD
y

= ΣC ⊗ ΣT ⊗
(
DT

⋅ ΣSD
E

⋅ D
)

(37)𝛼̂ =
(
A
T

1
Q−1

y
A1

)−1

A
T

1
Q−1

y
y

(38)Q𝛼̂ =
(
A
T

1
Q−1

y
A1

)−1

(39)Ti =
(
a − âi

)t
⋅ Q−1

âi
⋅
(
a − âi

)
∼ 𝜒2

n
, i = 1… k
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5.2 � Testing the integer ambiguity success rate

A common tool to examine the fix integer value is the ambi-
guities resolution success rate (SR). The SR is a statistical 
value that reflects the probability of correct integer value 
as a function of the integer estimation method and the float 
ambiguity VC matrix. Since the SR does not depend on real 
measurements data, a reliable stochastic observation model 
will allow to use the SR as a planning tool, as done, for 
example, by Jonkman et al. (2000) and Milbert (2005). Vice 
versa, testing the validity of the SR prediction level can lead 
to a deduction about the reliability of the general stochastic 
model.

In Teunissen (1999), the SR is proved to be optimal for 
the integer least-squares (ILS) estimation methods like 
LAMBDA, although approximation is needed to obtain its 
value. As an alternative approach, the success rate of the 
integer bootstrapping method is suggested (Verhagen 2005; 
Odijk et al. 2014). Integer bootstrapping is a simple method 
with near-optimal performance, in which the float ambigui-
ties are conditionally rounded to the nearest integers. The 
bootstrapped success rate can be exactly computed with the 
simple expression

where SRB is the bootstrapped success rate that serves as a 
lower bound for SRILS and 𝜎âj|J is the standard deviation of 

(40)SRB =

n∏
i=1

2Φ

(
1

2𝜎âj|J

)
− 1

the j th ambiguity obtained through conditioning on the pre-
vious J = 1,… , (j − 1) ambiguities.

The theoretical SR in Eq. (40) is computed based on the 
stochastic model alone. Since this SR is defined as the prob-
ability of success, it is in fact equivalent to the CI definition 
of the Bernoulli test with a criterion of success in fixing the 
float ambiguity vector to the true integer solution. Hence, 
extraction of the CI value in Eq. (7), based on a repeated 
Bernoulli test with true reference and empirical data, may be 
compared to the averaged SR value obtained from Eq. (40).

6 � Numerical test

6.1 � Experiment description

A reliability test procedure is conducted to examine and 
compare the performance of the GNSS stochastic model 
for three baselines: ELAT-NRIF (60 km), ELAT-YOSH 
(289 km) and ELAT-MRAV (329 km). The reference sta-
tions located in the Middle East region (see Fig. 3) and 
part of the CORS (Continuously Operating Reference Sta-
tion) network in Israel were maintained by the Survey of 
Israel (SOI). For each baseline, the stochastic model is 
estimated and tested using the reliability testing procedure 
flow demonstrated in Fig. 4 and implemented in MATLAB. 

Fig. 2   Simulated histograms of the test value (T) with comparison to 
the �2

10
 distribution graph. Dark-orange columns represent the results 

with a decent VC matrix; light-orange columns represent the result 
with a factorized VC matrix; and orange columns represent the shared 
area of both histograms

Fig. 3   Permanent stations from SOI network used in the experiment



Stochastic model reliability in GNSS baseline solution﻿	

1 3

Page 9 of 17  20

The permanent stations precise coordinates were obtained 
through a daily adjustment of the SOI’s permanent network 
using the Bernese GNSS Software, version 5.2 (Dach and 
Walser 2015), which is also used to detect outliers in the 
observations files. The tropospheric delays were calculated 
using the Vienna Mapping Function (VMF) (Landskron and 
Böhm 2018) with gridded VMF3 files archived in http://vmf.
geo.tuwie​n.ac.at/trop_produ​cts/GRID/. To enable compari-
son between the estimated stochastic models, the different 
permanent stations that form the rover in each baseline share 
the same configuration of receiver and antenna types: Javad 
Delta-3 receiver and LEIAT504 LEIS antenna. The common 
base station (ELAT) is equipped with LEICA GRX1200Pro 
receiver and LEIAT504GG SCIS antenna. All observa-
tions were made on February 11, 2018 (00:00:00–23:59:55 
UTC), with epoch interval of 5 s and four observation type 
(P1-P2-L1-L2). For each hour, only full observed satellites 
above 10◦ elevation mask were used. The final number of 
satellites in the computations is presented in Fig. 5.

6.2 � Estimating the stochastic models

Following the previous theory, the stochastic model for each 
baseline was estimated. At first, a DD observation model 
adjustment was carried out with maximum time span (24 
groups of 1-h solution) and fixed stations’ coordinates to 
extract the most accurate DD float ambiguities vector. For 
each 1-h solution, the DD ambiguities vector consists of 
2(m − 1) float DD ambiguities from the dual-frequency 
observations to m satellites. The float ambiguities were then 
fixed to their integer values using the LAMBDA method 
implementation in MATLAB (Verhagen and Li 2012). These 
ambiguities, together with the precise stations’ coordinates 
and precise ephemeris data, were used to obtain the SD fixed 
observations as in Eqs. (18) and (19). The unknown VC 
components were then obtained using the LS-VCE process 
with 1440 groups of 1-min observation time span, divided 
from the total observations time (see Fig. 4).

The LS-VCE solution implemented for each time group 
in stepwise manner as follows (Amiri-Simkooei et al. 2013):

1.	 Estimation of the VC components in ΣC

2.	 Estimation of the satellite-elevation factors in ΣSD
E

3.	 Estimation of the time covariance factors in ΣT

At first, the components of ΣC were estimated while the 
time correlation and the satellite-elevation-dependent factors 
were assumed to be absent. To this end, ΣT was considered 
as identity matrix ( ΣT = Ik ) and ΣSD

E
 simplified to ΣSD

E
= 2Im . 

To increase the number of degrees of freedom in the esti-
mation procedure, the matrix ΣC is assumed here to contain 
only six components, instead of ten as in Eq. (22), as follows

with

and

(41)ΣC = ΣO ⊗ Σf

(42)ΣO =

[
�2
�

��P

��P �2
P

]

Fig. 4   Experiment flow for estimating and testing the reliability of 
the stochastic model
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Fig. 5   Number of GPS satellites in the computations
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where ΣO is the core observation-type VC matrix and Σf  is 
the related signal-frequency factors components matrix. The 
components in ΣO and Σf  were estimated using the LS-VCE 
routine in two steps: At first, the components in ΣO were 
estimated, while Σf  was assumed to be an identity matrix 
( Σf = I2 ); then, the estimated ΣO was introduced to the 
model and the components in Σf  were estimated.

Figure 6 presents the estimated VC components derived 
from ΣO for each time group in the different baseline solu-
tions. The signal-related observations’ standard deviation 
(STD) is considered using the estimated factor components 
in Σf  (for example, the variance for L1 observation is 
obtained by �2

�1
= �2

�
⋅ �2

f1
 ). This STD is relevant to the 

unique combination of the equipment in the baselines. The 
exact combination of receiver and antenna types is repeated 
for all baselines here, making it possible to compare between 
the estimated components. Here, a comparison is possible 
regarding the observation’s precision over time. Phase and 
code precision graphs resemble a random noise with approx-
imate mean values of 2.5 mm and 30 cm, respectively. All 
baselines share a similar precision trend, implying that the 
functional model is compatible and no significant systematic 
errors affect the observations. The covariance graphs, 
between phase codes and between frequencies, have approxi-
mately zero mean with altered noise level. While the noise 
level of the covariance between frequencies remains mainly 
consistent, the phase-code covariance graph is more sensi-
tive due to the different scale of the parameters. Irregulari-
ties in the estimation process may result from either high 
multipath or high-order atmospheric effect in the 1-min 
observation time span solution.

To add insight regarding the ionospheric contribution 
in the observation’s precision, the estimation of L1′s and 
P1′s STDs was repeated as in Fig. 6, however, with fix 
ionospheric delays that were extracted using the global 
ionospheric map (GIM) and considered as known values 
in (20). The GIM was obtained following the IONosphere 
map EXchange format (IONEX) (Schaer et al. 1998), with 
IONEX files archived in ftp://cddis​.nasa.gov/gnss/produ​
cts/ionex​/. The resulted STDs are presented in Fig. 7. It is 
clear that the ionospheric residuals here are significantly 
degraded L1′s accuracy, especially for longer baselines. This 
reflected in both the STD values and their noise level. P1′s 
accuracy, however, is less affected due to the originally low 
accuracy. The results imply that the ionosphere components 
must be considered in functional model when estimating 
the core observation’s variance for medium- and long-range 
baselines.

(43)Σf =

[
�2
f1

�f1f2
�f1f2 �2

f2

]

Table 1 summarizes the mean and precision of the esti-
mated VC components. The estimated STDs of the phase 
observations (L1 and L2) for all baselines in the float iono-
sphere instance are between 2.0 to 2.9 mm, and the code 
observations (P1 and P2) are between 27.0 and 30.8 cm. The 
precision of these estimates, calculated from the standard 
deviation of the groupwise samples, is at millimeter level 
for the phase observations and at sub-decimeter level for the 
code observations. In general, the results here are reason-
able and resemble the commonly used nominal STD values 
( �� = 3 mm, �P = 30 cm), with practically no correlations 
between observation types. The results also indicate that the 
standard deviation of the phase observations is affected by 
the baseline length—larger baselines with degraded accu-
racy and vice versa. This may sound trivial but in fact no 
familiar weighting schemes address this parameter in the sto-
chastic modeling. The difference here between the estimated 
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Fig. 6   Estimated VC components ( ̂𝜎𝜑1 , 𝜎̂P1 , 𝜎̂𝜑P , 𝜎̂f
1
f
2
 ) from ELAT-

NRIF (60  km, blue line), ELAT-YOSH (289  km, green line) and 
ELAT-MRAV (329  km, red line) baselines with 1440 groups of 
1-min observations time span
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phase standard deviations in the longest baseline (ELAT-
MRAV) and in the shortest baseline (ELAT-NRIF) is up to 
0.7 mm which is about 70\% from this parameter precision. 
This effect of the baseline length is obviously more notice-
able in the fixed ionosphere instance due to larger unmod-
eled ionospheric influence in the observations. Differently, 
the code’s precision here appears not to be affected by the 
baseline length. This may relate to the large noise level of 
the code observations comparing to the ionospheric impact. 
As a result, most of the ionospheric effect due to the baseline 
length is absorbed in the phase’s variance estimation and 
less noticeable in the code.

In the second stage of the overall stochastic model esti-
mation, the components of ΣSD

E
 , the satellites’ elevation 

dependence covariance matrix, were estimated. The esti-
mated components of the covariance matrix ΣC from the 
previous step were introduced into the stochastic model. The 
autocorrelation matrix ΣT is still assumed to be an identity 
one. The components of the diagonal matrix ΣSD

E
 were then 

estimated for each time group using the LS-VCE routine. 
Each component captures variance for a specific satellite’s 
mean elevation angle in the group. All the estimated compo-
nents from all time groups were used together to adjust the 

three parameters of the elevation-dependent variance model 
in Eq. (28). The adjusted models’ parameters together with 
root-mean-squares (RMS) for each of the tested baselines 
are summarized in Table 2.

Figure 8a presents the L1′s STDs for each satellite in all 
time groups, together with the adjusted elevation model 
function, as a function of the satellite elevation angle in 
ELAT-NRIF baseline. The standard deviations are pre-
sented in mm units by multiplying ��1 with the related fac-
tor for each satellite from ΣSD

E
 . Figure 8b presents together 

the adjusted models for all the tested baselines. Notice here 
also how the baseline length is affecting the STD graph. At 
minimum elevation angle, the difference between ELAT-
NRIF (60 km) and ELAT-MRAV (329 km) is approximately 
2 mm, which is considerably large comparing the RMS of 
both the models. Notice also how the RMS is increasing as 
the baseline length gets larger. This reinforces the statement 
that atmospheric residuals cause irregularities and degrade 
the estimation precision of the observations’ STDs.

In the last stage of the stochastic model estimation, the 
autocovariance matrix ΣT was determined. Here, the pre-
estimated components in ΣC and ΣSD

E
 are assumed to be 

known and introduced to the model. Then, the components 
of ΣT were estimated using the LS-VCE routine. The esti-
mated components were then used to adjust the autocovari-
ance function models in Eqs. (29) and (30). The adjusted 
parameters for both models, together with RMS for each of 
the tested baselines, are summarized in Table 3.

In order to learn about the effect of the sampling inter-
val on the autocovariance estimation process, the LS-
VCE method was implemented in three sampling interval 
modes—5, 10 and 20 s. In each mode, time groups were 
composed with a constant number of 12 epochs, making the 
total amount of time groups in 24-h data equal 1440, 720 
and 360 (for 5, 10 and 20 s sampling interval, respectively). 
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Fig. 7   Estimated phase and code STDs ( ̂𝜎𝜑1 and 𝜎̂P1 ) with fixed iono-
sphere value from GIM

Table 1   Mean standard 
deviations and precisions from 
the overall groupwise LS-VCE 
in each baseline

Baseline Ionosphere 𝜎̂𝜑1 [mm] 𝜎̂𝜑2 [mm] 𝜎̂P1 [mm] 𝜎̂P2 [mm] 𝜎̂𝜑P [–] 𝜎̂f
1
f
2
 [–]

ELAT-NRIF (60 km) Float 2.2 ± 1.0 2.0 ± 0.9 300 ± 66 282 ± 62 15 ± 200 0.0 ± 0.2
Fix 14.9 ± 6.8 345 ± 56

ELAT-YOSH (289 km) Float 2.8 ± 1.5 2.6 ± 1.4 308 ± 67 286 ± 62 19 ± 304 0.0 ± 0.2
Fix 65.2 ± 31.9 326 ± 59

ELAT-MRAV (329 km) Float 2.9 ± 1.6 2.7 ± 1.5 294 ± 61 270 ± 54 −11 ± 283 0.0 ± 0.2
Fix 79.4 ± 35.5 287 ± 54

Table 2   Adjusted elevation model parameters

Baseline Parameters RMS [mm]

ELAT-NRIF (60 km) 0.4 + 5.9 exp(−θ/34.1) 0.6
ELAT-YOSH (289 km) 0.8 + 7.2 exp(−θ/34.0) 0.7
ELAT-MRAV (329 km) 0.4 + 8.0 exp(−θ/37.3) 0.8
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Figure 9 presents the estimated autocovariance components 
for the different sampling interval modes in each baseline. 
The estimated autocovariance components are presented 
here as average with noise for each time lag. Similar to the 
results in Li (2016), the autocovariance components are 
noisier for larger time lags inside a single mode. This is due 
the smaller number of correlative epochs that participates in 
the components’ estimation for larger time lags. The results 
also show that the different sampling intervals have minor 
influence on the autocovariance components.
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Fig. 8   L1′s STD as a function of satellites elevation angle; a ELAT-NRIF estimated STDs and their adjusted model; b adjusted satellite elevation 
model for ELAT-NRIF, ELAT-YOSH and ELAT-MRAV baselines

Table 3   Adjusted autocovariance models parameters

Baseline Model Parameters RMS [–]

ELAT-NRIF (60 km) Exponential 0.6 exp(−�/296.7) 0.04
Logarithmic 0.8–0.1 log(�) 0.01

ELAT-YOSH (289 km) Exponential 0.6 exp(−�/356.4) 0.04
Logarithmic 0.9–0.1 log(�) 0.01

ELAT-MRAV (329 km) Exponential 0.6 exp(−�/323.5) 0.04
Logarithmic 0.8–0.1 log(�) 0.01
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Fig. 9   Estimated autocovariance factors for different sampling interval modes (5, 10 and 20 s) in ELAT-NRIF, ELAT-YOSH and ELAT-MRAV 
baselines
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In Fig. 10a, the comparison between the time-lag aver-
aged autocovariance components for all the tested baselines 
is presented. The general pattern of the autocovariance graph 
is similar for all baselines, indicating that the core behavior 
of the autocovariance due to the equipment configuration is 
kept toward the different baselines. The slightly differences 
(up to 0.1 autocovariance factor) may be derived from exter-
nal error sources such as multipath and atmospheric delays. 
Figure 10b presents the estimated autocovariance graph with 
both exponential and logarithmic adjusted models for ELAT-
NRIF baseline. From the visual impression, it is clear that 
the logarithmic model is better to capture the pattern of the 
autocovariance graph. The RMS of the logarithmic model 
(0.01) is also considerably small comparing with the RMS 
of the exponential model (0.04). This is common to all of 
the tested baselines, as reflected in Table 3.

6.3 � Testing the stochastic models

After estimating the stochastic model for each baseline, a 
testing procedure is conducted to explore the reliability and 
the contribution of the estimated VC matrix in practical uses. 
An implementation of the DD observation model adjust-
ment was performed to solve rovers position in each baseline 
using four different composed VC models (M1–M4). The 
different VC models, listed in Table 4, intend to reflect the 
influence of each component of the realistic stochastic model 
in Eq. (36). To achieve a meaningful statistical sample in the 
analysis, the overall observations’ time span was divided 
into 1440 groups of 1-min observations data. In each group, 
the estimated float ambiguity vector 𝛼̂i and its covariance 
matrix Q𝛼̂i

 were obtained and used, together with the known 

fixed ambiguity vector a , to calculate the test value T  in 
Eq. (6). In this calculation, only six ambiguities elements 
were considered to maintain adequate ambiguity vector size 
for all time groups. This number is equal to the minimum of 
six float DD ambiguities from the dual-frequency observa-
tions to four satellites.

Figure 11 presents the probability histograms for the T  
values together with the expected �2

6
 distribution graph for 

comparison. The sets differ by the baseline configuration 
(ELAT-NRIF, ELAT-YOSH and ELAT-MRAV) and the VC 
model used in the adjustment. The visual impression from 
the results clearly indicates that M3 and M4 lead to a bet-
ter compatibility with the expected �2

6
 distribution graph, 

compared to M1 and M2. The histogram deployment for 
all M1 and M2 cases exceeds the �2

6
 distribution graph 

boundaries and deceptively indicates on more optimistic 
stochastic model. The results here add interesting insight 
on the importance of time correlation modeling, even more 
than satellites-elevation weighting. Both M1 and M2 ignore 
time correlation and fail to achieve the expected statistical 
behavior. In contrary, M3 and M4 consider time correlation 
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Fig. 10   Autocovariance factors and function model; a estimated autocovariance factors for ELAT-NRIF, ELAT-YOSH and ELAT-MRAV base-
lines; b ELAT-NRIF estimated autocovariance factors together with both exponential and logarithmic adjusted models

Table 4   VC models used for testing. The composed VC models are 
calculated using Eq. (36)

VC Model Composing components

Σ
C ΣSD

E
Σ
T

M1 Estimated 2Im Ik

M2 Estimated Estimated Ik

M3 Estimated 2Im Estimated
M4 Estimated Estimated Estimated
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and behave properly, even though M3 ignores satellites-ele-
vation weighting. This would probably be more significant 
if more epochs will participate in the solution and introduce 
temporal covariance influence. From baseline configuration 
perspective, small and ignorable differences appear in the 
histogram’s compatibility level, implying that the estimating 
procedure of the VC matrix manages to capture the differ-
ence between the stochastic models.

The second testing procedure for the stochastic model 
reliability is done through the validity assessment of the inte-
ger ambiguity success rate. This test encapsulates the practi-
cal implication of using the different stochastic models. In 
this test, the reliability of the theoretical SR for a 1-min time 
span solution is examined. For each combination of baseline 
and VC model, an average of the theoretical SR, calculated 
using Eq. (40) for 1440 time groups, was obtained. The 
prediction of the theoretical SR was tested against the real 
level of success, represented by the CI value from Eq. (7). 
The CI value obtained by repeating the Bernoulli test with 

each one of the 1440 time groups and testing whether the 
bootstrapped fixed solution for the float ambiguities vector 
is equal to the known fix solution.

Figure 12 presents a comparison between the predicted 
and real ambiguity resolution SR values using the different 
stochastic models. Here also, the predicted SR in both M1 
and M2 appears to be not reliable and deceptively optimistic 
with an average value of 40\% for the different baselines, 
while the real level of success is significantly lower with an 
average of 2\%. In contrary, M3 and M4 show considerably 
more reliable stochastic models. The reliability is expressed 
in three aspects: First, the performance of the real ambigu-
ity fixing rates is improved, especially with M4. Second, 
the predicted SR values are considerably closer to the aver-
age of the CI values, showing high prediction level using 
the stochastic model. And third, the predicted SR values 
are dynamically changed between the different baselines, 
reflecting the expected altered influence of the atmospheric 
residuals on the ambiguity’s resolution. Nevertheless, there 

Fig. 11   Testing the reliability of the VC matrix for different VC models (M1-M4) through a comparison between the histogram of the test value 
(T) and the �2

6
 distribution graph
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are still small differences between the real SR value and the 
one predicted with full estimated VC matrix (M4). These 
differences may result from the stochastic model’s uncer-
tainty and the influence of irregularities from external errors 
in the observations.

7 � Summary and conclusions

This paper suggested statistical tests to assess stochastic 
models’ reliability in GNSS baseline solution. The Chi-
squared and the binomial process distributions were used 
to examine the float integer ambiguity VC matrix and its 
reliability in predicting the ambiguities resolution success 
rate. The presented approach was used to test a stochas-
tic model estimation routine based on the SD observation 
model and the LS-VCE method. Although specific stochas-
tic model was chosen, using only GPS satellites, the pre-
sented approach may further be used for analyzing more 
models, including multi-constellations ones, in the future. 
In practical applications, the presented approach may be 
used to determine which stochastic model is adequate to 
the equipment that is in used. A reliable stochastic model 
is necessary to simulate positioning accuracy and to predict 
ambiguity resolution SR without having real observations 
in hand. Hence, once accepting a stochastic model using 
the presented approach, trustful simulation (e.g. for mission 
planning) will be possible.

In the case study, stochastic models for a shared configu-
ration of receiver types were estimated and tested in different 
baseline lengths using 24-h observation data. The results 
provide a broad impression of the nature of the GNSS sto-
chastic model for general use. The following conclusions 
are summarized:

The GNSS observation precisions, and particularly the 
phase’s standard deviation, are affected by the baseline 

length. In the current case study, the average phase’s stand-
ard deviation in the longest baseline (329 km) is 2.9 mm and 
in the shortest baseline (60 km) is 2.2 mm, with a difference 
of about 70\% from this parameter precision. Thus, a reli-
able mission planning tool should address this parameter 
in the stochastic modeling. A future work is needed here 
to formulate the influence of the baseline length on the SD 
observation precisions in different atmospheric conditions.

As the baseline length increases, the stochastic model is 
less predictable and exposed to irregularities in the observa-
tion’s precision. This is probably the results from the remain-
ing high-order atmospheric effect in the observations.

A full realistic stochastic modeling using the LS-VCE 
procedure results with a decent VC matrix that manages to 
capture the expected multinormal-distribution nature of the 
DD adjustment results. To achieve reliable stochastic model, 
time correlation modeling is mandatory. Unlike satellites-
elevation weighting, ignoring time correlation will result in 
a deceptively optimistic stochastic model that does not form 
the expected statistical behavior. A proper function to model 
time correlation is the logarithmic-based function, which 
results in a better compatibility to the estimated autocorrela-
tion graph than the exponential function.

And last, the use of theoretical SR as a decision helper for 
the integer ambiguity resolution analysis should be restricted 
only for the case of using a reliable stochastic model. As 
shown here, a false captured stochastic model results in a 
very optimistic SR of around 40\% for the different base-
lines, while the real level of success is significantly lower 
with an average of 2\%.
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