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Abstract
A key prerequisite for fast and reliable solution convergence time in precise point positioning with ambiguity resolution is 
the successful determination of the initial integer ambiguity parameters. In this contribution, a reliable approach of partial 
ambiguity resolution based on the BIE using the t-distribution (BIE-td) is proposed and compared against existing algo-
rithms, such as the partial ambiguity resolution-based LAMBDA method (PAR-Ps) and the iFlex method proposed by the 
Trimble Navigation company. A 31-day set of GNSS measurements, collected in 2018 from 17 globally distributed GNSS 
continuously operating reference stations (CORS), were processed to determine the best-fit distribution for the GNSS 
measurements. It is found that the t-distribution with three degrees of freedoms provides a better fit compared to the Gauss-
ian distribution. The authors then propose a method for selecting the integer ambiguity candidates when using the BIE-td 
approach. This method is based on the differences of unknown parameters of interest (i.e. receiver’s coordinates) determined 
at two consecutive processing steps. Finally, another 30-day set of GNSS measurements, collected in 2019 from the same 
CORS, confirm that the iFlex method outperforms the PAR-Ps method in the sense of minimizing the position errors of a 
simulated kinematic test. In particular, compared to the PAR-Ps method for 99th percentile of errors, the iFlex method has 
an improved convergence time of about 10 min. In addition, the positioning performance using the BIE-td and iFlex methods 
is comparable, with a similar positioning accuracy for both horizontal and vertical coordinate components.

Keywords Precise point positioning (PPP) · Best integer equivariant (BIE) · Ambiguity resolution methods · Convergence 
time · Multi-frequency and multi-constellation GNSS

1 Introduction

A significant limitation of the precise point positioning 
(PPP) technique is slow solution convergence time. Tens of 
minutes are required for solutions to converge to decimetre-
level accuracy, even with carrier phase ambiguity resolution 

(PPP-AR) (Collins and Bisnath 2011; Ge et al. 2008; Geng 
et al. 2010a; Laurichesse et al. 2009, 2010). This constrains 
PPP uptake for real-time applications. Recent research 
shows that utilization of next generation Global Navigation 
Satellite System (GNSS) satellites transmitting on three or 
more frequencies is an essential requirement for reducing 
the convergence time of PPP solutions (Duong et al. 2019a; 
El-Mowafy et al. 2016; Geng et al. 2018; Laurichesse and 
Banville 2018).

Multi-frequency multi-constellation GNSS brings oppor-
tunities and challenges. The benefit of combining systems 
is to improve satellite geometry, redundancy, and atmos-
pheric delay estimability. A challenge for multi-frequency 
and multi-GNSS solutions is that it is not always possible 
to fix all carrier-phase ambiguities reliably. This is because 
multi-frequency multi-GNSS observations introduce more 
ambiguities, and the probability of correct integer estimation 
(also known as the “success rate”) may decrease when more 
ambiguities are involved (Teunissen 1999; Teunissen et al. 
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1999). However, there may be a subset of (linear functions 
of) ambiguities that can successfully be fixed to integers. 
Hence, partial ambiguity resolution (PAR) methods were 
developed to improve the reliability of ambiguity resolution 
and to “fix” a subset of the ambiguities.

Several PAR approaches have been proposed, differing 
in the criterion used to select the ambiguities to be fixed. 
Teunissen et al. (1999) introduced the first PAR method 
in order to select a subset of ambiguities based on a mini-
mum success rate. Another strategy attempted to only fix 
the ambiguities with longer wavelengths such as (extra) 
wide-lane linear combinations in the case of two or more 
frequencies (Cao et al. 2007; Li et al. 2010). Other selection 
criteria included ambiguities from satellites above a certain 
elevation angle, or ambiguities visible for a specific period 
(Takasu and Yasuda 2010). Another approach selected ambi-
guities associated with a specified signal-to-noise ratio cut-
off (Parkins 2011). Dai et al. (2007) selected a subset of 
integer ambiguities (or linear combinations of them), which 
proved to be identical in terms of the best and second-best 
results obtained using the Least-squares Ambiguity Decor-
relation Adjustment (LAMBDA) algorithm. However it is 
doubtful whether this is an appropriate selection criterion 
since those ambiguities might be identical but still be wrong 
in the presence of high noise or large biases (Verhagen et al. 
2011). Another PAR strategy comprised sequentially dis-
carding satellites until passing a critical value in the ratio 
test (Duong et al. 2019b; Li and Zhang 2015; Wang and 
Feng 2013). Note, however, that the use of the ratio test with 
a fixed threshold value often results in either unacceptably 
high failure rates or is overly conservative (Verhagen and 
Teunissen 2013).

Most of the existing PAR methods involve an iterative 
procedure where many different subsets are evaluated, 
such as discarding satellites, which will impact processing 
time, especially for a multi-GNSS scenario (Verhagen et al. 
2012). Based on its success rate, the PAR method (Teunis-
sen 2001a; Teunissen et al. 1999) is widely used by GNSS 
researchers because it requires less computational time 
compared with other PAR methods. Another advantage is 
that this approach is easy to implement and allows users to 
specify the minimum required success rate. Furthermore, 
this method inherently includes an automatic procedure for 
deciding when to include newly risen satellites. This PAR 
method is based on decorrelation and bootstrapping and was 
implemented in the LAMBDA software package. For con-
venience this method is denoted here as “PAR-Ps”, but note 
that its success rate is driven by the underlying model and 
not by the actual measurements (Teunissen and Verhagen 
2008). Any undetected biases, such as multipath effects and 
atmosphere biases in the observation model, may affect the 
data-driven success rate, while the model-driven success rate 
can still be high (Li and Zhang 2015). Even setting a high 

threshold for the success rate in the PAR-Ps method does not 
guarantee correct fixing of ambiguities (Teunissen 2001b; 
Verhagen and Li 2012).

Several studies conducted by Trimble Navigation Lim-
ited, and described in patents (Talbot and Vollath 2013; 
Vollath 2014; Vollath and Talbot 2013), have proposed 
an alternative approach, namely the “iFlex” method. This 
method was originally inspired by the “best integer equiv-
ariant estimator” (BIE) algorithm described by Teunissen 
(2003). The Trimble authors claim the iFlex method results 
in reliable ambiguity resolution. Moreover, since the iFlex 
method is a weighted combination of possible integer ambi-
guity candidates, a position solution using iFlex will con-
verge more rapidly to correct values compared with the float 
solution (Vollath and Talbot 2013). Nevertheless, details of 
the improvement, in terms of convergence time between the 
PAR-Ps and the iFlex methods, has not been investigated. 
In addition, recent GNSS literature claim that multivariate 
t-distributions, which are generalizations of the classical 
univariate Student t-distributions, can offer a more viable 
alternative representation of the GNSS measurement and 
navigation errors than the normal distribution, particularly 
because its tails are more realistic (Madrid 2016). However, 
it is not clear how the multivariate t-distributions can be 
applied for high positioning accuracy GNSS applications.

In this contribution, the authors propose a reliable 
approach for partial fixing ambiguity based on the best inte-
ger equivariant estimator using multivariate t-distributions 
(BIE-td). The positioning performance of the proposed 
approach is then compared against existing methods such 
as the iFlex method (Vollath and Talbot 2013) and the PAR-
Ps method (Teunissen 1999, 2001a; Teunissen et al. 1999). 
Although this contribution is motivated by the ambiguity 
resolution problem of PPP as a case study, there are no 
restrictions to applying these ambiguity resolution methods 
for other GNSS techniques having unknown integer param-
eters as well as real-valued parameters in their observa-
tional models, such as the differential real-time-kinematic 
(RTK) techniques. Furthermore, the proposed method can 
be applied to both single and multi-constellation multi-
frequency GNSS measurement to achieve fast and reliable 
positioning solution. Thus, our PPP model will utilize multi-
frequency GNSS signals to provide relevant insights into the 
achievable PPP positioning performance.

This paper is organized as follows. First, we present a 
quick overview of GNSS observation model followed by a 
review of GNSS carrier phase ambiguity resolution meth-
ods such as the integer least-squares estimation, PAR-Ps, the 
BIE and the iFlex ambiguity resolution methods. Next, we 
explain the proposed GNSS best integer equivariant estima-
tion using multivariant t-distribution including GNSS data 
processing strategy, distribution of GNSS measurements, 
selection of integer candidate sets and the BIE-td approach. 
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Then, we present the results of the proposed method against 
existing ambiguity resolution methods, using multi-fre-
quency and multi-constellation PPP-AR as a case study. The 
paper ends with discussion and conclusions.

2  GNSS observational model

The functional models of between-satellite single-differ-
enced (SD) code and phase measurements on the ith fre-
quency at the � th epoch are given by Leick et al. (2015):

where Pbs
i

 and Lbs
i

  are the SD code and phase measurement 
vectors on the ith frequency (in units of meters), respectively; 
the superscript bs represents single-differencing between 
two satellites (the reference satellite b and any other s); �bs 
is the SD receiver-satellite geometric distance vector (m); c 
is the speed of light in vacuum (m/s); tbs is the SD satellite 
clock error (s); fi is the ith frequency (MHz); �i is the wave-
length of the carrier-phase on the ith frequency (m); Ibs

1
 is 

the vector of SD the first order ionospheric delays on the first 
frequency (m); �i =

f 2
1

f 2
i

 is the ionosphere coefficient; Tbs is 
the vector of SD tropospheric delays (m); �bs

code,i
 is the vector 

of SD satellite code biases (m); �i�bsphase,i is the vector of SD 
satellite phase biases (m); Nbs

i
 is the vector of SD integer 

ambiguities on the i th frequency (cycles); and �bs
code,i

 and 
�bs
phase,i

 denote the vector of remaining unmodeled errors such 
as multipath effects on the SD code and phase measurements 
(m), respectively. Note that the receiver clock error and the 
receiver phase and code biases are eliminated via differenc-
ing in (1) and (2).

Standard PPP with “float ambiguities”, which is a com-
bination of the integer ambiguity terms and the satellite and 
receiver hardware biases, usually requires tens of minutes, or 
even several hours, in order to obtain centimeter-level accu-
racy. Significant efforts from GNSS researchers since 2007 
have made progress in addressing the challenge of resolving 
carrier-phase ambiguities in PPP. In general, two classes of 
methods have been proposed to resolve carrier-phase ambi-
guities: the “Uncalibrated Hardware Delays” method (Ber-
tiger et al. 2010; Ge et al. 2008); and the “Integer-Recov-
ery-Clocks” (Laurichesse et al. 2009) or “Decoupled Clock 
Model” (Collins 2008) methods. It has been demonstrated 
that the ambiguity-fixed position estimates from these meth-
ods are theoretically equivalent (Geng et al. 2010b; Shi 
2012; Teunissen and Khodabandeh 2014).

(1)Pbs
i,(�)

=
(
�bs − ctbs + �iI

bs
1
+ Tbs + �bs

code,i
+ �bs

code,i

)
(�)

(2)

Lbs
i,(�)

=
(
�bs − ctbs − �iI

bs
1
+ Tbs + �i�

bs
phase,i

+ �iN
bs
i
+ �bs

phase,i

)
(�)

By using Radio Technical Commission for Maritime Ser-
vices (RTCM) State-Space Representation (SSR) correction 
products (e.g., CLK93 real-time stream), the satellite errors, 
including clocks, orbits, code and phase biases, for multi-fre-
quency multi-GNSS measurements can be minimized. Since 
2010 these RTCM-SSR corrections have provided a unified 
framework for the satellite errors, which can be used for 
PPP-AR. In particular the satellite code and phase biases are 
defined as quantities (one value per observable) to be added 
to the raw GNSS measurements. More importantly, the 
integer nature of phase measurements is preserved, and the 
integer ambiguities can be estimated regardless of which lin-
ear combinations is chosen by the user’s software (Laurich-
esse 2015; Laurichesse and Blot 2016). These RTCM-SSR 
corrections have been publicly provided by several service 
providers, including Natural Resources Canada (NRCan), 
Center for Orbit Determination in Europe (CODE), Centre 
National d’Études Spatiales (CNES) and Wuhan University 
(WHU). These enable high accuracy single-receiver posi-
tioning with PPP, using precise satellite orbits, clocks, code 
and phase biases are provided to users so as to correct code 
and phase measurements. The corrected observations at the 
� th epoch can be written as:

The SD receiver-satellite geometric distance vector �bs is 
not parameterized in terms of receiver coordinates for rea-
sons of clarity. Note, however, that our analyses will use the 
geometry-based model where �bs is parametrized in terms 
of receiver coordinates.

3  A review of GNSS carrier phase ambiguity 
resolution methods

The goal of geometry-based AR is to estimate the integer 
ambiguities and thereby reduce positioning convergence 
time. Assuming that GNSS signals are transmitted on f fre-
quencies, the linearized GNSS observation equations cor-
responding to (3) and (4) can be expressed as:

where y is the GNSS data vector of [m × 1] comprising the 
observed-minus-computed pseudorange (code) and phase 

(3)

−

P
bs

i,(�)
=
(
Pbs
i
+ ctbs − �bs

code,i

)
(�)
=
(
�bs + �iI

bs
1
+ Tbs + �bs

code,i

)
(�)

(4)

−

L

bs

i,(�)
=
(
L
bs

i
+ ct

bs − �
i
�bs
phase,i

)
(�)

=
(
�bs − �

i
I
bs

1
+ T

bs + �
i
N

bs

i
+ �bs

phase,i

)
(�)

(5)y =

[ −

P
−

L

]
= Aa + Bb + �; a ∈ Zn, b ∈ Rp
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observations accumulated over all observation epochs; 
−

P=

[
−

P
T

1
…

−

P
T

f

]T
 and 

−

L=

[
−

L
T

1
…

−

L
T

f

]T
 with 

−

Pi and 
−

Li contain-

ing, respectively, the code and phase observations on the ith 
frequency over all the epochs; vector a [n × 1] contains all 

carrier-phase ambiguities 
[
−

N
T

1
…

−

N
T

f

]T
 , expressed in units of 

cycles; vector b 
[
p × 1

]
 comprises the remaining unknown 

parameters, such as receiver coordinates and atmospheric 
delay parameters; A[m × n] and B

[
m × p

]
 are the correspond-

ing design matrices; � =
[
�code
�phase

]
 is the noise vector accu-

m u l a t e d  o v e r  a l l  o b s e r v a t i o n  e p o c h s ; 
�code =

[
�T
code,1

… �T
code,f

]T
 and �phase =

[
�T
phase,1

… �T
phase,f

]T
 

with �code,i and �phase,i contain, respectively, the unmodeled 
errors of code and phase observations on the i th frequency 
over all observation epochs.

3.1  Integer least squares estimation

To solve (5), the least-squares adjustment will be used to 
calculate the unknown parameters and the integer SD ambi-
guities (Teunissen 1995).

where ‖ ⋅ ‖2
Qy

= (⋅)TQ−1
y
(⋅) , the parameter estimation usually 

will be required in three following steps.
Float Solution the minimization of (6) is carried out with 

a ∈ Rn and b ∈ Rp. Note that ambiguities are estimated not 
accounting for their integer nature ( a ∈ Zn ). Real-valued 
numbers for both a and b, along with their variance–covari-
ance matrices will be obtained.

Integer ambiguity resolution the float ambiguity estimate 
â is used to compute the corresponding integer ambiguity 
estimate ǎ . The integer least-squares (ILS) problem is intro-
duced such that.

Although different integer estimators exist (i.e., integer 
rounding or integer bootstrapping), ILS provides the optimal 
result in the sense of maximizing the probability of correct 
integer estimation (success rate) (Teunissen 1999). The ILS 
problem is resolved using well-known LAMBDA method 
(De Jonge and Tiberius 1996; Teunissen 1993). Ambigu-
ity resolution should only be applied when there is enough 
confidence in its results, which means that the success rate 

(6)min
a,b

‖y − Aa − Bb‖2
Qy
; ∈ Zn, b ∈ Rp

(7)
[
â

b̂

]
,

[
Qââ Q

âb̂

Q
b̂â

Q
b̂b̂

]

(8)min
a
‖�a − ǎ‖2

Q�a�a
with a ∈ Zn

should be very close to one. If this is not the case, a user will 
prefer the float solution.

Fixed solution once the integer ambiguities are com-
puted, they are used in the third step to finally correct 
the ‘float’ estimate of b. As a result, one obtains the fixed 
solution

where QT

b̂â
= Q

âb̂
 is the float covariance matrix. Centimeter-

level positioning accuracy could be achieved with the car-
rier-phase observables in the precise positioning if the suc-
cessful determination of the initial integer ambiguity 
parameters.

3.2  PAR‑based LAMBDA

The reliability of integer ambiguity fixing depends on sev-
eral factors, including the strength of the underlying GNSS 
model and the ambiguity resolution method that is used. 
Consequently, it is not always possible to reliably fix all 
GNSS ambiguities. One could, however, still fix a sub-
set of the phase ambiguities (or linear functions of them) 
with sufficient confidence (Teunissen et al. 1999; Verhagen 
et al. 2012). This strategy for AR is referred to as partial 
AR (PAR). This PAR method is based on decorrelation 
and bootstrapping and has been implemented in the Least-
squares Ambiguity Decorrelation Adjustment (LAMBDA) 
software package. A subset of the decorrelated ambigui-
ties is fixed, with a corresponding bootstrapped success 
rate larger than or equal to a minimum specified value 
P0 . Hence, the goal is to select the largest possible subset 
such that:

where q ≥ 1 . Φ(M) =
1√
2�
∫ M

−∞
exp

�
−

1

2
t2
�
dt is the cumula-

tive normal distribution; �ẑj|I is the conditional standard 
deviation of the decorrelated ambiguities ẑ = ZTâ when 
using a decorrelating Z-transformation (Z) ; and â is the float 
ambiguities. Hence, only the last n − q + 1 entries of the 
vector ẑ  , denoted by ẑs , are fixed. Adding more ambiguities 
implies multiplication with another probability which, by 
definition, is smaller than or equal to 1. Hence, q is chosen 
such that the inequality in (11) holds, while a smaller q (i.e., 
larger subset) would result in an unacceptably low success 
rate. Note that the fixed solution, in terms of the original 
ambiguities and the corresponding fixed remaining unknown 

(9)b̌ = �b − Q�b�aQ
−1
�a�a

(
�a − ǎ

)

(10)Qb̌b̌ = Q�b�b − Q�b�aQ
−1
�a�a
Q�a�b

(11)
n∏
j=q

(
2Φ

(
1

2�ẑj|I
− 1

))
≥ P0
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parameters, can be obtained after applying the back-trans-
formation as (Verhagen and Li 2012):

where b̂ and b̌ are the vectors of the float and fixed solu-
tion of the remaining unknown parameters, respectively; 
and ǎPAR will generally not contain integer entries, since 
it is a linear function of the decorrelated ambiguities žPAR , 
which are not all integer-valued. The corresponding preci-
sion improvement of the remaining unknown parameters is:

where Q
b̂̂zs

 and Qẑsẑs
 are the submatrices of Q

b̂̂z
= Q

b̂â
Z and 

Qẑ̂z = ZTQââZ , respectively, relating to ẑs . Qb̌b̌ and Qââ is the 
variance–covariance matrix of the unknown parameters and 
ambiguities, respectively; and Q

b̂â
 and Q

âb̂
 are submatrices. 

In general, Qb̌b̌ ≪ Q�b�b
 . However, incorrect integer ambiguity 

fixing may have the opposite effect in terms of positioning 
accuracy. That is, rather than an accuracy improvement, an 
incorrect ambiguity solution can cause substantial position 
errors, exceeding those of the float solution.

3.3  Best integer equivariant estimation

In the case of PAR with a low success rate, the BIE estimator 
should be used as an alternative algorithm instead of the fixed 
solution because it provides better convergence time. Further, 
the BIE estimator will approximate the float solution if the pre-
cision is low, and the fixed solution when the probability den-
sity function (PDF) is high (Verhagen and Teunissen 2005). 
Therefore, the BIE estimator is a compromise between float 
and fixed solutions. Consider the following arbitrary linear 
function of the unknown parameters a and b (cf. 5):

where la ∈ Rn and lb ∈ Rp . If lb = 0 then � is a linear func-
tion of the ambiguities only; whereas if la = 0 then � is a 
linear function of the remaining real-valued parameters (i.e., 
receiver’s coordinates and atmospheric delays). The BIE 
estimator of � is then given by (Teunissen 2003):

where y ∈ Rm is the observation vector in (5) with the 
mean E{y} = Aa + Bb and the PDF py(y). � is the remain-
ing unknown parameters, such as receiver coordinates and 
atmospheric delay parameters of a single receiver (i.e. PPP), 

(12)ǎPAR = Z−TžPAR

(13)b̌ = �b − Q�b�aQ
−1
�a�a

(
�a − ǎPAR

)

(14)Qb̌b̌ = Q�b�b − Q�b�zs
Q−1
�zs�zs

Q�zs�b

(15)� = lT
a
a + lT

b
b

(16)

�̂BIE =

∑
z∈Zn ∫ Rp

�
lT
a
z + lT

b
�
�
py(y + A(a − z) + B(b − �))d�

∑
z∈Zn ∫ Rppy(y + A(a − z) + B(b − �))d�

with E{�} = b. As (16) shows, the BIE estimator is equal to 
a weighted sum over all integer set vectors, and the weights 
depend on the PDF of the observations. BIE method advan-
tages include: (1) there is no need to fix the integer ambi-
guities at one point; hence, the risk of wrongly fixing the 
integer ambiguities is eliminated; (2) there is no need for a 
validation test because the outcome of the BIE estimator is 
obtained by weighting all integer set vectors and the prede-
fined PDF of the observations; and (3), the precision of the 
remaining unknown parameters (i.e. receiver’s coordinates) 
using the BIE estimator is always better in the minimum 
mean squared error (MMSE) sense than, or at least as good 
as, the precision of its ‘float’ and ‘fixed’ counterparts.

In a special case, when the observations follow a Gaussian 
distribution, the PDF of a m-dimensional normally distributed 
random vector y with mean vector E{y} = Aa + Bb and the 
variance–covariance matrix Qy is given by:

where det denotes the determinant operator. As shown by 
Teunissen (2003), when the vector of observations y follows 
a Gaussian distribution, the BIE estimators of ambiguities a 
and the remaining real-valued parameters b are simplified to:

with the weighting factor wzj

�
â
�
=

exp
�
−

1

2
‖â−zj‖2Qâ

�

∑
z∈Zn exp

�
−

1

2
‖â−z‖2

Qâ

� ≤ 1 , 

∀zj ∈ Zn satisfying 
∑

z∈Znwz

�
â
�
= 1.

3.4  iFlex method

The iFlex method, as described by Vollath and Talbot (2013), 
originally relies on the BIE algorithm when the vector of 
observations (y) follows a Gaussian distribution. The method 
is a weighted combination of some possible integer ambigu-
ity candidates, but not all (within the infinite region). Vollath 
and Talbot (2013) claim the iFlex method converges more 
rapidly to correct values in a reasonable computational time 
compared with the convergence time of the float solution. The 
weighting factor of each integer candidate is influenced by 
the different distribution of the GNSS observations. Vollath 
and Talbot (2013) introduced empirical formulas, namely the 
Laplace or a Minmax distribution, which can be used to cal-
culate the weighting factor of (18) according to the following 
expressions:

(17)py(y) =
1

(2�)
m

2

√
detQy

exp
�
−
1

2
‖y − Aa − Bb‖2

Qy

�

(18)

⎧⎪⎨⎪⎩

âBIE =

∑
z∈Zn zexp

�
−

1

2
‖â−z‖2

Qâ

�

∑
z∈Zn exp

�
−

1

2
‖â−z‖2

Qâ

� =
∑

z∈Znzwz

�
â
�

b̂BIE = b̂ − Q
b̂â
Q−1

â

�
â − âBIE

�
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where α is a scaling factor used to tune the weights and |⋅| is 
the absolute value. The three weighting functions (including 
Gaussian, Laplace, and Minmax distribution) are summa-
rized in Table 1. A one-hour GNSS session at one CORS, 
ALBY in Australia 2019 (DOY 100), was analyzed. The 
data sampling interval was one second. Additionally, the 
LAMBDA software was used to output the estimated integer 
candidates, after using a decorrelating Z-transformation for 
the ambiguities. This software also generated correspond-
ing ambiguity residual squared norm. Two different marking 
epochs, 100th and 300th, were used for the comparison.

Significantly, the first integer candidate’s weight is 
always dominant among a total of eight candidate sets 
output in the Gaussian distribution case. In particular, its 
weight at the 300th epoch is more than 0.999 while other 
candidate weights are extremely small (or equal to zero). 
This means the AR performance of the BIE method for 
the Gaussian case is very similar to the PAR-Ps solution. 
It converged too quickly or often resulted in false fixes at 
the initial epochs, especially when the stochastic model 
was incorrect (i.e., precisions were too optimistic); and 
this leads to incorrect position estimates. Deficiencies in 
stochastic modeling can be caused by incorrect modeling 

(19)wzj

�
â
�
=

exp
�
−�

�
‖â − zj‖2Qâ

�

∑
z∈Znexp

�
−�

�
‖â − z‖2

Qâ

� (Laplace)

(20)wzj

�
â
�
=

exp
�
−max

���â − zj
���
�

∑
z∈Znexp

�
−max��â − z��

� (Minmax)

of satellite corrections (i.e., clock, orbit, or code and phase 
biases).

However, the mathematically non-rigorous Laplace 
or Minmax distribution case, as shown in (19) and (20) 
respectively, results in more weight being given to other 
candidate sets, which is one way to guard against incor-
rect fixing of ambiguities. According to Vollath and Talbot 
(2013), these distributions are effectively the broadened 
distributions and have less weight for the first best integer 
candidate set compared with the Gaussian distribution. 
Introducing the square root of the squared-norm distance, 
such as the Laplace case of (19), effectively spreads the 
probability function over a more extensive search space. 
Consequently, validation of the fixed solution is extended 
and delayed, with the added benefit of extra reliability.

In Sect. 3, we have reviewed the existing ambiguity reso-
lution methods. The limitations of these methods have been 
also discussed. Overall, the success rate in PAR-Ps method is 
driven by the underlying model and not by the actual meas-
urements (Teunissen and Verhagen 2008). Even setting a 
high threshold for the success rate in the PAR-Ps method 
does not guarantee correct fixing of ambiguities (Teunissen 
2001b; Verhagen and Li 2012). As discussed in Sect. 3.3, the 
general BIE formula (16) can only be applied once the PDF 
of the observations is known. In addition, the AR perfor-
mance of the BIE method for the Gaussian case is very simi-
lar to the PAR-Ps solution. It either converged too quickly 
or often resulted in false fixes at the initial epochs, espe-
cially when deficiencies exist in the stochastic model. The 
iFlex method using Laplace or Minmax function, as shown 
in (19) and (20) respectively, results in more weight being 
given to other candidate sets, which is one way to guard 
against incorrect fixing of ambiguities. They are however not 

Table 1  Weighting function comparison of Gaussian distribution (18), Laplace distribution (19) and Minmax distribution (20) at the 100th and 
300th epochs

a It should be noted from Table  1 that ambiguity residual norms were not used to calculate the minmax iFlex approach weights (20). These 
weights were selected based on the maximum absolute ambiguity residual max

(|||â − z
j

|||
)
 for each integer candidate

Candidate 
set index 
( z

j
)

Epoch 100 Epoch 300

Weighting functions 

(
w
z
j

) Ambiguity 
residual norms 
‖â − z

j
‖2
Q

â

Weighting functions 

(
w
z
j

) Ambiguity 
residual norms 
‖â − z

j
‖2
Q

âBIE with 
Gaussian (18)

iFlex method BIE with 
Gaussian (18)

iFlex method

Laplace (19) Minmax (20)a Laplace (19) Minmax (20)a

1 0.6153 0.1291 0.5138 715.290 1.0000 0.1402 0.2431 2059.517
2 0.2669 0.1281 0.0094 716.961 0.0000 0.1318 0.1739 2082.082
3 0.0895 0.1268 0.1890 719.146 0.0000 0.1279 0.1739 2092.957
4 0.0166 0.1248 0.0094 722.518 0.0000 0.1220 0.0329 2110.219
5 0.0037 0.1231 0.1547 725.499 0.0000 0.1219 0.0763 2110.627
6 0.0028 0.1228 0.0013 726.071 0.0000 0.1208 0.2150 2113.878
7 0.0027 0.1227 0.0256 726.147 0.0000 0.1188 0.0763 2120.205
8 0.0025 0.1226 0.0968 726.324 0.0000 0.1166 0.0087 2127.113
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mathematically rigorous. Therefore, in the next section we 
propose a more reliable and rigorous ambiguity resolution 
method derived from the general BIE formula.

4  GNSS best integer equivariant estimation 
using multivariant t‑distribution

Using the geometry-fixed model, GNSS observations made 
by 17 CORS for a period of 31 days in 2018 were used to 
verify the distribution of the GNSS measurements. Next, 
BIE using the distribution determined from previous step 
was investigated. Furthermore, the positioning performance 
in terms of convergence time and positioning accuracy 
was assessed using an independent GNSS dataset in 2019 
(Sect. 5). All GNSS observations were corrected using SSR 
products such as precise satellite orbits, clocks, code and 
phase biases from the Centre National d’Etudes Spatiales 
(CNES) CLK93 real-time stream.

4.1  Data collection and processing strategy

To evaluate the PPP-AR performance using different ambi-
guity resolution methods, real GNSS measurements from 17 
GNSS CORS worldwide over a 30 consecutive day period 
from April 10 to May 10, 2019 (DOY 100 to 130) were 
processed. The reference stations were selected based on 
two criteria: (1) the receiver must simultaneously track three 
GPS signal frequencies (L1 + L2 + L5), three BeiDou signal 
frequencies (B1 + B2 + B3) and four Galileo signal frequen-
cies (E1 + E5a + E5b + E6); and (2), the selected stations 
should be globally distributed. Thus, a total of 3102 data-
sets were analyzed. An independent GNSS dataset collected 
from the same 17 CORS for a period of 31 days in 2018 were 
used to verify the GNSS measurement distributions.

Figure 1 shows the locations of the GNSS stations used 
in this study. Figure 2 is a plot of the number of satellites 
observed from each point of a global grid, with a combi-
nation of different satellite constellations. At the time of 
writing (February 2020), more than 15 GNSS satellites 
were transmitting three or more signals were visible in 

Fig. 1  Distribution of selected 
GNSS stations tracking GPS 
(L1 + L2 + L5) Galileo (E1 
+ E5a + E5b + E6) and BeiDou 
(B1 + B2 + B3) satellites

Fig. 2  Number of multi-fre-
quency GPS + Galileo + BeiDou 
satellites observed worldwide 
on May 10, 2019 at 00:00UT
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the Asia–Pacific region, from which the following meas-
urement were available: GPS L1 + L2 + L5 Galileo E1 
+ E5a + E5b + E6 and BeiDou B1 + B2 + B3. Twelve GPS 
Block IIF satellites were transmitting the third signal L5 
in addition to the L1 and L2 signals. The first GPS Block 
III satellite was launched on 23 December 2018. More 
GPS Block III satellites will be launched in the coming 
years. There were 22 Galileo operational satellites which 
broadcast healthy signals and valid navigation messages 
(https ://www.gsc-europ a.eu/syste m-statu s/Const ellat ion-
Infor matio n). The BeiDou constellation currently provides 
signal coverage in the Asia–Pacific region and comprises 
five geostationary Earth orbiting (GEO) satellites, six 
inclined geosynchronous orbiting (IGSO) satellites and 
three medium Earth orbiting (MEO) satellites (http://
mgex.igs.org/). Due to significant system biases in the Bei-
Dou GEO satellites at present (Guo et al. 2017), only the 
BeiDou IGSO and MEO satellites were used in this study.

It should, however, be pointed out that the number of 
GNSS satellites transmitting three or more signal frequen-
cies was limited during some periods of the day. In this 
study, all available frequencies from the three GNSS con-
stellations were used.

A modified version of the RTKLIB software (Takasu 
2013) was used to stream the GNSS measurements and 
output corrected observables free of the PPP systematic 
effects (i.e. phase wind-up). A MATLAB-based GNSS 
PPP software with Kalman filter estimator was developed 
to process corrected observables using the multi-frequency 
uncombined (UC) observation model for GPS, Galileo and 
BeiDou. Note that, henceforth, the phrase “uncombined 
observation models” implies that no ionosphere-free linear 
combination of measurements was created and that the 
ionospheric delay was estimated together with the other 
parameters using the SD measurements.

The commonly used variance functions for phase obser-
vations, which depend on the satellite elevation angle � , 
are (Dach et al. 2015; Luo 2013, Chap. 3, pp. 85):

where the standard deviation of GPS and Galileo phase 
observations for the zenith direction 

(
�L0

)
 was chosen to 

be 3 mm. The measurement error ratio between code and 
carrier-phase observations 

(
�P
�L

)
 was assumed to be 100, 

except for the BeiDou observations for which a value of 
200 was adopted (Nadarajah et al. 2018; Pan et al. 2017; 
Zhou et al. 2019). Considering the stochastic information 
of the real-time satellite orbit, satellite clock and bias 
products, (21) is extended:

(21)�2
L
=

�2
L0

sin2�

where �2
clk

 is the satellite clock variance, �2
orb

 is the satellite 
orbit variance, and �2

bias
 is the satellite phase and code biases 

variance. The user equivalent range error (UERE) can also 
be used in (22) to combine the errors in the satellite’s orbit, 
clock and biases, and projected in the satellite-user direc-
tion (Laurichesse and Blot 2016). When forming the PPP 
model, UERE is the accumulated error the user experiences 
when modeling the GNSS measurements. In this study, the 
values of UERE were set as 1 cm, 5 cm and 5 cm for GPS, 
Galileo and BeiDou, respectively (Laurichesse and Blot 
2016). Triple-frequency GPS + BeiDou and quad-frequency 
Galileo measurements were processed. The igs14_2013.atx 
file, which contains the frequency-dependent phase-center 
offsets and variations (PCO/PCV) for GPS, Galileo and 
BeiDou, was used in this study. Since the satellite antenna 
correction value for the GPS L5 signal is not available, the 
PCO/PCV of GPS L2 was used instead due to the closeness 
of frequency value between the GPS L2 and L5 signals. In 
addition there were no Galileo and BeiDou-specific ground-
receiver-antenna calibrations available, hence the correction 
values (PCO/PCV) for GPS were employed for both Galileo 
and BeiDou, as approximations, and the third frequency sig-
nals had the same corrections as those for L2.

It should be noted one could have used a stronger model 
when working with calibrated inter-system biases (ISBs) 
(Odijk et al. 2017). The authors however had no access to 
the ISBs receiver-satellite frequency information from ser-
vice providers (such as CNES). Furthermore, in practice the 
calibrated ISBs may not available for many GNSS receiver 
types. Hence in this study the authors have decided to use 
the ‘reference satellite per system’ method instead of the 
calibrated ISBs to combine GPS, Galileo and BeiDou meas-
urements in a triple-frequency PPP-AR model. Table 2 sum-
marizes the processing strategy that was employed.

It should be noted that our PPP analyses were carried out 
in a well-known Kalman filter. However, the Kalman filter 
and its derivation presented in the literature usually require 
that the mean of the random initial state vector and the initial 
state-vector variance matrix to be known (or specified). Such 
derivations of the Kalman filter are indeed not appropriate in 
case when the mean of the random state vector is unknown, a 
situation that applies to most engineering applications. Thus 
instead of working with known state-vector means, we relax 
the model and assume these means to be unknown (Teunis-
sen and Khodabandeh 2013). In this case, one needs to make 
use of prediction methods such as the recursive best linear 
unbiased prediction (BLUP) principle or best integer equiv-
ariant prediction (BIEP) principle as shown in Teunissen 
(2007), rather than the recursive Kalman filter. As proven 

(22)�̃�2
L
=

(
𝜎2
L0

sin2𝜃

)
+ 𝜎2

clk
+ 𝜎2

orb
+ 𝜎2

bias

https://www.gsc-europa.eu/system-status/Constellation-Information
https://www.gsc-europa.eu/system-status/Constellation-Information
http://mgex.igs.org/
http://mgex.igs.org/
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by Teunissen (2007), the best integer equivariant estimator 
(BIEE) may be considered a special case of the BIEP. In the 
sense of minimum mean squared error (MMSE) prediction, 
the error variance of the BIEP is smaller than that of the 
BLUP (or MMSE(BIEP) ≤ MMSE(BLUP)). Further, when 
the predictor (or unobservable) y0 ∈ Rm0 and the observable 
y ∈ Rm have a joint normal distribution, the BIEP takes a 
form which is similar to the BLUP. Note that the recursive 
BLUP is shown to follow the Kalman filter. However, in 
the initialization step, while the BLUP does not require the 
known-mean, the information of the mean of the random 
initial state vector is required for the Kalman filter (Teunis-
sen and Khodabandeh 2013).

To apply the BIEE in this study, the Kalman filter has 
been modified according to the BLUP principle as follows: 
we only keep ambiguities constant in time where no random 
process noise or dynamic models are considered. Thus, the 
recursive BIE solution at each epoch will be based upon the 
recursive least-squares adjusted ambiguities from the previ-
ous epoch and the observations of the current epoch. We 
hereby remark that the obtained BIE solution is not equiva-
lent to its counterpart based on the observations of all the 
epochs (the batch solution). In other words, the BLUP error 
is never more precise than that of the Kaman filter. This is 
due to additional uncertainty caused by having to estimate 
x =

[
a b

]T as well (Teunissen and Montenbruck 2017). The 
BLUP in this context is similar to the Kaman filter applied 

for real-time-kinematic applications. In this case, the user 
does not have any knowledge or information about receiver’s 
coordinates or even atmospheric delays (if local atmospheric 
model is not available) at each epoch, except for the ambigu-
ity, which will be constant if no cycle slips occur.

4.2  Distribution of GNSS ambiguity

As shown in (16), the BIE only can be used when the PDF of 
y is known. In GNSS applications it is often assumed that y 
is normally distributed. In this case, the float ambiguities are 
also expected to be normally distributed (Teunissen 1998) 
the PDF of y takes the form of (17) (Teunissen 2003). How-
ever, Madrid (2016) stated that the t-distribution is heavy-
tailed and is a more realistic representation of the measure-
ment and navigation errors than the Gaussian distribution; 
hence, it was used in order to improve the robustness of navi-
gation filters against outliers. The PDF of a m-dimensional 
t-distributed random vector y with � degrees of freedom, 
mean vector E{y} = Aa + Bb and the variance–covariance 
matrix Qy , is given by:

(23)

py(y) =
Γ((v + m)∕2)

(�v)
m

2 Γ(v∕2)
√
detQy

�
1 +

1

v
‖y − Aa − Bb‖2

Qy

�− v+m

2

Table 2  Multi-frequency multi-GNSS PPP-AR processing strategy

Items Models/constraints

Station coordinates Estimated in PPP-simulated kinematic mode: estimated as white noise 
process (10 m/sqrt(sec))

Observations GPS (L1 + L2 + L5)/ Galileo (E1 + E5a + E5b + E6)/ BeiDou 
(B1 + B2 + B3)

Elevation-dependent weighting strategy Eq. (22)
Elevation cut-off angle 10º
Sampling rate 1 s
Precise satellite orbit, clock, code (considering code elevation-depend-

ent for BeiDou) and phase biases
CNES CLK93 real-time stream

Satellite and receiver phase-center offset (PCO) and phase-center vari-
ation (PCV)

Corrected using IGS antenna products (igs14_2013.atx)

Phase wind-up Corrected
Slant ionosphere Estimated as parameter (random-walk process with a constraint of 

0.002 m/sqrt(s))
Troposphere model Zenith hydrostatic delay is obtained by Saastamoinen model using 

a standard atmospheric model. Zenith wet delay is estimated as a 
random-walk parameter with a process noise of 5e–6 m/sqrt(s). 
Global Mapping Function (GMF) (Böhm et al. 2006; Niell 1996) is 
used to map the slant tropospheric delay to zenith

Displacement Solid earth tides, pole tides, ocean tide loading correction (FES2004) 
and relativistic effects modeled according to the IERS Convention 
2010 (Petit and Luzum 2010)

Ambiguities Kept as constant over time
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with Γ (⋅) denoting the gamma function. To validate the 
distribution of the GNSS measurements (i.e. GPS, BeiDou 
and Galileo observations), the ambiguity residuals were ana-
lyzed, i.e., differences between float ambiguities and their 
integer values resolved using the multi-epoch (1-h) geom-
etry-fixed model. Real measurements from 17 GNSS sta-
tions (Fig. 1) over 31 consecutive days from September 25 
to October 25, 2018 (DOY 268 to 298) were processed. The 
receiver positions at the CORS were fixed to their known 
coordinate values. Further, as discussed in the BIE section, 
the BIE estimation using (16) can only be used with a recur-
sive solution, such as a Kalman filter with no dynamic mod-
els applied. Therefore the float solution obtained from the 
Kalman filter is designed to satisfy two criteria: (a) the ambi-
guities are kept time-constant; and (b) no dynamic models 
are applied for the atmospheric delays (i.e., troposphere and 
ionosphere). From a one-hour observation dataset, the model 
in (5) is sufficiently robust, and all ambiguities could be 
successfully fixed.

Let the float ambiguities and their corresponding ambigu-
ity variance–covariance matrix at a particular CORS (r) in a 
certain session (s) be denoted by â(r,s) =

[
â1 … ân

]T and 
Qâ(r,s)

 , respectively. The fixed ambiguities from a 1-h solution 
are also written as ǎ(r,s) =

[
ǎ1 … ǎn

]T . Assuming that the 
GNSS observation errors follow a normal distribution, the 
ambiguity residuals are also expected to follow a normal 
distribution, i.e., Δa(r,s) = �a(r,s) − ǎ(r,s) ∼ ℕ

(
0,Q�a(r,s)

)
 . The 

ambiguities are highly correlated and the variance–covari-
ance matrix Qâ(r,s)

 is usually fully populated. A Cholesky’s 
factorization can normalize the ambiguity residuals concern-
ing their variances. The resulting ambiguity residuals, 
referred to as “standardized” ambiguity residuals, will then 

have the identity matrix as their variance–covariance matrix. 
The normalization procedure is summarized as follows. 
First, Cholesky decomposition of the variance–covariance 
matrix as Qâ(r,s)

= GGT is applied. The ambiguity residuals 

Δa(r,s) are then transformed using the Cholesky factor (G) as 
Δ

∼
a(r,s) = G−1Δa(r,s) , with the distribution Δ

∼
a(r,s) ∼ ℕ

(
0, In

)
 . 

The histogram of the standardized ambiguity residuals Δ
∼
a(r,s) 

are plotted in Fig. 3.
In the case that GNSS observation errors follow a normal 

distribution, the standardized ambiguity residuals shown in 
Fig. 3 will also exhibit a standard normal distribution. The 
MATLAB toolbox function “Distribution filter” was used 
to determine the actual distribution of the GNSS ambiguity 
residuals Δ

∼
a(r,s) . The t-distribution was shown to be a good 

model for the measurement errors compared with the normal 
distribution (Madrid 2016). In addition, these distributions 
are available in MATLAB toolbox function, namely “Distri-
bution filter”. Consequently, they were employed for gener-
ating the best-fit PDFs of the GNSS ambiguity residuals. As 
shown in Fig. 3, the red and blue solid lines are generated, 
representing the best-fit PDFs of the standard normal dis-
tribution in (17) and the t-distribution in (23), respectively. 
Interestingly, the t-distribution with three degrees of free-
doms (� ≃ 3) shown in Fig. 3 provides a better fit compared 
with the Gaussian distribution for this GNSS data sample.

4.3  Selection of integer candidate sets

The BIE estimator âBIE , and thus b̂BIE , in (18) cannot be 
computed precisely because of the infinite sum over inte-
gers. If the infinite sum is replaced by a sum over a finite 

Fig. 3  Standardized ambiguity residuals. These combined statistics are based on PPP-AR results from 17 CORS selected over 31 consecutive 
days in 2018
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set of integers, this might result in a non-integer equivariant 
estimator. In GNSS applications it is necessary to find an 
approximate solution of this estimator while retaining the 
property of integer equivariance. Hence, when implement-
ing (18) in any software package, the size of the integer 
sets must be set beforehand to reduce computational burden. 
Similarly, the number of integer candidates must be set in 
the iFlex method, as this method was initially inspired by 
the BIE formula under the assumption of Gaussian distribu-
tion of errors (shown in Eq. 18). Vollath and Talbot (2013) 
state that when forming the weighted average of the iFlex 
method, selecting too many candidate sets does not sub-
stantially improve the convergence of the iFlex method, but 
increases the computational burden. To address this problem 
they proposed a method to limit the size of integer candidate 
sets based on applying an empirical threshold (i.e. critical 
values) to only include candidate sets with significant weight 
concerning the best (first) integer candidate (the one with the 
shortest squared-norm distance), such that:

where wz1

(
â
)
 is the weight of the first candidate set of the 

ambiguities 
(
z1
)
 ; and wzj

(
â
)
 represents the weight of the jth 

candidate set. This means that the discarded integer candi-
date vectors have a weight at least γ times less than the first 
integer candidate set. Hence, as more integer vectors are 
required when forming the weighted combination, the 
smaller the γ value is set in (24). γ is an empirical value and 
set to 0.001 or 0.01 (Banville 2016; Vollath and Talbot 
2013). Introducing (18) into (24) gives the criterion for 
selecting integer candidate sets for Gaussian, Laplace and 
Minmax distributions, respectively:

Since the LAMBDA software can output the estimated 
integer candidates sorted in ascending order according to 
corresponding squared norms, with the best candidate first, a 
minor modification of this software for the BIE analysis was 
made to select only the number of integer candidate vectors 
according to equations (25), (26) or (27).

As the ultimate goal of ambiguity resolution is to obtain 
a better positioning accuracy, the integer candidate selection 
criterion can be derived based on the positioning parameters. 

(24)
wzj

(
�a
)

wz1

(
�a
) > 𝛾

(25)‖�a − zj‖2Q�a

< ‖�a − z1‖2Q�a
− 2ln(𝛾)

(26)‖�a − zj‖2Q�a

<

��
‖�a − z1‖2Q�a

−
1

𝛼
ln(𝛾)

�2

(27)max
|||�a − zj

||| <
[
max||�a − z1

|| − ln(𝛾)
]

One way to limit the number of integer candidates (16) is by 
using the differences of the unknown parameters of interest 
(i.e. receiver’s coordinates) estimated at two consecutive 
processing steps; so that when the number of integer candi-
dates (g) and (g − 1) is significantly small use a threshold 
such as ϵ = |||b(X,Y ,Z)(g) − b(X,Y ,Z)(g−1)

||| ≤ 0.0001 m to terminate 
the processing cycle.

4.4  BIE using the multivariant t‑distribution

As demonstrated in Sect. 4.2, the PDF of y is more likely 
to take the form of the t-distribution. Thus, this section will 
provide further information on how to implement the BIE 
using the multivariate t-distribution (BIE-td). Two examples 
will be given to illustrate the procedure of calculating inter-
ested unknown parameters (i.e. ambiguity terms or receiver’s 
coordinates).

We begin with the procedure for implementing the BIE-td 
and describe them by first substituting (17) into (16):

Note that the BIE estimator can also be written as:

In addition, when applying least-squares adjustment, the 
term ‖y − Az − B�‖2

Qy
 in (28) will be denoted as:

with K(z) = A
(
â − z

)
+ Bb̂ + �̂  . If one is only interested in 

the ambiguities and receiver coordinates, the âBIE and b̂BIE 
can be written as:

w i t h  t h e  w e i g h t i n g  f a c t o r 

wzj
(y) =

∫
R3

�
1+

1

v
‖K(z)−B�‖2

Qy

�− v+m
2

d�

∑
z∈Zn ∫ R3

�
1+

1

v
‖K(z)−B�‖2

Qy

�− v+m
2

d�

≤ 1 , ∀zj ∈ Zn , satisfy-

(28)

�̂BIE =

∑
z∈Zn ∫ Rp

�
lT
a
z + lT

b
�
��
1 +

1

v
‖y − Az − B�‖2

Qy

�− v+m

2

d�

∑
z∈Zn ∫ Rp

�
1 +

1

v
‖y − Az − B�‖2

Qy

�− v+m

2

d�

(29)�̂BIE = lT
a
âBIE + lT

b
b̂BIE

(30)

‖y − Az − B�‖2
Qy

= ‖A�â − z
�
+ B

�
b̂ − �

�
+ �̂‖2

Qy

= ‖K(z) − B�‖2
Qy

(31)

âBIE =

∑
z∈Zn z∫ R3

�
1 +

1

v
‖K(z) − B�‖2

Qy

�− v+m

2

d�

∑
z∈Zn ∫ R3

�
1 +

1

v
‖K(z) − B�‖2

Qy

�− v+m

2

d�

=
�

z∈Zn
zwz(y)

(32)b̂BIE =

∑
z∈Zn ∫ R3�

�
1 +

1

v
‖K(z) − B�‖2

Qy

�− v+m

2

d�

∑
z∈Zn ∫ R3

�
1 +

1

v
‖K(z) − B�‖2

Qy

�− v+m

2

d�
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ing 
∑

z∈Znwz(y) = 1 . � =
[
�1, �2, �3

]T are the three-dimen-
sional coordinate components (X, Y and Z respectively) of a 
single receiver. wzj

(y) is an integral function evaluated from 
lower limit of � to upper limit of �.

Unlike the use of BIE in the normal distribution case as 
shown in (18), the ambiguities and the three-dimensional 
coordinate components can be calculated separately. In 
particular, the updated receiver’s coordinates (b̂BIE) can be 
computed using (32) by adding every integer candidate to its 
summation. In fact, as the ultimate goal of ambiguity resolu-
tion is to obtain a high positioning accuracy, it is necessary 
to eliminate an intermediate step (i.e. ambiguity resolution 
using (31)). When using (32), the empirical criterion such 
as gamma (�) as shown in (24) is not suitable for selecting 
integer candidate due to the presence of the variable � on the 
numerator. Instead, the proposed criterion based on position 
(Sect. 4.3) can be applied to select integer candidates.

Assume that the range of � was set from -infinite (-Inf) 
to + infinite (Inf) in the MATLAB-based GNSS PPP soft-
ware and the degrees of freedoms (�) of the t-distribution 
was set as three (as discussed in Sect. 4.2). The same one-
hour GNSS session used in Sect. 3.3 was then reprocessed 
using the BIE-td. Table 3 shows updated vector of correc-
tions (�X, �Y and �Z) to the station position (X, Y, and Z) 
when adding every integer candidate to Eq. (32). The last 
column is the Euclidean norm of the vector corrections to 
receiver’s coordinates, which can be used to terminate the 
processing cycle. As can be seen from the table, if a thresh-
old such as ϵ = |||�D(X,Y ,Z)(50)

− �D(X,Y ,Z)(49)

||| ≤ 0.0001 m is set, 
50 integer candidates are required for the BIE-td computa-
tion, whereas more integer candidates (53 and 56) are 
required for the Laplace or Minmax distribution cases, 
respectively, using the empirical criterion (� = 0.001).

If one is interested in the ambiguities, Table 4 represents 
the weighting function of BIE-td at the 100th and  300th 
epochs. In general, an important characteristic of BIE-
td weights is that it is similar to those of the mathemati-
cally non-rigorous Laplace or Minmax distribution cases, 
as shown in (19) and (20) respectively. Spreading out the 
weights for other candidates by using these broadened distri-
butions is one way to minimize wrong fixing of ambiguities.

Although the BIE solutions (i.e. BIE-td or iFlex) con-
centrate on the whole ambiguity vector and not just a subset 
of it, the nature and mechanism of these methods can be 
categorized as a PAR approach. Consider eight integer can-
didates to calculate the BIE solutions, with ten ambiguities 
in each integer vector. Furthermore, assuming that the first 
five out of ten ambiguities have exactly the same integer 
value for all eight integer candidates, one can then obtain a 
subset of the five of ten fixed ambiguities using the BIE-td 
or iFlex method.

5  Performance analysis of PPP results

The focus in this section is to validate the correctness of the 
proposed BIE-td method against the existing methods pre-
sented in Sect. 3. In addition, we aim to also verify the Trim-
ble authors’ claim whether a reliable ambiguity resolution 
result can be achieved using the iFlex method. To investigate 
the impact of different AR methods on PPP convergence, the 
triple-frequency (GPS + BeiDou) and quad-frequency (Gali-
leo) measurements were processed using three different AR 
methods: (a) the PAR-Ps method; (b) the iFlex method using 
two different weighting functions in (19) and (20), referred 
to as “iFlex-Laplace” and “iFlex-Minmax”, respectively; and 
(c) BIE estimation (see 16) with GNSS data errors assumed 
to follow the t-distribution (BIE-td). Note that the AR per-
formance of the BIE method for the Gaussian case is very 

Table 3  Three-dimensional coordinate corrections of a single 
receiver of BIE using t-distribution at the 300th epoch

Candidate set 
index ( z

j
)

Epoch 300

�X (m) �Y  (m) �Z (m) �D 
(m)

1 − 0.1973 0.4752 − 0.3370 0.6151
2 − 0.1753 0.4167 − 0.2500 0.5166
3 − 0.1685 0.3965 − 0.2175 0.4826
4 − 0.1562 0.3598 − 0.1607 0.4239
5 − 0.1115 0.3198 − 0.1343 0.3643
6 − 0.1058 0.3081 − 0.1329 0.3518
7 − 0.1084 0.3314 − 0.1488 0.3791
8 − 0.0876 0.3115 − 0.1354 0.3508
… … … … …
49 − 0.0465 0.2267 − 0.0865 0.2471
50 − 0.0465 0.2265 − 0.0868 0.2470

Table 4  Weighting function of BIE using t-distribution at the 100th 
and 300th epochs

Candidate set index ( z
j
)

Weighting functions 

(
w
z
j

)
 in (31)

Epoch 100 Epoch 300

1 0.2065 0.3202
2 0.1889 0.1573
3 0.1146 0.1137
4 0.1111 0.1015
5 0.1057 0.0989
6 0.1052 0.0722
7 0.0858 0.0710
8 0.0821 0.0651
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similar to the PAR-Ps method, as shown in Sect. 3.3. Thus, 
two different weighting functions in (19) and (20) were 
assumed for the iFlex method.

The convergence time was used to evaluate the perfor-
mance of the different AR methods. The convergence in 
these PPP-AR comparisons means that the position esti-
mates steadily approach a specific accuracy level, and do not 
deviate from this level after reaching it. Statistical measures 
such as root-mean-square error (RMSE) and percentiles are 
computed based on the differences between the “known” 
coordinates of the 17 stations and the PPP-AR solutions. The 
t-distribution with 3 degrees of freedom was used because 
it was a better fit for this GNSS data sample analysis (see 
Sect. 4.2). Table 5 lists the critical values for the AR meth-
ods used.

5.1  PAR‑based LAMBDA and iFlex method

This section compares the performance of partial ambigu-
ity resolution-based LAMBDA method (PAR-Ps) with the 
iFlex method using settings listed in Tables 2 and 5. Fig-
ure 4 and Table 6 show the 68th and 99th percentiles for 
the RMSEs calculated from these two ambiguity estimators. 
Note that two different weighting functions (Laplace and 
Minmax) for the iFlex method were included in the analy-
ses. The 68th percentile curves highlight the benefit of the 
iFlex method, which converges to 0.1 m (for the horizon-
tal component) and 0.2 m (for the vertical component) in 
about 10 min. The PAR-Ps method requires 17 and 11 min 
to reach the same level of accuracy, respectively. In the 99th 
percentile curves, both the iFlex and the PAR-Ps methods 
have improved horizontal positioning accuracy and shorter 
convergence time compared with the float solution. In addi-
tion, the iFlex method has a slight advantage over the PAR-
Ps method in the case of horizontal component. However, 
the iFlex method has a significant advantage over the float 
and the PAR-Ps method in the case of the vertical compo-
nent. The vertical error in the PAR-Ps case is not stable until 
the 40-min mark. This is caused by several sessions with 
incorrectly fixed ambiguities, resulting in a large position 
error. This again confirms the limitation of using PAR-Ps 
method. Specifically, setting a high threshold for the suc-
cess rate in the PAR-Ps method does not guarantee correct 
fixing of ambiguities because its success rate is driven by 

the underlying model and not by the actual measurements 
(Teunissen and Verhagen 2008). Significantly, the horizontal 
and vertical position solutions require 40 min to converge 
to within 0.1 m and 0.2 m, respectively. When compared 
with the PAR-Ps method, the iFlex method had an improved 
convergence time of about 10 min.

5.2  BIE estimation using t‑distribution and iFlex 
methods

In the previous section it can be seen that the numerical 
results indicated that the iFlex method outperformed the 
PAR-Ps method due to shorter solution convergence times. 
In this subsection the AR performance of the iFlex method 
was compared with the BIE estimation using the t-distri-
bution (BIE-td). Again, two different weighting functions 
for the iFlex method (Laplace and Minmax) together with 
the settings as per Table 5 were considered. As discussed 
in Sect. 4.1, the BIE estimation in (16) can be used with 

Table 5  Threshold values for ambiguity resolution methods

Methods Critical values

PAR-Ps Success rate: P
0
≥ 0.999

iFlex method with weighting functions 
based on (19) and (20)

� = 0.001 and � = 0.25

BIE with t-distribution case v = 3 and ϵ = 0.0001 m

Fig. 4  Time series of 68th (top) and 99th (bottom) percentile of the 
horizontal and vertical errors based on the combined GPS + Gali-
leo + BeiDou (G + E + C) measurements used for two different PPP-
AR methods, namely the iFlex method and the PAR-based LAMBDA 
method (PAR-Ps). The blue and magenta solid line represents the 
results of the iFlex method using Laplace and Minmax, respectively. 
The dashed red line refers to the PAR-Ps results. The black line illus-
trates the float solution. The RMS statistics are based on the PPP-AR 
results from all reference stations selected over all consecutive days. 
The horizontal and vertical errors with a y-axis maximum limit of 
0.5 m (68th-top), and horizontal and vertical errors with y-axis maxi-
mum limits of 1 m (99th-bottom), respectively
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a Kalman filter in which: (a) only a dynamic model was 
applied for the ambiguities; and (b) no dynamic models were 
applied for the remaining unknown parameters. For both the 
iFlex and BIE-td estimation methods, the ambiguities were 
assumed time-constant and the remaining unknown parame-
ters (i.e., ionosphere, troposphere and receiver’s coordinates) 
were considered uncorrelated in time.

Figure 5 and Table 7 show the 68th and 99th percentiles 
of the RMSEs calculated with these two ambiguity estima-
tors. Overall, the two different AR methods have very similar 
positioning errors. In the 68th percentile, the BIE-td gains a 
slight advantage over the iFlex method. Both methods con-
verge to 0.1 m (horizontal component) and 0.2 m (vertical 
component) in about 10 min. The 99th percentile curves 
confirm these findings. The two methods have similar per-
formance for the horizontal and vertical position compo-
nents. That is, the horizontal and vertical position solutions 
require nearly 50 min to converge to within 0.1 m and 0.2 m, 
respectively. This is an improvement over an ambiguity float 
solution where at least more than 60 min is required to reach 
the same level of accuracy.

To evaluate the computational performance using differ-
ent partial ambiguity resolution methods, we implemented 
the iFlex and BIE-td method given in Sects. 3 and 4 in 
MATLAB. In addition, we performed numerical simula-
tions to compare the CPU running time of PAR-Ps, iFlex 
and BIE-td methods. The LAMBDA MATLAB, version 3.0 
package, which is available from the GNSS Research Cen-
tre at Curtin University (http://gnss.curti n.edu.au/resea rch/
lambd a-and-ps-lambd a-softw are-packa ges/). All computa-
tions were performed in MATLAB R2020a on an Intel dual 
core i7-9750, 2.6 GHz PC with 32 GB memory running 
Windows 10 64-bit Professional. Significantly, the compu-
tational time using the iFlex methods and the BIE-td are 
approximately 3–4 times and 10 times longer than that using 
PAR-Ps, respectively (see Table 8). In fact, the results of the 
BIE-td method involved a recursive calculation of integral 
functions, as shown in (16). As a result, both the iFlex and 
BIE-td methods take longer computational time compared 
to the PAR-Ps method as implemented in the PPP-AR soft-
ware. The computational time as presented in Table 8 can 
be reduced significantly when the different partial ambiguity 
resolution algorithms such as BIE-td or iFlex method are 
written in C or C++ programming language. The reason is 
that C/C++ language usually has higher speed performance 
in terms of data processing compared to MATLAB.

Table 6  Positioning 
convergence time with 
combined results from 
seventeen selected stations: 
iFlex methods and PAR-Ps

N/A: means that a 1-h dataset was not sufficient to reach the required accuracy levels

Components Percentiles Accuracy threshold Convergence time (min)

Float iFlex-Laplace iFlex-Minmax PAR-Ps

Horizontal RMSE 68th ≤ 10 cm 26.8 11.3 9.2 17.3
Vertical RMSE ≤ 20 cm 18.5 9.1 8.4 11.3
Horizontal RMSE 99th ≤ 10 cm N/A 44.8 41.7 53.6
Vertical RMSE ≤ 20 cm N/A 39.9 39.1 49.3

Fig. 5  Time series of 68th (top) and 99th (bottom) percentile of the 
horizontal and vertical errors based on the combined GPS + Gali-
leo + BeiDou (G + E + C) measurements used for two different PPP-
AR methods, namely the BIE estimator (BIE-td) and the iFlex meth-
ods. The red and magenta dashed line represents the results for the 
iFlex method using Laplace and Minmax function, respectively. The 
solid blue line refers to the BIE-td solutions. The black line illustrates 
the float solution. These combined RMS statistics are based on the 
PPP-AR results from all reference stations selected over all consecu-
tive days. The horizontal and vertical error with a y-axis maximum 
limit of 0.5  m (68th-top), and horizontal and vertical errors with 
y-axis maximum limits of 1 m (99th-bottom), respectively. The nota-
tion “w/d” in the legend means without using any dynamic models 
for the unknown parameters, except for the ambiguities

http://gnss.curtin.edu.au/research/lambda-and-ps-lambda-software-packages/
http://gnss.curtin.edu.au/research/lambda-and-ps-lambda-software-packages/
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6  Concluding remarks

New-generation GNSS satellites offer additional signal 
frequencies for measurements that facilitate improved 
solution convergence time in PPP solutions. In multi-
frequency and multi-GNSS scenarios, there is a need for 
quick and reliable ambiguity resolution to improve the 
GNSS receiver position solution. In this contribution, that 
authors assessed three different carrier-phase ambiguity 
resolution methods for reliable multi-frequency multi-
GNSS PPP, namely: the PAR-based LAMBDA method 
(PAR-Ps), the iFlex method, and the BIE estimation using 
the t-distribution (BIE-td). Thirty-one days of real GNSS 
measurements collected from 17 globally distributed 
GNSS stations in 2018 were processed to determine the 
best-fit distribution of the GNSS ambiguity residuals. It 
was concluded that the t-distribution with three degrees of 
freedoms provided a better fit than the Gaussian distribu-
tion for this GNSS data sample. A new method to select 
integer candidates was proposed based on the differences 
of the unknown parameters of interest (i.e., receiver’s 
coordinates) determined at two consecutive processing 
steps. If the differences over two consecutive steps were 
smaller than a threshold of 0.0001  m, the calculation 
was terminated. It has been demonstrated that the BIE-td 
method or the non-rigorous iFlex’s algorithms are catego-
rized as a PAR approach to provide a reliable multi-fre-
quency and multi-GNSS PPP solution. Analysis of another 
30-day GNSS measurement set collected in 2019 from the 
same CORS confirmed that the iFlex method outperformed 
the PAR-Ps method and float solution by minimizing posi-
tion errors in a simulated kinematic test. When compared 
with the PAR-Ps method for the 99th percentile of errors, 
the iFlex method had shortened the convergence time 
to about 10 min. In addition, without applying dynamic 
constraints on all parameters except that the ambiguities 

were estimated as time-constants, the BIE-td and the 
iFlex methods had similar positioning accuracy, for both 
the horizontal and vertical position components. With an 
improved accuracy of the Galileo and BeiDou satellite cor-
rection products, provision of precise atmospheric delay 
corrections, and, in the near future, a likely increase in 
the number of multi-frequency multi-GNSS satellites (and 
hence better satellite geometry), faster PPP centimeter-
level solutions can be achieved.
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