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Abstract
This contribution extends the theory of integer equivariant estimation (Teunissen in J Geodesy 77:402–410, 2003) by develop-
ing the principle of best integer equivariant (BIE) estimation for the class of elliptically contoured distributions. The presented
theory provides new minimum mean squared error solutions to the problem of GNSS carrier-phase ambiguity resolution for
a wide range of distributions. The associated BIE estimators are universally optimal in the sense that they have an accuracy
which is never poorer than that of any integer estimator and any linear unbiased estimator. Next to the BIE estimator for
the multivariate normal distribution, special attention is given to the BIE estimators for the contaminated normal and the
multivariate t-distribution, both of which have heavier tails than the normal. Their computational formulae are presented and
discussed in relation to that of the normal distribution.

Keywords Global navigation satellite system (GNSS ) · Integer equivariant (IE) estimation · Best integer equivariant (BIE) ·
Best linear unbiased estimation (BLUE) · Elliptically contoured distribution (ECD) · Multivariate normal · Contaminated
normal · Multivariate t-distribution · LAMBDA method

1 Introduction

This contribution extends the theory of integer equivariant
(IE) estimation as introduced in Teunissen (2003). The the-
ory of IE estimation provides a solution to the problem of
carrier-phase ambiguity resolution, which is key to high-
precision GNSS positioning and navigation. It is well known
that the so-called fixed GNSS baseline estimator is superior
to its ‘float’ counterpart if the integer ambiguity success rate
is sufficiently close to its maximum value of one. Although
this is a strong result, the necessary condition on the success
rate does not make it hold for all measurement scenarios.
This restriction was the motivation to search for a class of
estimators that could provide a universally optimal estimator
while still benefiting from the integerness of the carrier-phase
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ambiguities. The solutionwas found in the class of IE estima-
tors, with its best integer equivariant (BIE) estimator being
best in this class in the mean squared error sense (Teunissen
2003). The class of IE estimators obeys the integer remove–
restore principle and was shown to be larger than the class
of integer (I) estimators as well as larger than the class of
linear unbiased (LU) estimators. As a consequence, the BIE
estimator has the universal property that its mean squared
error (MSE) is never larger than that of any I estimator or
any LU estimator. This shows that from the MSE perspec-
tive one should always prefer the use of the BIE baseline over
that of the integer least-squares (ILS) baseline and best linear
unbiased (BLU) baseline.

In Teunissen (2003), an explicit expression of the BIE
estimator was derived that holds true when the data can be
assumed to be normally distributed. In Verhagen and Teunis-
sen (2005), the performance of this estimator was compared
with the float and fixed GNSS ambiguity estimators, while
in Wen et al. (2012) it was shown how to use this BIE esti-
mator for GNSS precise point positioning (PPP). In Brack
et al. (2014), a sequential approach to best integer equiv-
ariant estimation was developed and tested, while Odolinski
and Teunissen (2020) analyzed the normal distribution-based
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BIE estimation for low-cost single-frequency multi-GNSS
RTK positioning.

In this contribution, we will generalize BIE estimation
to the larger class of elliptically contoured distributions
(ECDs). Many important distributions belong to this class
(Chmielewski 1981; Cabane et al. 1981). Explicit expres-
sions of the BIE estimator will be given for the multivariate
normal distribution, the contaminated normal distribution
and the multivariate t-distribution. The relevance of the con-
taminated distribution stems from the fact that it is a finite
mixture distribution particularly useful formodeling data that
are thought to contain a distinct subgroup of observations
and thus can be used to model experimental error or con-
tamination. The multivariate t-distribution is another class
of distributions with tails heavier than the normal (Kibria
and Joarder 2006; Roth 2013).

Several studies have already indicated the occurrence of
GNSS instances where working with distributions that have
tails heavier than the normal would be more appropriate. In
Heng et al. (2011), for instance, it is shown that GPS satellite
clock errors and instantaneous UREs have heavier tails than
the normal distribution for about half of the satellites. Similar
findings can be found in Dins et al. (2015). Also in fusion
studies of GPS and INS, Student’s t-distribution has been
proposed as the more suited distribution, see e.g., (Zhu et al.
2012; Zhong et al. 2018; Wang and Zhou 2019). And similar
findings can be found in studies of multi-sensor GPS fusion
for personal and vehicular navigation (Dhital et al. 2013; Al
Hage et al. 2019).

This contribution is organized as follows. We start with a
brief review of the theory of integer equivariant estimation
in Sect. 2. Here, we emphasize the difference between inte-
ger equivariant estimation and integer estimation and show
that the structure of the BIE estimator is one of a weighted
average over the combined spaces of real and integer num-
bers. In Sect. 3, we present the general expression of the BIE
estimator for elliptically contoured distributions. This will
be done for the mixed-integer model, the integer-only model
and the real-only model. We also emphasize here how the
probability density function determines the structure of the
estimator. Then, in Sects. 4, 5 and 6, we derive the explicit
expressions of the BIE estimator for the multivariate normal,
the contaminated normal and the multivariate t-distribution.
In Sect. 7, they are compared and is it shown how they can
be computed efficiently. The summary and conclusions are
given in Sect. 8.

We make use of the following notation: AT is the trans-
pose of matrix A,R(A) denotes the range space of matrix A
and N (A) its null space. ||y||2Σ = (y)TΣ−1(y) denotes the
weighted squared norm of vector y and |Σyy | the determi-
nant of matrixΣyy . A matrixU is said to be a basis matrix of
a subspace V , if the column vectors of U form a basis of V ,
i.e., the columns ofU are linearly independent (full rank) and

R(U ) = V . The subspace V⊥ is the orthogonal complement
of V . We also make a frequent use of the PDF transformation
rule: If x = T y+ t and fy(y) is the probability density func-
tion (PDF) of y, then fx (x) = |T |−1 fy(T−1(y − t)) is the
PDF of x . P[E] denotes the probability of event E , ∼ ‘dis-
tributed as,’ and E(.) andD(.), the expectation and dispersion
operator, respectively.

2 Integer equivariant estimation

The class of integer equivariant (IE) estimators was intro-
duced in Teunissen (2003). To appreciate the differences
between IE estimators and integer estimators, we first recall
the three conditions that an integer (I) estimator has to fulfill
(Teunissen 1999a, b):

Definition 1 (I-estimation) Let â ∈ R
n be a real-valued

estimator of the integer vector a ∈ Z
n . Then, ǎ = I(â),

I : R
n �→ Z

n , is an integer estimator of a if the pull-in
region of I, Pz = {x ∈ R

n | z = I(x)}, satisfies the three
conditions:

1. ∪z∈ZnPz = R
n

2. Pu ∩ Pv = ∅ ∀u �= v ∈ Z
n

3. Pz = z + P0.

Each of the above three conditions states a property which
is reasonable to ask of an arbitrary integer estimator. The
first condition states that the pull-in regions should not leave
any gaps, and the second that they should not overlap. The
absence of gaps is needed in order to be able to map any
‘float’ solution â to Z

n , while the absence of overlaps is
needed to guarantee that the ‘float’ solution is mapped to just
one integer vector.

The third condition of the definition follows from the
requirement that I(x + z) = I(x) + z, ∀x ∈ R

n , z ∈ Z
n .

Also, this condition is a reasonable one to ask for. It states that
when the ‘float’ solution â is perturbed by an arbitrary inte-
ger vector z, the corresponding integer solution is perturbed
by the same amount. This property thus allows one to apply
the integer remove–restore technique, I(â − z) + z = I(â).
It allows one to work with the fractional parts of â, instead
of with its complete entries.

It is this last condition which forms the guiding principle
of IE estimators. Let the mean of them-vector of observables
be mixed-integer parametrized as

E(y) = Aa + Bb , a ∈ Z
n, b ∈ R

p (1)

with [A, B] ∈ R
m×(n+p) given and of full rank, and let our

interest lie in estimating the linear function

θ = Laa + Lbb , θ ∈ R
q (2)
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It then seems reasonable that the estimator should at least
obey the integer remove–restore principle. For instance,
when estimating integer ambiguities in case of GNSS, one
would like, when adding an arbitrary number of cycles to the
carrier-phase data, that the solution of the integer ambigui-
ties be shifted by the same integer amount. For the estimator
of θ , this means that adding Az to y, for arbitrary z ∈ Z

n ,
must result in a shift of Laz. Similarly, it seems reasonable
to require of the estimator that adding Bβ to y, for arbitrary
β ∈ R

p, results in a shift of Lbβ. After all, we would not
like the integer part of the estimator to be affected by such
an addition to y. Requiring these two properties leads to the
following definition of integer equivariant estimation (Teu-
nissen 2003):

Definition 2 (IE-estimation) The estimator θ̂IE = Fθ (y),
Fθ : Rm �→ R

q , is an integer equivariant estimator of θ =
Laa+Lbb ∈ R

q if Fθ (y+ Az+Bβ) = Fθ (y)+Laz+Lbβ,
∀y ∈ R

m, z ∈ Z
n, β ∈ R

p.

As the IE-class only requires the integer remove–restore
property for estimating integer parameters, it encompasses
the I-class, i.e., I ⊂ IE. In Teunissen (2003), it was shown
that the IE-class also encompasses the class of linear unbi-
ased (LU) estimators, LU ⊂ IE. An important consequence
of both I and LU being subsets of IE is that optimality in IE
automatically carries over to I and LU. Probably, the most
popular optimal estimator in the LU-class is the best linear
unbiased estimator (BLUE), where ‘best’ is taken in the min-
imum mean squared error (MMSE) sense (Rao 1973; Koch
1999; Teunissen 2000). Using the same criterion, but now in
the larger class of integer equivariant estimators, leads to the
best integer equivariant (BIE) estimator.

BIE Theorem (Teunissen 2003): Let the vector of observ-
ables y ∈ R

m , with PDF fy(y), have the mean E(y) =
Aa + Bb, with a ∈ Z

n and b ∈ R
p. Then, the BIE estimator

of the linear function θ(a, b) = Laa + Lbb, La ∈ R
q×n ,

Lb ∈ R
q×p, is given as

θ̂BIE =
∑

z∈Zn

∫
Rp θ(z, β) fy(y + A(a − z) + B(b − β))dβ

∑
z∈Zn

∫
Rp fy(y + A(a − z) + B(b − β))dβ

. (3)

As a consequence ofLU ⊂ IE,wehave that themean squared
error (MSE) of the best linear unbiased (BLU) estimator is
never better than that of a BIE estimator:

MSE(θ̂BLU) ≥ MSE(θ̂BIE). (4)

This implies that in the context of GNSS it wouldmake sense
to always compute the BIE baseline estimator, as its mean
squared error will never be poorer than that of the ‘float’
baseline solution b̂. Likewise, since I ⊂ IE, it follows that the
BIE estimator is also MSE-superior to any integer estimator,

thus also to such popular estimators of integer least-squares
(ILS), integer bootstrapping (IB) and integer rounding (IR).

The BIE estimator is a ‘weighted average.’ This can be
seen if we write (3) in the compact form

θ̂BIE =
∑

z∈Zn

∫

Rp
w(z, β)θ(z, β)dβ (5)

with weights w(z, β) = f (z, β)/(
∑

z∈Zn

∫
Rp f (z, β)dβ),

f (z, β) = fy(y + A(a − z) + B(b − β)), that ‘sum up’
to unity,

∑
z∈Zn

∫
Rp w(z, β)dβ = 1. In fact, by interpreting

w(z, β) as a joint probability mass/density function, the BIE
estimate can be interpreted as the mean of that distribution.

Would one be interested in only estimating the ambigui-
ties, then with La = In and Lb = 0, one obtains from (5)

âBIE =
∑

z∈Zn

wz z , with wz =
∫

Rp
w(z, β)dβ. (6)

Likewise, if one would be interested in estimating b, then
with La = 0 and Lb = Ip, one obtains from (5)

b̂BIE =
∫

Rp
w(β)βdβ , with w(β) =

∑

z∈Zn

w(z, β). (7)

With both âBIE and b̂BIE available, one can compute the
BIE estimator of θ directly as θ̂BIE = LaâBIE + Lbb̂BIE.
Hence, the BIE estimator of the mean E(y) is given as
ŷBIE = AâBIE + Bb̂BIE. This is then the expression to use,
when in case of GNSS for instance, one would like to obtain
the BIE solution for the pseudorange and carrier-phase data.

Note that the above theorem holds true for any PDF the
vector of observables y might have. A closer look at (3)
reveals, however, that the unknowns a and b are needed in
order to compute the estimator. This dependence on a and
b is present in the numerator of (3), but not in its denomi-
nator as the dependence there disappears due to the integer
summation and integration. Would the dependence persist,
we would not be able to compute the BIE estimator. Note,
however, that it disappears if the PDF of y has the structure
fy(y) = f (y − Aa − Bb). Fortunately, this is still true for
a large class of PDFs, and in particular for the class of ellip-
tically contoured distributions (ECD), which we consider
next.

3 BIE for elliptically contoured distributions

The class of elliptically contoured distributions is defined as
follows (Cabane et al. 1981; Chmielewski 1981):
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Definition 3 (Elliptically contoured distribution (ECD)) A
random vector y ∈ R

m is said to have an ECD, denoted as
y ∼ ECDm(ȳ,Σ, g), if its PDF is of the form

fy(y) = |Σyy |−1/2g(||y − ȳ||2Σyy
) (8)

where ȳ ∈ R
m , Σyy ∈ R

m×m is positive definite, and
g : R �→ [0,∞) is a decreasing function that satisfies∫
Rm g(yT y)dy = 1.

Note that the contours of constant density of an ECD are
ellipsoids, (y− ȳ)TΣ−1

yy (y− ȳ) = constant, from which the
ECD draws its name. Also note, since (8) is symmetric with
respect to ȳ, that ȳ in (8) is the mean of y, E(y) = ȳ. The
positive-definite matrixΣyy in (8), however, is in general not
the variance matrix of y. It can be shown that the variance
matrix of y is a scaled version of Σyy , D(y) = σ 2Σyy . The
function g(.) of (8) is called the generating function of the
ECD (not to be confused with its moment generating func-
tion).

Several of the properties of ECDs are similar to those of
the multivariate normal distribution. For instance, ECDs also
have the linearity property: If x = T y + t , with |T | �= 0,
and fy(y) = |Σyy |−1/2g(||y − ȳ||2Σyy

) is the PDF of y, then

fx (x) = |Σxx |−1/2g(||x − x̄ ||2Σxx
) is the PDF of x , with

x̄ = T ȳ + t and Σxx = TΣyyT T . Also, marginal and con-
ditional PDFs of ECDs are again an ECD. Several important
distributions belong to the ECD-class. Such examples are
the multivariate normal distribution, the contaminated nor-
mal distribution and the multivariate t-distribution.

If y hasmean (1), its likelihood function reads fy(y|a, b) =
|Σyy |−1/2g(||y − Aa− Bb||2Σyy

), from which the maximum
likelihood estimators of a ∈ Z

n and b ∈ R
p follow as

(ǎ, b̌) = arg max
a∈Zn ,b∈Rp

fy(y|a, b)

= arg min
a∈Zn ,b∈Rp

||y − Aa − Bb||2Σyy
,

(9)

thus showing that the maximum likelihood estimator coin-
cides with the (mixed) integer least-squares estimator. The
minimization (9) can be further worked out if we make use
of the orthogonal decomposition (Teunissen 1995):

||y−Aa−Bb||2Σyy
= ||ê||2Σyy

+||â−a||2Σââ
+||b̂(a)−b||2Σb̂b̂|a

(10)

with ê = y − Aâ − Bb̂, the least-squares residual vec-
tor, â = Σââ Ā

TΣ−1
yy y and b̂ = Σb̂b̂ B̄

TΣ−1
yy y, the

‘float’ least-squares solutions of a and b, respectively,
and b̂(a) = b̂ − Σb̂âΣ

−1
ââ (â − a), the conditional least-

squares solution of b given a. The matrices are given as
Σââ = ( ĀTΣ−1

yy Ā)−1, Σb̂b̂ = (B̄TΣ−1
yy B̄)−1, Σb̂b̂|a =

Σb̂b̂ − Σb̂âΣ
−1
ââ Σâb̂, and Σb̂â = Σb̂b̂ B̄

TΣ−1
yy ĀΣââ , where

Ā = (Im − PB)A, B̄ = (Im − PA)B, with orthogo-
nal projectors PA = A(ATΣ−1

yy A)−1ATΣ−1
yy and PB =

B(BTΣ−1
yy B)−1BTΣ−1

yy , respectively. Substitution of (10)
into (9) shows that

ǎ = arg min
z∈Zn

||â − z||2Σyy
, b̌ = b̂ − Σb̂âΣ

−1
ââ (â − ǎ). (11)

In Teunissen (1999b), it is proven that for ECDs the ILS
estimator ǎ is optimal in the sense that it has, of all estima-
tors in the I-class, the largest probability of correct integer
estimation (i.e., the largest success rate).

The above property that the maximum likelihood estimate
of a ∈ Z

n and b ∈ R
p remains the same, irrespective the

choice for g(.), does in general not carry over to best integer
equivariant estimation. Hence, for different functions g(.),
we will have different BIE solutions. In Sects. 4, 5 and 6, we
will give the explicit BIE solutions when the distributions
are normal, contaminated normal and multivariate t . First,
however, we will determine the general expression for the
ECD–BIE estimator. We will do so by considering the three
cases: A = 0 (real-valued model), B = 0 (integer-valued
model) and A �= 0, B �= 0 (mixed-integer real model).

ECD–BIETheoremLet y ∼ ECDm(Aa+Bb,Σyy, g) have
the PDF fy(y) = |Σyy |−1/2g(||y − Aa − Bb||2Σyy

), a ∈ Z
n ,

b ∈ R
p. Then, the BIE estimator of θ = Laa + Lbb is given

as θ̂BIE = LaâBIE + Lbb̂BIE, with

âBIE =
∑

z∈Zn

h(z)
∑

u∈Zn
h(u)

z (12)

where

if A �= 0, B �= 0 : h(z) = ∫ ∞
0 g(cz + r2)r p−1dr

b̂BIE = b̂ − Σb̂âΣ
−1
ââ (â − âBIE)

if A �= 0, B = 0 : h(z) = g(cz)
Lb = 0

if A = 0, B �= 0 : La = 0
b̂BIE = (BTΣ−1

yy B)−1BTΣ−1
yy y

(13)

and cz = ||ê||2Σyy
+ ||â − z||2Σââ

.

Proof For the proof, see the “Appendix”. ��
Note in case the model has no integer parameters (A =

0), the BIE estimator of the real-valued parameter vector is
identical to its BLUE. This is a consequence of the fact that
the class of linear unbiased estimators is a subset of the IE-
class, while both estimators have the MMSE property. Also
note that in case of a mixed model (A �= 0, B �= 0), the
BIE estimator b̂BIE has the same structure as b̌ of (11). By
replacing ǎ in the expression of b̌ by âBIE, one obtains b̂BIE.
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An important difference between the two type of estimators
is, however, that in the (mixed) ILS case the mapping of
y to ǎ and b̌ does not depend on g(.), whereas in the BIE
case it does. This dependence on g(.) reveals itself in the
function h(z) (cf. 13). In general, it depends, through cz , on
both ||ê||2Σyy

and ||â− z||2Σââ
. Hence, h(z) will then not only

be smaller when â is further away from z, but also when the
norm of the least-squares residual vector gets larger.

The above theorem also shows that the complexity of
the BIE estimator of a ∈ Z

n differs depending on whether
the model contains additional real-valued parameters or not.
Both cases are relevant for GNSS. The model without real-
valued parameters occurs, for instance, in the geometry-fixed
case, when the data of a short GNSS baseline with known
coordinates are analyzed for the purpose of stochastic model
estimation.

As the estimator âBIE is simpler to compute when the
model only contains integer parameters, one would perhaps
be inclined, since real-valued parameters are easily elimi-
nated by means of a linear transformation of the vector of
observables, to always opt for using case (B = 0) instead of
case (B �= 0). Such would, however, be wrong. Although the
class of elliptically contoured distributions is closed under
linear transformations, the transformed ECD will generally
not be a simple scaled version of the original. The following
lemma makes this clear:

Lemma 1 (Linear function of ECD) Let y have the PDF
fy(y) = |Σyy |−1/2g(||y − Aa − Bb||2Σyy

) and yc = CT y,

with basis matrix C ∈ R(B)⊥ (i.e., CT B = 0). Then,

yc ∼ |Σyc yc |−1/2gc
(
||yc − CT Aa||2Σyc yc

)
(14)

with gc(x) = |Σyb yb |−1/2
∫
Rp g(x + ||yb − ȳb||2Σyb yb

)dyb,

ȳb = Σyb yb B
TΣ−1

yy Aa + b, Σyb yb = (BTΣ−1
yy B)−1, and

Σyc yc = CTΣyyC.

Proof For proof, see the “Appendix”. ��
This result shows that although the PDF of yc = CT y is

again an ECD, its generating function gc(.) differs from the
original g(.) as it is now an integrated version of it. It thus
depends on g(.) whether or not one would be allowed, in the
computation of âBIE, to still work with g(.)when eliminating
the real-valued parameters from the model. As we will see in
the next sections, this is the case with the normal distribution,
but not in general.

4 BIE for multivariate normal distribution

The elliptically contoured PDF fy(y) = |Σyy |−1/2g(||y −
Aa−Bb||2Σyy

becomes that of amultivariate normal distribu-

tion Nm(Aa + Bb,Σyy), when the generating function g(x)
is chosen as

g(x) = (2π)−m/2e− 1
2 x . (15)

Thus, in this case, Σyy is the variance matrix of y. By now
using (15) with (13), one can obtain the weights for the BIE
estimator in case y is normally distributed.

Corollary 1 (BIE weights for normal distribution) Let y ∼
Nm(Aa+ Bb,Σyy), a ∈ Z

n, b ∈ R
p. Then, the BIE weights

of (12) follow using

h(z) ∝ exp{− 1
2 ||â − z||2Σââ

}. (16)

Proof By substituting (15) into (13), one obtains for the case
B �= 0: h(z) = (2π)−m/2 exp{− 1

2 ||ê||2Σyy
} exp{− 1

2 ||â −
z||2Σââ

} ∫ ∞
0 exp{− 1

2r
2}r p−1dr , ofwhichonly the z-dependent

part remains when substituted into the weights of (12). The
same result is obtained for the case B = 0. ��
Note that where the weights of the general ECD–BIE expres-
sion (cf. 13) depend on cz and thus on ||ê||2Σyy

, that this

dependence on the least-squares residual vector ê is absent
in case of a normal distribution.

5 BIE for contaminated normal distribution

The contaminated normal distribution is a mixture of two
normal distributions having the same mean but proportional
variance matrices. A mixture of two distributions is the dis-
tribution of a random vector y of which the sample is created
from the realizations of two other random vectors x1 and x2
as follows: First, one of the two random vectors is selected by
chance according to the two given probabilities of selection,
say ε for x1 and 1−ε (0 ≤ ε ≤ 1) for x2, and then the sample
of the selected random vector is realized.

The PDF of the so-created random vector y can be
expressed as a convex combination of the density functions
fx1(y) and fx2(y) of the two random vectors: fy(y) =
(1−ε) fx1(y)+ε fx2(y). Thus, if fx1(y) = |Σyy |−1/2g(||y−
ȳ||2Σyy

) and fx2(y) = |δΣyy |−1/2g(||y− ȳ||2δΣyy
) (δ > 1) are

two ECDs with same mean but proportional variance matri-
ces, then fy(y) is a contaminated ECD.

The contaminated ECD is again an ECD, with generat-
ing function (1− ε)g(x) + εδ−m/2g( x

δ
). Thus, with g(x) =

(2π)−m/2 exp{− 1
2 x} being the generating function for the

multivariate normal distribution, the generating function for
the contaminated normal distribution is given as

g(x) = (2π)
−m

2

[

(1 − ε)e− 1
2 x + εδ

−m
2 e− 1

2δ x
]

. (17)
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Usually δ is chosen large and ε small. The idea is that the
main distribution Nm(ȳ,Σyy) is slightly ‘contaminated’ by
the wider distribution Nm(ȳ, δΣyy). This results in a distri-
bution with heavier tails than the main one.

By substituting (17) into (13), one obtains the weights for
the contaminated normal BIE estimator.

Corollary 2 (BIE weights for contaminated normal) Let y ∼
(1−ε)Nm(Aa+Bb,Σyy)+εNm(Aa+Bb, δΣyy), a ∈ Z

n,
b ∈ R

p, 0 ≤ ε ≤ 1, δ > 1. Then, the BIE weights of (12)
follow using

h(z) ∝ k(z) × exp{− 1
2 ||â − z||2Σââ

} (18)

with

k(z) =
⎡

⎣1 + δ
−m−p

2 ε/(1 − ε)

exp{− 1
2cz(δ − 1)/δ}

⎤

⎦ (19)

in which cz = ||ê||2Σyy
+ ||â − z||2Σââ

.

Proof By substituting (17) into (13), recognizing that∫
exp{− 1

2δ r
2}r p−1dr = δ p/2

∫
exp{− 1

2r
2}r p−1dr , the result

follows. ��
Compare (18) with (16). Note hereby, as k(z) depends on cz ,
that the weights of the contaminated normal BIE estimator
depend on the least-squares residual, this in contrast to the
normal BIE estimator. This dependence gets less, the closer
δ is chosen to one and in the limit we have limδ→1 k(z) =
1+ ε/(1− ε), which as a constant cancels in the weights wz .
Also note the dependence of k(z) on the dimension of the
real-valued vector b ∈ R

p. When all else remains the same,
k(z) gets larger for larger p. The case B = 0 corresponds
with p = 0.

6 BIE for multivariate t-distribution

The random vector y ∈ R
m is said to have a multivariate

t-distribution with d > 2 degrees of freedom, denoted as
y ∼ Tm(ȳ,Σyy, d), if its PDF is given as (Zellner 1973;
Kibria and Joarder 2006; Roth 2013)

fy(y) = Γ (m+d
2 )

(dπ)
d
2 Γ ( d2 )|Σyy |1/2

[

1 +
||y − ȳ||2Σyy

d

]−m+d
2

(20)

in which Γ (.) denotes the gamma-function. The mean of y
is E(y) = ȳ, and its variance matrix is D(y) = d

d−2Σyy .

It is noted that T1(0, 1, d) is Student’s t-distribution with
d degrees of freedom (Gosset 1908; Koch 1999). The t dis-
tribution has heavier tails than the normal distribution, but
in the limit d → ∞ converges to the standard normal distri-
bution N1(0, 1). The analogy in the multivariate case is that
Tm(0,Σyy, d) converges to Nm(0,Σyy) as d → ∞.

Also, the multivariate t-distribution is an elliptically con-
toured distribution. Its generating function is given as

g(x) = Γ (m+d
2 )

(dπ)
d
2 Γ ( d2 )

[
1 + x

d

]−m+d
2

. (21)

By substituting (21) into (13), one obtains the weights for the
multivariate t BIE estimator.

Corollary 3 (BIEweights formultivariate t) Let y ∼ Tm(Aa+
Bb,Σyy, d), a ∈ Z

n, b ∈ R
p. Then, the BIE weights of (12)

follow using

h(z) ∝
[
1 + cz

d

]−m+d
2 +p

(22)

in which cz = ||ê||2Σyy
+ ||â − z||2Σââ

.

Proof We need to solve h(z) = ∫ ∞
0 g(cz + r2)r p−1dr for

g(x) ∝ [
1 + x

d

]−m+d
2 . Since

∫ ∞
0 [1 + (ax)2]−s xn−1dx =

Γ ( n2 )Γ (s− n
2 )

2a2nΓ (s)
(Gradshteyn and Ryzhik 2007), it follows from

h(z) ∝ [1 + cz
d ]−m+d

2
∫ ∞
0 [1 + ( r

(cz+d)
1
2
)2]−m+d

2 r p−1dr that

h(z) ∝ [1 + cz
d ]−m+d

2 [cz + d]p, from which the result (22)
follows. ��
Note, as with the contaminated normal distribution, that the
BIE weights for the multivariate t-distribution depend on
the least-squares residual vector ê. Also note, when all else
remains the same, that h(z) gets larger for larger p, i.e., if the
underlying model gets weaker. The case B = 0 corresponds
with p = 0.

As the t-distribution converges to the normal distribution
for d → ∞, one would expect h(z) of (22) to converge to
(16) for increasing degrees of freedom. And indeed, since
limn→∞[1 + x

n ]n = ex , it follows that

lim
d→∞

[
1 + cz

d

]−m+d
2 +p = exp{− 1

2cz}
∝ exp{− 1

2 ||â − z||2Σââ
}

which is the h(z) of (16).

7 On the computation of the BIE estimators

As (12) cannot be computed in practice due to the occurrence
of infinite sums, we need to replace the sum over all integers
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by a sum over a finite set. It seems reasonable to neglect the
contributions to the sum, when h(z) is sufficiently small. As
h(z) gets smaller, the larger the (weighted) distance between
z and â is (cf. 12), we define the integer set as

Ωλ
â = {z ∈ Z

n | ||â − z||2Σââ
≤ λ2} (23)

and approximate âBIE by

âλ
BIE =

∑

z∈Ωλ
â

z
h(z)

∑
u∈Ωλ

â
h(u)

. (24)

This will be a good approximation of âBIE if the size of the
integer set Ωλ

â , and thus λ can be properly chosen. To find
such way of choosing λ, we first note that the approxima-
tion âλ

BIE can also be seen as an exact BIE estimator in its
own right, namely when the PDF is given by the following
truncated version of fy(y),

f λ
y (y) = δλ

a (â) fy(y)∫
Eλ
a
fy(y)dy

(25)

with δλ
a (x) being the indicator function of the ellipsoidal

region Eλ
a = {x ∈ R

n| ||x − a||2Σââ
≤ λ2}. Thus, by using

(25) as PDF instead of (8), one will obtain instead of (12),
with its infinite sums, the BIE estimator (24), having finite
sums, since

∑
z∈Zn δλ

z (â)h(z) = ∑
z∈Ωλ

â
h(z).

As (25) produces (24) as BIE estimator, one will have a
good approximation of (12) when f λ

y (y) is a good approx-
imation to the original PDF fy(y), which will be the case
when the denominator of (25) is close enough to one, and
thus

∫

Eλ
a

fy(y)dy = 1 − α (26)

for α small enough. By applying the appropriate change-of-
variable rule, one will recognize the integral of (26) as the
probability of â residing in Eλ

a . Hence, the proper size of the
integer set Ωλ

â in (24) is found by choosing λ to satisfy

P[â ∈ Eλ
a ] = P[||â − a||2Σââ

≤ λ2] = 1 − α. (27)

The following lemma shows how this probability can be com-
puted for the three different ECDs that we have considered.

Lemma 2 (On the size of the integer set Ωλ
â ): Let y, with

mean ȳ = Aa + Bb, a ∈ Z
n, b ∈ R

p, be distributed
as (i) y ∼ Nm(ȳ,Σyy), (i i ) y ∼ (1 − ε)Nm(ȳ,Σyy) +
εNm(ȳ, δΣyy), and (ii i ) y ∼ Tm(ȳ,Σyy, d), respectively.
Then, the probability P[||â − a||2Σyy

≤ λ2] = 1− α is given

by

(i) P[χ2(n) ≤ λ2] = 1 − α

(i i) (1 − ε)P[χ2(n) ≤ λ2] + εP[χ2(n) ≤ 1
δ
λ2] = 1 − α

(i i i) P[F(n, d) ≤ λ2] = 1 − α

in which χ2(n) and F(n, d) are the central chi-squared and
central F-distribution with n and n, d degrees of freedom,
respectively.

Proof As â = Σââ Ā
TΣ−1

yy y is linear in y, it follows that
(i) â ∼ Nn(a,Σââ), (i i) â ∼ (1 − ε)Nn(a,Σââ) +
εNn(a, δΣââ), and (i i i) â ∼ Tn(a,Σââ, d), respectively.
Therefore, (i) ||â − a||2Σyy

∼ χ2(n) and (i i i) ||â − a||2Σyy
∼

F(n, d) (Kibria and Joarder 2006), from which the result
follows. ��

Once the choice for the size of the integer setΩλ
â has been

made, the integer vectors contained in it have to be collected,
so as to be able to compute (24). This collection can be done
efficiently with the LAMBDA method (Teunissen 1995; De
Jonge et al. 1996), as also demonstrated in Verhagen and
Teunissen (2005) and (Odolinski and Teunissen 2020).

8 Summary and conclusions

In this contribution, the theory of integer equivariant (IE) esti-
mation (Teunissen 2003) was extended to include the family
of elliptically contoured distributions. As the class of IE esti-
mators includes both the class of integer (I) estimators and
class of linear unbiased (LU) estimators, any optimality in the
IE-class automatically carries over to the I-class and the LU-
class. Hence, if b̌ is an arbitrary I estimator and b̂ an arbitrary
LU estimator, then the best integer equivariant (BIE) estima-
tor b̂BIE,which is optimal in theminimummean squared error
sense, will have a mean squared error (MSE) that satisfies

MSE(b̂BIE) ≤ MSE(b̂) and MSE(b̂BIE) ≤ MSE(b̌). (28)

In the context ofGNSS, this implies that theMSEof the base-
line BIE estimator is always less than, or at the most equal to,
that of both its ‘float’ and ‘fixed’ counterparts. This shows
that from the MSE perspective one should always prefer the
use of the BIE baseline over that of the best linear unbiased
(BLU) baseline and integer least-squares (ILS) baseline.

In contrast to the BLU estimator and the ILS estimator, the
expression for the BIE estimator depends on the probability
density function (PDF) of the vector of observables.Different
PDFs give different mappings from the vector of observables
y to the baseline b. In this contribution, we developed the
expressions of the BIE estimator for the family of elliptically
contoured distributions. For the mixed-integer model E(y) =
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Aa + Bb, a ∈ Z
n , b ∈ R

p, the BIE estimators were shown
to be given as

b̂BIE = b̂ − Σb̂âΣ
−1
ââ (â − âBIE) (29)

with

âBIE =
∑

z∈Zn

z

∫ ∞
0 g(cz + r2)r p−1dr

∑
u∈Zn

∫ ∞
0 g(cu + r2)r p−1dr

(30)

in which the choice of the multivariate PDF is felt through
the generating function g(.).

Important examples of elliptically contoured distributions
are the multivariate normal distribution, the contaminated
normal distribution and the multivariate t-distribution. By
means of their generating functions, which were shown to be
given as

g(x) ∝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e− 1
2 x (normal)

(1 − ε)e− 1
2 x + εδ

−m
2 e− 1

2δ x (contaminated)
[
1 + x

d

]−m+d
2 (t−distribution)

(31)

we provided the explicit formulae of their BIE estimators.
For each of these distributions, it is now thus possible to
compute the GNSS baseline estimator such that it will have
the smallest possible mean squared error of all integer equiv-
ariant baseline estimators.

Author contributions PT developed the theory and wrote the paper.
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Appendix

Proof of ECD–BIE Theorem First, we consider the case A �=
0, B �= 0 (the case A �= 0, B = 0 goes along similar lines)
and then the case A = 0.We start from the general expression

for the BIE estimator of b, which follows from (3) as

b̂BIE =
∑

z∈Zn

∫
Rp β fy(y + A(a − z) + B(b − β))dβ

∑
z∈Zn

∫
Rp fy(y + A(a − z) + B(b − β))dβ

.

(32)

Substitution of the ECD–PDF (8), with ȳ = Aa+ Bb, while
making use of the orthogonal decomposition (10), gives

b̂BIE =
∑

z∈Zn

∫
Rp βg(cz + ||b̂(z) − β||2Σb̂b̂|a

)dβ
∑

z∈Zn

∫
Rp g(cz + ||b̂(z) − β||2Σb̂b̂|a

)dβ
(33)

with cz = ||ê||2Σyy
+||â− z||2Σââ

. By noting that the function

g(cz +||β − b̂(z)||2Σb̂b̂|a
), as function of β, is symmetric with

respect to b̂(z), we can make use of the property

∫

Rp
[β − b̂(z)]g(cz + ||β − b̂(z)||2Σb̂b̂|a

)dβ = 0 (34)

and rewrite the numerator of (33) to obtain

b̂BIE =
∑

z∈Zn

h(z)
∑

z∈Zn h(z)
b̂(z) (35)

where

h(z) ∝
∫

Rp
g(cz + ||b̂(z) − β||2Σb̂b̂|a

)dβ. (36)

This leaves us to further simplify the integral. A first sim-
plification is reached if we reparametrize β in v as β =
GT v + b̂(z), with G satisfying Σb̂b̂|a = GTG, e.g., being

its Cholesky factor. Then, ||β − b̂(z)||2Σb̂b̂|a
= vT v, from

which, with an application of the change-of-variable rule for
integrals and recognizing that |Σb̂b̂|a |1/2 = |G|, follows

h(z) ∝ |Σb̂b̂|a |1/2
∫

Rp
g(cz + vT v)dv. (37)

Note that v only appears in the integral through its squared
Euclidean norm. This suggests that we apply a polar coor-
dinate transformation as a further change of variables in the
integral. We therefore reparametrize v in the scalar radius
r > 0 and the vector of angles α = (α1, . . . , αp−1)

T as
v = ru(α), where the components of the unit-vector u(α)

are given as ui (α) = cos(αi )
∏i−1

j=0 sin(α j ), with sin(α0) =
cos(αp) = 1, and where 0 ≤ α j ≤ π for j = 1, . . . , p − 2,
0 ≤ αp−1 < 2π . As the Jacobian of this transformation

is given as J (r , α) = r p−1 ∏p−1
i=2 (sin(αi−1))

p−i (Mardia
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et al. 1989), it follows from an application of the change-of-
variable rule that

∫

Rp
g(cz + vT v)dv = S(p)

∫ ∞

0
r p−1g(cz + r2)dr (38)

where S(p) = ∫
J (1, α)dα is the surface area of the p-

dimensional unit sphere. Combining (37) and (38) with (35)
concludes the proof for the case A �= 0.

For the case A = 0, we have

b̂BIE =
∫
Rp β fy(y + B(b − β))dβ
∫
Rp fy(y + B(b − β))dβ

(39)

which, with ||y − Bβ||2Σyy
= ||ê||2Σyy

+ ||b̂ − β||2Σb̂b̂
, b̂ =

(BTΣ−1
yy B)−1BTΣ−1

yy y, can be written as

b̂BIE =
∫
Rp βg

(
||ê||2Σyy

+ ||b̂ − β||2Σb̂b̂

)
dβ

∫
Rp g

(
||ê||2Σyy

+ ||b̂ − β||2Σb̂b̂

)
dβ

= b̂ (40)

which proves the stated result. ��

Proof of Lemma 1 (Linear function of ECD): Define the one-
to-one transformation ỹ = T y, with ỹ = [yTb , yTc ]T , T =
[B+T ,C]T , B+ = (BTΣ−1

yy B)−1BTΣ−1
yy and C a basis

matrix of R(B)⊥. With fy(y) = |Σyy |−1/2g(||y − Aa −
Bb||2Σyy

) being the PDF of y, an application of the PDF trans-
formation rule gives then

fyb,yc (yb, yc) =
g

(
||yb − ȳb||2Σyb yb

+ ||yc − ȳc||2Σyc yc

)

|Σyb yb |1/2|Σyc yc |1/2
(41)

with ȳb = B+Aa+b, ȳc = CT Aa,Σyb yb = (BTΣ−1
yy B)−1,

Σyc yc = CTΣyyC . Hence, the PDF of yc = CT y follows
from integrating yb out of fyb,yc (yb, yc) as

fyc (yc) = |Σyc yc |−1/2gc
(
||yc − ȳc||2Σyc yc

)
(42)

with

gc(x) = |Σyb yb |−1/2
∫

Rp
g

(
x + ||yb − ȳb||2Σyb yb

)
dyb.

(43)

This concludes the proof of the lemma. ��
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