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Abstract

The Argentinean—German Geodetic Observatory (AGGO) is a fundamental geodetic observatory located close to the city
of La Plata, Argentina. Two high-precision gravity meters are installed at AGGO: the superconducting gravimeter SG038,
which is in operation since December 2015, and the absolute gravimeter FG5-227, which has provided absolute gravity
measurements since January 2018. By co-location of gravity observations from both meters between January 2018 and March
2019, calibration factor and instrumental drift of the SG038 were determined. The calibration factor of the SG038 was
estimated by different strategies: from tidal models, dedicated absolute gravity measurements over several days and a joint
approach (including the determination of the instrumental drift) using all available absolute gravity data. The final calibration
factor differs from the determination at the previous station, the transportable integrated geodetic observatory, in Concepcion,
Chile, by only 0.7%o, which does not imply a significant change. From the combined approach also the mean absolute level
of the SG was determined, allowing to predict absolute gravity values from the SG at any time based on a repeatability of
12 nm/s? for the FG5-227 at AGGO. Such a continuous gravity reference function provides the basis for a comparison site for
absolute gravimeters in the frame of the international gravity reference frame for South America and the Caribbean. However,
it requires the assessment of the total error budget of the FG5-227, including the link to the international comparisons, which
will be subject of future efforts.
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1 Introduction

The Argentinean—German Geodetic Observatory (AGGO)
is a fundamental geodetic observatory located close to the
city of La Plata, Argentina, where all major geodetic tech-

B Ezequiel D. Antokoletz
eantokoletz@fcaglp.unlp.edu.ar

Facultad de Ciencias Astronémicas y Geofisicas, Universidad
Nacional de La Plata, Paseo del Bosque s/n, La Plata,
Argentina

Gravity Metrology, Federal Agency for Cartography and
Geodesy (BKG), Karl-Rothe-Strafe 10, Leipzig, Germany

Gravity Metrology, Federal Agency for Cartography and
Geodesy (BKG), Richard-Strauss-Allee 11, Frankfurt am
Main, Germany

National Scientific and Technical Research Council
(CONICET), Buenos Aires, Argentina

niques are co-located (Antokoletz et al. 2017; Wziontek
et al. 2017). The superconducting gravimeter SG038 (SG)
was put into operation at AGGO in December 2015, after
it was moved from the previous station, the Transportable
Integrated Geodetic Observatory (TIGO), located in Concep-
cion, Chile. Since then, it has been continuously recording
gravity variations over time, providing the basis for a gravity
reference function.

Calibration factor and instrumental drift of the SG038
were previously determined at station TIGO. The calibration
factor was found to be —736.5nm/s?/V with an estimated
uncertainty of 0.8 nm/s? /V from 3 years of combination with
absolute gravity observations. The SG instrumental drift was
estimated with 51.9 nm/s”/year, with an estimated uncer-
tainty of 0.3 nm/s?/year, by combining more than 130 AG
observation epochs (Wziontek et al. 2016).

The SG038 was transported over 3000 km by truck from
Concepcion, Chile, to La Plata, Argentina. Although Meur-
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ers (2012) found no significant changes in the calibration
factor after moving an SG over 60 km without lowering the
sphere, the SGO38 suffered a much longer trip. Therefore,
the calibration factor had to be checked after the installation
at AGGO. In addition, the instrumental drift had to be deter-
mined after the new setup since a change in its behavior is
normally expected after changes of the magnetic field when
re-centering the sphere.

Since the SG was installed at AGGO, several studies were
carried out. Antokoletz et al. (2017) have determined the
time delay due to electronic components of the SG038 and
obtained a first tidal model for AGGO, by analyzing the first
6 months of superconducting gravity records. Oreiro et al.
(2018) have investigated the presence of non-tidal loading
effects from the estuary of the Rio de La Plata in the SG
gravity time series. Mikolaj et al. (2019) have developed a
local hydrology gravity model based on records of hydrolog-
ical and meteorological signals and evaluated it against the
gravity residuals of the SG038.

The time series of the SG038 used in the cited studies
were pre-processed using the calibration factor previously
determined at station TIGO. Moreover, Mikolaj et al. (2019)
applies a preliminary instrumental drift to account for long-
term changes. For a meaningful interpretation of the residual
gravity signal and the use as a comparison reference, the
calibration factor and instrumental drift of the SG038 had to
be revised for possible changes caused by the transportation
and re-centering of the sphere.

Preliminary information about the SG calibration factor
can be obtained by combination with a theoretical Earth
tide model, including ocean tide loading, atmospheric and
polar motion effects on gravity. Although such an approach
seems controversial since it does not improve tidal mod-
eling, today’s ocean models allow for a practical estimate.
Independent estimates are possible from co-located abso-
lute gravity measurements. In January 2018, the absolute
gravimeter (AG) FG5-227 was installed at AGGO, enabling
a precise determination of the instrumental properties (cal-
ibration factor and instrumental drift) of the SG038. The
instrumental drift was computed from all AG measurements
between January 2018 and March 2019. After the initial esti-
mate from theoretical tides, the SG calibration factor was
determined from extensive AG measurements of several days
duration. The results are compared with the calibration factor
determination at TIGO.

The establishment of the International Gravity Reference
Frame (IGRF), as recommended by the Resolution No. 2
of 2015 and No. 4 of 2019 of the International Association
of Geodesy (IAG), requires a continuous gravity reference
function for reference and comparison sites (Drewes and
Kuglitsch 2019). IGRF core stations provide a link to the
International Terrestrial Reference Frame (ITRF), where core
sites of the Global Geodetic Observing System (GGOS)
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play an essential role. Furthermore, the stations of the IGRF
should also be linked to the International Height Refer-
ence Frame (IHRF). AGGO as a member of GGOS space
geodesy network, fulfills all requirements to become the
only station with these characteristics in South America
and the Caribbean. The presented combination of AG and
SG observations sets the basis to establish such a contin-
uous gravity time series, which will serve as a reference
for comparisons of absolute gravity meter on a regional
level.

2 Observations

2.1 Absolute gravity observations

Absolute gravity measurements have been repeatedly per-
formed at AGGO since it was set up. The FG5-227 is installed
on a pillar with a side length of 1.1 m which is founded 4 m
deep at a distance of about 1.5 m from the pillar of the SG
(Fig. 1a, b; Antokoletz et al. 2017). Two similar pillars allow
for absolute gravity meter comparisons. All pillars are deep-
ened into the soil (bedrock is not available in the area) and
isolated from the floor of the gravity laboratory to reduce
micro-seismic noise and avoid vibrations from the helium
compressor of the SG.

Typically, the AG observations made at AGGO have a
duration of about 24 h. In order to derive the calibration factor
of the SG, three dedicated campaigns were performed during
periods of spring tides, to enhance the signal-to-noise ratio
(Van Camp et al. 2016). These observations had a duration
of 3 to 5 days.

An AG observation arises from thousands of free fall
experiments (drops), which are averaged in sections of 100
drops (sets). A standard processing has been carried out with
g-Software version 9 (Micro-g Lacoste Inc. 2012), applying
a 3-sigma criterion of the standard deviation with respect to
the set mean value to eliminate outliers.

Individual drop gravity values were used and time-
dependent corrections, which are usually applied during
processing (Earth tides, ocean tide loading, atmospheric
loading effects and pole tides), were restored to obtain the
uncorrected gravity measurements. This is required to deter-
mine the scale (or calibration) factor and useful for drift
determination, which is usually based on mean values over an
AG observation epoch. By using the uncorrected drop data,
the impact of small discrepancies between models used in
AG and SG processing to correct temporal gravity changes
can be avoided, and further allows a combined determination
of both the scale factor and instrumental drift (Wziontek et al.
2009), an approach which is not frequently used. Figure 2a
depicts the AG drop observations acquired in August 2018,
after restoring time-dependent corrections.
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Fig. 1 Absolute gravimeter FG5-227 (a). Floor plan of the gravity laboratory (b). Superconducting gravimeter SG038 (c). BA and CA are the

auxiliary pillars for absolute gravity comparisons

2.2 Time series from the superconducting
gravimeter

The superconducting gravimeter SG038 (Fig. 1c) was the
first remote-controlled instrument with a pre-set magnetic
gradient for keeping the sphere levitated (Warburton et al.
2000). It is the only SG currently operated in South Amer-
ica and the Caribbean, and it contributes to the International
Geodynamics and Earth Tides Service (IGETS, Voigt et al.
2016; Wziontek et al. 2017).

Continuous gravity time series are recorded with a sample
rate of 1s. The raw data are then filtered and re-sampled to
10s and 1 min with a finite impulse response (FIR) filter of
251 coefficients to suppress micro-seismic signals. The data
filtered to 10 s were used and then interpolated to the respec-
tive observation epoch of each drop by cubic interpolation.
Large disturbances caused by earthquakes were removed by
introducing a gap. The time delay of 8.3s caused by the
electronic components was applied to the signal (Antoko-
letz et al. 2017). Figure 2b illustrates the SG gravity signal
corresponding to the AG observation conducted in August
2018.

3 Methodology
3.1 Instrumental drift

Superconducting gravimeters are generally characterized by
a very stable and low instrumental drift (Goodkind 1999;
Hinderer et al. 2015), which can only be determined by com-
bination of AG and SG observations. If both instruments
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Fig. 2 AG observations made in August 2018, where outliers and a
mean gravity value (go) were removed (a), and the SG measurements
corresponding to the same period (b)
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are located at the same site, the instrumental drift of the SG
can be separated from long-term geophysical trends in grav-
ity, assuming that both instruments are affected by the same
physical phenomena.

The determination of the instrumental drift was performed
by a linear regression following equation (1):

AGgps + v = go + b1SGops + co(t — 1o), (D

where AGgps are the uncorrected drop AG values, SGgps are
the corresponding SG observations, v are the residuals, by is
the calibration or scale factor, gp is a constant representing
the absolute reference value for the SG, cq is the SG drift,
t is the observation epoch, and f( is the reference epoch,
corresponding to the first AG observation. The constant gg
is essential to establish the gravity reference by the SG and
allows to predict absolute gravity values.

Since the AG’s noise level is typically 100 times higher
than the SG’s noise level (Van Camp et al. 2005), the SG
measurements are assumed to be error free, and only errors
in the absolute gravity measurements are taken into account
(the residual term in Eq. 1). The given equation system is
well determined and the adjustment can be performed by the
least squares method. Individual AG drops of 15 observation
epochs between January 2018 and March 2019 were used.
Due to the amount of observations, not only the SG drift was
adjusted but also the scale factor (b; in Eq. 1), in order to
avoid fixing a variable.

3.2 Calibration factor

The calibration factor of SG038 at AGGO was evaluated by
two strategies: (a) based on a theoretical Earth tide model,
and (b) based on AG measurements from FG5-227. Although
it is well known that the second method is in general more
accurate, an estimation from theoretical Earth tides, includ-
ing ocean tide loading, atmospheric effects and pole tides
may help if no AG measurements are available (Neumeyer
et al. 2002; Neumeyer 2010).

3.2.1 Combination with theoretical Earth tide model

The determination of the calibration factor was performed
by a linear regression, following Eq. (2):

8tides + 8OTL + &atm + &pole + V = bo + b1SGobs, ()

where giides are the theoretical Earth tides, gotr is the ocean
tide loading effect, gam is the atmospheric effect on gravity,
8&pole 18 the polar motion effect, v are the residuals, by a con-
stant representing the mean value, b; the calibration factor
and SGps the SG observations in V units.
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Theoretical Earth tides were obtained from the tidal poten-
tial catalogue of Hartmann and Wenzel (1995) together
with synthetic Earth tide parameters (Dehant et al. 1999)
to account for the elastic response of the Earth. The ocean
tide loading effect was computed by using the FES2014b
model (Carrere et al. 2016), with tidal parameters from the
ocean tide loading provider of M.S. Bos and H.-G. Sch-
erneck (http://holt.oso.chalmers.se/loading/). Atmospheric
effects were computed based on a numerical weather model
provided by the Atmospheric attraction computation service
(Atmacs) of BKG (Kliigel and Wziontek 2009) and the local
air pressure record to improve the temporal resolution and
the quality of high-frequency signal. Gravity variations due
to polar motion were computed based on the EOP C04 series,
published by the International Earth Rotation Service (IERS),
using an amplitude factor of 1.16 (Wahr 1985).

The calibration factor was then adjusted by the least
squares method, including SG data of an entire month (June
2016). The uncertainty estimates highly depend on the accu-
racy of the models involved in Eq. (2). In the case of the
Hartmann—Wenzel’s tidal catalogue, the accuracy was esti-
mated with 0.01 nm/s> (Neumeyer 2010). For FES2014b, the
uncertainty was estimated with 3 nm/s2, from a comparison
with FES2004 (Lyard et al. 2006) and EOT11a (Savcenko
et al. 2012) ocean tide models. For Atmacs, the uncertainty
was assumed to be better than 2 nm/ s2 based on Mikolajetal.
(2019) and polar motion effects on gravity were assumed to
be error free, since polar coordinates can be accurately deter-
mined by space geodetic techniques (Hinderer et al. 2015).

3.2.2 Combination with absolute gravity measurements

The adjustment of the calibration factor from individual AG
observation epochs with respective SG datasets was per-
formed by a linear regression following Eq. (1). The drift
term can usually be neglected for typical observation peri-
ods of a few days, assuming that the instrumental drift of the
SG does not exceed a few tens of nm/s? /year (Hinderer et al.
2015), yielding to the classical relation (e.g., Hinderer et al.
1991; Sato et al. 1996; Francis et al. 1998; Falk et al. 2001;
Tamura et al. 2004):

AGops + v = do + b1SGops, 3)

where now dj is a constant representing the mean AG value
of the observation epoch.

AGs are usually operated assuring high instrumental sta-
bility. Sometimes, small changes in temperature or in the
vertical alignment may cause slight trends. This is discussed
in Meurers (2012) and it is solved by adding an additional
time-dependent term at the right hand of Eq. (3). Then, the
observation equation is similar to Eq. (1), where now cg is
the trend parameter. Strictly speaking, cg is a combination of
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Fig.3 Linear regression between AG and SG observations for the AG
measurement made in August 2018, considering equation (3). go is a
mean gravity value

any trend in the AG measurement and the SG instrumental
drift. As it was assumed that the SG drift is small enough to
be neglected for a few days, co can be attributed to possible
trends in the absolute gravity observation.

Thus, the calibration factor was adjusted for each cam-
paign with and without including the trend parameter in the
linear regression. The uncertainty was estimated from the
scatter of the individual AG drop measurements. Figure 3
illustrates the linear regression between AG and SG obser-
vations for the campaign made in August 2018, following

Eq. 3).

4 Results and discussion

By including the drops of all AG observation epochs from
January 2018 to March 2019, the SG038 instrumental drift
was determined with 110nm/s?/year from Eq. (1), with
an estimated uncertainty of 4 nm/s?/year. The scale factor
was simultaneously estimated in this combined approach.
Figure 4 shows the SG residual curve for the same period
before and after applying the drift correction, respectively,
and the superimposed AG measurements. Earth tides were
removed with a local model (Antokoletz et al. 2017), atmo-
spheric effects were corrected based on Atmacs and the local
air pressure record, as well as the effect of polar motion.

As mentioned in Sect. 1, the instrumental drift of SG038 at
station TIGO/Concepcion was found to be 51.9 nm/s? /year,
with an estimated uncertainty of 0.3 nm/s?/year. A change
of this parameter was expected after re-centering the sensor at
the new station. The estimated uncertainty is mainly limited
by the amount of AG observation epochs. Once more AG
observations are carried out at AGGO, the uncertainty of the
SG instrumental drift will reduce.
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Fig. 4 SG residual curve from January 2018 to March 2019, where
tides, atmosphere and polar motion are removed, before (a) and after
(b) drift correction. Blue line: adjusted SG instrumental drift. Green
markers: mean gravity values from AG observation epochs. The con-
stant go = 9797327480 nm/s? is the absolute reference of the SG

Together with the calibration factor b and the drift param-
eter cg, the constant in Eq. (1) was determined to be gg =
9797327480 nm/s”> with an uncertainty of 2.5nm/s?, with
reference 19 = 2018-01-01. This allows to transform the
SG measurements into absolute gravity values, referred to
the FG5-227 at pillar AA and the respective datum height
of 125 cm, assuming that gravity changes at the SG sensor
position are equivalent to the AG within the limits of uncer-
tainty. Figure 4 documents an excellent agreement between
the SG curve and the AG measurements. The RMS of the
differences between the AG and SG observations amounts
to 12nm/ s2, which reflects the accuracy of the FGS5 and is a
more realistic error estimate.

The absolute reference of the FG5-227 is controlled
by measurements at Wettzell and Bad Homburg reference
stations in Germany before it was shipped to Argentina.
Therefore, AGGO can be linked to the CIPM comparison
CCM.G-K2.2017 in Beijing, China, and the regional com-
parison EURAMET.M.G-K3 2018 in Wettzell, Germany.
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This set of three parameters provides a continuous abso-
lute gravity reference function by the SG, presumed no
instrumental steps occur. For SG038 the only step to be cor-
rected is due to a planned interruption of the power supply
on November 1st, 2016. With such a reference function, any
other absolute gravimeter can be compared at AGGO, fulfill-
ing the requirements of the IGRF.

The different calibration results are documented in Table 1.
For comparison, the first row shows the scale factor deter-
mined at TIGO/Concepcion, Chile. The row highlighted in
bold is based on theoretical models as described in Sect. 3.2.
An exceptional low standard deviation of 0.002nm/s?/V
was obtained, which reflects the high correlation between
the SG observations and the used models during the period
of 1 month. It demonstrates the importance of a long duration
of parallel observations, as it is possible today with absolute
quantum gravimeters. However, the low value does not char-
acterize the uncertainty of the scale factor, as the uncertainties
and systematic errors of the tidal models included in Eq. (2)
remain unaccounted. The real uncertainty mainly depends on
the quality of the ocean model and the computation of the
respective loading effect and shows that even the theoretical
approach has a potential nowadays, if no AG measurements
are available. Besides this, the calibration factor confirms
the previous determination at TIGO within the error bars and
even agrees with the first dedicated AG campaign in May
2018.

The following rows in Table 1 (highlighted in italic) show
the results for the calibration factor from dedicated abso-
lute gravity measurements. Formally, the instrumental drift
of the SG should be removed before estimating the scale fac-
tor. In practice, an instrumental drift of about 1/3 nm/s?/day
is insignificant for a few days duration of each experiment.
On the other hand, no significant trends were found which
implies an excellent stability of the AG measurements. Only
a slight trend of about — 7 nm/s? /day was found for the mea-
surement made in July, which does not affect the scale factor
significantly.

The last row (highlighted in bolditalic) shows the scale
factor obtained from the combined adjustment of scale fac-
tor and drift from all drops (Eq. 1). Due to the larger number
of observations, the uncertainty is lower and the so obtained
calibration factor reflects well the average of the three cam-
paigns. This consistency shows that no AG offsets nor steps
in the SG record occurred.

Figure 5 depicts the histograms of the residuals of each
adjustment of the selected periods, without including a trend
parameter for the AG data. By a x2-test (Lowry 2008), a
normal distribution with a 99% of probability was found for
all cases, meaning that there are no significant systematic
effects omitted in the adjustment.

The estimated uncertainty of the calibration factor is, in
all cases, below 0.2%. However, from Table 1 the impor-
tance of specific AG campaigns for SG calibration factors
determination during periods of spring tides becomes appar-
ent. The calibration factor from the first AG campaign (May
2018) deviates about 2 nm/s”/V from the other two determi-
nations. This difference can be attributed to the difference in
the peak-to-peak tidal amplitude reached during each exper-
iment. Similar calibration factors were obtained from the
other two AG campaigns (July and August 2018), where
the tide variation is 200 to 300nm/s’ larger than in the
first case. For this reason, the final value was obtained from
an arithmetic weighted average of the three AG campaigns
(rows highlighted in italic in Table 1), taking into account
the peak-to-peak tidal amplitude of each experiment. It was
found to be —737.0nm/s?/V, with an estimated uncertainty
of 0.8nm/s?/V, where the uncertainty was derived from
Gaussian error propagation (Fornasini 2008). Final results
with and without including a linear trend in the adjustment
of the calibration factor are also shown in Table 1. Using the
estimated precision for each experiment as weights results
in the same values. The scale factor estimated together with
the instrumental drift deviates by only 0.2%0, which is not
significant.

Table 1 Scale factor (SF) and its standard deviation (SD) from different approaches, with and without including a linear trend in the adjustment. Final values from the
weighted average (WA) are presented with and without including a linear trend in the adjustment. The previous determination at station TIGO is also shown

Site Date Period of  # of Tide SF SD SF SD WA SD WA SD
days values Variation  without [nm/s?/V] withtrend [nm/s?/V] without [nm/s%/V] withtrend [nm/s?/V]
[nm/s?] trend [nm/s?/V] trend [nm/s?/V]
[nm/s*/V] [nm/s%/V]

TIGO 2009 to 2011 — 151,401 - —736.5 0.8 - - - - - -

AGGO June, 2016 30 256,660 2780 —735.6 0.002 - - - - - -

AGGO May 16,2018 3 11,951 2740 —735.6 1.5 —735.6 1.5

AGGO July 12,2018 3 11,832 3030 —737.9 1.5 —737.3 1.4 — 737.0 0.8 — 736.8 0.8
AGGO August 8, 2018 5 14,990 2940 —737.5 1.3 —7375 1.3

AGGO All drops - 63,266 - —737.2 0.7 - - - - - -

Bold: theoretical models. Italic: dedicated AG observation epochs. Bolditalic: from all AG measurements (drift computation)
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Apart from the specific calibration campaigns, the same
procedure was applied to all observations made with the AG
during this period, even if they were performed for regular
absolute reference determination with an observation period
of about 24 h. Figure 6 shows the results of each adjustment
by using Eq. (3). A clear reduction of the scatter was achieved
for the more extensive AG measurements, demonstrating the
importance of longer observations over several days, as pre-
viously pointed out by e.g., Rosat et al. (2009), Hinderer
et al. (1998) or Van Camp et al. (2016). Large uncertainties
are also associated with lower peak-to-peak tidal amplitude
during the experiment, causing a lower signal-to-noise ratio.

The current scale factor differs by only 0.7%¢ from the
previous determination at TIGO/Concepcion, Chile, which
is not significant.

5 Conclusions

Some instrumental properties of the superconducting gravime-
ter SGO38 installed at AGGO have been evaluated. Based on
absolute gravity measurements with FG5-227 from January
2018 to March 2019, the calibration factor and the instru-
mental drift of SGO38 were determined.

The SG instrumental drift was found to be
110nm/s?/year from a simultaneous estimate of the cali-
bration factor. Uncorrected gravity values of each individual
drop were used to avoid the impact of models used to correct
temporal gravity changes. The estimated uncertainty of the
SG instrumental drift was found in 4 nm/s?/year. Together
with the constant obtained from this approach the absolute
gravity reference for the SG record was defined.

The calibration factor was computed from theoretical tides
for an entire month, from three dedicated AG measurements
and from the whole set of drops. The results of the three
approaches agree within the error bars. The estimated uncer-
tainty remained below 0.2% in all cases and the residuals
of the adjustments show normal distributions, meaning that
there are no systematic effects omitted.

The final scale factor was found from the three particular
campaigns to be —737.0nm/s>/V with an uncertainty of
0.8 nm/s?/V, as an arithmetic weighted average, taking into
account the tidal amplitude of each campaign.

In contrast to Meurers (2012), trend estimates for indi-
vidual AG measurements were not significant and have not
affected the determination of the scale factor. This allows
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to conclude that no trends are needed for calibration factor
determination if the stability of the AG is guaranteed. The SG
calibration factor was also computed from all other AG mea-
surements. These results show a considerable larger scatter,
demonstrating the need to perform longer AG measurement
periods. However, the overall scale factor estimate is in good
agreement with the final value.

No significant changes from the previous determination
of the scale factor at TIGO/Concepcion are recognized. The
difference is below the expected accuracy of 0.1%, following
Baker and Bos (2003). In order to achieve a more accurate
calibration factor (and possible changes on it), more precise
methods to determine SG calibration factors should be con-
sidered, such as a calibration platform (Richter et al. 1995)
or quantum sensors allowing for continuous operation over
long periods (Freier et al. 2016).

With these results AGGO has been established as the only
station providing a continuous gravity reference function in
South America and the Caribbean, suitable for AG com-
parisons. The station is now well qualified to become one
of the core stations of the International Gravity Reference
Frame (IGRF), linked to the International Terrestrial Refer-
ence Frame (ITRF) and the International Height Reference
Frame (IHRF; Tocho et al. 2020).
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