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Abstract
Low-pass filters are commonly used for the processing of airborne gravity observations. In this paper, for the first time, we
include the resulting correlations consistently in the functional and stochastic model of residual least-squares collocation. We
demonstrate the necessity of removing high-frequency noise from airborne gravity observations, and derive corresponding
parameters for a Gaussian low-pass filter. Thereby, we intend an optimal combination of terrestrial and airborne gravity
observations in the mountainous area of Colorado. We validate the combination in the frame of our participation in ‘the 1 cm
geoid experiment’. This regional geoid modeling inter-comparison exercise allows the calculation of a reference solution,
which is defined as the mean value of 13 independent height anomaly results in this area. Our result performs among the best
and with 7.5 mm shows the lowest standard deviation to the reference. From internal validation we furthermore conclude that
the input from airborne and terrestrial gravity observations is consistent in large parts of the target area, but not necessarily in
the highly mountainous areas. Therefore, the relative weighting between these two data sets turns out to be a main driver for
the final result, and is an important factor in explaining the remaining differences between various height anomaly results in
this experiment.

Keywords Residual least-squares collocation · Regional geoid modeling · 1 cm geoid experiment · GRAV-D · Low-pass
filter · Airborne gravimetry

1 Introduction

In this paper we adapt the residual least-squares colloca-
tion (RLSC, Willberg et al. 2019) so that correlations from
low-pass-filtered airborne gravity observations are handled
consistently. Simultaneously, we present our final result from
an International Association of Geodesy (IAG) joint working
group (JWG) which is designed to support the realiza-
tion of the International Height Reference System (IHRS,
Ihde et al. 2017). Within this JWG 2.2.2, called ‘the 1 cm
geoid experiment’, different participating groups calculate
height anomaly, geoid height and potential values by using
identical terrestrial and airborne gravity observations. The
main objective of this JWG is to increase the compatibility
between different methods for regional geoid determination
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by analyzing and quantifying differences between the results.
Furthermore, the experiment should help to define common
standards for the IHRS realization and verify the quality of
the submitted results. Additional information about the pur-
pose and benefit of the JWG is published in a summary paper
(Wang et al. (2020), this issue).

The study area of ‘the 1 cm geoid experiment’ lies at the
southern end of the Rocky Mountains in the United States
of America; mainly in the states of Colorado and New Mex-
ico. It was selected for its geoid slope validation survey from
2017 (GSVS17) where positions, gravity and deflections of
the vertical are measured with very high accuracy at a line of
223 benchmarks along U.S. Highway 160. However, these
measurements or their processing are not yet published, so
they will function as reference values for the JWG results
only in the future. Furthermore, the region has good coverage
in terms of terrestrial and airborne gravitymeasurements, but
is also intended to be a very challenging region for regional
geoid determination, as it includes highlymountainous areas.
Another major challenge within the JWG, and one main
topic of this paper, is the optimal inclusion of airborne grav-
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ity observations from the ‘Gravity for the Redefinition of
the American Vertical Datum’ project (GRAV-D, GRAV-D
Team 2018b). Within this project, the complete area of the
United States is covered with equally distributed airborne
observations in order to define a new gravity-based verti-
cal datum, preferably with an accuracy of 1–2 cm (GRAV-D
Team 2017).

For our calculation we include RLSC (Willberg et al.
2019) as a modified version of the standard least-squares
collocation (LSC) byMoritz (1980). By including a remove–
compute–restore (RCR) approach with a high-resolution
global geopotential model (GGM) and a topographic grav-
ity model, the input of RLSC consists only of residuals. As
GGM, we include the XGM2018 model, an internal succes-
sor of XGM2016 (Pail et al. 2018). Both models provide a
full variance–covariance information from regional varying
weighting,which enables improved error-modeling inRLSC.
However, XGM2018 provides a more realistic stochastic
model for the GGM reduction (see discussion on this issue
in Willberg et al. 2019). Additionally, accuracy estimation
in RLSC benefits from the fact that individual covariance
matrices contain stochastic information of all involved com-
ponents. Detailed justification for the application of RLSC
and a comparison between RLSC and standard LSC is pub-
lished in Willberg et al. (2019). This contribution adapts
RLSC to airborne gravimetry for the first time.

A crucial task thereby is to separate the target gravity
signal from the observation noise which is normally imple-
mented by a low-pass filter (e.g., Childers et al. 1999).
While the variety of different filters for this purpose is
huge, their purpose is very similar: to reduce the high-
frequency noise from the airborne observations (details in
Sect. 2). The application of a low-pass filter is necessary
for platform-stabilized gravimeters (Childers et al. 1999;
Olesen 2003) as well as strapdown gravimeters (Wei and
Schwarz 1998; Becker 2016; Li 2011). Detailed descrip-
tions of the two different measurement systems and the
predominant error sources are given in Schwarz and Wei
(1995). In general, both gravimeter types are used within the
GRAV-D project, but in the target area (5th block mountain
south, MS05), we only have airborne measurements from
the platform-stabilized gravimeters Micro-g LaCoste TAGS
S-137 (turn-key airborne gravimetry system) and TAGS
S-211. Detailed documentation about the instrumentation
and the flight lines from blockMS05 is provided in GRAV-D
Team (2018a).

The inclusion of a low-pass filter for the processing of
airborne gravity data is the standard procedure. However,
a low-pass filter will inevitably result in a significant cor-
relation of the airborne observations along the track of the
aircraft, which is usually not considered in airborne process-
ing. As an example, Forsberg et al. (2000, 2014) and Hwang
et al. (2007) assume low-pass filtered airborne observations

to be uncorrelated in LSC.Within this paper, for the first time,
we derive an approach which includes correlations result-
ing from a low-pass filter consistently in the functional and
stochasticmodel ofRLSC.As a result of themodification,we
have a more consistent error modeling and filter dependent
covariance matrices. Taking these correlations into account
seems of even higher significancewhen the airborne observa-
tions are combined with other measurements (e.g., terrestrial
gravity observations).

We see another advantage of our presented approach in the
fact that the combination of terrestrial and airborne gravity
measurements is included in a direct, one-step LSC, which
also contains field transformation and the downward con-
tinuation of airborne measurements. For the combination of
different data sets, the one-step calculation allows the full
exploitation of the much higher airborne resolution in along-
track direction. For other approaches, which either calculate
a regular grid before the downward continuation (Forsberg
et al. 2000) or include a spectral method for the analysis of
airborne measurements at flight height (Smith et al. 2013;
Jiang and Wang 2016), the difference between along-track
and across-track accuracy gets lost.

In summary, the main innovations of this paper include
(1) a novel approach to include a low-pass filter to regional
gravity field modeling in general, and RLSC in particular;
(2) application of GRAV-D data with recommendations for
its use; (3) the first application of RLSC to real gravity obser-
vations, as the theory paper on RLSC (Willberg et al. 2019)
uses a synthetic simulation environment; (4) demonstration
of the RLSC contribution to ‘the 1 cm geoid experiment’ and
comparison of corresponding results.

This paper is structured as follows. In Sect. 2 we motivate
the application of a low-pass filter for airborne observations.
Next, in Sect. 3 a suitable filter is derived and included into the
RLSC formalism, resulting in a rigorous formulation for the
combination of filtered (airborne) and unfiltered (terrestrial)
observations. The data sets and our calculation procedure
from ‘the 1 cmgeoid experiment’ are explained inSect. 4, and
its results are analyzed in Sect. 5. Additionally, we include
comparisons of our results along GSVS17 in relation to the
JWG mean value (Sect. 6). Lastly, we draw conclusions and
give an outlook in Sect. 7.

2 Reasons for low-pass filter in airborne
gravimetry

For optimal comparisons within ‘the 1 cm geoid experiment’
the input observations used by all contributing groups should
be identical. Therefore, the airborne observations of block
MS05 are provided as gravitymeasurementswithin the JWG.
In contrast to the original GRAV-D airborne data available at
the homepage of the National Geodetic Survey (2019, NGS),
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the provided data is already corrected for the individual line
bias by comparison with already existing models and cross-
point validation. Furthermore, the data is provided with the
uniform frequency of 1 Hz while the gravimeter Micro-g
LaCoste TAGS S-211 originally records data at 20 Hz
(GRAV-D Team 2018a).

As is well known, airborne gravity observations include
in general higher noise levels than stationary terrestrial data.
This results from the dynamics of the aircraft. Corrections
have to be applied for Eötvos accelerations (Harlan 1968),
the vertical acceleration (Zhong et al. 2015), and the off-
level error of the instrument (LaCoste 1967; Swain 1996).
The exact corrections that are applied to the observations are
described in GRAV-D Team (2017), and a description of the
underlying software with the use of the same notation can be
found in Zhong et al. (2015). It is commonly assumed that the
occurring noise shows up mainly in the short wavelengths,
while the gravity signal dominates the longer wavelengths
(e.g., Childers et al. 1999). Accordingly, the inclusion of a
low-pass filter in along-track direction of airborne gravimetry
is common practice.

Airborne observations from the GRAV-D project are
already low-pass filtered with a time domain Gaussian
filter (GRAV-D Team 2017, Chapter 2.2). However, its pur-
pose was to preserve the amplitude of the gravity signal,
and it leaves significant short-wavelength noise in the data
(GRAV-D Team 2018a). Accordingly, the GRAV-D Team
(2018a, Chapter 4.1) recommends using a second low-pass
filter for the airborne observations in order to remove the
short-wavelength noise. In this study, we assume that the
first filter actually leaves the gravity signal untouched (as it
was intended), because it allows us to neglect the first filter in
the theoretical derivations (Sect. 3). As a consequence, in the
following we call the GRAV-D observations provided within
‘the 1 cm geoid experiment’ as ‘original airborne observa-
tions’, although they already include the first low-pass filter,
the line bias correction and the resampling to uniform 1 Hz
frequency. Accordingly, in further usage of the expression
“filter”,we are referring only to the second one. TheGRAV-D
Team (2018a, Chapter 4.1) also emphasizes that the low-pass
filter should be included prior to a downward continuation,
as it would otherwise amplify the noise. Since LSC implic-
itly includes a downward continuation, we apply a suitable
low-pass filter before the LSC method (details in Sect. 3).

In general, we consider the characterization of the high-
frequency noise as a sophisticated problem, because its
amplitude and frequency distribution can change due to
various reasons like wind conditions or flight velocity. An
analysis of the most dominant error sources in airborne
gravimetry and its assessment can be found in Schwarz and
Wei (1995). However, we need to specify filter criteria in
order to separate the noise and gravity signal. We demon-
strate this in the following example: some of the flight lines

in MS05 are actually divided into two segments (GRAV-D
Team 2018a). Accordingly, there is a total of seven flight
segments, where the end of one flight line overlaps with the
beginning of another. One of these flight segments has over-
lapping measurements over approximately 100 km which is
significantly more than all other combinations. In Fig. 1, we
present the overlapping segments of these two flight lines
(FL) 103 (red) and 203 (blue) with its original gravity dis-
turbances (bright solid lines) and the filtered observations
(dark solid lines), respectively. Additionally, the dotted lines
result froman approximationby available spherical harmonic
(SH) coefficient models (details in Sect. 4). Therefore, in
our case we include a combination of XGM2018 and the
topographic gravity model dV_ELL_Earth2014, which is
calculated according to Rexer et al. (2016), but continued
to SH degree 5480 by including 1 arc-min topography infor-
mation from Hirt and Rexer (2015). Note that the presented
flight lines result from the sameflight plan,which iswhy their
horizontal offset is negligible. Their gravitational difference
from the vertical offset is small and can be approximated by
the difference between the twomodeled observations (dotted
lines).

In this section of the flight lines we see major anomalies
due to the fast-changing topography, and the gravity distur-
bances change with about 100 mGal over a distance of only
50 km. The two close-up analyses in Fig. 1 display that there
is basically no correlation between the high-frequency sig-
nals of FL103 and FL203, which indicates dominating noise
in these frequencies. Themodeled airborne observations con-
tain gravity signals to SH degree 5480. Nevertheless, they
appear very smooth in comparison to the original gravity
observations,which is assumed to result fromhigh-frequency
noise in the observations as well. By including a Gaussian
low-pass filter we reduce high frequencies in the obser-
vations, so that the modeled observations and the filtered
observations approximately contain the same spectral sig-
nal content (Fig. 1). Details about the Gaussian filter are
explained at a later stage in Sects. 3.1 and 3.3. Apart from
the reduction of high-frequency noise and the recommen-
dations by the GRAV-D team, we consider a low-pass filter
necessary for the following reasons:

(1) The original airborne observations are available with a
frequency of 1 Hz, all in all resulting in 283,716 obser-
vations. Because there is a very high correlation between
consecutive observations, we do not consider it reason-
able to include all observations directly in the processing.
However, decreasing the amount of observations is only
possible if a low-pass filter is applied first, and otherwise
we will create aliasing errors (details in Sect. 3.3).

(2) Furthermore, decreasing the amount of airborne obser-
vations is necessary in order to prevent RLSC from
containing numerically singular covariance matrices.

123



75 Page 4 of 17 M. Willberg et al.

Fig. 1 Overlapping flight segments between the flight lines 103 (red) and 203 (blue). The gravity disturbances for the original observations, the
filtered observations and the modeled observations are presented. Two parts of 10 km each are enlarged for more details

These would inevitably arise when airborne observations
are included with a 1 Hz sampling frequency.

(3) In the current implementation our RLSC approach for
airborne observations is limited to the maximum SH
degree 5480, as this is the highest available resolu-
tion for a topographic gravitational potential model (in
our case: dV_ELL_Earth2014). Consequently, airborne
gravity signals above this SH degree would result in a
model error. It is commonly assumed that airborne obser-
vations do not include a significant gravity signal above
SH degree 5480 (approx. 4 km in spatial resolution) due
to signal attenuation with altitude. However, we have to
consider the following: a fewof the flight lines are located
at 5200m above the ellipsoid while the RockyMountains
beneath the corresponding lines reach heights of more
than 4000 m. Accordingly, the flight tracks can be quite
close to the signal generating masses. At the same time,
there might be significant errors in the topographic grav-
ity model due to problems of Shuttle Radar Topography
Mission (SRTM) in areas with fast-changing topogra-
phy. Lastly, the limited spatial resolution of topographic
elevation models in highly mountainous areas is another
reason that might result in errors. Only by including a
low-pass filter can we guarantee that these problems do
not arise in (R)LSC.

3 Methodology

In this section, we show the attenuation of different low-
pass filters in the frequency domain by using the recursion
formulas by Jekeli (1981). Next, we derive a Gaussian low-
pass filter that is suitable for airborne gravity data, include it
consistently in the functional and stochastic model of RLSC,
and explain its effect. Thereby, we also present a numerical
example for the final covariance matrix. Lastly, we formulate
the combination of filtered airborne and unfiltered terrestrial
gravity observations.

3.1 A Gaussian low-pass filter

AnormalizedGaussianweighting functionwG canbewritten
as a function of the Euclidean distance d

wG(d) = α exp

(
− d2

2σ 2

)
, (1)

whereby the standard deviation of the Gaussian filter σ

defines the smoothing effect. The weighting function wG(d)

includes the normalization factor α so that the overall signal
content is not amplified or weakened by the filter. This nor-
malization factor α will be derived later on (cf. Eq. 9). Jekeli
(1981) derives the weighting function wG of a Gaussian filter
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on the sphere in dependence of its spherical distance ψ

wG(ψ) = α exp(−b (1 − cosψ)) , (2)

where b gives the smoothing effect which is defined by the
radius of the Earth R

b = R2

σ 2 . (3)

Note that Eqs. 1 and 2 can be derived fromeach other using
simple trigonometry. Furthermore, Jekeli (1981) gives recur-
sion formulas which are normalized on the unit sphere. They
enable the formulation of the attenuation β, which results
from a Gaussian filter per SH degree n in the frequency
domain

β0 = 1 ,

β1 = 1 + exp(−2b)

1 − exp(−2b)
− 1

b
,

βn+1 = −2n + 1

b
βn + βn−1 . (4)

We see that with decreasingβ, the attenuation of theGaus-
sian filter increases when either the SH degree or the standard
deviation σ becomes larger. Strictly speaking, the recursion
formulas are only valid for points on the sphere, which is why
Jekeli (1981) includes a spherical approximation for points
on the ellipsoid. By analogy, we include the same approxi-
mation since we apply the filter to airborne observations with
a relatively constant flight height above the ellipsoid. In the
following, the standard deviation σ is replaced by the more
intuitive half width at half maximum (HWHM)

σ = HWHM√
2 ln(2)

. (5)

The HWHM of a Gaussian low-pass filter describes the
distance after which the weighting function wG decreases to
half its maximum. Figure 2 presents the attenuation β per SH
degree n (Eq. 4) that is evoked by different Gaussian filters
with a HWHM between 1 and 5 km. While the HWHM of
5 km (green) basically erases all signals at SH degree 5000,
the HWHM of 1 km (blue) attenuates only 20% of the signal
at this SH degree.

3.2 Including the Gaussian filter into the functional
model

The Gaussian weighting function defined in Eq. 1 can be
formulated to describe the filter process in form of a func-
tional model AG. It calculates filtered observations lG from

Fig. 2 Relationship between the SH degree n and the attenuation β of
the Gaussian filter according to the recursion formulas by Jekeli (1981)
in Eq. 4. Five different filters with the HWHM between 1 and 5 km are
presented

the original airborne observations l

lG = AG l. (6)

Note that number and position of the original observa-
tions l and the filtered observations lG do not have to be
identical. If there are, for example, less point positions in lG

than there are in l, the functional model AG will result in a
reduction of the sampling frequency. This process is called
downsampling in the following. In order to keep the signal
content consistent before and after the filter process, AG is
normalized so that the summation of one row in AG equals
one

N∑
j=1

ai j = 1. (7)

Therein, ai j are the matrix elements of the functional
model AG and N is the number of observations l in one
flight line. Consistently, åi j are the elements of the functional
model before the normalization

åi j = ẘG(di j ) = exp

(
− d2i j
2σ 2

)
, (8)

with ẘG(di j ) being the related Gaussian weighting func-
tion for the distance di j . The normalized Gaussian weighting
function can be formulated by adding the normalization fac-
tor αi

αi =
(

N∑
k=1

åik

)−1

, (9)

to Eq. 1

AG = {
wG(di j )

} =
{

αi exp

(
− d2i j
2σ 2

)}
. (10)
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We see that the elements ofAG after the normalization are
defined by the Gaussian weighting function wG(di j ). Note
that the high-frequency noise of airborne observations occurs
only in along-track direction, so that we use a 1-D Gaussian
filter along individual flight lines. Accordingly, our approach
differs from the 2-D filters in Jekeli (1981) or Huang et al.
(2008), who apply and normalize their filters on the unit
sphere or surface element, respectively. In the functional
modelAG, every row refers to a filtered observation whereas
the columns refer to the original observations. Accordingly,
one row inAG defineswhich original observations are used to
calculate the corresponding filtered value. One column inAG

describes to what extent a specific original observation will
be included in different filtered values (Eq. 6). Visualizing
the values of either one row or one column would look like
a bell-shaped curve since the functional model AG is calcu-
lated from a (Gaussian) low-pass filter. Its shape is thereby
defined by the combination of the filter radius in theGaussian
weighting function and the flight velocity at recording time.
Note that in general the functional model is not symmetric
since it is normalized only in one dimension.

3.3 Spectral limitation of airborne gravity data

In Sect. 2 we found that the very high frequencies in the air-
borne observations should be removed before the downward
continuation. Furthermore, the total number of observations
has to be reducedbeforeLSC.We regard the functionalmodel
of a Gaussian filter AG, as a suitable tool to put these two
aspects into practice.

The airborne gravity measurements are discrete obser-
vations of the continuous gravity field. According to the
Nyquist–Shannon sampling theorem, a continuous signal
with themaximum frequency f max can only be reconstructed
from an equidistant sampling with a frequency higher
than 2 f max. Accordingly, simply reducing the sampling fre-
quency of very high-frequency observations generally results
in aliasing effects. In practice, a common approach to treat
this issue is the use of a low-pass filter (Childers et al. 1999). It
reduces the maximum frequency f max and therefore also the
new sampling frequency that is needed to fulfill the Nyquist–
Shannon sampling theorem. In the case that the equidistant
sampling after the filter process is done with the frequency
2 f s , all frequencies below f s could be restored while the
frequencies above f s are irretrievably lost.

Wewant to exploit these aspects in order to separate signal
and noise in the airborne observations. For this purpose, we
assume that the airborne observations mainly include noise
above a specific SH degree μ and follow our three-step pro-
cedure in order to remove this noise bymeans of theGaussian
functionalmodelAG.Additionally, Fig. 3 visualizes the three
steps with their relationship in terms of SH degree and atten-
uation factor β (introduced in Eq. 4 and Fig. 2).

Fig. 3 Relationship between the SH degree and the attenuation β of
the Gaussian filter with μ set to SH degree 5400. The red ‘areas’ are
removed by the Gaussian filter. The two dark areas are assumed to
mainly consist of noise, while the two brighter colored areas are domi-
nated by signal

(1) A Gaussian low-pass filter removes the two red parts
in the frequency domain (Fig. 3). Thereby, it filters
most of the noise, but also parts of the signal from the
observations. The Gaussian filter radius is selected as a
compromise between the preservation of the signal and
the removal of the noise. In Fig. 3 we set it exemplary to
HWHM = 3 km, as this keeps only 10% of the noise at
SH degree μ.

(2) Reducing the sampling frequency of the observations to
SH degreeμ irretrievably removes the previously filtered
data above this SHdegree (Fig. 3: dark red area).Bydoing
this, the dark blue area is discarded as well, however it
is still present in the filtered observations, thus causing a
small aliasing effect. For the implementationwe combine
step 1 and 2, so that the functional model AG includes
the low-pass filter and the downsampling process (refer
to Sect. 3.2).

(3) Lastly, the previously filtered signal representing SH
degrees below μ (Fig. 3: light red area) can be restored
from the filtered observations lG by means of a high-
pass filter. This step works analogous to a deconvolution
by multiplication with the inverse Gaussian functional
model AS. It results in observations lS which are spec-
trally limited to SH degree μ

lS = (AS)−1 lG. (11)

Here, the Gaussian functional model AS is a square
matrix that describes the point positions of lG in both
dimensions and is normalized according to Eq. 10. Note
that the Gaussian functional models AG and AS are
derived in the same way. They differ only in the cor-
responding point positions, and the normalization factor,
as it is related to the input positions.
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Applying these steps removes high-frequency noise and
results in spectrally limited observations lS which could be
inserted into LSC. In this case, the spectral limitation from
step one to three could be interpreted as an airborne prepro-
cessing. However, in the next section we include these three
steps consistently within RLSC instead, thereby considering
the correlations from theGaussian filter between consecutive
observations aswell. Linking the described steps to theRLSC
procedure, we insert the filtered observations lG (step 2) as
input and apply a high-pass filter (step 3) implicitly within
RLSC.

3.4 Adapting RLSC to include the Gaussian filter
model

The RLSC formula for calculating an output s from the input
observations l is given by Willberg et al. (2019)

s = Cŝl̂ (Cll + Cl̂l̂)
−1(l − l̂) + ŝ , (12)

where Cll is the covariance matrix of the observations, Cl̂l̂
the covariance matrix of an unbiased reduction model l̂, and
Cŝl̂ the cross-covariance matrix between input and output.
In general, the hat-operator marks quantities which have
been derived from external reference models (GGM, topo-
graphic gravity model). The positions and functionals of
covariance matrices are defined by its subscript. In Eq. 12
a remove–compute–restore (RCR) approach analogous to
Willberg et al. (2019) is already included,

�l = l − l̂ ,

s = �s + ŝ , (13)

so that we reduce the observations l with unbiased model
observations l̂ before RLSC. The reduction model in the out-
put functional ŝ is restored accordingly after RLSC. Note
that the covariance function of the reduction model Cl̂l̂ is
contained consistently in Eq. 12. Following Eq. 6 we apply
the Gaussian functional modelAG to�l and, due to linearity
of this operator, correspondingly to both l and l̂

AG�l = AGl − AG l̂

= lG − l̂G. (14)

The corresponding covariance functions of lG and l̂G are
calculated from simple error propagation. From Eq. 6, we
obtain the covariance matrix of filtered observations CG

ll

CG
ll = AG Cll (AG)T, (15)

and accordingly the covariance function of the model obser-
vations CG

l̂l̂

CG
l̂l̂

= AG Cl̂l̂ (A
G)T. (16)

Similarly, we obtain for the cross-covariance matrix CG
ŝl̂

CG
ŝl̂

= Cŝl̂ (A
G)T, (17)

considering that the output model ŝ is not filtered, thus mul-
tiplyingAG only once. From Eqs. 14 to 17, we conclude that
the RLSC method with filtered observations

s = CG
ŝl̂

(CG
ll + CG

l̂l̂
)−1(lG − l̂G) + ŝ , (18)

is identical to the standard formula for RLSC (Eq. 12) except
that the covariance matrices CG, the observations lG and the
model observations l̂G refer to filtered values instead of the
original ones. Note that the output s should contain an unfil-
tered signal, therefore we do not use superscripts for s and ŝ.
In the case that airborne gravity observations are included in
Eq. 18, their spectral limitation (Sect. 3.3, step 1 and 2) is
already included in the filtered values lG and l̂G. The decon-
volution (step 3) happens within the multiplication of the
inverted covariance matrices CG

ll and CG
l̂l̂
.

3.5 A noise covariance function for the observations

In LSC, the covariance function of the observation noise is
often included as a diagonal matrix (Moritz 1980; Arabelos
and Tscherning 2009) under the assumption that different
observations are not correlated among each other. Obviously,
this assumption does not hold for low-pass-filtered observa-
tions as they contain a strong correlation among consecutive
measurement epochs. In this section, we derive a covariance
function for the filtered observations CG

ll in Eq. 15.
The covariance information of the unfiltered observations

Cll is in general unknown, which is one of the main rea-
sons for applying the Gaussian low-pass filter in the first
place. Thus, instead of propagating Cll to CG

ll we can define
the variances σG

l ◦ σG
l (from elementwise multiplication ◦)

on the main diagonal of CG
ll . Thereby, we assume to know

the accuracy of the observations after the filter process. In
this case Cll is introduced as identity matrix I, and the row
vector m is included as factor to set the variances of CG

ll to
σG
l ◦ σG

l . We can write

CG
ll = (AG I (AG)T) ◦ (mmT), (19)

m =
√

σG
l ◦ σG

l

diag(AG (AG)T)
, (20)
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Fig. 4 Visualization of the
covariance function CG

ll from
FL103 whereby a presents the
covariance function for all 4099
observations, while b is a zoom
to the first 300 observations

whereby Eq. 20 uses elementwise division and diag(X)

defines the main diagonal of a square matrix X. By includ-
ing the identity matrix in Eq. 19 we assume an uncorrelated
error for the airborne observations l before the Gaussian fil-
ter process which, in general, is not the case. However, the
simplification is justified in our case as the correlation of this
error is assumed to be small in comparison to the correlation
resulting from the Gaussian filter.

Exemplary, Fig. 4a shows the covariance function CG
ll

(Eq. 19) of a single flight line (FL103) without downsam-
pling. The main diagonal of CG

ll is defined by the variances
σG
l ◦ σG

l of the filtered observations, which are equally
set to 1 mGal2. The same information with more detail is
presented in Fig. 4b which zooms to the first 300 observa-
tions. We can see a band matrix with very strong correlations
among consecutive observations instead of the usual diag-
onal matrix (e.g., Forsberg et al. 2000, 2014; Hwang et al.
2007). Thus, Fig. 4b verifies that the reduction of the sam-
pling frequency is reasonable in this case due to the very
strong correlations among consecutive observations. Further-
more, this is necessary as in general the covariance matrix
CG
ll without downsampling tends to be numerically singular

for the same reason. The downsampling procedure we intro-
duced in Sect. 3.2 would generally retain the structure of a
band matrix in CG

ll , but the covariance would drop to zero
much faster.

3.6 Combining filtered and unfiltered observations

In the Colorado experiment, we have a combination of ter-
restrial and airborne gravity observations, and all reasons we
listed for applying a low-pass filter to the airborne observa-
tions (Sect. 2) are not valid for the terrestrial ones. Therefore,
we present a formulation that applies the standard RLSC
from Eq. 12 to the terrestrial observations, while the air-
borne observations are processed according to Eq. 18 with a
Gaussian filter. In order to realize a consistent formulation,
we keep naming the original observations l, but now con-

sider them as a combination of terrestrial lter and airborne lair
observations

l =
[
lter
lair

]
. (21)

Similarly, we handle the reduction model l̂

l̂ =
[
l̂ter
l̂air

]
. (22)

The combination of filtered and unfiltered measurements
requires updating the functional model AG. We now name
it Ag, as it contains the Gaussian filter only for the airborne
part

Ag =
[
I 0
0 AG

]
. (23)

AG is calculated according to Eq. 10 and I is an iden-
tity matrix with a size that equals the number of terrestrial
observations. We multiply the new functional model Ag to
the observations l, the model observations l̂ and the covari-
ance matricesCŝl̂ andCl̂l̂. Accordingly, we obtain the RLSC
formula for combined input quantities analogous to Eq. 18

s = Cŝl̂ (A
g)T

(
Cg
ll + Ag Cl̂l̂ (A

g)T
)−1(

Ag l − Ag l̂
)

+ ŝ.

(24)

In this form, the covariance matrix Cg
ll defines the input

observation accuracy. It is set up as a combination of an
unfiltered terrestrial covariance matrix Cter,ter and a filtered
airborne covariance matrix CG

air,air

Cg
ll =

[
Cter,ter 0

0 CG
air,air

]
, (25)
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since the observation noise is not correlated between airborne
and terrestrial measurements. The terrestrial part simplifies
to (σ 2

ter I) in case the observations are uncorrelated and of
equal accuracy. Thereby, σ 2

ter is the variance of the terrestrial
observations. The variance σG

l ◦ σG
l of the airborne obser-

vations is defined as main diagonal of CG
ll (Eq. 19). In the

case they are of equal accuracy, σG
l ◦ σG

l can be replaced by
the scalar values σ 2

air as simplified variance of the airborne
observations.

Analogous to Eq. 24, we derive the stochastic model for a
combination of filtered and unfiltered observations. The error
covariance matrixEss of the output s is based on the standard
formula by Willberg et al. (2019)

Ess = Cŝŝ − Cŝl̂ (A
g)T

(
Cg
ll + AgCl̂l̂ (A

g)T
)−1

Ag (Cŝl̂)
T .

(26)

Therein,Cŝŝ is the error covariance function for the model
observations, which stays unfiltered as it refers only to the
output functional.

4 Data and calculation

From Sect. 2, we conclude that the airborne gravity obser-
vations have to be low-pass-filtered in along-track direction.
In Sect. 3 we derive a suitable concept to do so. Originally,
there were 283,716 airborne gravity observations from the
GRAV-D block MS05. They were corrected for their indi-
vidual line biases and provided with a uniform sampling
rate of 1 Hz. We chose a Gaussian low-pass filter with a
HWHM of 3 km for its good compromise between removing
noise and keeping gravity signal. Fig. 3 demonstrates that
this HWHM removes approximately 90% of the noise above
SH degree 5400. Additionally, Fig. 1 shows that the resulting
frequencies in the filtered airborne observations are similar
to the modeled observations.

A consequence of the low-pass filter is the very high cor-
relation between consecutive observations (Fig. 4), which
allows a significant reduction of the sampling frequency.
However, this reduction is another benefit-risk assessment:
a strong downsampling increases the numerical efficiency,
but could also result in a loss of signal information. We
exemplary show this inTable 1 for five different sampling fre-
quencies and three different filter lengths (given in HWHM).
The table gives the mean error in mGal when all 283,716 fil-
tered observations are reproduced from the downsampled
observations with a simple spline interpolation. We interpret
this value as a quality criterion for the signal loss due to the
low-pass filter. Considering that the maximum error of a spe-
cific observation can be much higher than the average value,

Table 1 Overview of the benefit–risk assessment between HWHM and
sampling frequency

Colored values are classified by their average signal loss [mGal], which
indicates the ability to restore the filtered but non-downsampled signal
again.Additionally, combinations aremarkedwhich result in covariance
matrices with an especially high condition numbers (‘bad κ’) or even
numerical ‘singularity’

we want to keep the average error well below 0.1 mGal.
Furthermore, we mark combinations which are not feasible
due to a very high condition number κ for the covariance
matrix CG

ll respectively with ‘bad κ’ or numerical ‘singu-
larity’. While for a higher sampling frequency or a larger
filter length the condition number κ of the covariance matrix
CG
ll increases, a smaller sampling frequency or shorter filter

length increases the signal loss.
We conclude, that first, downsampling is needed in any

case to prevent a numerical singular covariance matrix CG
ll .

Secondly, the sampling frequency of 1/32 Hz is the best com-
promise for a HWHM of 3 km in the target area. Note that
this sampling frequency is a main driver for the final filter
characteristics. Together with the flight velocity, it defines
the SH degree μ above which we assume mainly noise in
the airborne observations (Fig. 3). By reducing the sampling
frequency to 1/32 Hz, we result in a total number of 8976
filtered airborne observations. Thereby, two adjacent obser-
vations have an average distance of 3.4 km in along-track
direction. The actual distance or spatial sampling, however,
depends on the flight velocity of the aircraft and varies sig-
nificantly in the target area. In general, the aircraft have been
slowest in themountainous areas ofMS05 so that the shortest
point distances are in those areas where it is most beneficial.
Otherwise, we could have included a different downsampling
methodwhichwe tested as well: it provides a constant spatial
sampling and therefore results in a varying sampling fre-
quency. However, in this case the filter method would model
space-correlated noise in the airborne observations. Since the
airborne gravity observation noise is mainly time-correlated
instead, our method with constant sampling frequency stays
preferable.

The 59,303 terrestrial observations are distributed in the
area between longitude [35◦ to 40◦] and latitude [− 110◦ to
− 102◦]. Their distribution is presented in Fig. 5 together
with GSVS17, the area of the output grid and the borders of
the surrounding states: Colorado (CO), New Mexico (NM),
Utah (UT), Arizona (AZ), Oklahoma (OK) and Texas (TX).
The database contains some duplicate point values which are
deleted in order to prevent inconsistencies. All in all, there
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Fig. 5 Input residuals of RLSC: reduced gravity disturbances for a the terrestrial observations and b the airborne observations. The observations
are removed by the XGM2018 model and the topographic gravity potential. The extent of the output grid is marked by a red box and GSVS17 by
a black line

are denselymeasured regions in the target area, but also some
observation gaps. The quality of the terrestrial observations
is not well-defined as there is almost no metadata available.
However, some additional information about the terrestrial
data set can be found in Wang et al. ((2020), this issue). The
topographic heights of the output area grid (red box in Fig. 5)
are visualized in Fig. 6.

In RLSC we include an a priori assumption for the accu-
racy of the observations (Eq. 25 orWillberg et al. 2019)which
is basically unknown for both the terrestrial and the airborne
observations. GRAV-D Team (2018a) contains an error anal-
ysis for the airbornemeasurements, but we do not think it can
give us reliable accuracies for the following reasons: (1) the
derivation of the error is based on observations from differ-
ent flight heights. Therefore, all values are continued to a
mean height by standard free-air correction (GRAV-D Team
2017)which introduces assumptions and errors. (2) The qual-
ity assessment in GRAV-D Team (2018a) still contains the
high-frequency noise which was reduced in Sect. 3. Lastly,
(3) the crossover statistics cannot describe the overall accu-
racy accurately (GRAV-D Team 2018a), as they only assess
measurement errors in the data lines (in our case: east-west),
not the crossover lines (north-south).

For the filtered airborne observationswe assume a uniform
standard deviation ofσair = 1mGal,which seems reasonable
according to Schwarz andWei (1995), Childers et al. (1999),
Novák et al. (2003) and Lu et al. (2017). While the airborne
observations are well-distributed, terrestrial observations in
general benefit from measuring the full gravity frequency
spectrumon theEarth’s surface. Therefore,we prefer aRLSC
combination where both airborne and terrestrial observa-
tions have a similar influence on the overall result. In our
case, this can be achieved by a uniform standard deviation
of σter = 3 mGal for the terrestrial observations, since their
number is significantly higher, and they do not include corre-

Fig. 6 Topographic heights in the area of the output grid and the location
of GSVS17 in blue

lations or a downward continuation. At the present stage, our
a priori accuracies are partly based on default values for the
appropriate observation method. However, we verify these
values with comparisons in Sect. 5.

A remove–compute–restore procedure is essential for
RLSC and explained in detail in Willberg et al. (2019). In it,
we include XGM2018 as high-resolution GGM to its maxi-
mum SH degree 760. The topographic gravitational potential
model dV_ELL_Earth2014, or theERTM2160gravitymodel
(Hirt et al. 2014) are added, respectively, in the frequen-
cies above. Following aspects should be noted regarding the
remove–compute–restore procedure:

(1) Although, the maximum SH degree of XGM2018 is 760,
its actual spectral resolution is defined by the maxi-
mum degree in spheroidal harmonics, which is 719. The
same effect is visible in dV_ELL_Earth2014 where the
maximum SH degree is 5480, but 5400 in spheroidal
harmonics, respectively. For simplicity, we stick to the
models actual spectral resolution, and as of now the cor-
responding SH degrees refer to spheroidal harmonics.
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(2) Furthermore, the reduction models for terrestrial and air-
borne data are not identical in our case. ERTM2160 is
given in an approximately 250 m resolution grid format,
therefore providing the very high-resolution informa-
tion which we need for the reduction of terrestrial data
on the Earth’s surface. However, dV_ELL_Earth2014
is calculated from SH synthesis which can be used for
arbitrary point positions (e.g., airborne observations). In
this case, the different reduction steps are justified as
dV_ELL_Earth2014 and ERTM2160 are both calculated
from the SRTM v4.1 topography model by Jarvis et al.
(2008) in the target area. Accordingly, they contain iden-
tical signal information in the respective SH degrees.

(3) Lastly, dV_ELL_Earth2014 and ERTM2160 are based
on simplified density assumptions and cannot reflect lat-
eral density variations.Deviations of the real density from
these model assumptions are reflected in the residual
input signals ofRLSC.Accordingly, they are consistently
collocated to the output quantities. This issue is not spe-
cific for the present RLSC method, but holds generally
for all regional gravity field modeling methods that are
using the RCR technique. Yang et al. (2018) demonstrate
that the use of available lateral densitymaps does not nec-
essarily improve the gravity modeling results.

The reduced gravity disturbances�δg which enter RLSC
are presented in Fig. 5 and described in the following. For the
terrestrial observations (Fig. 5a), we calculate from Eq. 13

� gter = lter − l̂ter
= gter − ĝter(XGM2018)

− ĝter(dV_ELL_Earth2014) − ĝter(ERTM2160) ,

(27)

with the SH degrees nXGM2018 ∈ {2, 719} and
ndV_ELL_Earth2014 ∈ {720, 2159}. ERTM2160 is applied from
SH degree 2160 to its maximum resolution, which equals
approximately 250 m. Correspondingly, we have for the air-
borne observations (Fig. 5b)

� gGair = lGair − l̂Gair

= gGair−ĝGair(XGM2018)−ĝGair(dV_ELL_Earth2014) ,

(28)

with nXGM2018 ∈ {2, 719} and ndV_ELL_Earth2014 ∈
{720, 5400}. The reduction to different SH degrees is valid in
our case since the gravity signal aboveSHdegree 5400 is neg-
ligible at the position of the airborne observations. This is first
due to signal attenuation with altitude, which significantly
reduces the high-frequency gravity signal at flight height.
Secondly, the low-pass filter removes approximately 90% of

the still remaining signal above SH degree 5400 (compare to
Fig. 3).

In Eqs. 27 and 28 we apply globally unbiased mod-
els to a very high degree. Accordingly, we can safely
assume that they do not have a significant bias in our
study area, which is a requirement for calculating the height
anomaly output � ζ out of RLSC (Eq. 13). The final height
anomalies ζ out are calculated by restoring the effect of the
correspondingmodels (XGM2018, dV_ELL_Earth2014 and
ERTM2160)

ζ out = � sout + ŝout

= � ζ out + ζ̂ out(XGM2018)

+ ζ̂ out(dV_ELL_Earth2014) + ζ̂ out(ERTM2160) ,

(29)

with exactly the same SH degrees as in the terrestrial
reduction. The subscript ‘out’ refers to specified output
points on the Earth’s surface which are a combination
of a regular 1′ × 1′ grid and the GSVS17 points. The
topographic heights of the output area are presented in
Fig. 6, whereby the highest mountains reach more than
4000 m. The location of GSVS17, a west-east traverse
of approximately 350 km through the mountains of Col-
orado, is added in blue. Note that the location of the grid
is centered within the area of terrestrial observations, but
significantly shifted in relation to the airborne observations
(Fig. 5).

In the RLSC approach, we include the original full covari-
ance information of XGM2018. The SH coefficients of
XGM2018 and XGM2016 are very similar, but the cor-
responding covariance information of XGM2018 has been
improved and is even more realistic now. The covariance
matricesCl̂l̂,Cŝl̂ andCŝŝ of the reductionmodel (Eqs. 24, 26)
are calculated from a model covariance function (MCF)
that fits the reduced gravity disturbance input (Fig. 5). The
approach is explained and justified in detail byWillberg et al.
(2019).

We present our result in agreement with the reference
potential value W0 of the IHRS definition (Ihde et al. 2017)
in the mean-tide system. Since output points within the JWG
are specified on the Earth’s surface, we include the theory
of Molodensky (Hofmann-Wellenhof and Moritz 2006) and
prefer the calculation of height anomalies instead of geoid
heights. Comparisons of the absolute potential values and
geoid heights, which are also calculated within the JWG, are
not discussed here, but presented in Sánchez et al. ((2020),
this issue) and Wang et al. ((2020), this issue). However, we
also include the calculation of gravity disturbances at the
input positions (with a corresponding restore step) in order
to compare them to the original measurements in Sect. 5.
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Fig. 7 Comparison of RLSC result against available models. a the height anomaly � ζ out. b Difference to EGM2008 [ζ out - ζ̂ out(ERTM2160) -
ζ̂ out(EGM2008)]

5 Analysis of the RLSC grid

In this and the following section, we present and quantify our
height anomaly result ζ out (Eq. 29) related to ‘the 1 cm geoid
experiment’. We refer to Wang et al. ((2020), this issue) for
general conclusions and further results from the JWG. The
high-resolution measurements along GSVS17 have not been
published yet, thereforewe include internal and external vali-
dation to verify our results. At first, in Fig. 7, we compare our
result against available models to indicate main effects in the
result. Fig. 7a shows the height anomaly � ζ out from RLSC
(without restore step), which gives the improvement from the
gravity measurements with respect to the prior models. As
expected, we see a high correlation between the output resid-
uals � ζ out and the input residuals in Fig. 5. The dominating
effects are signals with a spatial extent of approximately
0.1◦ to 0.3◦ which corresponds to SH degrees between 720
and 2160. In these frequencies, the reduction model con-
sists only of topography-derived gravity information. Thus,
we assume that the signals in Fig. 7a are significant improve-
ments due to the input gravitymeasurements. However, there
is also onemaximum on the left-hand side with amuch larger
spatial extent. The terrestrial input residuals (Fig. 5a) espe-
cially show a positive bias in this area which seems to be
responsible for this maximum. The spatial extent of the red
area in Fig. 7a indicates that XGM2018 and the terrestrial
gravity observations are not consistent in this area.

Figure 7b presents the difference between the height
anomaly result ζ out and the corresponding height anomaly
derived from EGM2008 (Pavlis et al. 2012). However, in this
comparison we do not restore ζ̂ out(ERTM2160) in Eq. 29,
because the resolution of ERTM2160 is not included in
EGM2008. The presented difference is dominated by fea-
tures with a spatial extent in the order of 100 km and
can be attributed to the difference between EGM2008 and
our three data sources: XGM2018, the terrestrial, and air-
borne gravity observations. Note that the dominating effects
from Fig. 7a are not visible in Fig. 7b. We therefore con-
clude that EGM2008 represents the gravity field between

SH degree 720 and 2160 significantly better than the mere
topographic gravitational model dV_ELL_Earth2014.

In a second step, we calculate gravity disturbances for
the input points of RLSC and compare them to the original
observations.We refer to the appropriate difference as output
residuals, whereby their presentation in Fig. 8 is limited to
the area of the output grid. The output residuals indicate the
improvement of the combined RLSC solution with respect
to the original gravity measurements. For the terrestrial out-
put residuals in Fig. 8a, we see significant differences in the
target area: In areas with topographic heights below 2500 m,
e.g., east of −105% longitude or in the south–west corner,
the output residuals are close to 0 mGal. In the mountainous
areas of Colorado they often exceed ±5 mGal. It is common
for LSC methods to smooth the input gravity observations
in regions with strongly varying gravity signals (e.g., moun-
tains). In our case, this is the result of a homogeneous and
isotropic covariance function above the maximum resolu-
tion of XGM2018, which consequently leads to high output
residuals. However, the very inhomogeneous parts in Fig. 8a
indicate that at least some of the output residuals are outliers
or measurement errors in the gravity database.

At this point, we do not detect or exclude outliers inRLSC,
as there is no beneficial metadata. Furthermore, individual
data point selections will inevitably complicate the compar-
isons with other groups from ‘the 1 cm geoid experiment’.
However, we acknowledge that an additional, individual data
point inspection and corresponding outlier detection could be
able to improve the final results. Once more, the area with
an offset to XGM2018 stands out in the center of the mid
left side, where a large area is dominated by positive output
residuals and warm colors. Apparently, RLSC combines the
differing data sets XGM2018 and terrestrial observations,
thus resulting in residuals to XGM2018 (visible in Fig. 7)
and to the terrestrial gravity observations, respectively (visi-
ble in Fig. 8). We see a possible reason for the bias in the
inhomogeneous distribution of the terrestrial observations
which are more often located in mountain valleys. The stan-
dard deviation of all terrestrial output residuals is 2.3 mGal,
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Fig. 8 Output residuals in terms of gravity disturbance, namely original observations−RLSC result for a the terrestrial gravity observations and
b the airborne gravity observations

and its mean value is 0.3 mGal. The output residuals for the
airborne gravity observations, in terms of the original obser-
vations, have a standard deviation of 1.6 mGal with a mean
value of −0.1 mGal (Fig. 8b). The dominating effects are
again short-wavelength effects in the mountainous regions
of Colorado, once again affected from the smoothing effect
of LSC. However, this time the output residuals are affected
from the included low-pass filter aswell. Furthermore, differ-
ences between terrestrial and airborne gravity observations
are assumed to be a main contributor for the output residuals
in Fig. 8. As there are no long wavelength signals visible in
Fig. 8b, we conclude that XGM2018 and airborne gravity
observations are consistent in the target area.

The residual’s standard deviations confirm that the scale of
our a priori observation accuracy, σter = 3 mGal and σair =
1 mGal respectively, are generally reasonable. However, the
data sets seem to show a spectral dependence, as indicated by
much higher residuals in the Coloradomountains. As a result
of the equally weighted observation accuracies for a single
data type, RLSC produces output accuracies depending on
the data distribution and a priori accuracies only. Accord-
ingly, the estimated accuracies cannot adequately represent
the problems of suspicious areas that we see from the resid-
uals.

Figure 9 shows the resulting 3σ confidence level for height
anomalies in the target area which is derived from the error
covariance matrix Ess in Eq. 26. The values depend on the
accuracy assumptions for the gravity observations, their point
distribution and the covariance information of XGM2018.
The 3σ confidence level varies from approximately 1 cm in
areas with very dense terrestrial observations to more than
5 cm in the very north where the solution is not supported by
airborneobservations (cf. Fig. 5). The availability of accuracy
estimates is a main advantage of LSC approaches. However,
in this case an iterative RLSC approach would be necessary
to derive more realistic output accuracies. For example, we
could use the residuals in Fig. 8 to derive individual input

Fig. 9 3σ confidence level from RLSC for the height anomaly in the
target area. GSVS17 is included with blue color

accuracies depending on the consistency of terrestrial and
airborne data.

In summary, the terrestrial gravity observations show
notable differences to XGM2018 and airborne gravity obser-
vations in the highly mountainous regions of Colorado, but a
generally good consistency everywhere else. We assume that
the height anomaly result ζ out could be further improved by
an outlier detection, or far-reaching data inspection in gen-
eral. Additionally, an iterative RLSC approach could derive
accuracy assumptions from the output residuals. This would
result in amore selective weighting between the data sets and
an improved accuracy estimation in general.However,we see
these aspects as beyond the scope of this paper. Our focus is,
first, on the derivation of a consistent methodology for low-
pass filtering within RLSC, and second on the generation of
a comparable result within ‘the 1 cm geoid experiment’.

6 Comparison along GSVS17

The height anomalies alongGSVS17 have been computed by
13 different groups and are presented with different colors in
Fig. 10a. The values at the 223 benchmarks are given as dif-
ference to the joint mean value of each individual point. As
long as the real reference values along GSVS17 are not yet
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Fig. 10 Comparison of different height anomaly results as difference
to the joint mean value along GSVS17. aAmong all submissions within
the JWG, our result (black) includes the smallest variations. b 7 selected

submissions with an individually corrected mean value, whereby our
estimated confidence interval is additionally shown in gray color

available, we assume that the mean value of 13 independent
calculation methods is significantly better than an individ-
ual solution. This notion is, for example, used analogously
in meteorological literature (Evans et al. 2000; Ebert 2001).
Therefore, we interpret the common mean value as a refer-
ence which is represented by zero in Fig. 10. However, it
should be noted that this mean value is not necessarily with-
out systematic effects, as they could be introduced by the
input gravity observations, and thus reflected in all solutions.
During several phases of the JWG the offset between differ-
ent solutions was reduced (Wang et al. (2020), this issue),
mainly by the adaptation of common standards, e.g., zero-
degree term and tide system. The remaining difference in the
mean value might result from differences in the processing
strategies, the topographic reduction or the individual data
handling, and cannot be solved by this paper. At the present
stage, the absolute mean offsets of the different curves in
Fig. 10a range from 0.1 to 2.7 cm, and the standard devia-
tions from 7.5 to 2.4 cm. Our solution, which is highlighted
by a black color, has a mean value of −1.0 cm, and with
7.5 mm the lowest standard deviation among all results. As a
result, the variations in our solution are significantly reduced
in comparison to most others (Fig. 10a).

In Fig. 10b, the remaining issue of themean offset between
different height anomaly solutions is ignored and individu-
ally corrected. Furthermore, we selected only seven out of
the 13 solutions which are most consistent to the previously
introduced mean value. Our height anomaly result (black
line) is the only solution that varies only within ±2 cm in
relation to the joint mean value. The estimated 3σ confidence
interval of our solution is additionally overlaid with gray
color.We conclude that several of the other results aremainly

covered within this confidence level, in spite of the fact that
our provided standard deviation is probably too optimistic in
the mountainous parts of Colorado (see Sect. 5). Even when
we reduce a mean offset and consider only the solutions in
Fig. 10b, there are remaining variations of some centime-
ters between the different height anomaly results. Note that
similar approaches might benefit from the comparison to a
mean value as they are more likely to end up close together.
However, our approach is the only RLSC approach, and the
only one-step LSC method among the contributing groups.

One of the main reason for the remaining variations in
Fig. 10 are the differences between terrestrial and airborne
observations in the area. In order to quantify the spread result-
ing from different weighting between terrestrial and airborne
observations, a series of additional test computations have
been performed. In Fig. 11, the black line is again our height
anomaly result ζ out in reference to the mean, while other
curves represent alternative solutions. We exemplary include
the following four cases: (1) using only terrestrial observa-
tions and disregarding airborne data in blue, (2) using only
airborne observations in red, (3) using a different airborne
input accuracy in green, and (4) a solution without low-pass
filter of airborne data in purple. In general, significant differ-
ences show up, especially between the terrestrial-only and
the airborne-only result. In an extreme case (around point
ID 110) two airborne flight lines are positioned above two
opposing mountain flanks, while GSVS17 runs through the
in-between valley with a distance of approximately 5 km to
both of the flight lines. As a result, the two corresponding
solutions differ by more than 8 cm, obviously measuring
a different gravity signal. We conclude from the height
anomaly results shown in Fig. 11 that rather large differ-
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ences of several centimeters can be caused by the weighting
of the individual data sets.

As an example, the green curve in Fig. 11 is calculated
equally to the black one, but uses a different input accu-
racy for the airborne observations, namely σair = 1.5 mGal
instead of 1 mGal. As a result, RLSC gives a lower relative
weight to the airborne observations, which leads to a shift of
the combined solution towards the terrestrial-only solution.
An opposite effect is visible for the purple curve. It is a com-
bined solution that includes unfiltered airborne observations
with an 8 Hz sampling frequency and an accuracy assump-
tion of σair = 2 mGal since the high-frequency noise is
still included. The significantly increased number of airborne
observations, and the fact that they are assumed to be uncorre-
lated, amplifies their relative weight in RLSC. Accordingly,
this solution is shifted towards the airborne-only solution (red
curve). This could be an indication that one of themain reason
for the height anomaly differences in Fig. 10a is the various
treatment of terrestrial and airborne input data. Therefore, it
is not only related to the different regional gravity modeling
approaches used in this inter-comparison exercise.

In summary, our height anomaly ζ out performs very well
in a comparison among the JWG results and shows the small-
est variations in regard to the joint mean value. We highlight
differences in the available data sources, and conclude that
their relative weighting will be one of the main drivers of
the final performance. However, we emphasize that all data
issues mentioned in ‘the 1 cm geoid experiment’ are not a
problem of our gravity modeling approach, but rather mere
inconsistencies in the available data sources. In order to solve
these issues, a detailed data inspection of the original data
sources would have to be done, which would go far beyond
the scope of this study. However, solving some of the data
issues could become easier once the high-quality observa-
tions from the GSVS17 project are released. At the present
stage, we conclude that different scenarios of RLSC show
consistent results in a simple comparison along the GSVS
line. Furthermore, we demonstrate that our method provides
the necessary flexibility for an adjustment in case a data set
provides either benefits or problems in a target area.

7 Conclusion and outlook

In this paper, we use a low-pass filter for reducing high-
frequency noise in airborne gravity observations from the
GRAV-D project. Accordingly, we derive a novel concept in
order to include the resulting correlations to regional grav-
ity field modeling. In RLSC, the functional and stochastic
model is adapted, whereby filtered observations and filtered
covariance matrices are treated in a consistent manner. The
approach is verified with a combination of filtered (airborne)

Fig. 11 Comparison of different internal height anomaly results along
GSVS17. Solutions vary according to their relative weighting between
terrestrial and airborne observation, and show differences of up to 8 cm

and unfiltered (terrestrial) observations in the frame of ‘the
1 cm geoid experiment’.

In the target area of Colorado, our calculated height
anomaly grid displays significant improvements compared
to already existing gravity models. They are visible as
long wavelength differences to the EGM2008, and short to
medium-wavelength deviations from the a priori topographic
gravity model. The calculated output residuals for the grav-
ity disturbance indicate a very good consistency of terrestrial
and airborne data in areas with topographic heights below
2500 m, but reveal some issues in the highly mountainous
regions of the Rocky Mountains. We even identified one
region where the terrestrial observations differ significantly
from the long wavelength part of XGM2018.

Within ‘the 1 cm geoid experiment’ the RLSC method
performs very well in a comparison among 13 independent
height anomaly results along theGSVS17benchmarks. Since
the actual results of GSVS17 are not yet available, the ref-
erence value which is used to evaluate the performance of
our solution, is calculated from a common mean value. In
general, the final height anomaly results deviate from the
reference by a few centimeters. With a standard deviation of
only 7.5 mm our solution shows the smallest variations with
respect to the reference. Furthermore, it is the only result that
always stays within±2 cm (in case the individual offsets are
reduced).

Moreover,we analyzed the impact of the systematic differ-
ences between the available data sources on the final result.
In a comparison along GSVS17, we tested four further data
and processing scenarios, and could show that the relative
weighting among the input data types can cause differences
in the order of several centimeters in the height anomaly
results. Consequently, RLSC can be individually adapted in
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the case that there is additional information about the qual-
ity of the gravity observations. More generally, we conclude
that a significant part of the differences in ‘the 1 cm geoid
experiment’ might be related to a different treatment and rel-
ative weighting of the input data, and not only to various
regional gravity field modeling methods. In this regard, it
might be useful to check the internal weighting between our
data sets again, as soon as the high-quality measurements
along GSVS17 are available to the public.

One of the main advantages of the statistical method of
(R)LSC is that it also provides variance–covariance informa-
tion of the resulting quantities. The availability of realistic
error estimates will be crucial for the realization of the IHRS.
Due to restricted availability and heterogeneous quality of
ground gravity data, it is to be expected that a similar accu-
racy of absolute potential values at the IHRS stations cannot
be achieved. In this case, the provision of realistic error esti-
mates in addition to the potential values themselves will be
very important. The estimated standard deviations of height
anomalies are, in our current solution, mainly dominated by
the distribution of the gravity observations as well as the rel-
ative weighting of the input data sets. However, a constant
weight of the two data sets, terrestrial and airborne observa-
tions, has been included. In an iterative RLSC approach, the
post-fit residuals could beused tomodify the a priori accuracy
of the input data, and thus the relative weighting scheme. By
this, the identified systematic differences between terrestrial
and airborne data in certain areas could also be taken into
account. Consequently, this would result in an even more
realistic stochastic modeling and further improved error esti-
mates for the output quantities. Since the main goal was to
inter-compare the results with other study teams, this has not
been applied in the present solution but will be part of further
studies.

Summarizing, ‘the 1 cm geoid experiment’ helps for the
scheduled IHRS definition and realization because it pro-
vides a meaningful accuracy benchmark in the case of a good
data distribution in very difficult terrain. Within this JWG all
contributing groups have proven their capability to calculate
the height anomaly with an accuracy of some centimeters.
In the end, IHRS should be defined by absolute potential
values, but their derivation from the disturbing potential T ,
which is also needed for the height anomaly, is straightfor-
ward. Sánchez et al. ((2020), this issue) propose a globally
distributed computation of potential values at IHRS reference
stations due to common data restrictions. Thereby, for exam-
ple, all institutions with a specific performance in terms of a
reference could be allowed to contribute to the calculation of
IHRSstationswith their ownmethod.Consequently, itwill be
extremely important to analyze, how much of the remaining
deviations are caused by differences in the regional gravity
modeling methods, and how much by the different treatment
and relative weighting of input data.

The benefit of including covariance information from
high-resolution GGMs in RLSC and the resulting advan-
tage in terms of the calculation of IHRS reference stations
is already explained in Willberg et al. (2019). With the con-
sistent handling of airborne gravity data and by including a
covariance propagation of the filter behavior, we can further
enhance the stochastic modeling, which, as discussed above,
will be very beneficial for the IHRS realization.
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