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Abstract
Lee’s exact method was developed to enable the Gauss–Krüger (GK) projection to be implemented without iterative proce-
dures via the expansion of the intermediate mapping (Thompson projection) into series approximations in terms of isothermal 
coordinates (� , �) for the forward mapping and GK coordinates (x, y) for the reverse mapping. The straightforward procedures 
expressed by new formulas for both forward and reverse mapping of the GK projection were composed by three sequential 
steps which essentially reveal the mapping procedures and intrinsic properties of the GK projection: The first step of deriv-
ing the isothermal coordinates (� , �) from the geodetic coordinates (�, �) specifies a conformal mapping (i.e., the Normal 
Mercator projection) of the Earth ellipsoid surface into the Euclidean plane excluding the South and North poles, and the 
subsequent two steps allow the GK projection to be expressed analytically via the elliptic functions and integrals. Based on 
the three-step procedure, the conformality and singularities over the entire ellipsoid of the Normal Mercator, Thompson and 
GK projections were analyzed and the fundamental domains of them were determined. With respect to the precision and 
efficiency, it was verified that the new algorithm and the complex latitude method had equivalent precision levels for the 
same orders of the third flatting n with the Krüger-n series from n2 to n12 but slower about 0.19 to 0.21 μs than the Krüger-n 
series for a GK coordinates calculating. However, the new formulas provide series approximations for the forward mapping 
of the Thompson projection and projective transformations for the Normal Mercator, Thompson and GK projections.
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1  Introduction

The Gauss–Krüger projection or Transverse Mercator 
(abbreviated as GK hereinafter) is widely applied in the 
geodetic community for accurate geodetic measurements 
and large-scale maps of zones due to its excellent qualities, 
especially its conformality and high accuracy. Generally, the 
GK projection can be expressed in an ellipsoidal or spheri-
cal version depending on the type of mathematical refer-
ence surface, ellipsoid or sphere, that is chosen to model the 
Earth. In this study, the reference surface is always assumed 
to be an oblate ellipsoid of revolution.

Assuming the central meridian to be selected at the origin 
of the longitudes and the scale of it to be unity, the standard 
form of the GK projection can be defined by the complex-
valued function (e.g., Thompson 1975)

with the initial value

on the central meridian, where the imaginary unit and com-
plex variables are denoted in lowercase italic boldface (simi-
larly hereinafter):

–	 imaginary unit i is defined by i2 = −1;
–	 z = x + i y represents the complex GK coordinate, with 

the real part x for northing and the imaginary part y for 
easting;

–	 � = � + i � denotes the complex isometric latitude, 
in which the isometric latitude � is defined as the real 

(1)z = x + i y = S(�) = ∫
�=�+i�

0

r(�)d�

(2)z||�=0 = S(�) = ∫
�

0

r(�)d�
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part, and the longitude � is defined as the imaginary part 
(mathematically, (� , �) is called isothermal coordinates, 
see Sect. 5);

–	 S(�) represents the meridian arc length between the 
equator and the parallel � , and r(�) is the radius of the 
parallel in terms of isometric latitude � (Bermejo-Solera 
and Otero 2009 Eqs. (1) and (9)).

In general, the isometric latitude � of a given point on the 
ellipsoid at geodetic latitude � is computed by (e.g., Hotine 
1946; Lambert 1972)

where e denotes the first eccentricity of the ellipsoid.
From the perspective of complex analysis (e.g., McCo-

nnell 2013), the GK projection is conformal if and only if 
the function defined by Eq. (1) is biholomorphic (bijective 
and holomorphic) on an open, connected and non-empty set 
(for a detailed discussion about the domain and property of 
the projection, see Sect. 5). Let x = x(� , �) and y = y(� , �) , 
conformality of the GK projection implies that (1) the partial 
derivatives of x and y must exist and satisfy the Cauchy–Rie-
mann equations

and (1) the function is bijective (one-to-one correspondence) 
and the derivative of S(�) has four equivalent forms and is 
everywhere nonzero on the domain:

Equations (1) to (3) give a neat definition of the GK projec-
tion, and Eqs. (4) and (5) provide the necessary and suf-
ficient conditions for the mapping to be conformal. This 
projection seems simple but is actually complex since the 
integrand r(�) in Eq. (1) is inexpressible in closed form by 
any known function of �.

Based on this definition, various methods have been 
developed over the past century for computing the mapping, 
and most of these methods are based on power series, e.g., 
the “Krüger-� ” and “Krüger-n” series (in terms of differ-
ence of longitude � and the third flatting n, respectively) 

(3)
� = �(�) = ∫

�

0

1 − e2(
1 − e2 sin2 �

)
cos�

d�

= arctanh(sin�) − e arctanh(e sin�) ,

(4)

⎧⎪⎨⎪⎩

�x

��
=

�y

��
�x

��
= −

�y

��
,

(5)

S�(�) =
dz

d�
= r(�)

=
�x

��
+ i

�y

��
=

�y

��
− i

�x

��

=
�x

��
− i

�x

��
=

�y

��
+ i

�y

��
≠ 0 .

established by Krüger (1912) and developed by many oth-
ers geodesists (e.g., Redfearn 1948; König and Weise 1951; 
Thomas 1952; Enríquez 2004; Engsager and Poder 2007; 
Turiũo 2008; Karney 2011), the bivariate series around a 
selected point 

(
�0, �0

)
 provided by Grafarend and Syffus 

(1998) and the perturbation series in terms of the complex 
isometric latitude �  constructed by Bermejo-Solera and 
Otero (2009).

On the other hand, if normally expressing the meridian 
arc length in terms of geodetic latitude � as

and expanding the geodetic latitude � to the complex one, 
denoted by �c , then, as described by Poder and Engsager 
(1998), the GK projection is defined by

and

where a is the semimajor axis the ellipsoid. Similar to r(�) , 
the complex latitude �c is also inexpressible in closed form 
by means of any known functions.

With this definition, series expansion for the complex GK 
coordinate z = x + iy was expanded to n7 by Engsager and 
Poder (2007).

Among these various methods derived from the above 
two definitions, the most commonly used methods are the 
“Krüger-� ” and “Krüger-n” series. The “Krüger-� ” series 
were the first to be implemented on the hand calculators of 
the mid-twentieth century but were verified not to be accu-
rate enough for wide-zone use, e.g., for mapping Greenland 
in one zone (Karney 2011). Correspondingly, the extend-
ing “Krüger-n” series were recommended for implementing 
the GK projection (e.g., Engsager and Poder 2007; Karney 
2011; PROJ contributors 2020).

However, theoretically, the characterization of both the 
local and global features of the GK projection cannot be 
accomplished competently by only the above two definitions 
or any series expansion methods since r(�) and �c are inex-
pressible in closed form by any known function.

In particular, besides the above two definitions, Lee 
(1962, 1963, 1976) explored a new avenue to express the GK 
projection by using elliptic functions and integrals. Tracing 
to its origin, similar formulations were also independently 
provided by Ludwig (1943). Lee’s formulas give analyti-
cal functions for the forward solution of the GK projection 
and thus is generally named Lee’s exact method. It will be 

(6)S(�) = m(�) = ∫
�

0

a
(
1 − e2

)
(
1 − e2 sin2 �

)3∕2 d�

(7)z = x + i y = ∫
�c

0

a
(
1 − e2

)
(
1 − e2 sin2 �c

)3∕2 d�c

(8)� = � + i � = arctanh
(
sin�c

)
− e arctanh

(
e sin�c

)
,
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shown by our analyses that Lee’s exact method is considered 
important for a deep insight of the GK projection, especially 
for the entire property. However, unfortunately, the method 
is not commonly used in practice and even seems to be fall-
ing into obscurity in the geodetic community (Dorrer 2003).

Considering the merits of Lee’s method for analytical 
investigation of the properties of the GK projection, in this 
study, we developed straightforward procedures for both the 
forward and inverse mapping of the GK projection via Lee’s 
exact method and, based on this, the entire properties and the 
fundamental domains of the three projections, Normal Mer-
cator, Thompson and GK, were analyzed and determined.

2 � Forward mapping by Lee’s exact method 
without iteration

2.1 � Review of Lee’s exact method

Essentially, the meridian is related to the elliptic integral 
of the second kind (e.g., Ludwig 1943; Dozier 1980; Dor-
rer 2003). Omitting the derivation procedure, we show the 
formulas directly as

where

represent the incomplete elliptic integrals of the first and 
second kinds with the elliptic modulus e, respectively, and 
correspondingly, K = F(�∕2, e) and E = E(�∕2, e) represent 
the complete integrals of the first and and second kinds (note 
that, following mathematical convention, E represents a con-
stant but not a function when is solely used, e.g., Byrd and 
Friedman 1971 §110); the principal Jacobian sine, cosine 
and delta elliptic functions with the elliptic modulus e are 
defined by

(9)

m(�) = a E(�, e) −
a e2 sin� cos�√
1 − e2 sin2 �

= a E(u) −
a e2 sn u cn u

dn u

= a E(K + u) − a E ,

(10)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

u = F(�, e) = ∫
�

0

1√
1 − e2 sin2 �

d�

E(�, e) = ∫
�

0

�
1 − e2 sin2 � d�

E(�, e) = E(u) = ∫
u

0

dn 2u du

Also in terms of Jacobian function, the isometric latitude � 
defined in Eq. (3) can be rewritten as:

If the incomplete elliptic integral of the first kind u is 
extended to the complex plane as w = u + iv and substituted 
into Eq. (9), then the GK projection defined by Eqs. (1) to 
(3) can be also defined by

and

where u and v, the real and imaginary parts of w are rede-
fined by amplitudes � and � , respectively (Ludwig 1943 
Eqs. (60) and (61)):

The projection defined by the inverse of Eq. (14) is known 
as the Thompson projection that was established but not 
published by himself in 1945 and subsequently developed by 
Lee (1962, 1963). Note that, however, similar formulations 
were independently provided by Ludwig (1943).

Separating the real and the imaginary parts of Eqs. (13) 
and (14) gives (for more details, see Lee 1962)

and

where any one of the elliptic functions and integrals with or 
without “ ′ ” corresponds to its elliptic modulus 

√
1 − e2 or 

e ,  respect ively,  e .g. ,  sn �v = sn
�
v,
√
1 − e2

�
 and 

sn u = sn (u, e) ; the subsidiary Jacobian elliptic functions are 
denoted following the Glaisherg’s Notation (e.g., Olver et al. 

(11)

⎧
⎪⎨⎪⎩

sn u = sn (u, e) = sin�

cn u = cn (u, e) = cos�

dn u = dn (u, e) =

�
1 − e2 sin2 � .

(12)� = arctanh( sn u) − e arctanh(e sn u).

(13)
z = f (w) = a E(w) −

a e2 snw cnw

dnw

= a E(K + w) − a E

(14)� = arctanh( snw) − e arctanh(e snw) ,

(15)

⎧⎪⎪⎨⎪⎪⎩

u = F(�, e) = ∫
�

0

1√
1 − e2 sin2 �

d�

v = F
�
�,
√
1 − e2

�
= ∫

�

0

1�
1 −

�
1 − e2

�
sin2 �

d� .

(16)

⎧⎪⎨⎪⎩

x = a E(u) −
a e2 sn u cn u dn u

dn 2u + dn �2v − 1

y = a v − a E�(v) +
a(1 − e2) sn �v cn �v dn �v

dn 2u + dn �2v − 1

(17)
{

� = arctanh
(
sn u dn �v

)
− e arctanh

(
e sn u nd �v

)
� = arctan

(
dc u sc�v

)
− e arctan

(
e cd u sc�v

)
,
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2010 §22.2): let p , q , r be any three of the letters s , c , d , n , 
then

e.g., dc u = dn u∕ cn u = 1∕ cd u.
Alternatively, using the definitions of u and v in Eqs. (15), 

(16) and (17) can be rewritten in terms of (�, �) as

and

respectively.
These formulas were first presented by Ludwig (1943) 

Eqs. (62) to (65) but have not been brought to the forefront 
of public attention in the geodetic community. Neverthe-
less, Eqs. (19) and (20) give explicit expressions of the GK 
projection in another way by the auxiliary variables (�, �) 
and, connected by Eq. (15), are equivalent to Lee’s formulas.

Finally, the meridian scale k and convergence � can also 
be expressed in terms of elliptic functions as (for elaborate 
derivations see Lee 1963)

Obviously, by Lee’s formulas, the inverse solutions of 
Eqs. (14) and (13) are required for the forward and reverse 
mapping, respectively. For the forward mapping, the inverse 
series of Eq. (14) provided by Lee (1962) Eq. (28) has been 
verified to converge slowly, accompanied by some draw-
backs, by Dozier (1980). As to the reverse mapping, there are 
still no direct formulas to invert Eq. (13). For these reasons, 
various iterative methods in the complex plane are always 
used to deal with the two vital inversions (e.g., Dozier 1980; 

(18)p q(u, e) =
p r(u, e)

q r(u, e)
=

1

q p(u, e)
,

(19)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x = a E(�, e) −
a e2 sin � cos �

√
1 − e2 sin2 �

1 − e2 sin2 � −
�
1 − e2

�
sin2 �

y = a F
�
�,
√
1 − e2

�
− a E

�
�,
√
1 − e2

�

+
a
�
1 − e2

�
sin � cos �

�
1 −

�
1 − e2

�
sin2 �

1 − e2 sin2 � −
�
1 − e2

�
sin2 �

(20)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

� = arctanh

�
sin �

�
1 −

�
1 − e2

�
sin2 �

�

− e arctanh

⎛⎜⎜⎜⎝
e sin ��

1 −
�
1 − e2

�
sin2 �

⎞⎟⎟⎟⎠
� = arctan

�
tan �

√
sec2 � − e2 tan2 �

�

− e arctan

�
e tan �√

sec2 � − e2 tan2 �

�
,

(21)

⎧⎪⎨⎪⎩

k =

√
1 − e2 sin2 �

cos�

√
1 − sn 2u dn �2v√
dn 2u + dn �2v − 1

tan � = −
�
1 − e2

�
sd u nc u sd �v cn �v .

Karney 2011). However, even though the complex arithme-
tic iterative procedure shows well-behaved characteristics 
for computing the mapping, this method is inconvenient for 
practical applications since complex arithmetic is not often 
used in surveying and mapping engineering fields.

Although Lee’s method is not typically used in the geo-
detic community, his work is considered essential for a 
theoretical deepening of the GK projection, especially for 
the entire property. In our opinion, developing straightfor-
ward procedures for computation of both the forward and 
inverse mappings is helpful for better understanding of the 
GK projection.

2.2 � Expressions of 
(
u, v

)
 in terms of 

(
 ,�

)

If the incomplete elliptic integral of the first kind u is rede-
fined in terms of � by

then the natural extension of the real function u just repre-
sents the inverse function of (14), expressed as

Here, p(�) and p(�) remain unknown. However, combining 
of Eqs. (3) and (10), p(�) can be expressed in terms of � as

Introducing the conformal latitude (or named spherical 
latitude)

as an intermediate auxiliary variable (where gd � is the 
Gudermannian function, see Olver et al. 2010 §4.23), we 
have

Subsequently, using the Lagrange inversion theorem (e.g, 
Olver et al. 2010 §1.10 VII), we derive the relations

where the third flatting n, defined by

(22)u = ∫
�

0

p(�)d� ,

(23)w = h(�) = u + iv = ∫
�=�+i�

0

p(�)d� .

(24)p(�) = p(�(�)) =
cos�

√
1 − e2 sin2 �

1 − e2
.

(25)�� = gd � = ∫
�

0

sech � d� = arcsin (tanh�)

(26)
sin�� = tanh�

= tanh (arctanh(sin�) − e arctanh(e sin�)) .

(27)

⎧⎪⎪⎨⎪⎪⎩

sin�� =
�
1 − n

1 + n

�2 ∞�
j=1

aj sin
2j−1 �

sin� =
�
1 + n

1 − n

�2 ∞�
j=1

a�
j
sin2j−1 �� ,
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is used as an alternative to the first eccentricity e to acceler-
ate the convergence of the series’ coefficients since n ≈ e2∕4 , 
which is much less than the first eccentricity e.

We should note that, including the derivation of Eq. (27), 
most complicated mathematical manipulations encountered 
in this paper are carried out by using the computer algebra 
system Mathematica (Wolfram 2017). All relevant source 
codes are available in the electronic supplement and released 
under the X/MIT open source license (https​://opens​ource​
.org/licen​ses/MIT).

Substituting the second formula of Eq. (27) into Eq. (24), 
and after some simplifications, we obtain

where FK denotes the special type of Gaussian hypergeomet-
ric functions related to the complete elliptic integral of the 
first kind (e.g., Cuyt et al. 2008 Eq. (15.1.4)):

In order to clarify the layout structure of the document, the 
preceding several terms of coefficients aj , a′j and bj are listed 
in Eqs. (66) to (68) in “Appendix” and are used as listed 
hereinafter.

Further, considering that

series (29) can be reduced to

Finally, integrating series (32) term-by-term and extend-
ing the real isometric latitude �  to the complex form 
� = � + i� , we obtain

(28)n =
a − b

a + b
=

1 −
√
1 − e2

1 +
√
1 − e2

,

(29)p(�) = FK cos��

(
1 +

∞∑
j=1

bj cos
(
2j��

))
,

(30)
FK = 2F1

(
1

2
,
1

2
; 1; e2

)
=

2

�
K

= (1 + n)

(
1 +

n2

4
+

9n4

64
+

25n6

256
+

1225n8

16384
+⋯

)
.

(31)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

cos�� =

�
1 − sin2 �� = sech�

cos 2�� = cos2 �� − sin2 �� = 2 sech2� − 1

cos 4�� = cos4 �� − 6 sin2 �� cos2 �� + sin4 ��

= 8 sech4� − 8 sech2� + 1

⋯ ,

(32)p(�) = FK

∞∑
j=1

cj sech
2j−1� .

where �′

c
 represents the complex conformal latitude, defined 

by

Separating the real and imaginary parts of Eq. (33), we have

By series (33) or (35), the forward mappings of both the 
GK and Thompson projections can be implemented without 
iteration.

Additionally, with similar procedures, the perturbation 
series described by Bermejo-Solera and Otero (2009) for 
the GK projection can be expanded and rearranged to higher 
orders as

where FE denotes the special type of Gaussian hypergeomet-
ric functions related to the complete elliptic integral of the 
second kind, defined by

and hj is equal to �j in ( Karney (2011) Eq. (35)); therefore, 
we do not list these coefficients in this article. The coeffi-
cients cj to gj are also listed in “Appendix,” from Eqs. (69) 
to  (72).

Separating the real and imaginary parts of Eq. (36), we 
obtain the “Krüger-n” series

(33)

w = u + iv

= FK

(
arcsin (tanh�) + tanh�

∞∑
j=1

dj sech
2j−1�

)

= FK

(
�′

c
+

∞∑
j=1

fj sin
(
2j�′

c

))
,

(34)
�′

c
= �� + i�� = arcsin (tanh�)

= arctan

(
sinh�

cos �

)
+ i arctanh

(
sin �

cosh�

)
.

(35)

⎧⎪⎪⎨⎪⎪⎩

u = FK

�
�� +

∞�
j=1

fj sin
�
2j��

�
cosh

�
2j��

��

v = FK

�
�� +

∞�
j=1

fj cos
�
2j��

�
sinh

�
2j��

��
.

(36)

z = x + iy

= aFE

(
arcsin (tanh�) + tanh�

∞∑
j=1

gj sech
2j−1�

)

= aFE

(
�′

c
+

∞∑
j=1

hj sin
(
2j�′

c

))
,

(37)
FE = 2F1

(
1

2
,−

1

2
;1;e2

)
=

2

�
E

=
1

1 + n

(
1 +

n2

4
+

n4

64
+

n6

256
+

25n8

16384
+⋯

)
,

https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
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Notably, the constant FE is usually signified by R, A or 
another capital letter in the previous literature, e.g., in Ber-
mejo-Solera and Otero (2009) and Karney (2011). We con-
sider that using FE to denote the constant FE better embodies 
its mathematic essence: FE represents the abbreviation of the 
Gaussian hypergeometric function 2F1

(
1

2
,
1

2
;1;e2

)
 , which is 

related to the complete elliptic integral of the second kind 
E = E(�∕2, e) , as defined in Eq. (37). This is also the case 
for FK.

2.3 � Series approximations for 
(
x, y

)
 in terms of 

(
u, v

)

In practical applications, it is often necessary to develop 
fast-converging series approximations to calculate the rec-
tangular coordinates (x, y) in terms of (u, v) , since the ellip-
tic functions and integrals encountered in Eq. (16) usually 
must be coded by series or other algorithms in a computer 
program. A type of Taylor series in terms of w was first 
derived by (Lee (1962) Eq. (29) and then transformed in 
terms of complex isometric latitude � by his Eq. (30). It was 
verified by Dozier (1980) that the series are difficult to use 
due to some drawbacks, especially the slow convergence of 
the series. In this subsection, the q-series approximations 
provided by Dozier (1980) are simplified to a more concise 
form, and new formulas for the reverse mapping based on 
this form are derived in the next subsection.

In the theory of elliptic functions, the nome q is defined 
by (e.g, Olver et al. 2010 §22.2)

and the Jacobian zeta function Z(w) is expressed as

I n  t h e s e  t wo  fo r m u l a s ,  K = F(�∕2, e)  a n d 
K� = F

�
�∕2,

√
1 − e2

�
 are the complete elliptic integral of 

the first kind, with the complementary moduli e and √
1 − e2 , respectively.
According to the relation between the elliptic integral of 

the second kind and the Jacobian zeta function

(38)

⎧
⎪⎪⎨⎪⎪⎩

x = a FE

�
�� +

∞�
j=1

hj sin
�
2j��

�
cosh

�
2j��

��

y = a FE

�
�� +

∞�
j=1

hj cos
�
2j��

�
sinh

�
2j��

��
.

(39)q = exp

(
−
�K�

K

)

(40)Z(w) = Z(w, e) =
2�

K

∞∑
j=1

qj

1 − q2j
sin

(
j�w

K

)
.

(41)E(w) = Z(w) +
wE

K
,

the GK projection can be expressed as

If

then Eq. (42) is equivalent to

Multiplying aFE on both sides of Eq. (44) and splitting the 
equation into real and imaginary parts give

Equations (42) and (45) give infinite series expressions for 
the GK projection that are suitable for computer processing.

3 � New formulas for reverse mapping based 
on Lee’s exact method

According to Lagrange’s inversion theorem, the inverse 
series of Eq. (44) is given by

where

and

(42)

z = x + iy = aE(K + w) − aE

= aZ(K + w) +
a(K + w)E

K
− aE

=
awE

K
+

2a�

K

∞∑
j=1

(−q)j

1 − q2j
sin

(
j�w

K

)
.

(43)

⎧
⎪⎨⎪⎩

�c =
z

aFE

=
x + iy

aFE

= � + i�

�c =
w

FK

=
u + iv

FK

= � + i� ,

(44)�c = �c +
�2

KE

∞∑
j=1

(−q)j

1 − q2j
sin

(
2j�c

)
.

(45)

⎧⎪⎪⎨⎪⎪⎩

x = aFE

�
� +

�2

KE

∞�
j=1

(−q)j

1 − q2j
sin (2j�) cosh (2j�)

�

y = aFE

�
� +

�2

KE

∞�
j=1

(−q)j

1 − q2j
cos (2j�) sinh (2j�)

�
.

(46)�c = �c +

∞∑
j=1

1

j!

dj−1

d�c

j−1

{[
G
(
�c

)]j}
,

(47)

G
(
�c

)
= −

�

2E
Z
(
K + wz

)

= −
�2

KE

∞∑
j=1

(−q)j

1 − q2j
sin

(
2j�c

)

(48)wz = FK �c =
Kz

aE
.
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In order to derive the previous several terms of Eq. (46), 
we first expand the nome q in terms of the third flatting n as

and substitute Eq. (49) into Eq. (47); then, the function G(�) 
can be rearranged as

After substituting Eq. (50) into Eq. (46) and conducting a 
tedious derivation procedure, we finally obtain the inverse 
function of Eq. (44):

where the terms of the coefficients kj and lj are listed in 
Eq. (73) in “Appendix”.

Multiplying FK on both sides of Eq. (51), we have

Splitting Eq. (52) into real and imaginary parts gives

In conjunction with Eqs. (43), (52) and (53), one can obtain 
the values of the intermediate coordinates (u, v) from the 
given GK coordinates (x, y) and then easily calculate (� , �) 
by using Eqs. (14) or (17). Finally, in the last step of the 
inverse mapping, the geodetic latitude � is calculated from 
the isometric latitude � , usually by iterative procedures. As 
an alternative method to various iterative algorithms, here 
we provide a series approximation for the task by

where �−1(�) denotes the inverse function of Eq. (3), and 
m1 ∼ m8 are itemized in Eq. (74) in “Appendix.”

(49)q = exp

(
−
�K�

K

)
=

n

4
+

n3

16
+

17n5

512
+

45n7

2048
+⋯ ,

(50)G
(
�c

)
=

∞∑
j=1

kj sin
(
2j�c

)
.

(51)�c = �c +

∞∑
j=1

lj sin
(
2j�c

)
,

(52)w = u + iv = FK

(
�c +

∞∑
j=1

lj sin
(
2j�c

))
.

(53)

⎧⎪⎪⎨⎪⎪⎩

u = FK

�
� +

∞�
j=1

lj sin (2j�) cosh (2j�)

�

v = FK

�
� +

∞�
j=1

lj cos (2j�) sinh (2j�)

�
.

(54)

� = �−1(�)

= arcsin (tanh�) + tanh�

∞∑
j=1

mj sech
2j−1� ,

4 � Precision and efficiency evaluation

To clearly articulate the GK forward and reverse mapping 
procedures via Lee’s formulas, we extract the main steps 
from the tedious derivations as follows: 

(1)	 for the forward mapping, the procedure is 

(2)	 and likewise, the reverse process is 

To demonstrate the procedures better, two examples of the 
coordinate calculations, forward mapping following the pro-
cedure (55) by given 

(
� = 60

◦

, � = 3
◦
)
 and reverse mapping 

following (56) by given (x = 6.657E6m, y = 1.670E5m) , 
were implemented and the results are shown in Table 1. 
All examples and tests in this article were implemented 
with the GRS80 ellipsoid data ( a = 6378137m and 
f = 1∕298.257222101).

Following these procedures, the precisions of the forward 
and reverse mappings obviously mainly depend on the trun-
cation of series (33), (42), (52) (or their real and imaginary 
parts separated forms (35), (45), (53), respectively) and (54). 
However, as described by Karney (2011), the overall errors 
of numerical computations are the combined effect of the 
truncation error (caused by truncating and approximating an 
infinite sum by a finite sum) and the round-off error (caused 
by using finite precision floating-point numbers in comput-
ers). Thus, it is necessary to quantify and distinguish these 
two types of errors in applications.

Since elliptic functions and integrals can be calculated 
to an arbitrary accuracy by using the computer algebra 
system Mathematica (Wolfram 2017), we first determine 
the truncation error in Mathematica by using the option 

(55)

(�, �)
Eq.(3)
��������������������→ (� , �)

Eq.(33)
������������������������→

or (35)
(u, v)

Eq.(13) or (42),
�����������������������������������������������→

or (16), or (45)
(x, y),

(56)(x, y)
Eq.(52)
������������������������→

or (53)
(u, v)

Eq.(14)
������������������������→

or (17)
(� , �)

Eq.(54)
������������������������→ (�, �).

Table 1   Examples of the coordinate calculations following the proce-
dures (55) and (56)

Coordinates Values

Forward mapping Reverse mapping

� 60
◦

59
◦

59′32.499976′′

� 3
◦

2
◦

59′34.158300′′

� 1.311151 1.310884
u 1.048826 1.048690
v 0.026284 0.026227
x 6657868.630965m 6657000.000000m

y 167361.765833m 167000.000000m
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“WorkingPrecision” to eliminate the effect of round-off 
errors. The concrete strategy for determining the truncation 
error is as follows:

Given the arbitrary (�, �) (which corresponds one-to-one 
to (�, �) by Eq. (20)), first, the exact values of (x, y) and 
(� , �) can be obtained by Eqs. (19) and (20). Meanwhile, 
the approximations of these values, denoted by 

(
x′, y′

)
 and (

� ′, �′
)
 , can be calculated following the forward and reverse 

processes (55) and (56), respectively. Then, their absolute 
errors can be determined by the discrepancies between the 
approximate and actual values, denoted as �x = |x� − x| , 
�y = |y� − y| , �� = |� � − �| and �� = |�� − �| , respectively.

With respect to the precision of � in the reverse mapping, 
we extend series Eq. (54) to a higher order to calculate � by 
using exact values of � (the 16th order was implemented in 
our test). Thus, the loss of precision is of little consequence 
to lower orders and can be ignored. Assuming the results 
obtained by this route are the actual values of � , then the 
absolute errors of approximations of �′ obtained from the 
reverse mapping process are determined by �� = |� − ��|.

Finally, we use the positional errors of point

to evaluate the precisions of the forward and reverse map-
pings, respectively, where M(�) and N(�) represent the 
meridian and prime vertical radius of curvature of the 
ellipsoid:

Following this strategy, the precisions of the forward and 
reverse mappings are tested with the GRS80 ellipsoid in the 
range of −89◦

⩽ � ⩽ +89
◦ and −80◦

⩽ � ⩽ +80
◦ , i.e., the 

region highlighted with a blue boundary in Fig. 1.
In Fig. 2a, b, the maximum truncation errors of the for-

ward and reverse mappings are plotted as functions of |�| at 
various orders ranging from 2 to 12.

Furthermore, the round-off error caused by floating-point 
arithmetic is evaluated by machine epsilon �m = 2−(p−1) as 
�r ≈ 2Q�m = Q∕2p−2 (Karney 2011), where Q = 10000km 
represents the length of the meridian quadrant of the earth, 
and p is the number of bits in the fraction of the floating-
point number system. Similar to Karney ’s prescription, 
we implement the algorithms with double ( p = 53 ) and 
extended ( p = 64 ) precisions at n6 and n7 orders, respec-
tively, and the overall numerical errors (truncation and 

(57)

⎧⎪⎨⎪⎩

�P =
�

�2
x
+ �2

y

��
P
=

�
[M(�)]2�2

�
+ [N(�) cos�]2�2

�

(58)

⎧⎪⎪⎨⎪⎪⎩

M(�) =
a
�
1 − e2

�
�
1 − e2 sin2 �

�3∕2

N(�) =
a√

1 − e2 sin2 �
.

round-off) are plotted as dashed lines in Fig. 2. The results 
illustrate that the round-off errors with double (resp. 
extended) precision can be neglected, while the algorithms 
are implemented at no more than order n5 (resp. n6).

In comparison with the extended Krüger-n series pro-
vided and tested by Karney (2011), Fig. 2 shows that the 
new algorithms reach an equivalent precision level as the 
Krüger-n series for the same orders and have distinct advan-
tages over the Krüger-� series. Normally, within the stand-
ard UTM 6◦ zone width, the maximum errors of the new 
algorithms with an order of n3 or n4 are less than 0.42mm or 
1.47 μm for the forward mapping and 0.81mm or 2.73 μm for 
the reverse mapping, respectively. These levels of precision 
are adequate for most applications, and, if higher precisions 
or wider zones are required, the algorithms can be imple-
mented at higher orders; the corresponding precisions of 
orders up to n12 are shown in Fig. 2.

In a similar manner, it was shown by our test that the 
complex latitude methods are also at the same precision level 
with the Krüger-n series and the new method for the same 
orders. For brevity, we shall not repeat the test here.

As to the efficiency and algorithmic complexity, it can 
be foreseen that the new algorithms’ performances will be 
inferior to the Krüger-n series since more parameters and 
variables, including FK , � , � , q and several coefficients in 
terms of q, are additionally needed in the new algorithms. 
Nevertheless, for reference, we still compared the efficiency 
of new algorithms with the Krüger-n series and the complex 
latitude method (for more details of the complex latitude 
method, see Poder and Engsager 1998). Only forward map-
pings implemented by the three methods are compared since 
the reverse mappings have the same procedures with the 
forward mappings.

1.5 1.0 0.5 0.5 1.0 1.5

1.0

0.5

0.5

1.0

Fig. 1   Precision test region for the forward and reverse mappings 
following the procedures of (55) and (56). The region is highlighted 
with a blue boundary. GRS80 ellipsoid data are used in the test, and 
the mapping of the central meridian quadrant is scaled to unity. The 
graticule is portrayed at 10◦ intervals
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The results from time efficiency testing presented in 
Table 2 show that the new method runs with the same level 
of the complex latitude method and slower about 0.19 to 
0.21 μs per point than the Krüger-n series method. How-
ever, our purpose of developing straightforward procedures 
for both forward and reverse mapping of the GK projection 

based on Lee’s exact method is mainly focused on to reveal 
the essence of the GK projection, as elaborately discussed 
in Sect. 5.

5 � Complements of the GK projection’s 
properties

As summarized by Grafarend and Syffus (1998), the GK 
projection is essentially generated by a two-step procedure: 
(1) deriving conformal coordinates (� , �) from geodetic 
coordinates (�, �) and (2) transforming the conformal coor-
dinates (� , �) into the GK coordinates (x, y) by means of 
the holomorphic function w = u + iv . Equivalently, if the 
calculation of intermediate projection w = u + iv is con-
sidered an independent step, the two-step procedure can be 
regarded as a three-step procedure, as shown in Eq. (55) and 
Fig. 3. However, the procedure cannot have a one-to-one 
correspondence and be conformal over the entire ellipsoid, 
since, for the global coverage of the ellipsoid, there must 
be at least two maps to avoid singularities (Grafarend et al. 
2014), or in another word, any map over the entire ellip-
soid has at least one singularity since, from the topologi-
cal principles, the punctured sphere (denoted by 

(
S2 − p

)
 , 

a two-dimensional Riemann manifold) is homeomorphic to 
the two-dimensional Euclidean plane ℝ2 (e.g., Munkres 2000 
Theorem 59.3).
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(a)  Truncation and round-off errors for the forward
mapping

0 20 40

Β °
60 80

100

10 6

fo
s

mu
mixa

M
δ P

m

10 12

10 18

10 24

j 2

3

4

5

6

7

8

9

10

11

12

p 53

p 64

(b) Truncation and round-off errors for the reverse
mapping

′

Fig. 2   Maximum truncation and round-off errors as functions of 
|�| a for the forward GK mapping following the procedure of (55) 
and b for the reverse GK mapping following the procedure of (56) 
at various orders j from 2 to 12. The solid lines show the truncation 

errors, and the dashed lines show the combined truncation and round-
off errors for double precision ( p = 53 bits) and extended precision 
( p = 64 bits) at the orders j = 6 and j = 7 , respectively

Table 2   CPU times of the three algorithms for the forward mapping 
of the GK projection (Unit: microsecond ( μs))

Shown are the averaged CPU times for calculating a GK coor-
dinates (x, y) from a given geodetic coordinates (�, �) by the 
Krüger-n series method, the complex latitude method and the 
new method following the procedure (55) at n4 order, respec-
tively. They were evaluated by averaging the CPU time measure-
ments for three sets of equally spaced grid points of (�, �) , which 
are obtained by varying the latitude and longitude in the range {
−88

◦

⩽ � ⩽ +88
◦

,−15
◦

⩽ � ⩽ +15
◦
}
 with steps of 0.1◦ , 0.05◦ and 

0.01
◦ , i.e., 530601, 2116121 and 52822601 points in total for sets 

A, B and C, respectively. The programming language used in the 
measurements was Microsoft Visual C++, run on PC with Inter(R)
Core(TM)i7-4810MQ CPU@2.80GHz, 32 GB RAM, Windows 10 
operation system

Method Test set

A B C

Krüger-n series 0.35 0.34 0.33
Complex latitude method 0.54 0.54 0.53
New method following (55) 0.55 0.55 0.54
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In fact, following convention, the standard GK projection 
over the entire ellipsoid is mapped by gluing three charts 
together: One chart covers the hemisphere in which the 
meridians at 90◦ east and west of the chosen central merid-
ian are projected to horizontal lines through the poles, and 
the other two charts cover the more distant hemisphere by 
dividing and projecting it into two equal parts above the 
north pole and below the south pole, as shown in Fig. 3d.

A simple method to obtain the exhaustive properties of 
projections over the entire ellipsoid is to analyze the pro-
cedure from the perspective of complex analysis. Due to 
symmetry, it is sufficient to consider one quadrant of a hemi-
spheroid. Here, we suppose a point starts at O and moves on 
the boundary of a quadrant of the northern hemi-spheroid 
anticlockwise, as shown in Fig. 3a, along the direction of 

the arrow; the geodetic and projected coordinates of the 
point consequently vary along the boundary. The variations 
are shown in Table 3, where �B = (1 − e)�∕2 is analyzed in 
detail by Lee (1962) and Karney (2011), and vA and yA are 
determined by

and

respectively.

(59)�A = arctanh
(
dn �vA

)
− e arctanh

(
e nd �vA

)
= 0

(60)yA = avA − aE�
(
vA
)
+

a
(
1 − e2

)
sn �vA cn

�vA dn
�vA

−e2 + dn �2vA

,

Fig. 3   Illustration of the three-step procedure of the GK projection. 
Here, the graticule in the Normal Mercator projection is omitted, and 
in the Thompson and GK projections, the graticule is shown at mul-
tiples of 10◦ with 1◦ lines added in 80◦

< 𝜆 < 90
◦ and 0◦

< 𝜑 < 10
◦ . In 

particular, the shallowed regions are used to illustrate the projected 
shapes of the unit isothermal coordinates 

(
�
p
= 1, �

p
= 1

)
 in the Nor-

mal Mercator, Thompson and GK projections
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Setting kv = vA∕K
� and ky = a

(
K� − E�

)
∕yA ,  then 

kv ≈ 0.84016080618551 and ky ≈ 0.70822383771793 , as 
obtained from the GRS80 parameters. The two proportions 
referring to GRS80 show general features of the boundaries 
of the Thompson and GK projections for the Earth ellipsoid.

In mathematics, coordinates of a two-dimensional Rie-
mann manifold (temporarily denoted as (�, �) ) in which the 
square of the line element has the form

with 𝜌2(𝜇, 𝜈) > 0 smooth are named isothermal coordinates 
(e.g., Hazewinkel 2012).

This means that isothermal coordinates of a two-dimen-
sional Riemann manifold specify a conformal mapping of 
the two-dimensional Riemann manifold into the two-dimen-
sional Euclidean plane. Specializing to the map projection 
case, the isometric latitude � and the longitude � are essen-
tially the isothermal coordinates (� , �) on the ellipsoid sur-
face and the square of the line element is given by

with r2(𝜓) > 0 smooth, where the south and north poles are 
excluded since r(�) = 0 at the poles.

In particular, Eq. (62) is converted to ds = r(�)d� , i.e., 
the differential of the meridian arc, in the case � = constant . 
Integrating ds = r(�)d� and extending it to the complex 
plane, it is the definition of the GK projection, expressed by 
Eqs. (1) to (3).

Significantly, the step deriving isothermal coordinates 
(� , �) from geodetic coordinates (�, �) essentially deter-
mines a conformal mapping (i.e., the Normal Mercator pro-
jection) of the ellipsoid surface (excluding the south and 
north poles, considering as a two-dimensional Riemann 
manifold) into the Euclidean plane, as shown from Fig. 3a, 

(61)ds2 = �2(�, �)
(
d�2 + d�2

)

(62)
ds2 = [M(�)d�]2 + [N(�) cos�d�]2

= r2(�)
(
d�2 + d�2

)

b. The step is the foundation of the following two steps and 
also plays a particularly important role in other conformal 
projections.

Suppose point P
(
�p, �p

)
 is located by

then the region on the ellipsoid surface bounded by merid-
ian �p and the initial meridian, the parallel �p and the equa-
tor is projected to a unit square grid in the Normal Merca-
tor projection, as shown from Fig. 3a, b. Also taking the 
GRS80 ellipsoid as an example, it can be calculated that 
�p ≈ 49

◦

47�40.76�� and �p = 180
◦

∕� . The unit square grid 
typically illustrates the role of the isothermal coordinates, 
and the shapes of the same region projected in Fig. 3b, c, 
d show that all three projections preserve angles but distort 
sizes and areas.

However, on the maps of the entire ellipsoid there are 
singularities at which local angles are distorted. Firstly, the 
south and north poles are singularities of the Normal Mer-
cator projection, since � → ±∞ when points approach the 
poles, as shown in Fig. 3b. Furthermore, considering the 
derivatives of the projection functions (1) and (23),

it can be concluded that S�(±K) = 0 and h�(±K) = 0 . There-
fore, the GK and Thompson projections are both un-confor-
mal at the south and north poles.

In the same manner, it can be obtained that S�
(
iK�

)
= a∕e 

and h′
(
iK′

)
 does not exist. This indicates that the GK projec-

tion is conformal at point B, while the Thompson projection 
is not.

In addition, because of � = 0 and (1 − e)�∕2 ⩽ � ⩽ �∕2 
in the segment BA on the equator, so that, from Eq. (17) we 
have

which is not a one-to-one correspondence in the domain 
{𝜓 = 0, (1 − e)𝜋∕2 < 𝜆 ⩽ 𝜋∕2} since, if a pair of coordi-
nates (u, v) satisfy Eq. (65), then (−u, v) also satisfy. It is 
the reason that the two projections, Thompson and GK, are 
multi-valued from the branch points B to A on the equator, 
and thus, the condition of holomorphic bijection for the two 
projections fails in the segment (for more elaborate discus-
sions see Lee 1962; Karney 2011).

If a function z = f (w) maps a region D bounded by a 
simple closed curve C in the w-plane conformally upon a 

(63)

{
�p = arctanh

(
sin�p

)
− e arctanh

(
e sin�p

)
= 1

�p = 1,

(64)

⎧⎪⎨⎪⎩

S�(�) =
dz

d�
= a sn (K + w)

h�(�) =
dw

d�
=

cnw dnw�
1 − e2

� ,

(65)
{

arctanh
(
sn u dn �v

)
= e arctanh

(
e sn u nd �v

)
� = arctan

(
dc u sc�v

)
− e arctan

(
e cd u sc�v

)
,

Table 3   Coordinate variations on the boundary of the Northern 
Hemi-spheroid quadrant

∗ �
B
= (1 − e)�∕2 ; v

A
 and y

A
 are determined by Eqs.  (59) and (60), 

respectively

Coordinates Loop

O to B B to A A to N N to O

� 0 0 0 to �∕2 �∕2 to 0
� 0 to �∗

B
�
B
 to �∕2 �∕2 0

� 0 0 0 to +∞ +∞ to 0
u 0 0 to K K K to 0
v 0 to K′

K
′ to v∗

A
v
A
 to 0 0

x 0 0 to aE aE aE to 0
y 0 to a

(
K

� − E
�
)

a
(
K

� − E
�
)
 to y∗

A
y
A
 to 0 0
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corresponding region � bounded by a closed curve �  in the 
z-plane, and the region D is small enough for the corre-
sponding region � to consist of the entire z-plane without 
overlapping, the region D is called a fundamental region of 
the w-plane for the function f (w) (Bowman (1961) Chap. V, 
§1). Equivalently, the definition means that the region D is 
the maximum open, connected and non-empty set in the w
-plane on which the function f (w) defines a conformal map-
ping without singularities.

Synthetically considering the features discussed above 
and using the “fundamental region of conformal map” con-
cepts defined by Bowman (1961), we finally determine the 
fundamental regions of the three projections, as shown in 
Table 4.

Mathematically, the fundamental region of a conformal 
map is also usually named a fundamental domain, in which 
the mapping is biholomorphic, namely conformal without 
singularities. At this point, the domain of the GK projection 
raised in Sect. 1 is determined.

6 � Conclusion

It was shown that the three definitions of the GK projection, 
defined by the complex isometric latitude, the complex lati-
tude and Lee’s analytical functions respectively, are equiva-
lent. However, as analyzed above, truncated series that are 
generated by the first definition, e.g., Krüger-� and Krüger-n 
series, are generally used in practical applications, while 
exact mappings expressed by Lee’s analytical functions are 
rare. Due to its infrequent use, the importance of Lee’s exact 
method was somewhat neglected.

Typically, the characterization of both the local and 
global features of the GK projection cannot be accomplished 
competently by only the first two definitions or any series 
expansion methods. Instead, Lee’s formulation is necessary 
since it explicitly defines the projection by analytical func-
tions. In addition, the derivative of the first definition, which 
must be nonzero for conformality, can be expressed exactly 
only by Lee’s formulas.

The algorithms presented here allow both forward and 
inverse mappings of the GK projection to be implemented 
without complex iterative procedures based on Lee’s exact 
method, which essentially reveal the mapping procedures 

and intrinsic properties of the GK projection. As a summary, 
we highlight the major conclusions here: 

(1)	 One of the most concise manners of defining the con-
formal map in geodesy and cartography is using ana-
lytical complex-valued functions by which it can be 
found that the Cauchy–Riemann equations, together 
with certain continuity and differentiability criteria, 
form a necessary and sufficient condition for a complex 
function to be complex differentiable, i.e., holomor-
phic, necessary but not sufficient for conformality.

(2)	 Indispensable but almost ignored in the geodetic com-
munity that the derivative of a conformal projection’s 
function should be nonzero everywhere on the domain 
is also a necessary condition for conformality.

(3)	 The first definition of the GK projection described in 
Sect. 1 is a generic definition for conformal maps, i.e., 
a mapping is conformal if and only if its function is 
biholomorphic on an open, connected and non-empty 
set.

(4)	 Because the non-punctured sphere or ellipsoid is not 
homeomorphic to the Euclidean plane, any map projec-
tion has at least one singularity in mapping the entire 
Earth surface, and thus, it is necessary to determine the 
domain of a map projection.

Based on these recognitions and the “three-step procedure” 
of the GK projection, the conformality and singularities over 
the entire ellipsoid of the Normal Mercator, Thompson and 
GK projections were analyzed and the fundamental domains 
of them were determined.

Finally, with respect to the precision and efficiency of 
new algorithms, it was verified that the new algorithms 
had equivalent precision levels for the same orders with 
the Krüger-n series but rather slower than the Krüger-n 
series. So, considering the lower-level efficiency, we are 
not intended to recommend the new algorithms in practical 
applications for the GK projection. However, we think the 
usefulness of the new formulas lies in the procedure, includ-
ing Eqs. (33), (35), (42), (45), (52) and (53), provided series 
approximations for the forward mapping of the Thompson 
projection and projective transformations for the Normal 
Mercator, Thompson and GK projections.
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Table 4   fundamental regions of the Normal Mercator, Thompson and 
GK projections

Projection Fundamental region

Normal Mercator {|𝜑| < 𝜋∕2, |𝜆| < 𝜋}

Thompson {|𝜑| < 𝜋∕2, |𝜆| < 𝜋∕2} − {𝜑 = 0, (1 − e)𝜋∕2 ⩽ |𝜆| < 𝜋∕2}

GK {|𝜑| < 𝜋∕2, |𝜆| < 𝜋∕2} − {𝜑 = 0, (1 − e)𝜋∕2 ⩽ |𝜆| < 𝜋∕2}
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