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Abstract
We apply the AUSGeoid data processing and computation methodologies to data provided for the International Height
Reference System (IHRS) Colorado experiment as part of the International Association of Geodesy Joint Working Groups
0.1.2 and 2.2.2. This experiment is undertaken to test a range of different geoid computation methods from international
research groups with a view to standardising these methods to form a set of conventions that can be established as an IHRS.
The IHRS can realise an International Height Reference Frame to be used to study physical changes on and within the Earth.
The Colorado experiment study site is much more mountainous (maximum height 4401 m) than the mostly flat Australian
continent (maximum height 2228 m), and the available data over Colorado are different from Australian data (e.g. much more
extensive airborne gravity coverage). Hence, we have tested and applied several modifications to the AUSGeoid approach,
which had been tailored to the Australian situation. This includes different methods for the computation of terrain corrections,
the gridding of terrestrial gravity data, the treatment of long-wavelength errors in the gravity anomaly grid and the combination
of terrestrial and airborne data. A new method that has not previously been tested is the application of a spherical harmonic
high-pass filter to residual anomalies. The results indicate that the AUSGeoid methods can successfully be used to compute
a high accuracy geoid in challenging mountainous conditions. Modifications to the AUSGeoid approach lead to root-mean-
square differences between geoid models up to ~0.028 m and agreement with GNSS-levelling data to ~0.044 m, but the
benefits of these modifications cannot be rigorously assessed due to the limitation of the GNSS-levelling accuracy over the
computation area.
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1 Introduction

A key component in defining an International Height Ref-
erence System (IHRS) is establishing a set of standards and
conventions that can be applied consistently on a global basis
(Ihde et al. 2017). An area where there are different con-
ventions applied is regional geoid computation by different
research groups around the world. For example, these groups
may use different methods to reduce gravity anomalies, and
to different surfaces, with some computing geoid models
and others quasigeoids using Molodensky’s principles. In
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an effort to determine the differences between these compu-
tation methods and software, the International Association
of Geodesy (IAG) resolved to establish a collaborative effort
between IAG Joint Working Groups 0.1.2 and 2.2.2 which
has become the IHRSColorado experiment. The objective of
the experiment is for numerous groups to use their compu-
tation methods and software to compute limited area geoid
models in challenging terrain and compare and analyse the
differences. From this analysis, the best performing method-
ologies can be adopted as the standards for the formulation
of the IHRS, leading to an International Height Reference
Frame (IHRF) as the realisation of a global unified physical
height reference based on gravity potential.

The experiment required all groups to compute height
anomalies, geoid heights, and potential values over a 5°×8°
area (35°–40°N, 102°–110°W) covering Colorado and adja-
centUS states.Our contribution to this experiment is to apply,
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as much as possible, the approach that has recently been used
in the computation of AUSGeoid2020 (Featherstone et al.
2018) so that the results from this approach applied to the
experiment can be compared to the results from other inter-
national groups.

AUSGeoid2020 consists of two components: a gravimet-
ric component called the Australian gravimetric quasigeoid
2017 (AGQG2017; Featherstone et al. 2018) and a geomet-
ric component (Brown et al. 2018) that fits this gravimetric
quasigeoid to the Australian Height Datum (AHD71; Roelse
et al. 1971). The geometric component is not of interest for
the IHRS Colorado experiment, so here we only use the
approach used in the computation of AGQG2017, but refer
to it as ‘the AUSGeoid approach’. This approach is based
on remove-compute-restore (RCR) quasigeoid computation
with deterministically modified Stokes integration, where
the modification parameters are determined from parame-
ter sweeps and comparison to GNSS-levelling data. Earlier
versions of this approach were used for the computation
of AUSGeoid09 (Featherstone et al. 2011) and NZGeoid09
(Claessens et al. 2011).

However, due to differences in terrain, data, and product
requirements, some changes to theAUSGeoid approachwere
required. In this paper, we describe how these differences
affect the optimal geoid computation strategy. This includes
comparison of alternative methods for the computation of
terrain corrections, the gridding of terrestrial gravity data, the
treatment of long-wavelength errors in the gravity anomaly
grid, and the combination of terrestrial and airborne data.

A first and obvious difference between the Colorado com-
putation area and Australia is the terrain. The Colorado
terrain is high and mountainous [mean elevation of 2013 m
and maximum elevation (Mount Elbert) of 4401 m]. Aus-
tralia, on the other hand, is the lowest andflattest of continents
(e.g. Sandiford and Quigley 2009) with vast plains and a
maximum elevation of only 2228 m (Mount Kosciuszko),
despite its much larger area. This affects the computation
strategy employed for terrain corrections and gravity grid-
ding (Sects. 2.1 and 2.2).

A second and very important difference is in the available
data. As very little airborne gravity data are available over
Australia, the AUSGeoid approach does not include sophisti-
cated methods for the incorporation of airborne gravity data.
However, much of the Colorado area is covered by airborne
gravity observations from theGRAV-Dproject (Smith 2007).
We have therefore computed two types of geoidmodels: ones
that exclude all airborne data and ones that include the air-
borne data. For the inclusion of the airborne gravity data, the
NZGeoid2017 approach (McCubbine et al. 2018)was largely
followed (Sects. 2.3 and 2.4). In this approach, terrestrial
and airborne data are combined using 3D least-squares col-
location (LSC)with a planar logarithmic covariance function
prior to Stokes integration.

Another difference in terrain and data availability is that
in the AUSGeoid computation approach, marine gravity
anomalies from satellite altimetry and the challenges of grav-
ity modelling in the coastal zone (e.g. Wu et al. 2019) play
an important role. Since the Colorado area does not involve
any marine zones, this challenge does not apply here.

A final issue that necessitated an adaptation to the AUS-
Geoid approach was the product requirements. Firstly, since
the AHD71 uses a normal-orthometric height system (e.g.
Filmer et al. 2010), the gravimetric component of AUS-
Geoid2020 is a quasigeoid model. However, heights with
respect to the North American Vertical Datum of 1988
(NAVD88; Zilkoski et al. 1992), which are used in the
Colorado area, are given in Helmert orthometric heights
(e.g. Jekeli 2000). To be consistent with Helmert orthome-
tric heights, the basic requirements for the IHRS Colorado
experiment stipulated the use of a simple, approximate geoid-
to-quasigeoid separation term (Sect. 2.6). Note, however, that
the use of geopotential numbers or normal heights, not ortho-
metric heights, is recommended for the IHRS (Ihde et al.
2017). As per the experiment requirements, we have com-
puted a quasigeoid model, geoid model and potential value
model.

The different height system also required adaptation of
the GNSS-levelling comparison method. We have tested two
different methods for the interpolation of geoid undulations
to benchmarks (Sect. 2.7).

The data and methods employed in this study are detailed
in Sect. 2. Results excluding airborne gravity data are pre-
sented in Sect. 3. This includes the effects of different terrain
correction computation methods, different data gridding
methods, differentmethods for treatment of long-wavelength
errors in the gravity anomaly grid, Stokes integration param-
eter optimisation and different interpolation methods in the
GNSS-levelling comparisons. In Sect. 4, the results including
airborne data are presented, as well as a comparison between
the solutions with and without airborne data. A discussion of
the results and conclusions are presented in Sects. 5 and 6.

2 Data andmethods

2.1 Terrain corrections

A3′′ ×3′′ DEMoverColoradowas provided byUnitedStates
National Geodetic Survey (NGS), based on SRTM v4.1
(Jarvis et al. 2008), covering an area that exceeds the compu-
tation area by 2° in all directions (33°–42°N, 100°–112°W).
It was used to compute planar terrain corrections over the test
area using two different algorithms: (1) the algorithm used
in AUSGeoid2020 (McCubbine et al. 2017) and (2) a more
recently derived algorithm (Goyal et al. 2019) developed for
the Indian geoid project. Both methods use the fast Fourier

123



Towards an International Height Reference System: insights from the Colorado geoid… Page 3 of 19 52

transform that relies on applying a binomial expansion to the
integrand. As the terrain over most of Australia is relatively
flat, the algorithm byMcCubbine et al. (2017) considers only
the first-order term of the expansion. However, in the more
mountainous terrain of Colorado, the first-order approxima-
tion is not sufficiently accurate. Therefore, the method of
Goyal et al. (2019) was selected for this study. The terrain
correction is herein calculated using a binomial expansion

TC � Gρ
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whereG is the universal gravitational constant,ρ is the terrain
density, l is the horizontal distance, and �z is the vertical
distance between the computation point and the integration
point. The binomial expansion was used up to sixth order
(k � 6). Brute-force computation not relying on the binomial
expansion was used at locations with gradients exceeding
45°, where the expansion may diverge.

2.2 Terrestrial gravity data

A total of 59,303 terrestrial gravity observations were made
available by NGS (Fig. 1). This equates to an average of 0.15
observations/km2, which, for comparison, is less than the
0.23 terrestrial gravity observations/km2 used in the compu-
tation of AUSGeoid2020 (Featherstone et al. 2018).

Atmospheric corrections according toMoritz (2000) were
applied to these observations. Then, the gravity observations
were transformed into Molodensky-type free-air anoma-
lies, where Somigliana–Pizzetti normal gravity was com-
puted rigorously usingGRS80 reference ellipsoid parameters

Fig. 1 Free-air anomalies showing the coverage of terrestrial gravity
observations (units in mGal)

(Moritz 2000). In this process, the ellipsoidal height of
the telluroid was approximated by the provided orthometric
heights of the gravity observations. Simple planar Bouguer
gravity anomalies were subsequently computed by apply-
ing the Bouguer plate correction with a constant topographic
mass density of 2670 kg m−3. (This mass density value
was stipulated in the IHRS Colorado experiment require-
ments.)

For the gridding of the gravity data, two different meth-
ods were used, so as to test the suitability of the method
specifically adapted for the AUSGeoid computation against
a conventional method in the challenging Colorado terrain.
The first method is a straightforward gridding of refined
Bouguer anomalies and is herein referred to as the simple
gridding method. In this method, terrain corrections were
bi-cubically interpolated to the gravity observation loca-
tions and applied to the simple planar Bouguer anomalies to
obtain refined Bouguer anomalies (e.g. Hackney and Feath-
erstone 2003). These were then gridded onto a 1′ ×1′ grid
using the tensioned spline (Smith and Wessel 1990) rou-
tine in the Generic Mapping Tools (GMT; Wessel et al.
2013), with a tension factor of 0.25. Subsequently, the
gridded refined Bouguer anomalies were transformed into
Faye anomalies by addition of the simple Bouguer correc-
tion.

The second method is that of Featherstone and Kirby
(2000), which is referred to as the reconstruction method. It
was, for example, used in the computation of AUSGeoid09
(Featherstone et al. 2011) and AUSGeoid2020 (Featherstone
et al. 2018). In this method, the simple planar Bouguer
anomalies were bi-cubically interpolated to a regular 3′′ ×
3′′ grid using the GMT tensioned spline routine (Smith and
Wessel 1990; Wessel et al. 2013), again with a tension fac-
tor of 0.25. Note that terrain corrections were not applied to
the point anomalies before gridding.While application of the
terrain corrections, resulting in refined Bouguer anomalies,
would have provided a smoother surface for gridding, the
method of Featherstone andKirby (2000) allows for the addi-
tion of the mean terrain correction afterwards. This reduces
aliasing whichmay arise whenmore gravity observations are
taken in lowland areas (Featherstone and Kirby 2000). This
method has been shown to be beneficial over Australia, but
has until now not been tested over rougher terrain. Gridded
Molodensky-type free-air gravity anomalies on the topogra-
phy were generated on a 3′′ ×3′′ grid, to which planar terrain
corrections (Sect. 2.1) were added to provide Faye anomalies
on a 3′′ ×3′′ grid, which were then block-averaged to a 1′ ×
1′ grid.

The 1′ ×1′ grids resulting from the simple gridding
method and the reconstruction method were each used to
compute two “terrestrial-only” geoid models for Colorado,
without inclusion of available airborne gravity data, which
are compared and evaluated (Sect. 3.2).
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Fig. 2 Free-air anomalies showing the coverage of airborne gravity
observations (units in mGal)

2.3 Airborne gravity data

A total of 283,716 debiased GRAV-D (Smith 2007) airborne
gravity observations, resampled to a 1 Hz observation fre-
quency, were provided by NGS. The data consist of 56 flight
lines with elevations ranging between 5000 and 8000m. Fig-
ure 2 shows the spatial coverage of the data. We have applied
the approach used for the computation of NZGeoid2017
(McCubbine et al. 2018) to process the airborne gravity data,
which also includes a different procedure to process the ter-
restrial gravity data.

First, we converted the airborne gravity observations into
Molodensky-type free-air gravity anomalies. Each flight line
was then low-pass filteredwith a 1DGaussian filter to remove
high-frequency noise. McCubbine et al. (2018) use a filter
length of 120 s to achieve an along-track spatial resolution
of~8 km. However, the airborne gravity over Colorado was
flownat higher speed (average speedof~200knots compared
to~130 knots over NewZealand), and therefore, a shorter fil-
ter length of 80 s was used here instead. This resulted in a
similar spatial resolution of~8 km. We cautiously estimate
the accuracy of the airborne data at±3 mGal, based on the
RMS error from crossover analysis of the data of 2.32 mGal
(GRAV-D Team 2017) and analysis of other GRAV-D air-
borne gravity data over mountainous terrain by Huang et al.
(2017).

2.4 Combination of terrestrial and airborne gravity
data

Airbornegravity datawere downward continued to the topog-
raphy using 3D least-squares collocation (LSC) with planar
logarithmic covariance function (Forsberg 1987). Residual

gravity anomalies �gres were used as input, and these were
computed using

�gres � �g − �gGGM − δgTC (2)

where �g are the Molodensky-type free-air gravity anoma-
lies, �gGGM are the long-wavelength gravity anomalies
from the tide-free satellite-only Global Gravity Model
(GGM) GO_CONS_GCF_2_DIR_R6 (Förste et al. 2019)
until degree and order (d/o) 300, and δgTC is the gravitational
effect of the topographic masses determined from a long-
wavelength DEM. These residual gravity anomalies were
computed for both the (non-gridded) terrestrial and airborne
data sets.

Two different methods for the computation of the topo-
graphic correction δgTC were tested,with the aimof assessing
their adaptability to this mountainous test area. The differ-
ence between these methods is the technique employed to
generate the long-wavelength DEM: (1) using a 2DGaussian
filter and (2) using a spherical harmonic box filter. In method
1, a 2D Gaussian filter with a standard deviation of 18′ was
used, following Forsberg et al. (2014) and McCubbine et al.
(2018). In method 2, a spherical harmonic box filter was used
as an alternative, to test the influence of the long-wavelength
topography on the geoid. The 3′′ ×3′′ DEM was first block-
averaged to 2′ ×2′ resolution and subsequently extended to a
global 2′ ×2′ grid, where all cells outside the study area were
set equal to the mean DEM height over the study area. This
global grid was expanded into a surface spherical harmonic
series up to d/o 2699 using the SHTools software (Wieczorek
and Meschede 2018), applying the algorithm of Driscoll and
Healy (1994). The long-wavelength DEM was then created
by spherical harmonic synthesis of this series up to d/o 300.

Rectangular prism integration (Nagy et al. 2000) was used
to compute the gravitational effect of topographic masses
from the long-wavelength DEM. The gravitational effect on
the airborne datawasfilteredwith the same1DGaussianfilter
as the observations, so that short-wavelength terrain effects
donot producenoise in the airbornedata (e.g. Forsberg2002).

3D LSC was applied to simultaneously downward con-
tinue the airborne gravity data to the Earth surface and
combine it with the terrestrial gravity data, directly creating
a 1′ ×1′ grid of residual gravity anomalies on the surface of
the topography. For the LSC process, the planar logarithmic
covariance function of Forsberg (1987) was used

(3)
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where

f � C0 log

(
(D + T )3(D + 3T )

D(D + 2T )3

)
(4)

Here, C0, D and T are three constants defining the covari-
ance function, which were determined empirically as C0 �
407.86mGal2, D � 16.6 km and T � 46.2 km, with αk �
[1,−3, 3,−1], Dk � D + kT , r is the planar distance
between any two points,�gres,1 and�gres,2 are residual grav-
ity anomalies at those two points, and h1 and h2 are the
heights of the two points.

The �gGGM and δgTC. components are then added back
to the gridded residual gravity anomalies, and the anomalies
are subsequently transformed into Faye anomalies. The 1′ ×
1′ grid of Faye anomalies forms the input for the remove-
compute-restore (quasi)geoid computation in the AUSGeoid
approach.

2.5 Stokes integration

The remove-compute-restore (RCR) technique for quasi-
geoid computation is used in the AUSGeoid approach. The
GGMused here is Cnm_refB_v050317a_s2-2190zt_4, a pre-
liminary zero-tide version of EGM2020 (Barnes et al. 2015)
to spherical harmonic d/o nmax � 2190. The model was
converted to a tide-free model by applying a correction
to the C20-term of the model. The correction was deter-
mined by subtracting the C20-term of the zero-tide version
of EGM2008 from the C20-term of the tide-free version of
EGM2008 (Pavlis et al. 2012). In this way, we have used
the same tide conversion as was used in EGM2008, which is
based on the equations of Rapp (1989) and Ekman (1989).

Ellipsoidal gravity anomalies from the GGM were rig-
orously synthesised on a 1′ ×1′ grid at the surface of the
topography, as per Featherstone et al. (2018). However, a dif-
ference with the procedure described in Featherstone et al.
(2018) is that the spherical harmonic synthesis was per-
formed using the harmonic_synth software (provided by the
EGM2008 development team) rather than isGrafLab (Bucha
and Janák 2014). While the rigorous computation method
in harmonic_synth is computationally less efficient, the pro-
cedure to synthesise ellipsoidal gravity anomalies is more
straightforward, and the computational burden was not pro-
hibitive as the Colorado computation area is considerably
smaller than the continent of Australia.

Subtracting the GGM anomalies from the gridded Faye
anomalies gives residual gravity anomalies. To avoid con-
fusion with the residual gravity anomalies from Eq. (2), we
herein call these the residual Faye anomalies. These residual
Faye anomalies are typically not completely free of signal
content below d/o nmax. This is primarily due to errors in
both the GGM and in the gridded Faye gravity anomalies. If

there are long-wavelength errors in the Faye anomalies, this
will lead to long-wavelength errors in the computed quasi-
geoid after the restore step. To overcome this issue, instead of
relying solely on Stokes kernel modification to reduce long-
wavelength errors (e.g. Vaníček and Featherstone 1998), we
have here also tested a new procedure in which a spheri-
cal harmonic high-pass filter is applied to the residual Faye
anomalies before Stokes integration. This is a procedure not
previously used in the computation ofAUSGeoidmodels, but
is implemented for the Colorado experiment because of the
apparent long-wavelength errors in the residual Faye anoma-
lies.

The spherical harmonic high-pass filter was implemented
as follows. The 1′ ×1′ grid of residual Faye anomalies was
first block-averaged to 2′ ×2′ resolution and subsequently
extended to a global 2′ ×2′ grid, where all cells outside the
study area were set equal to the mean residual Faye anomaly
over the computation area. The block-averaging to 2′ ×2′
resolution is performed, because this allows exact spherical
harmonic analysis to d/o 2699 using the algorithm ofDriscoll
and Healy (1994) without use of extended range arithmetic.
The long-wavelength residual Faye anomaly synthesised on
the 1′ ×1′ grid up to a specific degree n was then subtracted
from the residual Faye anomalies.

1D-FFT Stokes integration was tested with two determin-
isticallymodified integration kernels: the kernel ofWong and
Gore (1969), herein called the WG-kernel, and the kernel of
Featherstone et al. (1998), herein called the FEO-kernel. The
WG-kernel SWG(ψ) is defined as

SWG(ψ) � S(ψ) −
M−1∑
n�2

2n + 1

n − 1
Pn(cosψ) (5)

where ψ is the angular distance between the computation
point and the observation point, S(ψ) is the unmodified
Stokes kernel,M is themodification degree, and Pn(cosψ) is
the Legendre polynomial of degree n. The FEO-kernel SFEO
(ψ) is defined as

SFEO(ψ) � SVK(ψ) − SVK(ψ0) for 0 ≤ ψ ≤ ψ0 (6)

where ψ0 is the integration cap size, SVK(ψ) is the Vaníček
and Kleusberg (1987) kernel

SVK(ψ) � SWG(ψ) −
M−1∑
k�2

2k + 1

2
tk(ψ0)Pn(cosψ) (7)

and tk(ψ0) is the modification coefficient defined in Vaníček
and Kleusberg (1987).

Parameter sweeps were performed to identify the opti-
mal cap size and modification degree (as per Featherstone
et al. 2018) for both theWG- and FEO-kernel. In a parameter
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sweep, multiple computations are run with a range of differ-
ent cap sizes and modification degrees followed by testing of
the resulting geoid against GNSS-levelling data (Sects. 2.6
and 2.7). The solution with the lowest standard deviation (or
L2-norm) of differences with GNSS-levelling data is consid-
ered optimal. The FEO-kernel was used for AUSGeoid2020
(Featherstone et al. 2018), while the WG-kernel was used
for NZGeoid2017 (McCubbine et al. 2018), and both ker-
nels have been used for numerous other geoid models. The
two kernels were tested here to see whether one performed
differently to the other in the mountainous Colorado experi-
ment area. While many tests of modified kernels have been
performed before (e.g. Forsberg and Featherstone 1998; Ell-
mann 2005a; Li andWang 2011), optimal results vary by area
(e.g. Featherstone 2003), and the parameter sweeps therefore
need to be performed for the Colorado area.

The decision to use the FEO- and WG-kernels, and to
determine the modification parameters through parameter
sweeps, was made solely on the basis that this is a signif-
icant feature of the AUSGeoid (and NZGeoid) computation
method, which we set out to apply and test. Many other
Stokes kernel modification methods exist: see, for exam-
ple, Featherstone (2013, Appendix A) for an overview.
We acknowledge that stochastic kernel modification (e.g.
Sjöberg 1981, 2003;Wenzel 1983), which takes into account
accuracy estimates for the GGM coefficients and local grav-
ity data, may provide better results in the Colorado area. It is,
at least conceptually, desirable to use spectral information for
gravity data and noise in the combination of satellite, airborne
and terrestrial data (e.g. Kern et al. 2003). However, error
spectra of airborne and terrestrial data are difficult to estimate
and are typically based on simple covariancemodels (e.g. Ell-
mann 2005b) subject to stationarity and isotropy assumptions
(Featherstone 2013). We also acknowledge that parameter
sweeps may not result in the optimal kernel, especially when
the GNSS-levelling data are of poor or ambiguous quality.
The results of the parameter sweeps are known to potentially
be influenced by the treatment of outliers and by distortions
in the height datum (e.g. Featherstone et al. 2018).

2.6 Geoid and potential computation

A zero-degree geoid term was estimated to take into account
the geocentric gravitational constant selected for the project
(GM � 3.986004415 · 1014 m3 s−2) and the conven-
tional reference potential value used in the IHRS (W0 �
62636853.4m2 s−2, Sánchez et al. 2016; Sánchez andSideris
2017). This zero-degree termwas added to the restored height
anomalies to provide a final quasigeoid model.

As the AUSGeoid models are quasigeoid models, esti-
mation of the geoid-to-quasigeoid separation is not included
in the AUSGeoid computation procedure. In adherence to
the basic requirements of the IHRS Colorado experiment,

the geoid-to-quasigeoid separation was here approximated
using the simple equation (e.g. Heiskanen and Moritz 1967,
section 8-13; Rapp 1997a)

N − ζ � �gBH

γ
(8)

where N is the geoid height, ζ is the quasigeoid height (or
height anomaly), �gB is the Bouguer gravity anomaly, H is
the orthometric height, and γ is the magnitude of reference
gravity. We acknowledge that there are more sophisticated
methods for the computation of the geoid-to-quasigeoid sep-
aration (e.g. Flury and Rummel 2009; Sjöberg 2010; Tenzer
et al. 2015), but these have not been applied here.

To create a grid of potential values, the magnitude of the
GRS80 normal gravity γ and normal potentialU were com-
puted rigorously at the topography using Eqs. (2-62) and
(2-72) in Heiskanen and Moritz (1967). The generalised
Bruns’s formulawas used to compute the disturbing potential
T , with the gravity potential W at the topography obtained
by adding the normal potential U at the topography to the
disturbing potential.

2.7 GNSS-levelling comparisons

As data from the Colorado Geoid Slope Validation Survey
2017 (GSVS17; Van Westrum 2019) were not yet publicly
available at the time of writing, results were validated against
an older data set of 509 GNSS-levelling points of unknown
precision over the computation area. The levelling data refer
to the NAVD88 (Zilkoski et al. 1992). The NAVD88 has long
been known to contain systematic errors (e.g. Smith andMil-
bert 1999), most recently estimated as ranging from -20 cm
to +130 cm across the USA (Li 2018). Therefore, systematic
error was mitigated by estimating and removing a bias and
tilt. The removal of a bias and tilt will also account for most
systematic error resulting from different tide systems.

To avoid the influence of edge effects in the geoid com-
putation, a 0.5° buffer was removed, so the validation area is
(35.5°–39.5°N, 102.5°–109.5°W). This reduces the number
of available GNSS-levelling points to 309. In this data set, 4
outliers were identified based on a 3σ-criterion. These out-
liers were removed, so a total of 305 points were used in all
comparisons.

The geoid values used in the GNSS-levelling comparisons
were prepared in two different ways, so as to test whether the
interpolation method affected these comparisons. In the first
method, herein called the N -interpolationmethod, the height
anomalies were first converted to geoid heights (Eq. 8) and
then bi-cubically interpolated to the horizontal coordinates
of the GNSS-levelling marks. In the second method, herein
called the ζ -interpolation method, the height anomalies were
bi-cubically interpolated to the horizontal coordinates of the
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Fig. 3 Left: DEM terrain heights over the computation area (units in m; max: 4385 m, min: 932 m, mean: 2017 m, rms: 2109 m); right: terrain
corrections according to Goyal (2019) (units in mGal; max: 56.1 mGal, min: 0.0 mGal, mean: 2.0 mGal, rms: 3.6 mGal)

GNSS-levelling marks and then converted to geoid heights.
The latter was achieved by bi-cubic interpolation of the
Bouguer anomalies to the marks, followed by application of
Eq. (8) using the orthometric height of the GNSS-levelling
point.

3 Results excluding airborne gravity data

Results of “terrestrial-only” geoid solutions are presented
in this section, and results from the combination of terres-
trial with airborne data are presented in Sect. 4. Note that all
results are presented to the nearest 0.1 mGal and 0.001 m,
except for standard deviations of GNSS-levelling compar-
isons which are shown with one additional decimal. The
number of decimals shown should not be taken as an indica-
tion of precision, but to differentiate between similar results.

3.1 Terrain corrections

The DEM and terrain corrections following Goyal et al.
(2019) over the 5°×8° computation area (35°–40°N,
102°–110°W) are shown in Fig. 3. For the computation of the
terrain corrections, the full extent of the DEM (33°–42°N,
100°–112°W) was used. The differences with the terrain
corrections following McCubbine et al. (2017), using soft-
ware used for the computation of AUSGeoid2020, reach a
maximum of 11.2 mGal, which translates into a maximum
difference in the final geoid model of~0.038 m. These dif-
ferences are primarily attributed to the truncation of the
binomial expansion in the method of McCubbine et al.
(2017).

3.2 Terrestrial gravity gridding

As explained in Sect. 2.2, two gravity griddingmethods were
compared: (1) the simple gridding method and (2) the recon-
structionmethodofFeatherstone andKirby (2000). The latter
reduces aliasing which may arise when more gravity obser-
vations are taken in lowland areas. For the Colorado test area,
the histograms in Fig. 4 indicate relatively few gravity obser-
vations are taken at low altitudes (~1000–1500 m altitude),
but this is due to low observation density in the plains in the
Eastern part of the computation area (Fig. 1). Most observa-
tions are taken between 1500 and 2200 m, although there are
still many observed up to~3000 m. Relatively few observa-
tions are taken at high altitudes between~3000 and~3500m.

A potential disadvantage of the reconstruction method
is that interpolation errors may be larger, because the sim-
ple Bouguer anomalies that are interpolated are less smooth
than refined Bouguer anomalies. This is especially so in the
most mountainous terrain and therefore more of a concern in
Colorado than in Australia. In addition, the 3′′ ×3′′ grid res-
olution of the DEM over Colorado is coarser than the 1′′ ×
1′′ grid resolution used over Australia (Featherstone et al.
2018), which may also lead to larger interpolation errors.

The differences between the final 1′ ×1′ grid of Faye
anomalies (simple gridding versus the reconstructionmethod
of Featherstone and Kirby 2000), and the effect on height
anomalies is shown in Fig. 5. Maximum differences are in
excess of 20 mGal, resulting in height anomaly differences
up to 0.085 m in magnitude. However, when both models are
validated against available GNSS-levelling data, the stan-
dard deviation of the differences is very small. The simple
gridding method gives a standard deviation of differences
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Fig. 4 Left: histogram of orthometric heights in the 3′′ ×3′′ DEM over the computation area (57,615,601 points; mean: 2013 m); right: histogram
of orthometric heights of gravity observations over the computation area (59,303 points; mean: 2111 m)

Fig. 5 Left: differences between Faye anomalies from the simple grid-
ding method and the reconstruction method (units in mGal; max: 20.5
mGal, min: − 20.8 mGal, mean: − 0.2 mGal, rms: 1.5 mGal); right:

differences between height anomalies (units in m; max: 0.065 m, min:
− 0.085 m; mean: 0.001 m, rms: 0.009 m)

with GNSS-levelling of±0.0438 m, while the reconstruc-
tion method gives a standard deviation of±0.0441 m. We
investigated correlation of differences with terrain height and
with terrain gradients for bothmethods, but no significant dif-
ference between the two gridding methods was found. The
simple gridding method was selected for subsequent compu-
tations based on the slightly smaller (althoughnot significant)
standard deviation of differences with GNSS-levelling.

3.3 Stokes integration

Figure 6 shows the residual Faye anomalies resulting from the
simple griddingmethod (gridding of refinedBouguer anoma-
lies). Before Stokes integration and before application of any

filtering of the residual Faye anomalies, a surface spherical
harmonic series of the residual Faye anomalies was com-
puted using the procedure described in Sect. 2.5. The power
spectrum of this series is shown in Fig. 7. It shows that degree
variances below degree 2159 are substantially smaller than
those above degree 2159, as expected, but a peak in degrees
below 100 can also be seen. This peak will result in a long-
wavelength signal in the residual height anomalies if it is not
filtered out.

Unmodified Stokes integration of these residual anoma-
lies results in a large and dominant long-wavelength effect
in the residual height anomalies. This is undesirable, as the
long-wavelength height anomaly/geoid signal is better mod-
elled by the GGM, which includes high-quality GRACE and
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Fig. 6 Left: residual Faye anomalies (units in mGal; max: 92.2 mGal, min:− 64.4 mGal, mean:− 1.2 mGal, rms: 10.5 mGal); right: residual height
anomalies using WG-kernel with ψ0 � 1.4◦ and M � 280 (units in m; max: 0.248 m, min: − 0.155 m; mean: − 0.005 m, rms: 0.032 m)

Fig. 7 Spherical harmonic spectrum of residual Faye anomalies, show-
ing a peak in degrees below 100 attributed to errors in the Faye anomaly
grid

GOCE data. However, integration with a modified kernel can
reduce this long-wavelength effect (e.g. Vaníček and Feather-
stone 1998). A parameter sweep was performed to determine
the optimal Stokes kernel modification type, cap size and
modification degree, as the values used in the computation of
AUSGeoid2020 (FEO-kernel with ψ0 � 0.5◦ and M � 40)
may not be suitable for the Colorado area.

Stokes integration was performed for cap sizes fromψ0 �
0◦ to ψ0 � 2◦ with a step size of 0.1◦ and for modification
degrees from M � 40 to M � 360 with a step size of 40.
This was done for both the FEO-kernel (Featherstone et al.
1998) and the WG-kernel (Wong and Gore 1969). Resulting
gravimetric geoid models were compared to the available
GNSS-levelling data (Sect. 3.5).

Standard deviations of the differences between gravimet-
ric geoid heights and GNSS-levelling-derived geoid heights
are plotted in Fig. 8. It can be seen that the WG-kernel fil-
ters the long-wavelength errors more rapidly with increasing
modification degree. Furthermore, the WG-kernel remains
stable with increasing cap size, while the FEO-kernel shows
irregular behaviour at highmodification degrees. The optimal
parameters from this parameter sweep are a WG-kernel with
cap size ψ0 � 1.4◦ and modification degree M � 280. The
resulting model is herein called model T (“T” for “terrestrial
only”).

A pragmatic alternative to reliance on kernel modification
for signal filtering is to apply a spherical harmonic high-pass
filter up to a specific degree n to the residual Faye anomalies
before Stokes integration. This adds another parameter to
the search space, as the value of n can be optimised. For
instance, an extreme choice is to filter out all signals up to
n � 2160. This would result in a geoid model where the
height anomalies up to n � 2160 are completely determined
by the GGM, and the Stokes integration only adds higher-
frequency information.

Figure 9 shows parameter sweep results for this case,
again with both the FEO- and WG-kernel. When compared
to Fig. 8, it shows that due to the spherical harmonic filter,
the fit to GNSS-levelling is much less sensitive to modifica-
tion degree and cap size. Higher modification degrees still
improve the fit for both kernels, but the FEO-kernel again
shows unstable behaviour at high modification degrees for
large cap sizes.

The optimal FEO-kernel result is achievedwithψ0 � 0.1◦
with any modification degree. The optimal WG-kernel result
is achieved with ψ0 � 0.5◦ and M � 360. Both solu-
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Fig. 8 Standard deviations from GNSS-levelling comparisons for different cap sizes and modification degrees using the FEO-kernel (left) and the
WG-kernel (right)

Fig. 9 Standard deviations fromGNSS-levelling comparisons after spherical harmonic filtering to n � 2160 for different cap sizes and modification
degrees using the FEO-kernel (left) and the WG-kernel (right)

tions give a similar standard deviation in GNSS-levelling
differences of ± 0.0437 m. This is almost identical to the
standard deviation obtained without spherical harmonic fil-
tering (± 0.0438 m, Fig. 8), and it is therefore difficult to
ascertain which solution is optimal. However, extended anal-
ysis of the GNSS-levelling comparisons (Sect. 3.5) provides
further insight. The model using the FEO-kernel with modi-
fication parameters ψ0 � 0.1◦ and M � 40 is herein called
model T-SH2160.

3.4 Geoid and potential computation

The geoid-to-quasigeoid separation computed according to
Eq. (8) reaches a maximum magnitude of 1.370 m (Fig. 10).
It is largely dependent on terrain height and hence has sig-
nificant power over short wavelengths. When added to the

relatively smooth quasigeoid resulting from Stokes integra-
tion, it results in a geoid model that is ‘less smooth’, i.e.
has more power over short wavelengths than the quasigeoid
model. However, from theoretical considerations, the geoid,
being an equipotential surface of the Earth’s gravity field,
should be smoother than the quasigeoid (e.g. Sjöberg 2013).
This indicates that the quasigeoid models computed using
the AUSGeoid approach may be too smooth, i.e. lacking in
power over short wavelengths. This is not a significant issue
over flat terrain, but is more significant over the mountainous
terrain of Colorado.

Models of the geoid and the gravity potential were com-
puted based on all of the quasigeoid solutions described
above (with different modifications and parameter settings).
These are not shown here, because there is little visual differ-
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Fig. 10 Geoid-to-quasigeoid separation using Eq. (8) (units in m; max:
1.370 m, min: 0.130 m; mean: 0.462 m, rms: 0.514 m)

ence to the combined terrestrial and airborne gravity models
shown in Sect. 4.2 (Fig. 16).

3.5 GNSS-levelling comparison

As per Sect. 2.7, the geoid models computed in this research
were validated against 305 GNSS-levelling points. The dif-
ferences between geoid heights at the GNSS-levelling points
from the N -interpolationmethod and ζ -interpolationmethod
are shown in Fig. 11. For most points, the difference is under
0.020 m, but there is a single point (107.7°W, 37.7°N) with a
difference of 0.291 m, indicating that the choice of interpo-
lation method can significantly affect the results, especially
in regions of rugged mountainous topography.

An example of the impact of the differences shown in
Fig. 11 can be seen upon comparison of two different geoid
models. Model T is the geoid model computed using a WG-
kernel withψ0 � 1.4◦ andM � 280.Model T-SH2160 is the
geoid model computed using a FEO-kernel with ψ0 � 0.1◦
and M � 40 after spherical harmonic filtering to n � 2160.
Their standard deviation of differences with GNSS-levelling
is almost identical using the ζ -interpolation method (after
removal of bias and tilt). This is the method that was used
in the parameter sweeps in Sect. 3.3. However, the results
are different using the N -interpolationmethod (Table 1). The
standard deviation ofmodel T is lower using N -interpolation,
while the standard deviation of model T-SH2160 is larger.
This suggests model T is the superior model, particularly
when used with the N-interpolation method. It is noticeable
that the WG model appears more compatible with the N-
interpolation, while the FEO model with spherical harmonic
filtering is more suited to the ζ -interpolation. The differ-
ences in standard deviations shown in Table 1 are caused

Fig. 11 Differences between geoid heights at GNSS-levelling points
computed using the N -interpolation and ζ -interpolation methods (units
in m; max: 0.291 m, min: − 0.012 m; mean: 0.005 m, rms: 0.020 m)

primarily by only a few GNSS-levelling stations located in
regions of steep terrain gradients that are highly sensitive to
the interpolation method, resulting in large magnitude differ-
ences (>0.05 m). The spatial distribution of the differences
using the ζ -interpolation method is shown in Fig. 12.

4 Results including airborne gravity data

4.1 3D least-squares collocation

When airborne gravity data are added, the gridding of obser-
vational data is performed in a completely different manner,
as explained in Sect. 2.4. The combination of terrestrial and
airborne data is performed using 3D least-squares collocation
based on residual gravity anomalies �gres. Both the terres-
trial and airborne gravity data are reduced to residual gravity
anomalies. The choice of low-degree DEM in the compu-
tation of these residual gravity anomalies has a significant
influence on the final geoid model. Figure 13 shows the low-
degree DEM generated using a 2D Gaussian filter (left) and
the low-degree DEM generated using a spherical harmonic
box filter (right). Note that the spherical harmonic box filter
results in a DEM with steeper slopes.

Figure 14 shows the terrestrial (left) and airborne (right)
residual gravity anomalies, resulting from the application of
a 2D Gaussian filter to construct the low-degree DEM. As
expected, the airborne anomalies are smoother than the ter-
restrial anomalies, but visually there is a good agreement
between the main features of both data sets.

The impact of the different low-degree DEMs can be seen
in Fig. 15. The left panel shows the differences between
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Table 1 Statistics of the
GNSS-levelling comparison
using two different geoid
interpolation methods

Model Interpolation method Maximum (m) Minimum (m) Standard deviation (m)

T (WG) ζ -interpolation 0.140 − 0.228 0.0438

T (WG) N -interpolation 0.153 − 0.120 0.0425

T-SH2160 (FEO) ζ -interpolation 0.181 − 0.116 0.0437

T-SH2160 (FEO) N -interpolation 0.254 − 0.109 0.0464

Fig. 12 Left: GNSS-levelling differences after removal of bias and tilt
for geoid model T using WG-kernel with ψ0 � 1.4◦ and M � 280
(units in m; max: 0.140 m, min: − 0.228 m; mean: 0.000 m, rms:
0.044 m); right: GNSS-levelling differences after removal of bias and

tilt for geoid model T-2160 using FEO-kernel with ψ0 � 0.1◦ and
M � 40 after spherical harmonic filter to n � 2160 (units in m; max:
0.181 m, min: − 0.116 m; mean: 0.000 m, rms: 0.044 m); both have
used the ζ -interpolation method

Fig. 13 Left: low-degree DEM from 2D Gaussian filter (units in m; max: 3210.204 m, min: 1076.610 m; mean: 2010.018 m, rms: 2077.737 m);
right: low-degree DEM from spherical harmonic box filter (units in m; max: 3434.994 m, min: 1049.561 m; mean: 2014.540 m, rms: 2090.629 m)
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Fig. 14 Left: residual anomalies from terrestrial observations (units in
mGal; max: 116.2 mGal, min: − 136.7 mGal; mean: − 1.7 mGal, rms:
15.0 mGal), right: residual anomalies from airborne observations (units

in mGal; max: 24.2 mGal, min: − 40.8 mGal; mean: − 6.5 mGal, rms:
11.2 mGal) both using the 2D Gaussian filter

Fig. 15 Left: differences between Faye anomaly grids based on com-
bined terrestrial and airborne observations using spherical harmonic box
filter and 2D Gaussian filter, with locations of airborne gravity observa-
tions overlaid (units in mGal; max: 55.8 mGal, min:− 3.4 mGal; mean:
0.8 mGal, rms: 3.5 mGal); right: differences between Faye anomaly

grids based on terrestrial observations only and combined terrestrial
and airborne observations with 2D Gaussian filter used, with locations
of terrestrial gravity observations overlaid (units in mGal; max: 21.4
mGal, min: − 36.4 mGal; mean: − 3.3 mGal, rms: 4.0 mGal)

reconstituted Faye anomalies after combination of terrestrial
and airborne observations through 3D LSC. The differences
are largest in locations where there are gaps in the terres-
trial observations. The 2D Gaussian filter leads to combined
terrestrial and airborne Faye anomalies that are closer to
the terrestrial-only Faye anomalies. For this reason, results
achievedwith the 2DGaussianfilter are used in the remainder
of this paper. The right panel in Fig. 15 shows the differences

between the Faye anomaly grids based on terrestrial obser-
vations only and based on combined terrestrial and airborne
observations. Part of the differences visible in the right panel
in Fig. 15 are due to inclusion of airborne data, but there are
also differences due to the different processingmethods used,
in particular the gridding of the data using either tensioned
splines (terrestrial gravity) or 3D LSC (airborne gravity).
These two effects are investigated further in Sect. 4.2. It can
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be seen that the largest differences occur in areas where the
terrestrial gravity observations are sparse.

4.2 Stokes integration andmodel comparison

A parameter sweep was performed to determine the opti-
mal modified kernel, cap size and modification degree, as in
Sect. 3.3. The lowest standard deviation of differences with
GNSS-levelling data was achieved for the WG-kernel with a
cap size ψ0 � 0.3◦ and M � 360. The standard deviations
obtained were±0.0435 m (ζ -interpolation) and±0.0421 m
(N -interpolation). These are the lowest of all models cre-
ated in this study, cautiously suggesting that the addition of
airborne data has improved the geoid model. This model is
herein called model TA.

We have also tested spherical harmonic high-pass filtering
of the residual Faye anomalies from the combined terrestrial
and airborne gravity, as in Sect. 3.3 for the terrestrial-only
gravity. The signal up to n � 200 was removed, so that
the geoid up to this d/o is completely determined by the
GGM. The choice for n � 200 was based on the evalu-
ations of GOCE-based GGMs, indicating that cumulative
height anomaly error up to this d/o for recent models is
under 0.01m (e.g. Rexer et al. 2014; Voigt andDenker 2015),
which is expected to be superior to the terrestrial and airborne
gravity data in this spectral range. However, standard devia-
tions of differences to GNSS/levelling data for this solution
were slightly larger than the solution without spherical har-
monic high-pass filtering (±0.0436 m with ζ -interpolation
and±0.0439 m with N -interpolation). This indicates that
there may be systematic errors in the long-wavelengths of
the GNSS-levelling data.

The final geoid model for the solution without spheri-
cal harmonic high-pass filtering (model TA) is shown in
Fig. 16 (left). The gravity potential at terrain height resulting
from this solution is shown in Fig. 16 (right). Figure 17 (top
left) shows the differences between the geoid models com-
puted without and with inclusion of airborne gravity data.
This compares the terrestrial-only model T with WG-kernel,
ψ0 � 1.4◦ and M � 280 to the combined terrestrial and air-
borne model TA with WG-kernel, ψ0 � 0.3◦ and M � 360.
As expected, the differences are largest over areas where
the airborne gravity fills in gaps in the terrestrial data, but
there are also substantial differences in areas without air-
borne gravity coverage (roughly north of 38◦N and west of
109◦W; cf. Figure 2). This is due to the different gridding
techniques employed and the different kernel modification
parameters used for models T and TA.

Figure 17 (top right) shows the impact of the different
gridding techniques. For this, the terrestrial data only were
gridded using the 3D LSC gridding technique and then pro-
cessed identically to the terrestrial-only solution with the
same kernel modification parameters. This shows that the
gridding technique is responsible for some of the differences
seen inFig. 17 (top left), but the remaining differences are due
to the influence of airborne observations on the geoid model
(and the resulting different kernel modification parameters
used).

The bottom two panels in Fig. 17 show the differences
between model T and model T-SH2160 (left) and model T-
SH2160 andmodel TA (right). The left of these panels shows
that spherical harmonic high-pass filtering of the terrestrial
gravity results in significant medium-wavelength differences

Fig. 16 Left: final geoid model (units in m; max: − 12.241 m, min: − 26.717 m; mean: − 19.163 m, rms: 19.413 m), right: final gravity potential
at terrain height (units in m; max: 62,627,536.470 m2/s2, min: 62,596,746.447 m2/s2; mean: 62,617,112.968 m2/s2, rms: 62,617,113.255 m2/s2)
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Fig. 17 Top left: differences between geoid models computed using ter-
restrial data only and terrestrial and airborne data (T vs TA) (units in
m; max: 0.147 m, min: − 0.107 m; mean: − 0.018 m, rms: 0.028 m);
top right: differences between geoid models computed using terrestrial
data only using simple gridding and LSC gridding (units in m; max:
0.123 m, min: − 0.122 m; mean: − 0.018 m, rms: 0.023 m); bottom
left: difference between geoid models computed using terrestrial data
without and with spherical harmonic high-pass filtering to d/o 2160 (T

vs T-SH2160) (units in m; max: 0.136 m, min: − 0.106 m; mean: −
0.005 m, rms: 0.026 m); bottom right: differences between geoid mod-
els computed using terrestrial data with spherical harmonic high-pass
filtering to d/o 2160 and terrestrial and airborne data without spherical
harmonic filtering (T-SH2160 vs TA) (units in m; max: 0.141 m, min:−
0.151m;mean:− 0.013m, rms: 0.027m). All figures have the locations
of terrestrial gravity observations overlaid

that are roughly correlated with the topography (largest dif-
ferences over the most mountainous terrain).

5 Discussion

The final results shown in Table 2 are interesting in that the
overall standard deviations of each model were no more than
0.3mmdifferent, suggesting that theAUSGeoid computation

method is robust when different methods or data preparation
is used. However, we should be cautious when interpreting
these results, because the differences between the models are
in excess of 0.02 m (Table 3), and therefore of significance in
the quest for the 1 cm geoid (e.g. Rapp 1997b, Foroughi et al.
2019). Furthermore, the GNSS-levelling heights are related
to the NAVD88, and may contain levelling errors, GNSS
observation errors, and errors in the data and method used
in the Helmert height correction for the NAVD88 heights,
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Table 2 GNSS-levelling comparisons among geoids from terrestrial (T), terrestrial with spherical harmonic high-pass filtering to d/o 2160 (T-
SH2160) and combined terrestrial and airborne (TA) gravity. All have used the ζ -interpolation method

Model Kernel Cap size (°) Modification degree Minimum (m) Maximum (m) Standard deviation (m)

T WG 1.4 280 − 0.228 0.140 0.0438

T-SH2160 FEO 0.1 40 − 0.116 0.181 0.0437

TA WG 0.3 360 − 0.215 0.136 0.0435

Table 3 Statistics of differences between geoids from terrestrial (T), terrestrial with spherical harmonic high-pass filtering to d/o 2160 (T-SH2160)
and combined terrestrial and airborne (TA) gravity

Models Minimum (m) Maximum (m) Mean (m) RMS (m)

T vs T-SH2160 − 0.106 0.136 − 0.005 0.026

TA vs T-SH2160 − 0.141 0.151 0.013 0.027

T vs TA − 0.107 0.147 − 0.018 0.028

which can all contribute to these data not necessarily being
more accurate than the geoid models they are testing. In
fact, our tests with spherical harmonic high-pass filtering
of residual Faye anomalies suggest a potential issue with
the long-wavelength behaviour of the GNSS-levelling data.
Hence, it is problematic to suggest one geoid method is ‘bet-
ter’ than the others. Another point to consider is that the
GNSS-levelling points may be observed at specific height
bands that may correlate with a particular geoid model’s best
performing heights, thus causing a bias in the results.

We also tested AUSGeoid methods with alternatives to
help determine whether methods tailored to Australian con-
ditionsmay be applied to a ruggedmountainous area like that
in the IHRSColorado experiment, orwhether thesemay need
to be adapted. We tested the Goyal et al. (2019) and McCub-
bine et al. (2017) terrain corrections, finding a maximum
of 0.038 m difference in geoid height which may be signifi-
cant considering theGNSS-levelling differences of~0.044m
(Table 2). We used the Goyal et al. (2019) terrain correction
for the Colorado experiment as it is more rigorous in higher
mountains.

Differences were also found between the AUSGeoid
method of terrestrial gravity reconstruction (Featherstone
andKirby 2000) compared to the gridding of refinedBouguer
anomalies. These differences ranged from 20.5 to − 20.8
mGal, or 0.065 m to − 0.085 m in the geoid, so are signifi-
cant. We chose to use the simple gridding method (gridding
of refined Bouguer anomalies), because the GNSS-levelling
comparisons did not indicate an improved agreement from
the reconstruction method, which is tailored for Australian
terrestrial gravity.

The presence of long-wavelength signals in the residual
Faye anomalies led us to test different filtering methods. The
Stokes integration with the modified FEO-kernel has been
standard as a filtering method in AUSGeoid computations
(e.g. Featherstone et al. 2011, 2018), using parameter sweeps

to optimise the cap size and modification degrees. For the
Colorado experiment study region, we found the FEO-kernel
to be unstable at modification degrees above 250, whereas
the WG-kernel remained stable, with the optimal parame-
ters of cap size ψ0 � 1.4◦ and modification M � 280.
The instability of the FEO-kernel has also been noted in
other computation areas byFeatherstone (2003),Li andWang
(2011) and McCubbine et al. (2018).

We also experimented with a spherical harmonic high-
pass filter prior to the Stokes integration. This efficiently
removed the long-wavelength signal from the residual Faye
anomalies and hence avoids long-wavelength errors in the
geoid model. However, comparison with the GNSS-levelling
produced mixed results, and the level of improvement, if
any, could not be demonstrated conclusively. When high-
quality validation data from the GSVS17 (Van Westrum
2019) become publicly available, this may be investigated
further, as data from the earlier GSVS11 (Smith et al. 2013)
and GSVS14 (Wang et al. 2015) surveys have been used to
successfully confirm geoid accuracy at the 1 cm level.

To compare the geoid models computed in this study to
the GNSS-levelling data at benchmarks, interpolation of the
geoid height to the benchmarks is required. This is because
the AUSGeoid method requires a grid format. We tested two
different methods, again with mixed results, but it is impor-
tant to realise that the two interpolation methods greatly
affect the GNSS-levelling comparisons. From this study, it
appears that the N-interpolation works best with the WG-
kernel geoid, while the ζ-interpolationworks reasonablywell
with both WG and FEO-kernels, but does not agree as well
with the GNSS-levelling data.

The inclusion of the airborne gravity resulted in a max-
imum change in geoid height of 0.147 m, but a significant
portion of this change is due to the different gridding tech-
nique employed when incorporating the airborne data (3D
LSC vs tensioned spline gridding). The airborne gravity
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appeared to improve the quality of the geoid model, although
some of this improvement may also come from better cov-
erage rather than better quality gravity data. However, the
quality of the GNSS-levelling is not sufficient to provide a
conclusive validation for the geoid models. This was also
a limiting factor in geoid validation in Featherstone et al.
(2018), even when tilts and biases were removed and when
the Australian national levelling network (ANLN) was read-
justed with corrections at tide gauges for the ocean’s mean
dynamic topography (MDT) (Filmer et al. 2014; Feather-
stone and Filmer 2012).

6 Conclusions

The object of this study was to use AUSGeoid data prepa-
ration and computation methods (Featherstone et al. 2018)
to compute a geoid model over the limited-extent Colorado
experiment study area for comparison with other research
groups. Through this process, we have used alternative
methods to adapt the AUSGeoid methods to more mountain-
ous terrain than is encountered in Australia. Comparisons
between these methods have indicated differences that are
likely to be significant, although cannot be properly vali-
dated by the existing GNSS-levelling data provided for the
experiment.

We used a different (1) terrain correction method (Goyal
et al. 2019), (2) method for gridding the gravity data
and (3) Stokes integration kernel modification. We also
experimented with spherical harmonic high-pass filtering of
residual anomalies before Stokes integration. Airborne grav-
ity data were included using 3D least-squares collocation,
whichwas something that has not previously been done in the
AUSGeoid method, and experimented with different DEM
filters. All modifications tested resulted in geoid differences
in excess of 0.02 m (rms). However, it cannot definitively be
demonstrated which modifications are improvements, and
how much of an improvement the inclusion of the airborne
gravity provides, because the quality of the GNSS-levelling
is not sufficient to show this.

The comparisonof thefinal three geoids computed showed
a standard deviation of differences with the GNSS-levelling
of~±0.044 m following the removal of the tilt and bias
in the NAVD88. This indicates that the AUSGeoid meth-
ods are suitable for computing accurate geoid models in
mountainous regions outside Australia, albeit with some
modifications. The currentColoradoGNSS-levelling data are
not adequate to fully assess these modifications. It is hoped
that GSVS17 slope validation data will be sufficiently accu-
rate to properly validate our experimental models.
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Vanìček and Kleusberg kernel to reduce the truncation error in
gravimetric geoid computations. J Geodesy 72:154–160. https://
doi.org/10.1007/s001900050157

Featherstone WE, Kirby JF, Hirt C, Filmer MS, Claessens SJ, Brown
NJ, Hu G, Johnston GM (2011) The AUSGeoid09 model of the
Australian Height Datum. J Geodesy 85:133–150. https://doi.org/
10.1007/s00190-010-0422-2

Featherstone WE, McCubbine JC, Brown NJ, Claessens SJ, Filmer
MS, Kirby JF (2018) The first Australian gravimetric quasigeoid
model with location-specific uncertainty estimates. J Geodesy
92:149–168. https://doi.org/10.1007/s00190-017-1053-7

FilmerMS, FeatherstoneWE,KuhnM (2010) The effect of EGM2008-
based normal, normal-orthometric and Helmert orthometric
height systems on the Australian level network. J Geodesy
84:501–513. https://doi.org/10.1007/s00190-010-0388-0

Filmer MS, Featherstone WE, Claessens SJ (2014) Variance compo-
nent estimation uncertainty for unbalanced data: application to a
continent-wide vertical datum. J Geodesy 88:1081–1093. https://
doi.org/10.1007/s00190-014-0744-6

Flury J, Rummel R (2009) On the geoid–quasigeoid separation in
mountain areas. J Geodesy 83:829–847. https://doi.org/10.1007/
s00190-009-0302-9
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