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Abstract
Interferometric synthetic aperture radar (InSAR) technology can be used to observe high spatial resolution one-dimensional
(1-D) deformation along the line-of-sight direction from a single-track synthetic aperture radar (SAR) dataset. With the aid
of multi-track InSAR data or a prior model, InSAR can be extended to infer 3-D deformation information, but the temporal
resolution is generally limited. This paper presents an InSAR-based method to retrieve high spatio-temporal resolution 3-D
displacements over mining areas (hereafter referred to as theMTI-based method). The core idea of the proposed method is to
enhance the temporal resolution of the time-series 3-D displacement estimates by fusing multi-track InSAR observations and
a prior model. Firstly, we retrieve high spatial resolution 3-Dmining displacements from single-track InSAR 1-D deformation
observations, with the assistance of the prior deformation model. By applying this approach to multi-track InSAR data over
the same area, we obtain much denser 3-Dmining displacement samples in time than those derived from a single-track InSAR
dataset. Secondly, we propose a generalized weighted least-squares method to integrate the denser 3-D displacement samples,
to solve the high temporal resolution 3-D mining displacements, in which the rank deficiency needs to be tackled. Finally,
time-series 3-D mining displacements at the chronological dates of all the available multi-track SAR images are estimated.
The Yungang coal mining area of China was selected to test the proposed method using two adjacent-track ALOS PALSAR-1
datasets. Compared with the single-track InSAR-derived results, the proposed method not only significantly improves the
temporal resolution of the monitoring results by 42.6%, obtaining more detailed 3-D displacements, but it also provides
important data support for understanding and modeling the distinctive kinematics of mining deformation and assessing
mining-related geohazards. What is more, the core idea of the proposed method will be beneficial to high spatio-temporal
resolution 3-D deformation estimation in other geophysical processes.
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1 Introduction

Ground surface deformation is an important indicator for
Earth’s geophysical phenomena such as volcanoes, earth-
quakes, glacier movement, and fault movement. Therefore,
ground surface three-dimensional (3-D) displacement obser-
vations with high spatial and temporal resolutions are essen-
tial for geophysical process studies (e.g., parameterization of
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deformation systems, forward modeling, and inverse model-
ing), because the higher the spatial and temporal resolutions
of the 3-Ddisplacement observations are, themore the details
of the progressive deformation and its patterns in space and
time can be revealed. To this end, researchers have focused
on improving or even revolutionizing conventional geodetic
and/or new remote sensing techniques over recent decades,
so that one can observe high spatial and temporal resolution
ground surface 3-D time-series (or dynamic) displacements
in a wide area at a low cost (e.g., Mohr et al. 1998; Catalao
et al. 2011; Hu et al. 2012).

Comparedwith large-scale geophysical deformation stud-
ies, high spatio-temporal resolution 3-D displacement obser-
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vations are more important for local mining deformation
studies, for the following reasons. Ground surface displace-
ments caused bymining activities (especially coal extraction)
are usually characterized by high speed and high nonlinearity
in space and time (Peng et al. 1992; Reddish and Whittaker
2012) over a small area (e.g., several square kilometers).
As a result, mining-related geohazards (e.g., infrastructure
damage and landslides) are progressively formedwith highly
spatio-temporal nonlinearity (Marschalko et al. 2012; Yang
et al. 2018b). To better understand mining deformation
kinematics and reliably assess mining-induced geohazards,
time-series three-dimensional (3-D) mining displacement
observations with both high spatial and temporal resolu-
tion measurements are essential. In contrast, if the spatio-
temporal resolution of the observations is too coarse, some
critical transient deformations (e.g., the maximum horizon-
tal strain and deformation velocity) are likely to be missed.
This significantly impedes deformation kinematics model-
ing and mining-related geohazard assessment and may even
cause wrong results. A more detailed discussion of this issue
is provided in Sect. 4.1.

The interferometric synthetic aperture radar (InSAR)
technique is capable of monitoring surface displacements
with a high spatial resolution (e.g., meters or even less) in
a wide area at a low cost. As a result, it has been widely
used to monitor the surface deformation associated with
geophysical deformation events (e.g., earthquakes, volcanic
eruptions, permafrost thawing) and anthropogenic activities
(e.g., underground fluid and mineral extraction) (Ryder et al.
2007; Neri et al. 2009; Fournier et al. 2010; Lu et al. 2010;
Zhao et al. 2016; Liu et al. 2018; Liu andXu 2019; Chaussard
et al. 2014; Yang et al. 2017a). However, due to the side-
looking imaging configuration of the current SAR sensors,
only time-series one-dimensional (1-D) deformation along
the line-of-sight (LOS) direction can be measured by InSAR
from a single-track SAR dataset. This significantly impedes
InSAR-based deformation kinematics modeling and geohaz-
ard assessment, because time-series 1-D LOS displacement
observations cannot reveal or can miss the real dynamic pat-
terns of mining-induced surface deformation occurring in
3-D space. This implies that there is a challenging demand to
retrieve time-series 3-D mining displacements from InSAR
1-D measurements. Unfortunately, the published research
work is still insufficient.

In 2013, Samsonov et al. (2013) reconstructed 2-D
mining time-series displacements in the vertical and east
directions in the Greater Region of Luxembourg, using a
method termed the Multi-dimensional Small-Baseline Sub-
set (MSBAS) technique (Samsonov and d’Oreye 2012) from
multi-track InSAR datasets (i.e., ascending and descending
EnvisatAdvancedSyntheticApertureRadar (ASAR), aswell
as descending European Remote Sensing (ERS) datasets).
Theoretically, the MSBAS method can fully retrieve time-

series 3-D displacements from InSAR datasets with at least
three independent imaging geometries. However, due to the
near-polar orbits of the current SAR satellites, the indepen-
dent imaging geometries of the current multi-track and/or
multi-sensor (called multi-track for simplification) space-
borne InSAR datasets in most areas (except for polar regions
of Earth) are ascending and descending. This means that it is
currently very difficult to accurately retrieve time-series 3-D
mining displacements frommulti-track InSAR observations.

To circumvent this, Yang et al. (2018a) proposed a
novel method termed single-geometry InSAR (SGI) for fully
retrieving time-series 3-D mining displacements by integrat-
ing single-track InSAR observations with a mining-related
deformation model. The core idea behind the SGI method
is to construct two theoretical constraints related to the 3-D
mining displacements based on the prior deformation model,
to stabilize the ill-posed problem of estimating time-series
3-D mining displacements from InSAR 1-D deformation
observations. Given the fact that the single-track InSAR
datasets required in the SGI method can be readily obtained
in practice, Yang et al. were able to completely retrieve time-
series 3-D mining displacements from InSAR observations.
However, due to the long repeat cycles of the current SAR
satellites (from more than 10 to dozens of days, in general),
the temporal sampling density of single-track SAR datasets
is generally low, causing a poor temporal resolution for the
SGI-derived results, even though single-track SAR images
can be regularly collected. Readers can refer Yang et al. 2020
to a review on InSAR-based retrieval of 3-Dmining displace-
ments.

Thanks to the increasing number of available SAR satel-
lites, InSAR datasets from multi-track are now available for
areas of interest on the Earth’s surface. On the one hand,
as mentioned previously, the nature of the two independent
imaging geometries of multi-track InSAR datasets over most
areas impedes the full retrieval of time-series 3-Dmining dis-
placements using the MSBAS method. On the other hand,
multi-track SAR datasets have a higher temporal sampling
density of surface deformation evolution than single-track
datasets, offering great potential in dramatically enhancing
the temporal resolution of time-series 3-D mining displace-
ments.Unfortunately, to date, studies exploiting this potential
have not been conducted.

In this paper, we propose an approach for estimating
time-series 3-D mining displacements by fusing multi-track
InSAR (MTI) observations, with the assistance of a prior
deformation model. Hereafter, for simplification, we refer to
this approach as theMTI-based method. The main aim of the
MTI-based method is to significantly enhance the temporal
resolution of time-series 3-D mining displacement estimates
by the use of multi-track InSAR observations, rather than
single-track ones, as in the previous SGI method. In addi-
tion, a mathematically rigorous coherence-based weighting
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scheme, rather than the empirical one (i.e., cubic of coher-
ence) used in the SGI method, is developed to improve the
accuracy of time-series 3-D mining displacement estimates.
Finally, a special case study of the Yungang coal mining
area of China is provided in this paper, where time-series 3-
D mining displacements with densified temporal resolution
were retrieved using the MTI-based method from two spa-
tially adjacent ascendingAdvanced LandObserving Satellite
(ALOS) PhasedArray type L-band SyntheticApertureRadar
(PALSAR)-1 datasets.

2 Methodology

TheMTI-based method consists of two main steps. Firstly, it
forms small-baseline InSAR pairs from each available multi-
track SAR image dataset over the mining area of interest
and then generatesmulti-track 3-D deformation observations
from each formed InSAR pair by fusing the InSAR observa-
tions and the prior deformation model used in the previous
SGI method. A specially developed mathematically rigorous
coherence-based weighting scheme is then used to mitigate
the error propagation of the observations. By integrating
this weighting scheme, a generalized weighted least-squares
(GWLS) solver is used to tackle the rank-deficient problemof
estimating time-series 3-Dmining displacements frommulti-
track 3-D deformation observations.

2.1 Deriving 3-Dmining displacement
measurements with a prior deformationmodel

2.1.1 Generating 1-D LOS deformation observations
for each track

We let K (K ≥ 1) be the number of tracks of all the avail-
able SAR image datasets over the same region of interest
(ROI). Small-baseline InSAR pairs are then formed from the
SAR images of each track by setting different thresholds of
spatio-temporal baselines. Each of the formed small-baseline
InSAR pairs is then processed with the differential InSAR
(DInSAR) technique to generate multi-track 1-D LOS defor-
mation observations, namely L � [L1, L2, . . . , LK ], where
Li (i � 1, 2, . . . , K ) denotes the observations of the whole
differential interferogramgenerated from the ith track InSAR
dataset.

2.1.2 Retrieving 3-Dmining displacement measurements
with a prior deformation model, track by track

Since reconstructing 3-Dmining displacements from InSAR
1-D LOS deformation observations is an ill-posed problem,
the prior deformation model of the mining-induced horizon-
tal motions being linearly proportional to the gradients of the

vertical subsidence in the corresponding directions is intro-
duced to stabilize this ill-posed problem. We first construct
two theoretical constraint equations related to the 3-D min-
ing displacements, based on the prior model, i.e., (Li et al.
2015),

{
E � BE · SE
N � BN · SN (1)

where E and N are the 2-D horizontal motions in the east and
north directions, respectively; SE and SN are the gradients
of the vertical subsidence in the east and north directions,
respectively; and BE and BN denote the linear proportional
coefficients in the corresponding directions.

These two constraint equations are then integrated with
the InSAR-derived 1-D LOS deformation observations, to
resolve the 3-D displacements. More specifically, for a
generic jth InSAR pair from the ith track (whose LOS defor-
mation is denoted by L j

i ), the 3-D mining displacements

during the time period of this InSAR pair (i.e., W j
i , E

j
i , and

N j
i ) can be estimated by:

⎧⎪⎨
⎪⎩
W j

i � B j
i · L j

i

E j
i � C j

Ei · Ŵ j
i

N j
i � C j

Ni · Ŵ j
i

(2)

where B j
i , C

j
Ei , and C

j
Ni are the coefficient matrices of these

three equation systems, which depend on the parameters of
the SAR sensors, the resolution of the 1-D LOS deforma-

tion maps, and the geological conditions for the mining. Ŵ
j
i

denotes the estimates of the vertical subsidence, which can
be solved from the first system in Eq. (2). Please refer to Li
et al. (2015) and Yang et al. (2018a) for more details about
the solving procedure.

Having processed each of the above generated vectors of
themulti-trackLOSdeformation observationswith the above
method, we obtain the vectors of the multi-track 3-D min-
ing displacements, namely W � [W1,W2, . . . ,W K ], E �
[E1, E2, . . . , EK ], and N � [N1, N2, . . . , NK ] in the ver-
tical, east, and north directions, respectively. It is noted that
the reference dates and time periods of each 3-D displace-
ment observation in the vectors of W , E, and N are likely
to be different, due to the formation of the multi-track small-
baseline InSAR pairs. This implies that unification of the
reference date of these multi-track 3-D displacement vectors
needs to be carried out to retrieve 3-D time-series mining
displacements.
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2.2 Estimating time-series 3-D displacements
with themethod of generalized weighted least
squares

Prior to estimating the time-series 3-Dmining displacements
from themulti-track 3-D displacement observations, two fac-
tors should be taken into account, i.e., the nature of the high
nonlinearity of mining deformation and the aim of enhancing
the temporal resolution of time-series 3-D displacements. To
this end, the core idea of numerical integration is introduced
to achieve the goal of simultaneously considering these two
factors. Since the estimation procedures of time-series 3-D
displacements are the same in the vertical, east, and north
directions in the MTI-based method, we take the time-series
subsidence estimation as an example to comprehensively
illustrate the solving steps of time-series 3-D mining dis-
placements.

2.2.1 Constructing the observation system for 3-D
displacement velocity estimation

We let p be the number of all the multi-track SAR images,
t � [

t1, t2, . . . , tp
]
is their chronological date vector, and

VW � [
VW1, VW2, . . . , VWp−1

]T is the subsidence velocity
vector between each two time-adjacent SAR images; that is,
VWi � [W (ti+1) − W (ti )]

/
[ti+1 − ti ],whereW (ti+1) andW

(ti ) denote the time-series subsidence at the dates of ti+1 and
ti , respectively. For a surface point of the ROI, its observation
system involvingmulti-track subsidence observationsW and
subsidence rates VW can be constructed as:

⎡
⎢⎢⎢⎣

A1

A2
...

AK

⎤
⎥⎥⎥⎦ · VW �

⎡
⎢⎢⎢⎣

W1

W2
...

WK

⎤
⎥⎥⎥⎦ + δW or AVW � W + δW (3)

where Ai is the sub-coefficient matrix of A, which depends
on the formation network of the ith track small-baseline
InSAR pair (Berardino et al. 2002); and δ denotes the error
term of the system [Eq. (3)], mainly depending on the model
errors and the uncertainties of LOS displacement observa-
tions, see Yang et al. (2018a) for more details.

2.2.2 Developing a mathematically rigorous coherence
weighting scheme

The observations in the system [Eq. (3)] derive from multi-
track InSAR observations. This implies that the accuracy of
the multi-track subsidence observations may differ signifi-
cantly, due to the different noise levels and different imaging
geometries of multi-track SAR datasets. Therefore, a suit-
able weighting scheme is essential for ensuring the reliability

of the solutions of the subsidence velocity vector. However,
since no redundant observations are used to solvemulti-track
3-D displacements [see Eq. (2)], the variances of the 3-D dis-
placement estimates cannot be determined with the classical
adjustment methods. Therefore, other strategies for variance
estimation need to be developed for weighting the multi-
track 3-D displacement measurements with different levels
of accuracy.

In this paper, the 3-D mining displacement estimates are
solved from InSAR 1-D deformation observations, whose
errors, to a large extent, depend on interferometric coherence.
This suggests that coherence could be an important indica-
tor for the variance of 3-D mining displacement estimates.
Although Yang et al. (2018a) took the cubic of the coherence
to weight single-track 3-D mining displacements in the SGI
method, such a weighting scheme is too empirical to effec-
tively mitigate error propagation, especially for multi-track
3-D displacements with significant accuracy differences.

To circumvent this, we propose amathematically rigorous
coherence-based weighting scheme. According to Hanssen
(2001), the phase variance δ2φ of InSARcan be approximately
estimated by:

δ2φ �
∫ +π

−π

[φ − E(φ)]2pdf(φ)dφ (4)

where φ represents the interference phase of [−π, π ]; E(φ)

denotes the expected value of φ; and pdf(φ) is the probability
density function of φ, which is related to the interferomet-
ric coherence, the multi-look number, etc. (Hanssen 2001).
Since LOS deformation is estimated by L � λ

/
4π · φ, the

variance of the LOS deformation observation can be denoted
by δ2L � (

λ
/
4π

)2 · δ2φ .
If we assume that the variances of the LOS deforma-

tion observations derived from the multi-track InSAR pairs
are independent, then the variance–covariance matrix of
the LOS observation vector derived from a generic small-
baseline InSAR pair can be denoted by DL � diag[
δ2L(1, 1), δ

2
L(1, 2), . . . , δ

2
L(m, n)

]
(where m and n represent

the pixels of the ROI). Accordingly, the variance–covariance
matrix of the multi-track 3-D displacement estimates derived
from a single InSAR pair can be determined based on the law
of error propagation and Eq. (2), i.e.,

⎧⎨
⎩

DW � B · DL · (B)T

DE � CE · DW · (CE)T

DN � CN · DW · (CN)T
(5)

Having obtained the variance–covariance matrices of the
multi-track 3-D displacement estimates using Eq. (5), the
weighting matrix for Eq. (3) can also be constructed accord-
ing to classical adjustment theory (i.e., PW � 1

/
DW,

PE � 1
/
DE, PN � 1

/
DN). It should be pointed out that
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errors of the LOS deformation observations caused by atmo-
spheric delay and orbital uncertainty cannot be considered
in this weighting scheme. Therefore, the atmospheric phase
components and the orbital errors contained in the interfer-
ometry should be mitigated at the earliest stage (e.g., by
polynomial fitting), prior to estimating the 3-Ddisplacements
from InSAR-derived LOS displacements.

2.2.3 Solving 3-D displacement velocity vectors using
the method of generalized weighted least squares

The observations in the equation system [Eq. (3)] are derived
from multi-track InSAR datasets, which causes rank defi-
ciency (Hanssen 2001; Berardino et al. 2002). Therefore, a
GWLS solver (Campbell and Meyer 1979), rather than the
weighted least-squares (WLS) solver used in the previous
SGImethod, is proposed to solve the subsidence velocity vec-
tor V̂ from the rank-deficient observation system [Eq. (3)],
i.e.,

V̂ � (ATP A)+ATP�W (6)

where (ATP A)+ denotes the Moore–Penrose pseudoinverse
of matrix ATP A. P is the weighting matrix determined with
the method described in Sect. 2.2.2.

2.2.4 Estimating time-series 3-D displacements

Having obtained the subsidence rate vector V̂ between each
two time-adjacent multi-track SAR acquisitions, the time-
series vertical subsidence at the dates of the multi-track SAR
images Ŵ �

[
Ŵ (t2), Ŵ (t3), · · · , Ŵ

(
tp

)]
, with reference

to the earliest date (i.e., Ŵ (t1) ≡ 0), can thus be estimated
by:

Ŵ (ti ) �
∑i

k�2
(tk − tk−1) · V̂k−1, (i = 2, 3, . . . , p) (7)

It should be pointed out that the above-described esti-
mation procedure for time-series vertical subsidence is on
a pixel-by-pixel basis. In addition, although only the esti-
mation procedure of the time-series vertical subsidence is
demonstrated above, 2-D horizontal motions in the east and
north directions can be estimated using the same procedure.
The flowchart of the MTI-based method is shown in Fig. 1.

3 Experiments and results

3.1 Study area

The Yungang coal mining area of Datong, Shanxi province,
China (see Fig. 2a), was selected to test the proposed MTI-

basedmethod. The reasons for selecting this study area are as
follows. Firstly, the long-term and large-scale coal extraction
has resulted in serious geohazards (i.e., landslides, structural
damage, and land subsidence) in this coal mining area (Jia
et al. 2010; Zhao et al. 2011). Hence, there is an urgent
need to retrieve time-series 3-D displacements with a high
spatio-temporal resolution to assess and control the related
geohazards in this area. Furthermore, the Yungang coal min-
ing area has a special geological condition, i.e., the coal seams
have hard roofs and the coal itself is also hard (Xie and Zhou
2008). The so-called double hard coal seamgeological condi-
tion gives rise to some distinctive deformation patterns, such
as sinkholes, rock bursts, andmining-caused earthquakes (Lu
et al. 2013;Dou et al. 2014; Zhao et al. 2012; Zhu 2015). Con-
sequently, it is of great importance to obtain time-series 3-D
displacement observations with a high spatio-temporal reso-
lution to understand the distinctive deformation mechanism
and provide forward guidance to geohazard control.

In fact, Yang et al. (2018a) retrieved estimates of the time-
series 3-D displacements in the Yungang coal mining area
between July 1, 2007, and May 18, 2008, using the SGI
method with seven single-track ALOS PALSAR-1 images
(frame: 790; path: 454). However, limited by the long repeat
cycle of the PALSAR-1 satellite, the mean temporal reso-
lution of the derived time-series 3-D mining displacement
estimates is about 54 days. The 54-day temporal resolution
is too coarse to be applied to understand mining deformation
kinematics and to reliably assess mining-related geohazards
(especially for sinkholes, rock bursts, and mining-caused
earthquakes) in theYungangmining area. To clearly show the
mining activities,we plotted the geolocations of underground
working panels (namely WP 1, 2, and 3) in the concerned
mining area during June 14, 2007, and May 18, 2008, in
Fig. 2b. It can be seen that the mining activity was carried
out in WP1 and WP2 (marked by white rectangles), and the
areas marked by green dashed lines denote the mined-out
(abandoned) areas.

3.2 SAR dataset and data processing

3.2.1 SAR dataset

In addition to the seven ascending PALSAR-1 SAR images
(frame: 790; path: 454) used in Yang et al. (2018a), the
Yungang coal mining area is also covered by other SAR
images fromdifferent tracks (e.g., a spatially adjacent trackof
PALSAR-1) and different sensors (e.g., Envisat ASAR and
RADARSAT) during the same period. Unfortunately, due
to the fast speed of the surface deformation in this mining
area, severe phase decorrelation occurs in the interferograms
generated by these C-band ASAR and RADARSAT SAR
images. In this case, nearly all the ASAR and RADARSAT
InSARpairs are unsuitable to accurately detect surface defor-
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Fig. 1 Flowchart of the MTI-based method

Fig. 2 a Geographic location of the Yungang coal mining area (marked
by the red point) and the footprints of the left track (frame: 790; path:
454, marked by the red rectangle) and right track (frame: 790; path:
453, marked by the blue rectangle) ALOS PALSAR-1 SAR acquisi-
tions superimposed on the optical image acquired on March 14, 2016.

b Advancing locations of the working panels overlain on the optical
image in the periods of SAR acquisitions. The green dashed, black,
and white solid rectangles denote the mined-out, unmined, and planned
mining areas of this working face, respectively

mation in the Yungang coal mining area. Fortunately, owing
to the longer wavelength of the L-band PALSAR-1 images,
the coherence of the small-baseline PALSAR-1 InSAR pairs
from the spatially adjacent track (with frame 790 and path
453, see the blue rectangle in Fig. 2a) is acceptable for defor-
mation detection. Therefore, we attempted to enhance the
temporal resolution of the time-series 3-D mining displace-
ments in the study area by fusing two spatially adjacent
ALOS PALSAR-1 images. For simplification, we refer to

the track of frame 790 and path 454 (as used in Yang et al.
(2018a)) as the left track (LT), and we refer to the newly
fused spatially adjacent track (frame: 790; path: 453) as the
right track (RT).

3.2.2 Data processing

Due to the different imaging geometries, we first formed
small-baseline InSAR pairs from the LT and RT SAR
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Fig. 3 Temporal and perpendicular baseline network of the available
InSAR pairs from the LT (marked by the red lines) and RT (marked by
the blue lines) tracks

datasets, respectively, with the same spatio-temporal base-
line thresholds of 140 days and 1500m. After the elimination
of those small-baseline InSAR pairs with severe spatio-
temporal phase decorrelation (by visual interpretation), we
formed 11 and seven InSAR pairs from the LT and RT SAR
images, respectively. The perpendicular and temporal base-
line network of the available LT andRT InSARpairs is shown
in Fig. 3. The DInSAR technique (Zebker et al. 1994) was
then used to process all 18 available InSAR pairs (11 and
seven for the LT and RT InSAR datasets, respectively), to
generate 18 LOS deformation maps.

In the DInSAR processing, a multi-look operation of 1:2
pixels in the range and azimuth directions and least-squares-
based filtering (Li et al. 2008) were carried out to suppress
the phase noise of the interferograms. In addition, the 1-arc-
second Shuttle Radar Topography Mission (SRTM) digital
elevation model (DEM) was used to remove the topographic
phase of the interferograms. The minimum cost flow algo-
rithm (Costantini 1998; Chen and Zebker 2000) was then
utilized to unwrap the differential interferograms. Finally, a
quadratic polynomial model (Xu et al. 2014) was used tomit-
igate the phase ramps related to the long wavelength part of
the atmospheric artifact screening and possible orbit errors.

3.3 Time-series 3-D displacement estimation

3.3.1 Track-based 3-Dmining displacement generation

Although the available SAR images from two tracks were
collected in this study, their imaging geometries were very
similar (i.e., ascending orbits with a flight angle of about
350° and right looking with a nominal incidence angle of
about 38°). In this case, time-series 3-D or even 2-D min-
ing displacements cannot be accurately estimated using the
MSBAS method (i.e., based on multi-track InSAR datasets
only). A more detailed discussion on this issue is provided
in Sect. 4.3. In addition, although the previous SGI method

can also be applied to retrieve time-series 3-D displacements
(but only for single-track InSAR datasets), it would result in
a too coarse temporal resolution.

In this study, the prior deformation model [see Eq. (1)]
was first applied to fully retrieve the adjacent-track 3-D min-
ing displacements over the Yungang coal mining area from
the 18 LOS deformation maps (generated as described in
Sect. 3.2.2). The parameters of the prior model were as fol-
lows: (1) The flight angle and incidence angle of the LT and
RT SAR images were about 349.7°/350° and 36.9°/39.7°,
respectively; (2) the spatial resolution of the LOS deforma-
tion maps (after geocoding) was about 6 m in both the east
and north directions; and (3) the mining depth of 250 m, the
tangent of the major influence angle of 1.8, and the horizon-
talmotion constant of 0.3were designated, respectively (Hou
and Zhang 2004).

3.3.2 Time-series 3-D displacement estimation

The reference dates of the generated multi-temporal 3-D dis-
placement estimates were with reference to the dates of their
own master images, rather than a unified one. Therefore, a
GWLS solver was applied to adjust these adjacent 3-D min-
ing displacement estimates, so that we could retrieve time-
series 3-D mining displacements with respect to the same
reference date (i.e., the earliest one in this study). To this end,
we first chronologically ordered all the adjacent-track SAR
images and assumed piece wise linear, that is, the 3-D dis-
placement velocities between each two time-adjacent SAR
images were constants. Secondly, the observation systems
for the generated adjacent-track 3-D mining displacement
measurements (described in Sect. 3.3.1) and the 3-D dis-
placement velocity vectors were established, respectively.
Thirdly, the developed mathematically rigorous weighting
scheme and the GWLS solver were applied to solve the 3-
D displacement velocity vectors. Finally, time-series 3-D
displacements for the dates of all the adjacent-track SAR
images, with respect to the earliest date of June 14, 2007,
were estimated. The results are shown in Figs. 4, 5, and 6.

As can be seen fromFigs. 4, 5, and 6, the 3-Ddisplacement
components of the mining area were small (with a maxi-
mum of 1.5 cm in the vertical direction, 2.1 cm in the east
direction, and 3.4 cm in the north direction) before July 1,
2007. This can be attributed to the following reasons. Firstly,
the size of the goaf (i.e., mined-out area) between June 14,
2007, and July 1, 2007 (see Fig. 2b) was small. Theoreti-
cally, under the same geomining conditions, the smaller the
goaf, the smaller themining-induced deformationmagnitude
(Peng et al. 1992). In addition, the small deformation magni-
tude would be further reduced by the supporting role of the
overlying rock strata (Kratzsch 1983). As the working face
continued to advance (as shown in Fig. 2b), the displacement
basin gradually expanded and the maximum displacements
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Fig. 4 MTI method estimated time-series vertical subsidence at the dates of the fused SAR images with respect to June 14, 2007. The estimated
vertical subsidence is rewrapped by 0.1 m, i.e., one color cycle corresponds to 0.1 m vertical subsidence, for the sake of visualization

increased up to about 0.86 m, 0.37 m, and 0.16 m in the
vertical, north, and east directions, respectively, over the fol-
lowing 10 months (see Figs. 4k, 5k, 6k).

Figure 7 shows the comparison between the time-series 3-
D displacements derived by the proposed MTI method and
the previous SGI method at the same SAR acquisition dates.
As can be seen, the results solved by these twomethods are in
a good agreement, with an averaged mean of about 4×10−4

cm and STD of around 0.6 cm of their differences. Noting
that, unlike the averagedmean, the averaged STD is not close
to zero, possibly due to the fusion of adjacent-track InSAR
measurements and the mathematically rigorous weighting
scheme in the proposed MTI method. Unfortunately, due to
the lack of in situ measurements of the 3-D displacements in
the study area, an accuracy validation of the time-series 3-
D mining displacement estimates with a densified temporal
resolution could not be conducted in this study.

Even so, compared with the previous SGI-derived results
presented in Yang et al. (2018a), the temporal resolution of
the time-series 3-D displacement estimates in this study is
dramatically reduced from the 54 days of Yang et al. (2018a)

to 31 days, representing an improvement of about 42.6%.
In doing so, more details of the spatio-temporal evolution
patterns of the mining deformation in this coal mining area
can be revealed from the results with a densified temporal
resolution. This is of great importance for understanding and
modeling the distinctive kinematics of the mining deforma-
tion and assessingmining-related geohazards in the Yungang
coal mining area (see the detailed analysis in Sect. 4.1).

4 Discussion

4.1 Influence of the temporal resolution
of time-series 3-D displacement estimates
on dynamic displacementmodeling
and geohazard assessment

Mining-induced 3-D displacements are generally charac-
terized by high nonlinearity in time (Peng et al. 1992),
and the resulting geohazards (e.g., landslides) are also usu-
ally progressive (Kratzsch 1983). Therefore, the temporal
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Fig. 5 MTI method derived time-series horizontal motion in the north direction at the dates of the fused SAR images with respect to June 14, 2007.
Positive and negative values indicate the points moving toward the north and south directions, respectively

resolution of time-series 3-D displacements can have a sig-
nificant influence on dynamic 3-D displacement modeling
andmining-related geohazard assessment and control. These
two issues are analyzed in detail with both simulated and
real-data analyses in this section.

4.1.1 Simulation analysis

For simplicity, we take the mining-induced vertical subsi-
dence at a single ground surface point as an example to
analyze the influence of the temporal resolution of 3-D dis-
placement estimates for mining deformation modeling and
geohazard assessment. More specifically, we first simulated
the time-series vertical subsidence using a logistic model
that can suitably describe mining kinematic subsidence at a
single surface point (Zhang et al. 2009; Yang et al. 2017b).
The simulated dynamic subsidence, velocity, and acceler-
ation obtained using the logistic model at this point are
marked by the green lines in Fig. 8a–c. Secondly, time-series
vertical subsidence estimates derived from the two InSAR
datasets (called LT and RT in the following) were extracted

from the logistic-simulated dynamic subsidence (hereinafter
referred to as the logistic-simulated time-series subsidence).
The temporal resolution of the extracted LT and RT time-
series subsidence estimates was 46 days (i.e., the repeat cycle
of the ALOS-1 satellite). In addition, Gaussian noise with a
mean value of zero and a standard deviation (STD) of 3 cm
was added to each of the LT and RT time-series subsidence
estimates, to simulate time-series uncertainties (hereinafter
called LT and RT time-series subsidence observations). The
results are marked by the magenta stars and red asterisks in
Fig. 8a and d, respectively.

To analyze the influence of the temporal resolution of
the time-series subsidence observations on the deformation
modeling, we first fitted the logistic model using the hybrid
genetic algorithm and simplex algorithm (Yang et al. 2017b),
based on the LT, RT, and LT + RT time-series subsidence
observations, respectively. The results are plotted by the blue
lines in Fig. 8a, d, g. For the sake of comparison, the fitted
velocity and acceleration at this point are shown as blue lines
in Fig. 8b, e, h, as well as 8c, f, i, respectively. The root-mean-
square errors (RMSEs) between the logistic-simulated and
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Fig. 6 MTI method derived time-series horizontal motion in the east direction at the dates of the fused SAR images with respect to June 14, 2007.
Positive and negative values indicate the points moving toward the east and west directions, respectively

Fig. 7 Comparison between the time-series 3-D (vertical, north, and east directions) displacements derived by the MTI method and the SGI method
at the same SAR acquisition dates

the fitted time-series subsidence, velocity, and acceleration
are listed in Table 1.

As can be seen in Fig. 8, the fitted dynamic subsidence
curves based on the LT and RT time-series subsidence obser-
vations showobvious discrepancywith the logistic-simulated
one,with amean relative error of about 3.5% to themaximum
vertical subsidence. This discrepancy becomes more signif-

icant when it comes to the dynamic subsidence velocity and
acceleration to the maximum velocity and acceleration (i.e.,
with mean relative errors of about 7.5% and 17.4%, respec-
tively). If the real mining deformation kinematics could
not be revealed, the subsequent assessment and effective
control of mining-related geohazards would be impeded.
For instance, mining-induced structural damage controlling
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Fig. 8 Comparison between the simulated and the fitted subsidence, velocity, and acceleration from the time-series observations of a–c LT only,
d–f RT only, and g–i LT and RT together

Table 1 RMSEs between the simulated and the fitted time-series sub-
sidence, velocity, and acceleration

Dataset Subsidence
(×10−2m)

Velocity (×
10−3 m/day)

Acceleration
(×10−5

m/day2)

LT 3.8 1.4 10.5

RT 3.1 1.6 10.8

Fused LT&RT 0.9 0.3 2.6

measures should be taken before the date of the maximum
subsidence velocity. However, if this estimated date was not
within the optimized date range (especially when the esti-
mated date is delayed) due to the coarse temporal resolution
observations (e.g., see Fig. 8b), the performance of the dam-
age control measures would be dramatically degraded, or it
may even cause these measures not to work.

In fact, the main reason for such large errors existing
in the LT- and RT-fitted dynamic subsidence is due to the
fact that mining-induced time-series subsidence at a single
ground surface point commonly follows an “S” shape (or

sigmoid curve) (Yang et al. 2017b), and subsidence obser-
vations with a poor temporal resolution cannot constrain the
“S” shape (Mo et al. 2010), causing large errors in themining
displacement modeling. However, if the time-series subsi-
dence observations derived from the LT and RT SAR images
(see Fig. 8g) are applied to fit the logistic model, the relative
errors of the fitted subsidence, velocity, and acceleration are
decreased from 3.5 to 0.9%, from 7.5 to 1.8%, and from 17.4
to 4.2%, respectively. These results suggest that time-series
3-D displacement observations with a high temporal resolu-
tion are critical for kinematics modeling and mining-related
geohazard control.

4.1.2 Real-data analysis

Two ground surface points of the Yungang coal mining area,
namelyA andB (marked by the black circles in Fig. 4k), were
selected to analyze the influence of the temporal resolution
on 3-D deformation kinematicsmodeling andmining-related
geohazard assessment and control. To this end, we first unify
the reference benchmark of the SGI-derived (marked by the
blue asterisks in Fig. 9) and MTI-derived time-series sub-
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Fig. 9 Fitted subsidence models
of points A and B, and their
subsidence, velocity, and
acceleration curves

(a) (b)

(c) (d)

(e) (f)

sidence observations (marked by the red stars in Fig. 9) by
using the average of the difference values between the data of
the same acquisition time.After that, the dynamic subsidence
at pointsAandB isfittedusing the logisticmodel basedon the
reference benchmark unified SGI-derived and MTI-derived
time-series subsidence observations, respectively. The fitted
dynamic subsidence, velocity, and acceleration are marked
by the green and red lines in Fig. 9. It can be seen from
Fig. 9 that the modeled maximum subsidence velocity and
acceleration based on the SGI-derived results at point A are
smaller than those based on the MTI-derived ones. In addi-
tion, the fitted dates where themaximum subsidence velocity
and acceleration occur at both points A and B based on the
SGI-derived time-series subsidence are all about eight days
later than those based on the MTI-derived values. These
results indicate that higher temporal resolution time-series
subsidence observations can offer more details on mining
subsidence evolution in the temporal domain, facilitating

kinematics modeling. In addition, higher temporal resolution
time-series subsidence observations can help us to accurately
determine some essential information for geohazard con-
trol (e.g., the date where the maximum subsidence velocity
occurs).

Figure 10 plots a comparison of the time-series horizontal
motions in the east direction at point A, as derived by the SGI
and MTI methods. For a fair comparison, we also unify the
referencebenchmarkof theSGI-derived and theMTI-derived
results by using the average of the difference values between
the data of the same acquisition time. As can be seen, due to
the poor temporal resolution of the SGI-derived observations
(blue asterisks), the maximum horizontal motion (marked by
the magenta ellipse) at this point is missed, but is captured by
the MTI-derived observations. Since mining-induced struc-
tural damage is very sensitive to horizontal motions, the
missing of the maximum horizontal motion in the east direc-
tion would result in underestimation of the structural damage
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Fig. 10 Time-series horizontal displacements in the east direction at
point A

(Yang et al. 2018b), imposing an extra threat to human lives
and properties. Consequently, for geohazard assessment, it
is essential to obtain time-series 3-D displacements with a
higher temporal resolution.

4.2 Influence of the weighting scheme
on time-series 3-D displacement estimation

In this paper, a new weighting scheme is proposed based on
the stochastic model of interferometric phase variance. Com-
pared with the empirical weighting function of the cubic of
coherence (hereafter referred to as CCM) used in the SGI
method, the newly developed weighting scheme is theoret-
ically more rigorous. In this section, the influence of these
two weighting schemes on the accuracy of time-series 3-D
displacement estimates is analyzed.

Figure 11a shows a comparison between the CCM-
estimated weighting curve and the reciprocal of the normal-
ized theoretical variance curves of the InSAR phase [i.e.,
estimated by Eq. (4)]. As can be seen, the CCM-based curve
is an empirical weighting function, which cannot perfectly
match any of the normalized variance curves in Fig. 11a. In
fact, it can be observed from Fig. 11a that the CCM-based
curve is a trade-off for weighting the normalized theoreti-
cal variance curves at multi-look numbers from eight to 14.
This means that the CCMweighting scheme is unable to pre-

cisely suppress the error propagation of InSAR deformation
observations, especially for InSAR processing with small
multi-look numbers (e.g., two in Fig. 11a).

In contrast, the new weighting scheme proposed in this
paper is based on Eq. (4) and takes both coherence andmulti-
look number into account. This implies that the theoretical
errors of InSAR-derived LOS deformation observations at
different multi-look numbers are rigorously considered. The
law of error propagation is then introduced to deduce the
theoretical variance–covariance matrices of the 3-D mining
displacement estimates, forward guiding the construction of
the weighting matrix to obtain the GWLS solution for the
time-series 3-D mining displacements (see Sect. 2.2.2). The-
oretically, the weighting scheme proposed in this paper is
more rigorous than the CCM one and can thus more effec-
tively suppress the error propagation of InSAR observations.

A simulation experiment was carried out to quantitatively
analyze the accuracy improvement of time-series 3-D dis-
placements estimated by the proposed weighting scheme,
comparedwith those estimated by the previous CCMweight-
ing scheme. More specifically, we first extracted coherence
datasets with the pixel dimensions of 40×40 from all the
available LT and RT InSAR pairs (see Sect. 3). The vari-
ance–covariance matrices of the 3-D mining displacements
were then obtained using themethod described in Sect. 2.2.2,
by setting themulti-look numbers from two to 14. Finally, the
uncertainties of the time-series 3-D displacements estimated
by the proposed method at different multi-look numbers
were theoretically determined according to the law of error
propagation. For the sake of comparison, the theoretical
uncertainties of the time-series 3-D displacements estimated
by the CCM weighting scheme were also determined.

Figure 11b plots the accuracy improvement of the time-
series subsidence estimated by the proposed weighting
scheme compared with that estimated by the CCM scheme.
As is shown, the accuracy of the time-series subsidence can
be improved using the proposed weighting scheme, but the
improvement gradually decreases from about 23 to 13%with
the increase in the multi-look number from two to 14. This
is mainly because the CCM scheme is only a trade-off for

Fig. 11 a Comparison between
the CCM-based weighting curve
(blue dashed line) and the
reciprocal of the theoretical
interferometric phase variances
at different multi-look (ML)
numbers. (b) Accuracy
improvement of the time-series
3-D displacements estimated by
the proposed weighting scheme
compared with those estimated
by the CCM weighting scheme
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weighting phase variances at multi-look numbers from eight
to 14, and it shows a poor performance in variance suppres-
sion for small multi-look numbers. These results suggest that
the weighting scheme can significantly affect the accuracy of
time-series 3-D displacement estimates, and the theoretically
rigorous weighting scheme proposed in this paper can effec-
tively improve the accuracy of the estimates, especially in
the case of small multi-look numbers.

4.3 Superiority of the proposedmethod
over the traditional MSBASmethod
for adjacent-track InSAR datasets

In this study, ALOS PALSAR-1 datasets from two spa-
tially adjacent tracks were applied to retrieve time-series 3-D
displacementswith a high temporal resolution,with the assis-
tance of a prior deformation model. Theoretically, two SAR
datasets from different imaging geometries are potentially
able to retrieve time-series 2-D displacements or deformation
velocities in the vertical and east (or quasi-east) directions by
neglecting the contribution of the horizontal motion in the
north direction to LOS deformation using the core idea of
the MSBAS method (Samsonov et al. 2013). To date, some
successful cases for volcanic eruption events andpost-mining
activity have been reported based on ascending and descend-
ing SAR datasets (Manzo et al. 2006; Samsonov and d’Oreye
2012; Samsonov et al. 2013) and adjacent-track SARdatasets
with significantly different imaging geometries (Gourmelen
et al. 2007).

The superiority of the proposed method over the tradi-
tional MSBAS method for 2-D mining displacement estima-
tion in vertical and east directions was analyzed based on
the selected adjacent-track ALOS PALSAR-1 datasets in the
real-data experiment (see Sect. 3.2). More specifically, we
first simulated time-series 3-D mining displacements with
the probability integral method (a widely used mining defor-
mation model) (Guo and Chai 2013; Yang et al. 2018b)
and then projected them to each LOS direction of the used
LT and RT PALSAR-1 images. The simulated time-series
2-D displacements in the vertical and east directions are
shown in Fig. 12Ai and Di (i � [1, 2, . . . , 8]), respectively.
Gaussian noise with a mean value of zero and an STD of
1.5 cmwas then generated and added to each of the projected
LOS displacement maps. Small-baseline InSAR pairs and
LOS deformation observations were also generated based
on the projected LOS displacements with Gaussian noise.
Finally, the time-series 2-D displacements in the vertical
and east directions were estimated from the adjacent-track
SAR datasets by ignoring the motion in the north direction
(i.e., using the MSBAS method; for more details, see Sam-
sonov et al. 2013). The results are shown in Fig. 12Ci and
Fi, respectively. In addition, the corresponding time-series

2-D displacements estimated by the MTI-based method are
plotted in Fig. 12Bi and Ei, for the sake of a comparison.

It can be seen from Fig. 12 that the time-series 2-D dis-
placement estimates with the motion in the north direction
ignored are dominated by noise, with RMSEs of 28.9 and
37.1 cm in the vertical and east directions, respectively. Such
errors are about 19 and 25 times the STD of the gener-
ated Gaussian noise to the LOS observations. This implies
that time-series 2-D mining displacements cannot be accu-
rately estimated based on the selected adjacent-track ALOS
PALSAR-1 datasets used in this study if the existingMSBAS
method is used. The main reason for this is that the imag-
ing geometries of the used LT and RT ALOS PALSAR-1
datasets are very similar, causing near equivalence between
the unit projection vectors of the displacements in the verti-
cal and east directions (see Hanssen 2001 for more details)
for the LT and RT SAR images (i.e., [0.7993, − 0.5913]
and [0.7693, − 0.6294], respectively). This means that the
equation system for solving time-series 2-D displacements is
ill-posed, thus resulting in large errors in the time-series 2-D
displacement estimates. However, as can be seen in Fig. 12,
the results estimated by the MTI method show a good agree-
ment with the simulated ones, with RMSEs of about 0.25 cm
and 3 cm in the vertical and east directions, respectively.
Compared with the MSBAS-estimated results, the accuracy
of theMTImethod estimated results is improved by 99% and
92%, respectively.

In addition, we validated the superiority of the MTI
method over the previous MSBAS method for mining-
induced time-series 2-D displacement estimation with real
datasets described in Sect. 3.2. Note that only the time
period that both LT and RT SAR images expand (i.e., from
July 1, 2007 to January 30, 2008) was selected for the use
of the MSBAS method. The results are shown in Fig. 13.
As can be seen, similar to the previous simulation results,
the MSBAS-derived time-series 2-D mining displacements
are much noisy than the MTI-derived ones. Although no
in situ measurements are applied to quantitatively evaluate
the accuracy differences of these two result sets, the MTI-
derived estimates are theoretically more reliable than the
MSBAS-derived ones according to mining subsidence the-
ory (Kratzsch 1983). Both the simulated and real experiments
indicate that the proposedmethod has a good superiority over
the traditionalMSBASmethod for retrieving 2-Dmining dis-
placements from spatially adjacent-track SAR images.

It is noted that only Gaussian noise is considered in this
section, and which may be not realistic for InSAR mea-
surements that possibly include non-random errors (e.g.,
atmospheric phase and orbital error residuals after correc-
tion). Nevertheless, the error propagationway is theoretically
the same for a certain system, whatever the error types are
(e.g., random or non-random). Consequently, the superiority
test of the proposedMTImethod over the traditionalMSBAS
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Fig. 12 Time-series 2-D displacements in the vertical and east directions simulated by the probability integral method (i.e., A1–A8 and D1–D8),
the results estimated by the MTI method (i.e., B1–B8 and E1–E8), and the results estimated by the MSBAS method (i.e., C1–C8 and F1–F8),
respectively

Fig. 13 Time-series 2-D mining displacements in the vertical and east directions estimated by the MTI method (i.e., A1–A7 and C1–C7), and the
results estimated by the MSBAS method (i.e., B1–B7 and D1–D7), respectively

method for 2-D mining displacement estimation is reason-
able, even though only Gaussian noise is considered in this
section (Fig. 12).

5 Conclusions

In this paper, we have presented an approach to estimate
time-series 3-D mining displacements by fusing multi-track
InSAR datasets, with the assistance of a prior deformation
model. The main aim of the proposed approach is to enhance
the temporal resolution of the previous SGI-derived time-

series 3-D mining displacements from single-track InSAR
datasets. Twelve ascending ALOS PALSAR-1 images from
two spatially adjacent tracks over the Yungang mining area
of China were selected to test the proposed MTI-based
method. The results showed that, compared to the previous
SGI-derived results, the temporal resolution of the time-
series 3-Dmining displacements estimated by theMTI-based
method is improved by around 45.5%. Time-series 3-D min-
ing displacement measurements with a high spatio-temporal
resolution are essential for mining deformation kinematics
modeling and mining-induced geohazard assessment and
control.
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In addition, a newweighting schemehas beenproposed for
improving the GWLS solutions of time-series 3-D displace-
ments. Compared with the empirical CCM-based weighting
scheme used in the previous SGI method, the newly devel-
oped scheme is mathematically rigorous, so that it can
effectively suppress the error propagation of InSAR defor-
mation observations and improve the accuracy of time-series
3-D displacement estimates. Finally, the superiority of the
proposed method over the traditional MSBAS method (a
typical multi-track-based method) for retrieving time-series
2-Dmining displacements was investigated based on the two
selected adjacent-trackSARdatasets considered in this study.
The results indicated that the accuracies of the time-series 2-
D displacement estimates in the vertical and east directions
are both very poor for theMSBASmethod, due to the similar-
ity of the imaging geometries of the selected adjacent-track
SAR datasets. However, the accuracy can be dramatically
improved by 99% and 92% in the vertical and east direc-
tions, respectively, if the MTI-based method is applied to
retrieve the time-series 3-D displacements.

However, we should stress that only a real-data case study
was carried out to test the MTI-based method in this study
using an adjacent-track InSAR dataset, and accuracy valida-
tion of the retrieved time-series 3-D displacement estimates
could not be conducted, due to the lack of in situ GPS or lev-
eling deformation measurements. Therefore, in our future
study, we will further test the MTI-based method in more
study areas and more multi-track InSAR datasets, we will
validate the accuracy of the results, and we will explore the
potential of the core idea of the MTI-based method in other
applications of geophysical deformation event monitoring.
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7.3 Sarpol Zahāb earthquake, Iran. J Geophy Res Solid Earth
124:12034–12052. https://doi.org/10.1029/2019JB017953

Liu JH, Hu J, Li ZW, Zhu JJ, Sun Q, Gan J (2018) A method for
measuring 3-D surface deformations with InSAR based on strain
model and variance component estimation. IEEE Trans Geosci
Remote Sens 56(1):239–250. https://doi.org/10.1109/TGRS.201
7.2745576

123

https://auig2.jaxa.jp/ips/home
https://earthexplorer.usgs.gov
https://doi.org/10.1109/TGRS.2002.803792
https://doi.org/10.1109/TGRS.2010.2091963
https://doi.org/10.1016/j.rse.2013.08.038
https://doi.org/10.1364/JOSAA.17.000401
https://doi.org/10.1109/36.673674
https://doi.org/10.1007/s40789-014-0044-z
https://doi.org/10.1029/2009GC002558
https://doi.org/10.1029/2007gl029427
https://doi.org/10.13199/j.cst.2004.02.52.houzhy.017
https://doi.org/10.1109/LGRS.2011.2181154
https://doi.org/10.1111/j.1755-6724.2008.tb00660.x
https://doi.org/10.1109/TGRS.2008.916981
https://doi.org/10.1007/s00190-014-0757-1
https://doi.org/10.1029/2019JB017953
https://doi.org/10.1109/TGRS.2017.2745576


Fusing adjacent-track InSAR datasets to densify the temporal resolution of time-series 3-D… Page 17 of 17 47

Lu Z, Dzurisin D, Biggs J, Wicks C Jr, McNutt S (2010) Ground sur-
face deformation patterns, magma supply, and magma storage at
Okmok volcano, Alaska, from InSAR analysis: 1. Intereruption
deformation, 1997–2008. JGeophysRes 115:B00B02. https://doi.
org/10.1029/2009JB006969

LuCP, Dou LM, ZhangN, Xue JH,WangXN, LiuH, Zhang JW (2013)
Microseismic frequency-spectrum evolutionary rule of rockburst
triggered by roof fall. Int J Rock Mech Min 64:6–16. https://doi.
org/10.1016/j.ijrmms.2013.08.022

Manzo M, Ricciardi GP, Casu F, Ventura G, Zeni G, Borgstrom S,
Berardino P, Gaudio C, Lanari R (2006) Surface deformation
analysis in the Ischia Island (Italy) based on spaceborne radar
interferometry. J Volcanol GeothermRes 151(4):399–416. https://
doi.org/10.1016/j.jvolgeores.2005.09.010

Marschalko M, Yilmaz I, Bednárik M, Kubečka K (2012) Influence of
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