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Abstract
We provide the spectral-domain solutions for the gravity forward modelling of a 2D body with constant, polynomial and
exponential density distributions, including the gravitational attraction and its arbitrary-order derivatives. The gravity effects
may be directly obtained from the derivatives of a constructed scalar quantity and the surface integral of the density function
over the 2D body. Then, the surface integrals of the spectral expansion coefficients of the scalar and the density function
are converted to the line integrals along the boundary of the mass body using the Gauss divergence theorem and thus can
be evaluated by numerical integration. The surface integrals for the exponential density model are expressed as the infinite
expansions of line integrals and converge fast. Approximating the mass body to a 2D polygon, the surface integrals can be
evaluated by simple analytic formulas for the constant density model and by linear recursive relations for the polynomial
density model. The numerical implementation shows that the spectral-domain algorithm of this paper can produce high
accurate forward results, e.g. 13–16 digits achievable precision for the gravity vector. Although the spectral-domain method
is only suitable for forward computation of the external gravity effects of the 2D body, it is numerically stable for arbitrary
observation point outside the smallest enclosed circle. The closed-form solutions for the 2D body with constant or polynomial
density distribution are high precision to evaluate the gravity anomaly at the point near or inside the body, but may be lower
precision when the computation point moves away from the body. The spectral-domain algorithm can handle the polynomial
and exponential density model in both horizontal and vertical directions.

Keywords Gravity effect · 2D mass representation · Spectral-domain method · Polynomial density · Exponential density ·
Polygon

1 Introduction

Forward modelling computation for the gravity effects of
a mass body, including gravitational potential, gravity vec-
tor, gravity gradient tensor and higher-order derivatives, is
an important issue in physical geodesy. The gravity effects
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also reveal the geophysical and geological informations. The
gravitational field of the 3D body can be expressed by the
Newton integrals of the contributions exerted by the vol-
ume elements of the source body on an unit mass located
at an observation point. For the 3D body with a general
shape, the volume integrals can be evaluated by numerical
integration and differentiation (Fukushima 2016, 2017). On
the other hand, the volume integrals of the whole 3D body
can be decomposed into the summation of volume integrals
of elementary homogeneous mass elements, e.g. tesseroids
(Heck and Seitz 2007; Grombein et al. 2013; Uieda et al.
2016; Fukushima 2018a), prisms (Nagy et al. 2000; Tsoulis
2000; D’Urso 2012; D’Urso and Trotta 2015) and general
polyhedra (Werner and Scheeres 1997; Tsoulis and Petrović
2001;D’Urso 2013, 2014a; Zhang andChen 2018). The non-
constant density model is a more accurate description for
the density distribution of the mass body (García-Abdeslem
1992, 2005; Artemjev et al. 1994; Pohánka 1998; Zhou
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2009a). Inverting the volume integrals of the gravity effects
into surface integrals and further into line integrals, the
closed expressions of the gravity field of prisms and gen-
eral 3D polyhedral bodies with polynomial density in space
domain have been proposed in the literature (Pohánka 1998;
Hansen 1999; Holstein 2003; Hamayun Prutkin and Ten-
zer 2009; D’Urso 2014b; D’Urso and Trotta 2017; Zhang
and Jiang 2017; Jiang et al. 2017, 2018; Ren et al. 2017a, b,
2018; Fukushima 2018b). Fourier-domain method can also
be applied to the gravity forward computation of 3D bodies
with a polyhedral or general shape (Wu and Chen 2016; Wu
2018a, b, 2019). For the polyhedral bodies, the achievable
precision of the Fourier-domain method is 2–7 digits.

In gravity prospecting, the vertical component of the
earth’s gravity field is measured to infer changes in the
density of the geological structures. The gravity forward
modelling of the geological structures plays an important
role in gravity data interpretation. Many common geological
structures are approximated by the configurations parallel to
a given horizontal direction, and their density distributions
vary as the same function of position on each of a family
of parallel planes which are perpendicular to that direction,
e.g. the sedimentary basins (Netteton 1940; Hubbert 1948;
Bott 1960). When the actual dimension in the horizontal
direction is far larger than the distance from the cross sec-
tion to the observation point, the issue of the gravity effects
of these geological structures can be degenerated into the
gravity computation of 2D mass bodies (namely the cross
sections of the geological structures)within rather small error
(Netteton 1940; Zhou 2008). The 2D mass body model has
been applied to the computation of the vertical component
of actual structures in the literature, e.g. for the New Red
Sandstone basins near Dumfries in the south of Scotland,
Mendocino submarine fracture zone and San Jacinto Graben,
California (Talwani et al. 1959; Bott 1960; Murthy and Rao
1979). Geometrically, the 2D body can be approximated by
a polygonal body whose boundary is made up of a number of
line segments for the convenience of calculation. In practi-
cal survey works, a finite number of measurement points for
the 2D body also lead to an approximated 2D polygon. The
geologic evaluation of the structures is complex, and then,
the density model is diversiform. The numerical solutions
for the gravity effects of the 2D body with constant den-
sity have been investigated by several authors (Talwani et al.
1959; Bott 1960). For accurate calculation, the non-constant
density model has been used to the gravity forward com-
putation of the 2D body, e.g. exponential function (Cordell
1973; Chai and Hinze 1988; Litinsky 1989; Rao et al. 1993;
Chappell and Kusznir 2008), hyperbolic function (Litinsky
1989; Rao et al. 1995; Silva et al. 2006), parabolic func-
tion (Rao et al. 1994; Chakravarthi and Sundararajan 2004)
and polynomial function including the linear, quadratic and
higher-degree polynomial (Murthy and Rao 1979; Rao 1985,

1986a, b, 1990; García-Abdeslem 1992, 2005; Ruotoisten-
mäki 1992;Martín-Atíenza andGarcia-Abdeslem 1999). For
the 2D body with general polynomial density contrast in
both horizontal and vertical directionswhich is approximated
by a polygon, the analytical solutions of the gravity effects
can be obtained by using the Stokes theorem (Zhang et al.
2001; Zhou 2010) or the Gauss divergence theorem (D’Urso
2015). As general density models, the depth-dependent (ver-
tical) density distribution and the horizontally and vertically
dependent density distribution have been considered byZhou
(2008, 2009b), where the line integrals for the gravity effects
are evaluated by numerical integration. Zhou’s (2009b) algo-
rithm requires the integrals for the horizontal or vertical
density components should be integrable. Different from the
space-domain methods above, the Fourier-domain method
for evaluating gravity effects of 2D mass bodies first con-
structs the Fourier spectrum of the gravity effects and then
transforms the spectrum back to the spatial domain using fast
Fourier transform techniques (Wu2018b, 2019). The Fourier
transform expressions of the gravity effects of the 2D polyg-
onal body with constant or exponential density distribution
can be directly obtained from the coordinates of the vertices
(Pedersen 1978; Chai and Hinze 1988; Hansen and Wang
1988; Rao et al. 1993; Wu 2019).

For 3D bodies, the gravitational potential may satisfy the
3D Laplace’s equation, and then, the spherical harmonic
spectral techniques can be applied to the gravity forward
modelling. Because the boundary condition is unknown, the
volume integral expressions of the spherical harmonic coef-
ficients of the gravitational potential should be given instead
of the surface integrals, which are derived by using the
expansion of the reciprocal distance (Heiskanen and Moritz
1967; Hofmann-Wellenhof and Moritz 2006). The spheri-
cal harmonic expansion of the potential for the Phobos with
assumption of constant density has been considered by Chao
and Rubincam (1989) and Martinec et al. (1989). Balmino
(1994) derived the analytical solutions for the potential har-
monic coefficients of the homogeneous body which shape is
also given as a series of spherical harmonics. Werner (1997)
constructed the forwardmodelling for the potential harmonic
coefficients of the uniform polyhedral body. The spherical
harmonic coefficients are evaluated by the trinomial inte-
grals over the divided tetrahedron. By applying the Gauss
divergence theorem and the Stokes theorem, the potential
harmonic coefficients of the polyhedral body with constant
or polynomial density can be evaluated by the linear recur-
sive algorithms using line integrals along the edge of the
polyhedron (Jamet and Thomas 2004; Tsoulis et al. 2009;
Chen et al. 2019a, b). The recursive algorithms require the
polyhedral body to be divided into a number of tetrahedra
or polygonal pyramids. To guarantee numerical stability of
the recursive algorithm, the initial 3D reference frame must
be rotated to a new 3D reference frame to make the verti-
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cal axis coincident with the normal vector of the polygonal
faces. According to the spherical harmonic expansions of the
derivatives of the gravitational potential and the conversions
of the arbitrary- order derivatives of the potential between
the initial and rotated reference frames, the arbitrary-order
derivatives can be obtained with no need for evaluation of the
rotation of spherical harmonic coefficients of each tetrahe-
dron or polygonal pyramid (Cunningham 1970; Petrovskaya
and Vershkov 2010; Chen et al. 2019b). The dot products
of the final analytical expressions of the gravity effects of
the polyhedral body in space domain containing the position
vector of the observation point lead to the numerical instabili-
ties for the remote observation point (D’Urso 2013, 2014a, b;
D’Urso andTrotta 2017;Renet al. 2018).Although the spher-
ical harmonic spectral method is only suitable for evaluating
the external field of the 3D body, it may be numerically
stable for arbitrary observation point outside the smallest
enclosed sphere (Chen et al. 2019b). The spectral-domain
method based on the 2D Laplace’s equation can also be used
to the forward modelling for the gravity field of 2D bodies
which may be numerically stable for the external point, and
it has not be seen in the literature.

The present work provides a spectral-domain approach
for gravity forward modelling of the 2D mass body with
constant, polynomial and exponential density distributions.
We construct a scalar quantity related to the gravity effects
of the 2D body which meets the 2D Laplace’s equation, and
then get the spectral expansions of the scalar and its deriva-
tives (Sect. 2). The gravitational attraction of the 2D body
and its arbitrary-order derivatives can be obtained from the
derivatives of the scalar and the surface integral of the density
function over the 2D body. Usually, the spectral expansion
coefficients can be obtained from the boundary values of the
scalar on a closed curve. In this case, the coefficients can
be written as the line integrals of the boundary values along
that curve. However, for the gravity forward computation of
the 2D body the boundary values are unknown. Therefore,
in this paper the surface integral expressions of the spec-
tral expansion coefficients over the 2D body are derived and
then converted to the line integrals along the boundary of
the body using the Gauss divergence theorem, which can
be evaluated by numerical integration (Sect. 3). The surface
integral of the density function can also be expressed as line
integrals. When the 2D body is approximated by a polygon,
the spectral expansion coefficients can be evaluated by sim-
ple analytic formulas for the constant density model and by
linear recursive relations for the polynomial density model.
Computation of the surface integral of the density function
is analogous. In Sect. 4, three polygonal models including a
rectangular cylinder with quadratic density contrast varying
with depth, a 26-sided polygon body with quadratic density
contrast varying in both horizontal and vertical directions and
a 2D rectangular cylinder with exponential density contrast

varying with depth were used to test numerical accuracies
and stabilities of this work’s algorithms. Finally, we draw
some conclusions in Sect. 5.

2 Spectral expansions for the gravity effects
of 2D bodies

2.1 Construction of the 2D Laplace’s equation

For a 3Dbody ̂Ω , its gravitational attraction exerted at a point
̂P(x, y, z) is given by (Kellogg 1929)

g(̂P) = G
∫∫∫

̂Ω

ρ(̂r)̂r
(̂r · r̂)3/2 d̂Ω, (1)

where x and y are the horizontal axes, z is the vertical axis,
G represents the gravitational constant, r̂ represents the 3D
position vector from the observation point ̂P to the inter-
nal point ̂Q(x ′, y′, z′), ρ(̂r) is the density function varying
with the point ̂Q and d̂Ω is the volume element. Denot-
ing ûx , ûy , ûz as the 3D unit vector along the three axes,
the horizontal and vertical components of the gravitation are
gx (̂P) = g(̂P) · ûx , gy(̂P) = g(̂P) · ûy , gz(̂P) = g(̂P) · ûz .
When the configuration of the 3D body ̂Ω is parallel to the
horizontal axis y and the density distribution ρ(̂r) is inde-
pendent of the variable y′, the three gravitation components
can be expressed as

gx (̂P) = G
∫∫

Ω

(

∫ dy2

dy1

ρ(̂r)(̂r · ûx )
(̂r · r̂)3/2 dy′

)

dΩ

= G
∫∫

Ω

ρ(r)(r · ux )
r · r

r̂ · ûy

(̂r · r̂)1/2
∣

∣

∣

dy2

dy1
dΩ,

gy(̂P) = G
∫∫

Ω

(

∫ dy2

dy1

ρ(̂r)(̂r · ûy)

(̂r · r̂)3/2 dy′
)

dΩ

= G
∫∫

Ω

−ρ(r)
(̂r · r̂)1/2

∣

∣

∣

dy2

dy1
dΩ,

gz(̂P) = G
∫∫

Ω

(

∫ dy2

dy1

ρ(̂r)(̂r · ûz)
(̂r · r̂)3/2 dy′

)

dΩ

= G
∫∫

Ω

ρ(r)(r · uz)
r · r

r̂ · ûy

(̂r · r̂)1/2
∣

∣

∣

dy2

dy1
dΩ, (2)

where Ω represents the 2D integration domain of the cross
section of the 3D body, dΩ is the area element in the z′x ′-
plane, dy1 , dy2 are the y-coordinates of the two sides of the
3D bodies, r is the 2D position vector from the projections
of the points ̂P to ̂Q on the zx-plane and ux , uz are the 2D
unit vectors along the x-, z-axes, respectively.

Assuming dy1 → −∞, dy2 → +∞ (Zhou 2008; D’Urso
2015), Eq. (2) yields
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Fig. 1 2D body Ω and its geometric quantities. The points P(z, x),
Q(z′, x ′) are the projections of the points ̂P , ̂Q on the zx-plane

gx (̂P) = 2G
∫∫

Ω

ρ(r)(r · ux )
r · r dΩ

= 2G
∫∫

Ω

(x ′ − x)ρ(z′, x ′)
(z − z′)2 + (x − x ′)2

dΩ,

gy(̂P) = 0,

gz(̂P) = 2G
∫∫

Ω

ρ(r)(r · uz)
r · r dΩ

= 2G
∫∫

Ω

(z′ − z)ρ(z′, x ′)
(z − z′)2 + (x − x ′)2

dΩ, (3)

wherewe denote ρ(z′, x ′) as ρ(r) because ρ(r) depends only
on x , z and likewise can use the symbols gx (z, x), gz(z, x)
to represent gx (̂P), gz(̂P). Thus, the gravitational compo-
nents gx (z, x), gz(z, x) independent of y can be handled as
the gravity effects of a 2D body Ω (namely the cross section
of the 3D body ̂Ω , in Fig. 1). The 2D mass body model is
a common approach to evaluate approximately the gravity
effects of many geological structures in the literature, and
the vertical component is often considered in practical appli-
cation. This paper illustrates the 2D mass body model more
clearly.

We now define a quantity

V (z, x) = G
∫∫

Ω

(

ln(z2 + x2)

− ln
[

(z − z′)2 + (x − x ′)2
])

ρ(z′, x ′)dΩ. (4)

Differentiating the scalar V with respect to z and x , we have

Vz(z, x) = gz(z, x) + 2Gz

z2 + x2
Dρ, (5)

Vx (z, x) = gx (z, x) + 2Gx

z2 + x2
Dρ, (6)

where the symbol Dρ represents the surface integral of the
density function as

Dρ =
∫∫

Ω

ρ(z′, x ′)dΩ. (7)

Further, the second-order derivatives of the quantity V can
be expressed as

Vzz(z, x) = gzz(z, x) + 2G(x2 − z2)

(z2 + x2)2
Dρ, (8)

Vzx (z, x) = gzx (z, x) − 4Gxz

(z2 + x2)2
Dρ, (9)

Vxx (z, x) = gxx (z, x) + 2G(z2 − x2)

(z2 + x2)2
Dρ, (10)

where the symbols gzz(z, x), gzx (z, x) and gxx (z, x) are the
derivatives of gz(z, x) and gx (z, x), i.e. the gravity gradients.
To evaluate the vertical and horizontal components of the
gravitational attraction and their derivatives of the 2D body,
we may need to evaluate the derivatives of V and the double
integral Dρ .

The 2D Cartesian coordinates can be written as z =
r cos θ , x = r sin θ where the radius r and the angle θ are the
polar coordinates. We denote (r ′, θ ′) as the polar coordinates
of the point Q, l as the distance between the points P and Q,
ψ as the running angle between the radial directions of the
points P and Q, as shown in Fig. 1. Since

r =
√

z2 + x2, (11)

l =
√

(z − z′)2 + (x − x ′)2 =
√

r2 − 2rr ′ cosψ + r ′2,
(12)

the quantity V in Eq. (4) can be expressed as

V (z, x) = −G
∫∫

Ω

ln

(

l2

r2

)

ρ(z′, x ′)dΩ

= −G
∫∫

Ω

ln
(

1 − 2t cosψ + t2
)

ρ(z′, x ′)dΩ,

(13)

where t = r ′/r . From Eqs. (2), (8) and (10), for the external
observation point, we have

Vzz + Vxx = gzz + gxx = 0. (14)

Therefore, the quantity V satisfies the 2D Laplace’s equa-
tion at the external point. We choose a circle that completely
encloses the 2D body, where the centre of the enclosed circle
is the origin O . Then, from Eqs. (13) and (14), the quantity
V at the point P outside the enclosed circle can be expressed
as the spectral expansion (Riley et al. 2006)

V (r , θ) =
∞
∑

n=1

(a

r

)n
(Cn cos(nθ) + Sn sin(nθ)) , (15)
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where a is the radius of the enclosed circle, i.e. the reference
distance and Cn and Sn are the coefficients of the spectral
expansion. Because the logarithmic expression in Eq. (13)
can be expanded into power series of t in which the power of
each term is greater than zero, the constant and logarithmic
terms in the expansion (15) are vanished.

Analogous to computation of the spherical harmonic coef-
ficients in gravity forward modelling of 3D case in which the
coefficients are expressed as the volume integrals over the
3D body (Heiskanen and Moritz 1967; Hofmann-Wellenhof
andMoritz 2006), we may derive the surface integral expres-
sions of the coefficients Cn and Sn over the 2D body. From
Gradshteyn and Ryzhik (2007), the logarithm expression in
Eq. (13) can be expressed as the expansion

ln
(

1 − 2t cosψ + t2
)

=
∞
∑

n=1

−2

n
cos(nψ)tn, (16)

which can be derived from the expansion of ln(1−2t cosψ+
t2) into the Taylor series of −2t cosψ + t2, binomial
expansion of (t − 2 cosψ)k and cosine expression cos(nψ)

expanded to the power polynomial of cosψ . Since ψ =
θ − θ ′, we have

V (r , θ) =
∞
∑

n=1

(a

r

)n 2G

n

×
∫∫

Ω

[cos(nθ) cos(nθ ′) + sin(nθ) sin(nθ ′)]

·ρ(z′, x ′)
(

r ′

a

)n

dΩ. (17)

Hence, the spectral expansion coefficients can be expressed
as

Cn = 2G

nan

∫∫

Ω

r ′n cos(nθ ′)ρ(z′, x ′)dΩ, (18)

Sn = 2G

nan

∫∫

Ω

r ′n sin(nθ ′)ρ(z′, x ′)dΩ, (19)

i.e.
[

Cn

Sn

]

= 2G

nan
Hn = 2G

nan

∫∫

Ω

hn(Q)ρ(z′, x ′)dΩ, (20)

where the vector

hn(Q) = r ′n
[

cos(nθ ′)
sin(nθ ′)

]

. (21)

van Gelderen (1992) used another form of the series
expansion of ln

( l
r

)

to get the expansion of the poten-
tial G

∫∫

Ω
ln

( 1
l

)

ρ(z′, x ′)dΩ + constant, which is con-
nected with Eq. (17). Through some simple derivations, van
Gelderen’s [1992, Formulas (2.7) and (2.8)] results are actu-
ally the same as Eqs. (17)–(19) of this paper.

2.2 Spectral expansions of the derivatives of the
quantity V

Cunningham (1970) and Petrovskaya and Vershkov (2010)
gave the spherical harmonic expansions of the derivatives of
the gravitational potential of the 3D body, where the potential
meets the 3D Laplace’s equation. For the 2D body, we can
also derive the spectral expressions of the derivatives of the
quantity V , where V meets the 2D Laplace’s equation.

Similar to Cunningham (1970), we define

Vn(r , θ) = cos(nθ) + i sin(nθ)

rn
, (22)

where i is the imaginary unit; then, the quantity V can be
written as

V = Re

[ ∞
∑

n=1

an(Cn − iSn)Vn

]

, (23)

where the symbol Re denotes the real part operator. Since
cos θ = z

r , sin θ = x
r , the quantity Vn can be expressed as

Vn(z, x) = (z + ix)n

r2n
, (24)

and then, its derivative with respect to z is

∂Vn
∂z

= n
(z + ix)n−1

r2n
− 2n

(z + ix)nz

r2n+2

= n

rn+1

(

cos(n − 1)θ − 2 cos(nθ) cos θ

+i(sin(n − 1)θ − 2 sin(nθ) cos θ)
)

= −n (cos(n + 1)θ + i sin(n + 1)θ)

rn+1 . (25)

Likewise, the derivative with respect to x is

∂Vn
∂x

= n (− sin(n + 1)θ + i cos(n + 1)θ)

rn+1 . (26)

Hence,

Vz(r , θ) =
∞
∑

n=1

an

rn+1

×
(

− nCn cos(n + 1)θ − nSn sin(n + 1)θ
)

,

(27)

Vx (r , θ) =
∞
∑

n=1

an

rn+1

×
(

nSn cos(n + 1)θ − nCn sin(n + 1)θ
)

. (28)
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Now we can write the spectral expansions of the first-order
derivatives as

Vz(r , θ) = 1

a

∞
∑

n=2

(a

r

)n (

Cz
n cos(nθ) + Szn sin(nθ)

)

, (29)

Vx (r , θ) = 1

a

∞
∑

n=2

(a

r

)n (

Cx
n cos(nθ) + Sxn sin(nθ)

)

, (30)

where the spectral expansion coefficients Cz
n , S

z
n , C

x
n and Sxn

can be obtained from the coefficients Cn and Sn by

Cz
n = −(n − 1)Cn−1,

Szn = −(n − 1)Sn−1, (31)

Cx
n = (n − 1)Sn−1,

Sxn = −(n − 1)Cn−1. (32)

We can also use the formulas of the Cartesian partial deriva-
tives in polar coordinates

∂

∂z
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
(33)

∂

∂x
= sin θ

∂

∂r
+ cos θ

r

∂

∂θ
(34)

to get the spectral expansions (29) and (30).
We can infer that the two recursive relations (31) and (32)

are actually suitable for evaluating the coefficients of the
spectral expansions of higher-order derivatives. Hence, the
spectral expansions of the second-order derivatives are

Vzz(r , θ)

= 1

a2

∞
∑

n=3

(a

r

)n (

Czz
n cos(nθ) + Szzn sin(nθ)

)

, (35)

Vzx (r , θ)

= 1

a2

∞
∑

n=3

(a

r

)n (

Czx
n cos(nθ) + Szxn sin(nθ)

)

, (36)

Vxx (r , θ)

= 1

a2

∞
∑

n=3

(a

r

)n (

Cxx
n cos(nθ) + Sxxn sin(nθ)

)

, (37)

where the coefficients are

Czz
n = −(n − 1)Cz

n−1 = (n − 1)(n − 2)Cn−2,

Szzn = −(n − 1)Szn−1 = (n − 1)(n − 2)Sn−2, (38)

Czx
n = (n − 1)Szn−1 = −(n − 1)(n − 2)Sn−2,

Szxn = −(n − 1)Cz
n−1 = (n − 1)(n − 2)Cn−2, (39)

Cxx
n = (n − 1)Sxn−1 = −(n − 1)(n − 2)Cn−2,

Sxxn = −(n − 1)Cx
n−1 = −(n − 1)(n − 2)Sn−2. (40)

In general, the spectral expansion of the arbitrary-order
derivative of V can be written as

Vz j1 z j2 ...z jk
(r , θ) = 1

ak

∞
∑

n=k+1

(a

r

)n

×
(

C
z j1 z j2 ...z jk
n cos(nθ) + S

z j1 z j2 ...z jk
n sin(nθ)

)

, (41)

where j1, j2, . . . , jk = 1, 2, k = 1, 2, . . ., z1 = z, z2 =
x and the coefficients C

z j1 z j2 ...z jk
n and S

z j1 z j2 ...z jk
n can be

obtained from the spectral expansion coefficients of the
lower-order derivatives by

C
z j1 z j2 ...z jk−1 z1
n = −(n − 1)C

z j1 z j2 ...z jk−1
n−1 ,

S
z j1 z j2 ...z jk−1 z1
n = −(n − 1)S

z j1 z j2 ...z jk−1
n−1 , (42)

C
z j1 z j2 ...z jk−1 z2
n = (n − 1)S

z j1 z j2 ...z jk−1
n−1 ,

S
z j1 z j2 ...z jk−1 z2
n = −(n − 1)C

z j1 z j2 ...z jk−1
n−1 . (43)

The degree of the finite expression for the kth-order deriva-
tive Vz j1 z j2 ...z jk

is N+k corresponding to the degree N for the
quantity V . From Eqs. (3) and (4), we can get the expression
of the gravitational attraction and its arbitrary-order deriva-
tives

gz j1 z j2 ...z jk
(z, x) = Vz j1 z j2 ...z jk

(z, x)

−GDρ

∂k ln(z21 + z22)

∂z j1∂z j2 . . . ∂z jk
. (44)

3 Computation of the gravity effects caused
by 2D bodies

3.1 Gravity effects of a 2D body with constant
density

To evaluate the gravity effects of a 2D body with certain den-
sity distribution ρ(z′, x ′), we need to evaluate the spectral
expansions of V and its derivatives and the double integral
Dρ . We denote the symbols ∂Ω as the boundary curve of
the 2D body, Hn as corresponding integral of product of the
density function ρ and the either component hn of the vec-
tor hn . The parametric equation of the boundary ∂Ω can be
expressed as: r = r(s), where r represents the position vec-
tor. Then, the unit direction vector v along ∂Ω is

v =
[

v1
v2

]

= dr(s)
ds

(45)
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and the unit normal vector n pointing outward can be written
as

n =
[

v2
− v1

]

. (46)

According to the divergence formula in polar coordinate
reference frame

div (hnr) = 1

r ′
∂

∂r ′
(

r ′2hn
)

= (n + 2)hn (47)

and the product rule of divergence for a scalar-valued func-
tion and a vector field, and from Eqs. (20) and (21), for the
uniform 2D body with constant density ρ we have

Hn = ρ

∫∫

Ω

hndΩ = ρ

n + 2

∮

∂Ω

(r · n)hnds, (48)

where the linear closed integral is counted counterclockwise.
To avoid numerical problems for large n, the integrals Hn

ought to be normalized. The coefficients Cn and Sn can be
rewritten as
[

Cn

Sn

]

= Hn = 2Gρ

∫∫

Ω

hndΩ, (49)

where the normalized terms are

Hn = 2G

nan
Hn, (50)

hn = hn
nan

= 1

n

(

r ′

a

)n [

cos(nθ ′)
sin(nθ ′)

]

. (51)

Hence, the vector Hn can be given by

Hn = 2Gρ

n + 2

∮

∂Ω

(r · n)hnds. (52)

For the uniform body, since div (r) = 2, the integral Dρ can
be expressed as

Dρ = ρ

∫∫

Ω

dΩ = ρ

2

∮

∂Ω

(r · n)ds, (53)

also counted counterclockwise along the boundary. For
numerical experiments, we can evaluate the vector Hn and
the integral Dρ using numerical integration, e.g. the Gauss–
Kronrod quadrature formula (Laurie 1997). The vector hn(s)
in the line integral can be obtained from the polar coordinates
of the moving point. The polar coordinates of a point can
be evaluated from its Cartesian coordinates. The expression
of the radius r is given in Eq. (11). According to Vermeille
(2011) and Chen et al. (2019b), we take the arctan expression

θ = −π

2
+ 2 arctan

(

z√
z2 + x2 − x

)

(54)

Fig. 2 2D polygon approximated to the 2D body and its geometric
quantities

for the point in the region: z + √
z2 + x2 < ε

√
z2 + x2, and

the expression

θ = 2 arctan

(

x

z + √
z2 + x2

)

(55)

for the point in other region to evaluate the angle θ , where
the threshold can be taken as ε = 10−3.

The 2D body can be approximated by a polygonal body
for the convenience of calculation and the agreement with the
constituted shape of the measured points, as shown in Fig. 2.
We denote NE as the total number vertices of the polygon,
(ξi , ηi ) as the Cartesian coordinates of the i th vertex of the
polygon andpi as the position vector of the i th vertex counted
counterclockwise. Then, the unit direction vector vi and the
position vector ri along the i th edge of the polygon can be
expressed as

vi =
[

vi,1
vi,2

]

= pi+1 − pi
li

, (56)

ri = pi + sivi , (57)

where pi+1 becomes p1 when i = NE , li represents the
length of the i th edge, being li = |pi+1 − pi |, and si is the
length parameter, meeting 0 � si � li . It is obvious that
v2i,1 + v2i,2 = 1. Since di = ri · ni is a constant on the i th
edge where ni is the unit normal vector, the vector Hn can
be written as

Hn = ρ

NE
∑

i=1

di
n + 2

In,i , (58)

where the symbol In,i represents

In,i =
∫ li

0
hndsi . (59)
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Since

∂hn
∂z′

= cos θ ′ ∂hn
∂r ′ − sin θ ′

r ′
∂hn
∂θ ′ = nhn−1, (60)

∂hn
∂x ′ = sin θ ′ ∂hn

∂r ′ + cos θ ′

r ′
∂hn
∂θ ′ = n

[

0 − 1
1 0

]

hn−1, (61)

for the point on the i th edge we have

dhn
dsi

= vi,1
∂hn
∂z′

+ vi,2
∂hn
∂x ′ = n

[

vi,1 − vi,2
vi,2 vi,1

]

hn−1. (62)

Integrating along the i th edge with respect to the parameter
si , we can get

In,i = 1

n + 1

[

vi,1 vi,2
− vi,2 vi,1

]

hn+1

∣

∣

∣

li

0
. (63)

By assuming the normalized term

In,i = In,i

an
, (64)

Eq. (63) can be rewritten as

In,i =
[

vi,1 vi,2
− vi,2 vi,1

]

ahn+1

∣

∣

∣

li

0
(65)

where hn for si = 0 and si = l can be obtained from the
polar coordinates of the starting point and the ending point
of the i th edge.We can also get the vector In,i using recursive
algorithm, see Sect. 3.2. Now we can evaluate the vectorHn

by

Hn = 2Gρ

NE
∑

i=1

di
n(n + 2)

In,i . (66)

The integral Dρ can be expressed as

Dρ = ρ

NE
∑

i=1

di
2

∫ li

0
dsi = ρ

2

NE
∑

i=1

di li . (67)

3.2 Gravity effects of a 2D body with polynomial
density

The density function ρ(z′, x ′) of a 2D body with polynomial
density distribution can be expressed as (Rao 1985; Zhang
et al. 2001; Zhou 2010; D’Urso 2015)

ρ(z′, x ′) =
∑

j+k�Nρ

ρ j,k z
′ j x ′k, (68)

where the positive integer Nρ is the degree of the polyno-
mial, ρ j,k are the constant polynomial factors which are

independent of Q(z′, x ′) and the natural numbers j , k are
the exponents, meeting 0 � j, k � Nρ and j + k � Nρ .
From Eq. (20), the vector Hn is

Hn =
∑

j+k�Nρ

ρ j,k

∫∫

Ω

z′ j x ′khndΩ

=
∑

j+k�Nρ

ρ j,kHn, j,k . (69)

We denote Hn, j,k as the either component of the vector
Hn, j,k .

From Eq. (47), we have

div
(

z′ j x ′khnr
)

= z′ j x ′kdiv(hnr) + hnr · grad(z′ j x ′k)

= (n + j + k + 2)z′ j x ′khn . (70)

Hence,

Hn, j,k =
∫∫

Ω

z′ j x ′khndΩ

= 1

n + j + k + 2

∮

∂Ω

(r · n)z′ j x ′khnds. (71)

We can further get the spectral coefficients

[

Cn

Sn

]

= Hn =
∑

j+k�Nρ

2Gρ j,ka
j+kHn, j,k, (72)

where

Hn, j,k = Hn, j,k

nan+ j+k

= 1

n + j + k + 2

∮

∂Ω

(r · n)

(

z′

a

) j ( x ′

a

)k

hnds.

(73)

Since

div
(

z′ j x ′kr
)

= z′ j x ′kdiv(r) + r · grad(z′ j x ′k)

= ( j + k + 2)z′ j x ′k, (74)

the double integral Dρ is

Dρ =
∑

j+k�Nρ

ρ j,k

∫∫

Ω

z′ j x ′kdΩ

=
∑

j+k�Nρ

ρ j,ka j+k

j + k + 2

∮

∂Ω

(r · n)

(

z′

a

) j ( x ′

a

)k

ds.

(75)
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For the point inside the 2D area Ω , it may be | z′a |, | x ′
a |, r ′

a <

1, and then, the line integrals in Eqs. (73) and (75) are conver-
gent. For the 2D bodywith polynomial density, the vectorHn

and the integral Dρ can also be obtained by using numerical
integration.

When the 2D body is approximated by a polygonal body,
the integral Hn, j,k can be rewritten as

Hn, j,k =
NE
∑

i=1

di
n + j + k + 2

∫ li

0
z′ j x ′khndsi . (76)

Since

z′ j x ′k = (

ξi + vi,1si
) j (

ηi + vi,2si
)k

= ξ
j
i ηki + (

jvi,1ηi + kvi,2ξi
)

ξ
j−1
i ηk−1

i si

+ · · · + v
j
i,1v

k
i,2s

j+k
i

=
j+k
∑

m=0

μ j,k,m,i s
m
i , (77)

for the point on the i th edge, where the symbol

μ j,k,m,i

=
∑

j0+k0=m

j !k!
j0!k0!( j − j0)!(k − k0)!ξ

j− j0
i η

k−k0
i v

j0
i,1v

k0
i,2,

(78)

the line integral in Eq. (76) is

∫ li

0
z′ j x ′khndsi =

j+k
∑

m=0

μ j,k,m,i

∫ li

0
smi hndsi

=
j+k
∑

m=0

μ j,k,m,i In,m,i . (79)

Now we denote the symbol In,m,i as the corresponding 2×1
vector of In,m,i and then have

In,m,i =
∫ li

0
smi hndsi . (80)

From Eq. (62), we can get

d

dsi

(

smi hn+1
)

= msm−1
i hn+1 + smi

dhn+1

dsi

= msm−1
i hn+1 + (n + 1)smi

[

vi,1 − vi,2
vi,2 vi,1

]

hn . (81)

Integrating along the i th edge with respect to si , we have

(n + 1)In,m,i =
[

vi,1 vi,2
− vi,2 vi,1

]

(

smi hn+1

∣

∣

∣

li

0
− mIn+1,m−1,i

)

.

(82)

Due to the trigonometric identity

[

cos(n + 1)θ ′
sin(n + 1)θ ′

]

=
[

cos θ ′ − sin θ ′
sin θ ′ cos θ ′

] [

cos(nθ ′)
sin(nθ ′)

]

, (83)

we get another recursive relation for the vector In,m,i

In+1,m−1,i =
[

ξi −ηi
ηi ξi

]

In,m−1,i +
[

vi,1 − vi,2
vi,2 vi,1

]

In,m,i .

(84)

Then from Eqs. (82) and (84), we can have

(n + m + 1)In,m,i =
[

vi,1 vi,2
− vi,2 vi,1

]

smi hn+1

∣

∣

∣

li

0

−m

[

vi,1ξi + vi,2ηi − vi,1ηi + vi,2ξi
vi,1ηi − vi,2ξi vi,1ξi + vi,2ηi

]

In,m−1,i (85)

and

(n + m + 1)In+1,m−1,i = smi hn+1

∣

∣

∣

li

0

+(n + 1)

[

ξi −ηi
ηi ξi

]

In,m−1,i , (86)

i.e.

(n + m + 1)In,m,i = sm+1
i hn

∣

∣

∣

li

0
+ n

[

ξi −ηi
ηi ξi

]

In−1,m,i ,

(87)

where the initial values In,0,i and I0,m,i are

In,0,i = In,i = 1

n + 1

[

vi,1 vi,2
− vi,2 vi,1

]

hn+1

∣

∣

∣

li

0
, (88)

I0,m,i =
∫ li

0
smi dsi

[

1
0

]

= lm+1
i

m + 1

[

1
0

]

. (89)

Both Eqs. (85) and (87) can be applied for evaluating the
vector In,m,i . In this work, we choose the latter algorithm.

We assume the normalized term

In,m,i = In,m,i

an+m
(90)
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and then get the vector Hn, j,k

Hn, j,k =
NE
∑

i=1

di
n(n + j + k + 2)

j+k
∑

m=0

μ j,k,m,i

a j+k−m
In,m,i . (91)

FromEq. (87), the recursive computation for the vector In,m,i

is

In,m,i = n

n + m + 1

(

( si
a

)m
sihn

∣

∣

∣

li

0

+
[

ξi/a −ηi/a
ηi/a ξi/a

]

In−1,m,i

)

, (92)

where the initial value I0,m,i is

I0,m,i = I0,m,i

am
= li

m + 1

(

li
a

)m [

1
0

]

. (93)

It is obvious that 0 <
li
a < 2. When li

a > 1 and m is large

(0 � m � Nρ), the vector
( si
a

)m
sihn

∣

∣

li
0 and the integral I0,m,i

may be divergent. However, for these segments ( lia > 1) we
can divide them into two small ones with equal length whose
lengthsmeet lia < 1. In practice, the degree Nρ is often small.
The spectral radius of the propagator matrix meets

Rn,m,i = n

n + m + 1

√

ξ2i + η2i

a2
< 1, (94)

and then, the recursive relation Eq. (92) is stable. Moreover,
Eq. (85) with normalized is also numerically stable for eval-
uating the vector In,m,i . If m = 0, Eq. (92) becomes

In,i = n

n + 1

(

sihn
∣

∣

∣

li

0
+

[

ξi/a −ηi/a
ηi/a ξi/a

]

In−1,i

)

, (95)

where In,i = In,0,i . The recursion (95) can also be used for
evaluating the vector In,i in Sect. 3.1.

For the integral Dρ , we can also get

Dρ =
∑

j+k�Nρ

ρ j,ka
j+k

NE
∑

i=1

di
j + k + 2

∫ li

0

z′ j x ′k

a j+k
dsi , (96)

where the line integral is

∫ li

0

z′ j x ′k

a j+k
dsi =

j+k
∑

m=0

μ j,k,m,i

a j+k−m

∫ li

0

( si
a

)m
dsi

=
j+k
∑

m=0

μ j,k,m,i

a j+k−m

li
m + 1

(

li
a

)m

. (97)

3.3 Gravity effects of a 2D body with exponential
density

We now consider a 2D body with exponential density distri-
bution (Cordell 1973; Zhou 2008; Wu 2019):

ρ(z′, x ′) = ρ0e
λ·r, (98)

where λ = (λz, λx ) is a constant vector indicating the direc-
tion andmagnitude of the exponential decay. For the 2Dbody,
the vector Hn can be expressed as

Hn = ρ0

∫∫

Ω

eλ·rhndΩ. (99)

Since

div
(

eλ·rhnr
)

= eλ·rdiv(hnr) + hnr · grad(eλ·r)

= (n + 2)eλ·rhn + (λ · r)eλ·rhn, (100)

we have

Hn = ρ0

∫∫

Ω

eλ·rhndΩ

= ρ0

n + 2

∮

∂Ω

(r · n)eλ·rhnds

− ρ0

n + 2

∫∫

Ω

(λ · r)eλ·rhndΩ. (101)

The right-hand side of Eq. (101) still contains the double
integral term. Applying the divergence formula

div
(

(λ · r)eλ·rhnr
)

= (λ · r)eλ·rdiv(hnr) + hnr · grad((λ · r)eλ·r)
= (n + 3)(λ · r)eλ·rhn + (λ · r)2eλ·rhn, (102)

we further have

Hn = ρ0

n + 2

∮

∂Ω

(r · n)eλ·rhnds

− ρ0

(n + 2)(n + 3)

∮

∂Ω

(r · n)(λ · r)eλ·rhnds

+ ρ0

(n + 2)(n + 3)

∫∫

Ω

(λ · r)2eλ·rhndΩ. (103)

In general, we have the divergence relation

div
(

(λ · r)keλ·rhnr
)

= (λ · r)keλ·rdiv(hnr) + hnr · grad((λ · r)keλ·r)
= (n + k + 2)(λ · r)keλ·rhn + (λ · r)k+1eλ·rhn (104)
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and finally get

Hn = ρ0

⎛

⎝

Nk
∑

k=0

(−1)kKn,k + (−1)k+1Dn,Nk

⎞

⎠ , (105)

where

Kn,k =
∮

∂Ω

(r · n)(λ · r)k
(n + 2)(n + 3) · · · (n + k + 2)

eλ·rhnds,

(106)

Dn,Nk =
∫∫

Ω

(λ · r)Nk+1

(n + 2)(n + 3) · · · (n + Nk + 2)
eλ·rhndΩ.

(107)

Because (n + 2)(n + 3) . . . (n + k + 2) increases faster
than |(λ · r)k+1| when n + k + 2 > |λ · r|, the double
integral Dn,Nk converges to zero when Nk → +∞, i.e.
limNk→+∞ Dn,Nk = 0. Hence, the vectors Hn and Hn can
be expressed as the infinite expansions

Hn = ρ0

+∞
∑

k=0

(−1)kKn,k, (108)

[

Cn

Sn

]

= Hn = 2Gρ0

+∞
∑

k=0

(−1)kKn,k, (109)

where

Kn,k = Kn,k

nan

=
∮

∂Ω

(r · n)(λ · r)k
(n + 2)(n + 3) · · · (n + k + 2)

eλ·rhnds.

(110)

For numerical experiments, we can use

Hn = 2Gρ0

Nk
∑

k=0

(−1)kKn,k (111)

to evaluate the spectral expansion coefficients, where the vec-
tor Kn,k (n = 1, 2, 3, . . . , k = 0, 1, 2, . . .) is evaluated by
numerical integration. Since (λ ·r)k/((n+2)(n+3) . . . (n+
k+2)) converges fast to zero, we can evaluate the expression
with the required accuracy up to a certain degree. For larger
n, the required degree Nk may be smaller. Analogously, the
double integral Dρ for the 2D body with exponential density
can be written as

Dρ = ρ0

⎛

⎝

Nk
∑

k=0

(−1)k K0,k + (−1)k+1D0,Nk

⎞

⎠

= ρ0

+∞
∑

k=0

(−1)k K0,k, (112)

where

K0,k =
∮

∂Ω

(r · n)(λ · r)k
2 · 3 · · · · · (k + 2)

eλ·rds, (113)

D0,Nk =
∫∫

Ω

(λ · r)Nk+1

2 · 3 · · · · · (Nk + 2)
eλ·rdΩ. (114)

We can also evaluate the integral Dρ with the required accu-
racy up to a certain degree Nk by

Dρ = ρ0

Nk
∑

k=0

(−1)k K0,k, (115)

where the line integral K0,k is evaluated by numerical inte-
gration.

When the 2D body is approximated by a polygonal body,
we can get the vector Hn and the normalized term Hn

Hn = ρ0

⎛

⎝

Nk
∑

k=0

(−1)k
NE
∑

i=1

diKn,k,i + (−1)k+1Dn,Nk

⎞

⎠

= ρ0

+∞
∑

k=0

(−1)k
NE
∑

i=1

diKn,k,i , (116)

Hn = 2Gρ0

+∞
∑

k=0

(−1)k
NE
∑

i=1

diKn,k,i , (117)

where

Kn,k,i =
∫ li

0

(λ · ri )k
(n + 2)(n + 3) · · · (n + k + 2)

eλ·rihndsi ,

(118)

Kn,k,i = Kn,k,i

nan

=
∫ li

0

(λ · ri )k
(n + 2)(n + 3) · · · (n + k + 2)

eλ·rihndsi
(119)

and the dot product λ · ri can be expressed as λ · ri = λ ·
pi + (λ · vi )si . For numerical experiments, we can use

Hn = 2Gρ0

Nk
∑

k=0

(−1)k
NE
∑

i=1

diKn,k,i (120)
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to get the spectral expansion coefficients. For the double inte-
gral Dρ , we can get

Dρ = ρ0

⎛

⎝

Nk
∑

k=0

(−1)k
NE
∑

i=1

di K0,k,i + (−1)k+1D0,Nk

⎞

⎠

= ρ0

+∞
∑

k=0

(−1)k
NE
∑

i=1

di K0,k,i ,

(121)

where

K0,k,i =
∫ li

0

(λ · ri )k
2 · 3 · · · · · (k + 2)

eλ·ri dsi , (122)

and also evaluate the integral Dρ for numerical implementa-
tion by

Dρ = ρ0

Nk
∑

k=0

(−1)k
NE
∑

i=1

di K0,k,i . (123)

The line integralsKn,k,i and K0,k,i are obtained by numerical
integration.

4 Numerical experiments

Three polygonal models were used to test the formulas of
this paper. These models include a rectangular cylinder with
quadratic density contrast varying with depth, a 26-sided
polygon body with quadratic density contrast varying in both
horizontal and vertical directions and a rectangular cylinder
with exponential density contrast varying with depth. The
methods for evaluating the gravity effects of the 2D source
body in the literature are based on the surface integrals of the
contributions exerted by the surface elements of the body on
an unit mass located at the observation point. Then, we can
compare the results of the spectral-domain algorithm in this
work with the space-domain algorithm including the semi-
numerical method (Zhou 2008, 2009b) and the analytical
method (D’Urso 2015). Because the vertical component of
the gravity anomaly of the 2D body is often considered, e.g.
Rao (1985, 1990), Zhang et al. (2001), Zhou (2008, 2009b)
and D’Urso (2015), we focus on the evaluation of the grav-
ity anomaly gz in numerical implementation. According to
Sect. 2, for numerical experiments the gravity anomaly gz of
the 2D body can be evaluated by

Fig. 3 2D rectangular cylinder body and the enclosed circle

gz(z, x) = − 2Gz

z2 + x2
Dρ

+ 1

a

N+1
∑

n=2

(a

r

)n (

Cz
n cos(nθ) + Szn sin(nθ)

)

,

(124)

where the value of the gravitational constant is G =
6.67259× 10−11 m3 kg−1 s−2. The Gauss–Kronrod quadra-
ture formula was used to the numerical integrations for Zhou
(2008, 2009b) and this work (only for the quantities Hn and
Dρ of the 2D rectangular cylinder body with exponential
density contrast). We can first evaluate the spectral expan-
sion coefficients and the double integral Dρ and store these
data on the hard drive of the computer. When evaluating the
gravity effects of a 2D polygonal body at an external point by
spectral-domain method, we read the coefficients and inte-
gral data from the hard drive.

The program codes using double precision were written
in Fortran 90. The codes compiled by the Intel Visual For-
tran Composer XE 2013 SP1 Update 1 executed at a PC
with an Intel Core i5-7300HQCPU and 16GBmainmemory
under the 64 bit Windows 10. The processor base frequency
and max turbo frequency of the Intel Core i5-7300HQ CPU
are 2.50GHz and 3.50GHz, respectively. For the logarithm
log10 |Value| of the plottings, we evaluate log10 |Value| using
the machine epsilon of the double-precision arithmetic to
avoid the singularity when Value = 0, saying at this point
Value = 2.220446049250313E−16 (2−52).

4.1 A 2D rectangular cylinder with quadratic density
contrast varying with depth

The first experiment refers to a 2D rectangular cylinder
body with 6 km wide and 1 km high at a depth of 1 km
(in Fig. 3), which has been investigated by Rao (1986b),
Zhang et al. (2001), D’Urso (2015) and Wu (2018b). We
denote (z0, x0) as the Cartesian coordinates of the initial
2D reference frame and choose a circle centred at the new
origin O: z0 = 1.5 km, x0 = 6 km. The radius of the cir-
cle is a = √

0.52 + 32 ≈ 3.0414 km to make the circle
enclose the 2D rectangular cylinder. Then, the range of the
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Fig. 4 Spectral expansion coefficients Cz
n and Szn (in m2 s−2) of the

gravity anomaly of the 2D rectangular cylinder body with quadratic
density contrast

calculable observation point along the line z0 = 0 km is
x0 = −∞ ∼ 3.3542 km, x0 = 8.6458 ∼ +∞ km. Due to
the symmetry of the rectangular cylinder, the gravity anoma-
lies at the symmetrical points of the two ranges are equal.
Since the converted relation of the coordinates between the
initial and new 2D Cartesian reference frames (in Fig. 3)
is: z = z0 − 1.5, x = x0 − 6, the density contrast of the
2D body in the new frame can be expressed as ρ(z, x) =
1.54 + 0.24z0 − 0.035z20 = 1.82125 + 0.135z − 0.035z2,
where the coordinates z, z0 are in km and the density is in
g cm−3, i.e. 103 kg m−3. Equation (25) of Zhou’s (2008)
paper using algebraic kernel is used to evaluate the grav-
ity anomaly of the 2D rectangular cylinder, which leads to
higher-precision results than Eq. (15) of Zhou’s (2008) paper
using arctangent kernel.

The executed time for evaluating the spectral expansion
coefficients Cz

n , S
z
n up to degree 360 and the double integral

Dρ is 0.00241 s (average cost for 1000 times executions). The
diagrams of the coefficients of degree n = 2−361 (N = 360)
are illustrated in Fig. 4. The coefficient Cz

n displays a peri-

odically damped oscillation which may be caused by the

factor
(

r ′
a

)n
cos(nθ ′) of the integral expression (18) of the

spectral expansion coefficient. Due to the symmetries of the
2D rectangular cylinder and the density contrast about the
vertical axis z0, for the two symmetric points (r ′, θ ′) and
(r ′, 2π − θ ′) inside the body the integrands of Eq. (19) are
opposite, and then, Szn = Sn = 0. In Fig. 4, the evaluated
values of Szn are very close to the true values zero. Because
the time costs for D’Urso (2015), Zhou (2008) and this work
are very short where the costs for the computation of Cz

n ,
Szn and Dρ and the data reading are not counted, we take
100,000 times repetitive executions for timing the computa-
tion of the gravity anomalies at the distances x0 = 8.6458,
10, 20, 30, 40, 50 km. Then, the computational costs for
D’Urso (2015), Zhou (2008) and this work are 2.391s,
8.703s and 19.580s, respectively. To verify the results by
using the spectral-domain method, we make the numerical
experiments with the degree N of the spectral expansion
and the distance x0 of the test point. The diagrams of the
gravity anomalies evaluated by spectral-domain method and
their relative errors compared with D’Urso (2015) and Zhou
(2008) varying with the degree N at the points x0 = 8.6458,
10, 20, 30, 40, 50 km are illustrated in Fig. 5, and their val-
ues at the degree N = 360 are given in Table 1. For the
point on the enclosed circle (x0 = 8.6458 km), the results
of the spectral expansions of the gravity anomalies at the
degrees N = 36, 360, 3600, 36,000, 360,000, 3,600,000
are listed in Table 2. Then, the gravity anomaly and its
relative error varying with the distance x0 = 8.6458−50
km of the test point are shown in Fig. 6. The accuracy
of the spectral expansion depends on the expanded degree
and the position of the observation point. We plot the
needed degrees of the spectral expansions of the gravity
anomalies with accuracy less than the levels |δgz/g0z | =
10−4, 10−6, 10−8, 10−10, 10−12, 10−14 for the rectangular
cylinder in Fig. 7, where g0z represents the result evaluated
by Zhou (2008) and δgz denotes the difference between Zhou
(2008) and this work.

Fig. 5 Gravity anomalies of the 2D rectangular cylinder bodywith quadratic density contrast evaluated by this work and the relative errors compared
with D’Urso (2015) and Zhou (2008) varying with the degree N at the distances x0 = 8.6458, 10, 20, 30, 40, 50km
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Table 1 Results of the gravity
anomalies (in mGal) of the 2D
rectangular cylinder body with
quadratic density contrast
evaluated by D’Urso (2015),
Zhou (2008) and this work at the
distances x0 = 8.6458, 10, 20,
30, 40, 50 km

Distance D’Urso (2015) Zhou (2008) This work

8.6458 3.760996323325587E+01 3.760996323325595E+01 3.761043896256746E+01

10 1.846931174199742E+01 1.846931174199742E+01 1.846931174199741E+01

20 1.156176206601073E+00 1.156176206601134E+00 1.156176206601134E+00

30 3.850183465302160E−01 3.850183465302944E−01 3.850183465302943E−01

40 1.907667659685217E−01 1.907667659685899E−01 1.907667659685898E−01

50 1.136516806423633E−01 1.136516806425216E−01 1.136516806425217E−01

The spectral expansions have been evaluated up to degree 360

Table 2 Results of the spectral expansions of the gravity anoma-
lies (in mGal) of the 2D rectangular cylinder body with quadratic
density contrast at the distance x0 = 8.6458 km up to the degrees
N = 36, 360, 3600, 36,000, 360,000, 3,600,000 and the relative errors
compared with Zhou (2008)

Degree N Gravity anomaly Relative error

36 3.761317333822328E+01 8.54E−05

360 3.761043896256746E+01 1.26E−05

3600 3.760995374472932E+01 2.52E−07

36000 3.760996318442201E+01 1.30E−09

360000 3.760996323326555E+01 2.55E−13

3600000 3.760996323325670E+01 2.00E−14

Figure 5 demonstrates the result of the spectral expan-
sion of the gravity anomaly converges with the degree N .
When the point moves away from the 2D rectangular cylin-
der body, the expansion converges faster. For the point near
the 2D body, we may need to expand the expansion at ultra-
high degree to obtain the high-precision result, which is
also shown in Table 2. For the computation of the coef-
ficients Cz

n , S
z
n up to degree N = 3,600,000, the cost is

31.095 s. From Fig. 6, the gravity anomaly evaluated by
spectral-domain method decreases with the distance of the
test point and has good accuracy compared with the analyt-
ical solutions of D’Urso (2015) and Zhou (2008). Figure 7
shows the needed degree Nd (Nd = N + 1) of the spec-
tral expansion of the gravity anomaly with accuracy less

Fig. 7 Needed degrees of the spectral expansions of the gravity anoma-
lies of the 2D rectangular cylinder body with accuracy less than the
levels |δgz/g0z | = 10−4, 10−6, 10−8, 10−10, 10−12, 10−14

than a level reduces with the distance and reaches a steady
value when the distance of the test point exceeds a certain
range (except for 10−14). The steady degrees with the levels
|δgz/g0z | = 10−4, 10−6, 10−8, 10−10, 10−12 for the 2D rect-
angular cylinder are 3, 5, 7, 9, 11, respectively. From Table 2
and Figs. 5, 6, we can see the relative error |δgz/g0z | (absolute
value) compared with Zhou (2008) is in 10−16−10−13 and
with D’Urso (2015) becomes larger when the test observa-
tion point relatively keeps away from the body, which may

Fig. 6 Gravity anomaly of the
2D rectangular cylinder body
with quadratic density contrast
evaluated by this work and the
relative errors compared with
D’Urso (2015) and Zhou (2008)
varying with the distance
x0 = 8.6458−50 km of the test
point. The spectral expansions
have been evaluated up to
degree 360
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Fig. 8 2D rectangular cylinder body divided into three small parts and
the three enclosed circles

be caused by the inaccuracy of the analytical method for the
observation point outside the body although the analytical
method is more accurate for the point near and inside the
body, see Sect. 4.4.

For the region between the boundary of the 2D polygonal
body and the smallest enclosed circle, the spectral expan-
sion may be divergent. Then, for the point in the range
x0 = 3.3542−8.6458 km, the spectral expansion may be
divergent. To evaluate the gravity anomaly at that point by
using spectral-domain method, we can split the body into
three same 2D rectangular cylinders (in Fig. 8). Then, we set
up three new local reference frames with the origins at the
geometrical centres of the three small cylinders and with the
vertical and horizontal axes coincident with the directions
of the z0-, x0-axes. Thus, the origins of the three new local
reference frames are O1: z0 = 1.5 km, x0 = 4 km, O2:
z0 = 1.5 km, x0 = 6 km and O3: z0 = 1.5 km, x0 = 8
km, and the radii of the three circles enclosed these small
cylinders are a1 = a2 = a3 = √

0.52 + 12 ≈ 1.1181 km.
The Cartesian coordinates of the three new reference frames
are: z1 = z0 − 1.5, x1 = x0 − 4, z2 = z0 − 1.5, x2 = x0 − 6,
z3 = z0 − 1.5, x3 = x0 − 8. For the small cylinders,
its internal density contrast can be written as ρ(z1, x1) =
ρ(z2, x2) = ρ(z3, x3) = 1.82125+0.135z−0.035z2, where
z1 = z2 = z3 = z.

For the nearest point x0 = 6 km, when the spectral expan-
sion is evaluated up to degree 90, the result of the gravity
anomaly of this paper reaches the accuracy 10−15. There-
fore, the degree of the spectral expansion can be taken as 90
to obtain the high-precision gravity anomaly along the line
z0 = 0 km. The executed time for evaluating the coefficients
Cz
n , S

z
n up to degree 90 and the integral Dρ is 0.00181 s (aver-

age cost for 1000 times executions). The time costs ofD’Urso
(2015), Zhou (2008) and this work for the computation of the
gravity anomalies at the distances x0 = 6, 10, 20, 30, 40, 50
km with 100,000 times executions are 2.423 s, 9.860 s and
11.032 s, respectively. Figure 9 shows thesemodelling results
and their relative errors compared with D’Urso (2015) and
Zhou (2008) varying with the degree N . Figure 10 shows
the gravity anomaly of the 2D rectangular cylinder which is
divided into three parts and its relative error varying with the
distance x0 = 0−50 km of the test point.

4.2 A 26-sided polygon body with quadratic density
contrast varying in both horizontal and vertical
directions

As shown in Fig. 11, the 2D source body is bounded by the
four curves: z0 = 0, x0 = f1(z0) = − 4− 0.07z0 + 0.3z20 +
0.01z30, z0 = 3 and x0 = f2(z0) = 4.5 + 0.5z0 − 0.2z20,
which has been studied by Martín-Atíenza and Garcia-
Abdeslem (1999), Zhou (2009b), D’Urso (2015) and Wu
(2018b). D’Urso (2015) approximated the boundary of the
body by a 26-sided polygon which is also tested in this
paper. The 26-sided polygon is produced by taking the seg-
ments every 0.25 km in vertical direction along the curves
x0 = f1(z0) and x0 = f2(z0). The centre and radius of the
circle enclosed the 26-sided polygon body can be chosen
as O: (1.5 km, 0.25 km) and a = 4.5774 km, respectively,
and then, the calculable range along the line z0 = 0 km is
x0 = −∞ ∼ − 4.0747 km, x0 = 4.5747 ∼ +∞ km. The
Cartesian coordinates in the new reference frame (in Fig. 11)
can bewritten as z = z0−1.5, x = x0−0.25.Hence, the den-
sity function of the 26-sided polygon body can be expressed
as ρ(z, x) = − 0.7 − 0.05x0z0 + 0.04x20 + 0.06z20 =
− 0.58125−0.055x +0.1675z−0.05xz+0.04x2 +0.06z2,
where the coordinates z, x, z0, x0 are in km and the density
is in g cm−3. In order to guarantee the numerical stability of
Zhou’s (2009b) algorithm when the observation point moves
away from the body, the gravity anomaly caused by the hori-
zontal density contrast should be calculated by Eq. (11) using
algebraic kernel instead of Eqs. (6) and (19) using logarith-
mic kernel, where in Eq. (19) of Zhou’s (2009b) paper we
take the function Z1(x, z) = z − (x − xi ) arctan( z

x−xi
).

The time cost for evaluating the spectral expansion coeffi-
cientsCz

n , S
z
n up to degree 360 and the double integral Dρ for

the 26-sided polygon body is 0.0174 s (average cost for 1000
times executions). The coefficients of degree n = 2−361 are
plotted in Fig. 12. The coefficients Cz

n and Szn of the 26-sided
polygonbody are periodically damped andoscillated because

of the factors
(

r ′
a

)n
cos(nθ ′) and

(

r ′
a

)n
sin(nθ ′) of the inte-

gral expressions of the spectral expansion coefficients. The
gravity anomalies of the 26-sided polygon body evaluated by
spectral-domain method and their relative errors compared
with D’Urso (2015), Zhou (2009b) varying with the degree
N at the distances x0 = 4.5747, 10, 20, 30, 40, 50 km are
plotted in Fig. 13, and their values with the degree N = 360
at these points are listed in Table 3. The time costs of D’Urso
(2015), Zhou (2009b) and this work for 100,000 times execu-
tions are 14.298 s, 103.585 s and 20.924 s, respectively. We
also plot the gravity anomaly of the 26-sided polygon body
the relative error varying with the distance x0 in Fig. 14. Fig-
ure 14 also demonstrates the relative errors between D’Urso
(2015) and this work and Zhou (2009b) increase when the
test point moves away from the body.
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Fig. 9 Gravity anomalies of the 2D rectangular cylinder body with quadratic density contrast evaluated by this work where the body is divided into
three parts, and the relative errors compared with D’Urso (2015) and Zhou (2008) varying with the degree N at the distances x0 = 6, 10, 20, 30,
40, 50km

Fig. 10 Gravity anomaly of the
2D rectangular cylinder body
with quadratic density contrast
evaluated by this work where the
body is divided into three parts,
and the relative errors compared
with D’Urso (2015) and Zhou
(2008) varying with the distance
x0 = 0−50km of the test point.
The spectral expansions have
been evaluated up to degree 90

Fig. 11 26-sided polygon body and the enclosed circle

4.3 A 2D rectangular cylinder with exponential
density contrast varying with depth

The final tested body refers to a 2D rectangular cylinder body
with exponential density contrast which has same geometry
as the one in Sect. 4.1. Its density function varying with
depth is chosen as (Cordell 1973; Wu 2019): ρ(z, x) =
2.67e−0.64z0 = 1.022324005553549e−0.64z , where the coor-
dinates z, z0 are in km and the density is in g cm−3.

Assuming Hn,Nk as the either component of the vector
Hn (namely the coefficient Cn or Sn) evaluated up to degree
Nk , we can take the true component Hn ≈ Hn,Nk when
Hn,Nk+1 = Hn,Nk in double-precision arithmetic, where the

Fig. 12 Spectral expansion coefficients Cz
n and Szn (in m2 s−2) of the

gravity anomaly of the 26-sided polygon body with quadratic density
contrast

accuracy (relative error) of Hn is in 10−16. Figure 15 shows
results of the first component of the vector Hn (Cn) and the
relative error δn,Nk = |(Hn,Nk+1 − Hn,Nk )/Hn,Nk | varying
with the index Nk at the degrees n = 1, 2 + 1, 22 + 1, 23 +
1, 24 + 1, 25 + 1. The diagrams of the second component
(Sn) are similar although the evaluated value of Sn is very
close to the true values zero for the 2D rectangular cylinder
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Fig. 13 Gravity anomalies of the 26-sided polygon body with quadratic density contrast evaluated by this work and the relative errors compared
with D’Urso (2015) and Zhou (2009b) varying with the degree N at the distances x0 = 4.5747, 10, 20, 30, 40, 50 km

Table 3 Results of the gravity anomalies (in mGal) of the 26-sided polygon body with quadratic density contrast by D’Urso (2015), Zhou (2009b)
and this work at the distances x0 = 4.5747, 10, 20, 30, 40, 50 km

Distance D’Urso (2015) Zhou (2009b) This work

4.5747 −1.378710163344763E+01 −1.378710163345298E+01 −1.378710015689995E+01

10 −1.902346463312671E+00 −1.902346463312636E+00 −1.902346463312635E+00

20 −4.049277173513020E−01 −4.049277173513463E−01 −4.049277173513470E−01

30 −1.718177122068687E−01 −1.718177122079499E−01 −1.718177122079505E−01

40 −9.456033527011175E−02 −9.456033527044234E−02 −9.456033527044240E−02

50 −5.975613750808435E−02 −5.975613750707243E−02 −5.975613750707222E−02

The spectral expansions have been evaluated up to degree 360

Fig. 14 Gravity anomaly of the
26-sided polygon body with
quadratic density contrast
evaluated by this work and the
relative errors compared with
D’Urso (2015) and Zhou
(2009b) varying with the
distance x0 = 4.5747−50km.
The spectral expansions have
been evaluated up to degree 360

Fig. 15 Results of the first
component of the vector Hn
(Cn) for the 2D rectangular
cylinder body with exponential
density contrast and the relative
error δn,Nk varying with the
index Nk at the degrees
n = 1, 2 + 1, 22 + 1, 23 +
1, 24 + 1, 25 + 1
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Fig. 16 Spectral expansion coefficients Cz
n and Szn (in m2 s−2) of the

gravity anomaly of the 2D rectangular cylinder body with exponential
density contrast

body. The executed time for evaluating the spectral expansion
coefficients Cz

n , S
z
n up to degree 360 and the double integral

Dρ is 0.578 s. The computational costs for evaluating the
gravity anomalies at the distances x0 = 8.6458, 10, 20, 30,
40, 50 km by Zhou (2008) and this work with 100,000 times
are 9.552 s and 20.393 s, respectively. Figure 16 shows the
coefficients Cz

n , S
z
n of degree n = 2−361, where Cz

n is also
periodically damped and oscillated and the evaluated values
of Szn are also close to the true value zero (Szn = Sn = 0).
Results of the gravity anomaly of the 2D rectangular cylin-

der body with exponential density contrast varying with the
degree N = 1−360 and the distance x0 = 8.6458−50 km of
the test point are presented in Figs. 17 and 18, respectively.

4.4 Numerical stabilities at remote observation
point

D’Urso (2015) indicated the result of the closed solution for
evaluating the gravity anomaly of a 2Dbodywith polynomial
density contrast at a remote point is inaccurate and this may
be caused by which the 2D body is approximately a point
source, analogous to the 3D case (Holstein and Ketteridge
1996;Holstein et al. 2007;Ren et al. 2018;Chen et al. 2019b).
In this section, the numerical experiments for the gravity
anomalies of the two 2D bodies in Sects. 4.1 and 4.2 (the 2D
rectangular cylinder body and the 26-sided polygon body
with quadratic density contrast) evaluated by D’Urso (2015)
and this work varying with the distance x0 = 50−5000 km
of the test point are implemented in Fig. 19, where the values
of the gravity anomalies of the two 2D bodies are limited in
[0, 3×10−5]mGal and [−1×10−4, 2×10−5]mGal, respec-
tively. The relative errors for the three bodies in Sects. 4.1, 4.2
and 4.3 between Zhou (2008, 2009b) and this work varying
with the distance x0 = 50−500,000 km are illustrated in
Fig. 20.

Figure 19 demonstrates the results of the gravity anoma-
lies of the 2D bodies evaluated by D’Urso (2015) have the
problem of oscillation at the point x0 = 50−5000 km. How-
ever, the spectral-domainmethod of this paper is numerically

Fig. 17 Results of the gravity
anomalies of the 2D rectangular
cylinder body with exponential
density contrast evaluated by
this work and the relative errors
compared with Zhou (2008)
varying with the degree N at the
distances x0 = 8.6458, 10, 20,
30, 40, 50km

Fig. 18 Results of the gravity
anomaly of the 2D rectangular
cylinder body with exponential
density contrast evaluated by
this work and its relative error
compared with Zhou (2008)
varying with the distance
x0 = 8.6458−50 km of the test
point. The spectral expansions
have been evaluated up to
degree 360
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Fig. 19 Results of the gravity anomalies of the 2D rectangular cylinder body and 26-sided polygon body with quadratic density contrast by D’Urso
(2015) and this work and the relative errors varying with the distance x0 = 50−5000 km of the test point. The spectral expansions have been
evaluated up to degree 360

Fig. 20 Results of the gravity
anomaly evaluated by the
spectral-domain method and the
relative errors compared with
Zhou (2008) or Zhou (2009b)
varying with the distance
x0 = 50−500,000 km of the test
point. The spectral expansions
have been evaluated up to
degree 360

stable at these points. The spectral expansion of the grav-
ity effects of a 2D body is determined by the radius r and
the angle θ of the observation point and is convergent with
needing to expand at fewer degree for the point of larger dis-
tance. Therefore, the result of the gravity anomaly of this
work remains accurate in theory when the observation point
moves away from the 2D body. Figure 20 also illustrates the
space-domain algorithm evaluating the line integral using
numerical integration (Zhou 2008, 2009b) is high accurate
for the remote observation point and highly coincident with
the spectral-domain algorithm. The differences increasing
with the distance in Fig. 20 may be caused by the machine
error of double-precision arithmetic (about 2.22E−16), and
quadruple precision arithmetic can be used to get higher-
precision resultswhosemachine error is about 1.93E−34, i.e.
having about 34 significant digit. The arctan kernel Z1(x, z)
inZhou’s (2009b) papermay lead to the slightly larger growth
for the 26-sided polygon body with quadratic density con-
trast (in Fig. 20). The reasons for the numerical stabilities
may be that both the integrands of the numerical integrations
in Eq. (25) of Zhou’s (2008) paper and Eqs. (11) and (19)
(excluding the logarithmic kernel) of Zhou’s (2009b) paper
and the factor

( a
r

)n in the spectral expansion of this paper
converge with the distance of the observation point increas-
ing.However, each dot product containing the position vector

of the observation point in Eq. (86) of D’Urso’s (2015) paper
diverges with the distance increasing, and then, the algorithm
may be numerical ill-conditioning for large distance. Due to
the same reason, Zhang’s et al. (2001) and Zhou’s (2010)
algorithms are also numerically instable at the remote obser-
vation point.

5 Conclusions

The spectral-domain approach based on the 2D Laplace’s
equation for evaluating the gravity effects of a 2D body
with constant, polynomial and exponential density models
has been proposed and extended to the normalized case for
numerical stabilities. We also presented the spectral-domain
algorithm for the mass body approximated by a 2D poly-
gon. For the applicability of the spectral-domain method
to gravity forward computation, the surface integral expres-
sions of the spectral expansion coefficients are given. Once
the spectral expansion coefficients and the double integral
of the density function are obtained, the gravitational attrac-
tion, gravity gradient tensor and higher-order derivatives can
be immediately evaluated. The numerical experiments show
the spectral-domain algorithm is high accurate for the exter-
nal observation point, e.g. 13–16 digits achievable precision
for the gravitational attraction.
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Although the closed solution in space domain for the
gravity anomaly of the 2D body with polynomial density
model (Zhang et al. 2001; Zhou 2010; D’Urso 2015) is
fastest, it is numerically instable for the remote observation
point. The space-domain method using numerical integra-
tion (Zhou 2008, 2009b) and the spectral-domain method
are stable for arbitrary external observation point. Zhou’s
(2008; 2009b) algorithms are suitable for evaluating the
gravity anomaly of the 2D body with exponential density
model varying in a single dimension z or x . However, for
the exponential density model varying in both horizontal
and vertical directions, the integrals in Eqs. (18) and (19)
of Zhou (2009b)’s paper are hard to be obtained. Then, the
Zhou (2008, 2009b)’s algorithms may do not work for this
case. The spectral-domain method in this paper can han-
dle the constant, polynomial and exponential density models
in both horizontal and vertical directions, and the gravita-
tional attraction and its arbitrary-order derivatives. For the
region between the boundary of the 2D body and the smallest
enclosed circle, the spectral-domain method may be diver-
gent. In order to reduce the possible non-convergence region,
we can split the body into small ones, as shown in the numer-
ical experiments of this paper, and we can also apply the
elliptical harmonic method (van Gelderen 1992) which will
be considered in future works. Compared to the closed-form
solutions having declined accuracies when the point moves
away from the body (D’Urso andTrotta 2017;Ren et al. 2018;
Chen et al. 2019b), the space-domain approach using numer-
ical integration and the spectral-domain approach based on
the 2D/3D Laplace’s equation are more suitable for accu-
rate forward computation of the external gravity effects of
the 2D/3D body. The Fourier-domain approach evaluating
the Fourier spectrum using numerical method can also be
applied to obtain the forward modelling results and is high
accurate for the observation point near the 2D body (Wu
2018b). Although there was no numerical test for the remote
point in Wu’s (2018b) paper, the Fourier-domain method
may be numerically stable at this point including the 2D and
3D case because of the numerical computation of the Fourier
spectrum. For the 3D body, the Fourier-domain method can
produce the forward results with a few significant digits (Wu
2018b, 2019). Moreover, it should be noted that the obser-
vation point is usually not too far from the cross section for
common actual applications due to the approximation of the
3D parallel body by the 2D bodymodel, and then, the numer-
ical and analytical methods can be both applied to the 2D
gravity forward problems.
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