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Abstract
In the absence of a global navigation satellite system, a ground-based positioning system can provide stand-alone positioning
service and has advantages in layout flexibility of terrestrial base stations that broadcast ranging signals. To realize precise point
positioning (PPP) in ground-based positioning systems, the carrier phase ambiguity must be determined for the receiver. On-
the-fly (OTF) ambiguity determination methods are desirable for their convenience in practice. In most existing OTFmethods
based on the initial position estimate obtained from code measurements or other measuring instruments, the nonlinear term
representing true distances are linearized by a series expansion. However, due to the severe nonlinear effects, if the accuracy
of the initial position estimate is relatively poor, such linearization will result in large errors and convergence difficulties.
Moreover, the more accurate initial estimate a method requires, the more inconvenient it will be. To avoid the dependence on
the initial estimate, we proposed a combined difference square (CDS) observation and it provides a framework to eliminate the
nonlinear terms in the difference square observations by linear combination. Based on this, a rotational-symmetry CDS (RS-
CDS) observation-based ambiguity determination method is proposed, which needs no a priori information or reliable code
measurements and is especially suitable for dynamic applications. In addition, it does not require accurate time synchronization
of base stations, making the deployment of the overall system easier. The numerical simulations show that geometry diversity
effectively improves the performance of ambiguity determination. Two real-world experiments indicate that the proposed
method enables PPP for ground-based positioning systems without accurate time synchronization.

Keywords Ambiguity determination · Ground-based positioning system · Precise point positioning

1 Introduction

Global navigation satellite systems (GNSSs) have been
widely used inmany areas ofmodern society.Due to theweak
signal strength, GNSSs are quite vulnerable to interferences
or may even be unavailable in shadowed regions. How-
ever, many applications drive up demand for high-precision
positioning in global navigation satellite system (GNSS)
unavailable situations.
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Decades ago, researchers proposed the concept of pseu-
dolites to improve the performance of GPS (Beser and
Parkinson 1982). The terrestrial base stations broadcast-
ing ranging signals can be flexibly deployed, and recently,
researchers have developed various ground-based systems
that cooperate with GNSS or provide stand-alone position-
ing service (Wang 2002). These systems have been used in
many applications, such as aircraft landing, vehicle naviga-
tion, indoor positioning and so on (Cobb 1997; Barnes et al.
2003; Lee et al. 2003; Kee et al. 2003; Kiran and Bartone
2004; Lee et al. 2005; Niwa et al. 2008; Khan et al. 2010;
Jiang et al. 2013;Montillet et al. 2014; Jiang et al. 2015;Yang
et al. 2015; Montillet et al. 2009;Wang et al. 2018; Guo et al.
2018; Wang et al. 2019).

In GNSS unavailable situations, several recent researches
have shown that by using carrier phase measurements,
ground-based positioning systems can realize stand-alone
precise point positioning (PPP) (Barnes et al. 2003; Guo et al.
2018; Montillet et al. 2009; Wang et al. 2019).
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The premise of using carriermeasurements is to determine
carrier phase ambiguities, and for ground-based positioning,
there have been a number of ambiguity determination meth-
ods. The known point initialization (KPI) method directly
determines the ambiguities via the known coordinates of ini-
tial point(s) (Montillet et al. 2009). However, it is difficult to
obtain the accurate coordinates of initial points in dynamic
applications.

There have been several methods that require approximate
initial coordinates. Based on the ambiguity function method
(AFM), Li et al. (2017) proposed a single-epoch ambiguity
resolution method for indoor pseudolite system, and their
experiments proved that it worked well with an initial coor-
dinate precision better than 0.2 m.

In the dynamic key point initialization (DKPI) method,
the coordinates of several initial points are required to be
known in advance, although they do not need to be accurate
(Guo et al. 2018). The coordinates of the initial points can
be obtained by other measuring instruments, but this creates
inconvenience in practical applications.

Another kind of method is independent of a prior informa-
tion regarding initial points and is referred as the on-the-fly
(OTF) method. The OTFmethod utilizes geometric diversity
to improve the accuracy of ambiguity determination. In Amt
(2006) and Bertsch et al. (2009), the ambiguity determina-
tion is based on a nonlinear batch least-squares estimation.
In Lee et al. (2005) and Jiang et al. (2013), the ground-based
system is integrated with an inertial navigation system, and
an extended Kalman filter is used to determine ambiguities.

In these OTF methods, the approximate linear expansion
is used, which is based on the initial estimate obtained from
code measurements. However, poor accuracy of code mea-
surements can result in large errors of initial estimate. Due to
the potential severe nonlinear effects in ground-based appli-
cations, the linear expansion based on a poor estimate will
lead to divergence in the computation, and in this case, the
OTF methods will suffer from convergence difficulties (Dai
et al. 2001; Jiang et al. 2013).

Recently, based on the double difference square (DDS)
observation, a new OTF method is proposed in Wang et al.
(2019). It involves only carrier phasemeasurements and does
not relies on code measurements. In this method, however,
the receiver is required to be static for a period of time to
estimate the clock model. Such a requirement might limit
the application of this method, although it needs no other
measuring instruments. For example, an aircraft cannot be
stationary in the air and a vehicle cannot be stopped arbitrar-
ily.

In this research, we first propose a new generalized com-
bined observation called combined difference square (CDS)
for ambiguity determination in ground-based positioning
system, of which DDS observation can be seen as a special
case. Based onCDS,we further derive a rotational-symmetry

combined difference square (RS-CDS) ambiguity determina-
tion model in which the clock model parameter is taken as a
variable and estimated jointly with the ambiguities.

The proposed RS-CDS observation makes it unnecessary
to estimate the clock model in advance and overcomes the
shortcomings of DDS. This advantage makes our method
more convenient, especially for dynamic applications.

The proposed RS-CDS observation eliminates nonlinear
terms of the receiver’s coordinates by linear combination and
square, instead of series expansions based on the initial posi-
tion estimate. In addition, the RS-CDS observation is proved
to be the combination of a minimum number of difference
square observations. It is an important design objective since
combining more observations can increase the noise signifi-
cantly.

In the proposed ambiguity determination method, an
initial solution of single difference (SD) generalized ambi-
guities is first obtained from the RS-CDS model, based on
which a refined solution with higher accuracy is then deter-
mined by iteration.

On the other hand, although the clocks of base stations
can be synchronized in wired or wireless ways (Barnes et al.
2003; Guo et al. 2018; Wang et al. 2019), it is difficult to
guarantee that there are exactly no clock differences. More
often, there are constant clock differences even with syn-
chronization techniques, and this case is called frequency
synchronization in this research. Similar to those inGuo et al.
(2018) and Wang et al. (2019), the proposed method allows
constant clock differences of base stations. In other words,
only frequency synchronization is needed, and this reduces
the complexity of system implementation and deployment.

It is shown by a series of numerical simulations that
the geometry changes significantly improve the accuracy of
ambiguity determination. In addition, two real-world exper-
iments were carried out to demonstrate the centimeter-level
positioning accuracy of the proposed method. In the first
experiment, the receiver antenna was fixed on the turntable
thus repeating circular motion. In the second experiment, the
receiver was installed on a wheeled robot performing irregu-
lar movements instead of a circular motion. The experiment
results demonstrate that our method enables PPP without
code measurements or a priori information of initial points
and is suitable for dynamic applications.

2 Basic carrier phasemeasurement model

A typical ground-based positioning system usually includes
several base stations and receiver(s). The base stations are
static, and their coordinates can be accurately measured in
advance. The receiver obtains carrier measurements from the
ranging signals broadcast by the base stations, and its motion
provides geometry diversity for the ambiguity determination.
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Before introducing the carrier measurement model, some
assumptions are made. First, for ground-based positioning
systems, the occurrence of a cycle slip will degrade the posi-
tioning accuracy, and there have been some researches on this
issue. Lee et al. (2003) introduced the inertial navigation sys-
tem measurements to aid the cycle slip detection. The C/N0

of the received signal can serve as an indicator to detect cycle
slips (Niwa et al. 2008).Montillet et al. (2009) andKhan et al.
(2010) used the double difference of carrier phase measure-
ments as a detection indicator, while Montillet et al. (2014)
proposed to further improve the detection performance with
multi-frequency and multi-antenna hardware.

However, this research is focused on the ambiguity deter-
mination, and it is assumed that there is no cycle slip or loss
of signal lock during the motion like earlier researches (Amt
2006; Bertsch et al. 2009; Guo et al. 2018;Wang et al. 2019).
In other words, the carrier phase ambiguity is considered to
be invariant.

In addition, frequency synchronization is assumed: the
base stations are synchronized in wired or wireless ways
(Guo et al. 2018; Barnes et al. 2003; Wang et al. 2019), but
there are still constant clock differences.

With the assumptions above, the carrier phase measure-
ment φi

k at the kth epoch is formulated as

φi
k = λ−1‖si − uk‖ + Ni − fcδti + fcδt

u
k + wi

k (1)

where λ represents the wavelength and si represents the
coordinates of the i th base station. fc represents the carrier
frequency. Ni and δti denote the corresponding ambiguity
integer and clock difference, respectively. uk and δtuk rep-
resent the receiver’s coordinates and clock difference at kth
epoch, respectively. wi

k represents other unmodeled errors,
including thermal noise, multi-path error, etc.

The SD observation can eliminate the clock difference
of the receiver and has been widely used in ground-based
positioning. The SDobservationφ

i j
k is obtained by difference

between the i th and j th base stations, that is

φ
i j
k = φi

k − φ
j
k

= λ−1(‖si − uk‖ − ‖s j − uk‖) + Ni j − fcδti j + w
i j
k
(2)

where Ni j = Ni − N j , δti j = δti − δt j , and w
i j
k = wi

k −w
j
k .

To determine carrier phase ambiguities, existing OTF
methods usually linearize nonlinear terms ‖si − uk‖ in (2)
by a series expansion. Due to the severe nonlinearity in these
terms, however, the poor accuracy of codemeasurements can
lead to convergence difficulties (Dai et al. 2001; Jiang et al.
2013).

The DDS model proposed in Wang et al. (2019) only uses
carrier measurements and avoids using code measurements.

However, it requires the receiver to be static for a period of
time and is quite limited in dynamic applications. In the next
section, it will be shown that the DDS observation is a special
CDS observation, and the RS-CDS observation is proposed
to overcome this drawback.

3 Ambiguity determination based on RS-CDS
observation

3.1 Difference square observation

The aforementioned shortcoming of most existing methods
comes from the series expansion. Instead, in this research,
the CDS observation is introduced to eliminate the quadratic
term of the receiver’s coordinates. Before introducing the
CDS observation, we give a review of the derivation of dif-
ference square (DS) observation inWang et al. (2019), which
is defined as

yi jk = (φi
k)

2 − (φ
j
k )

2. (3)

The clock difference of the receiver δtuk can be further
modeled as

δtuk = δtu0 + kτ + ek (4)

where δtu0 denotes the initial clock bias, and ek denotes the
unmodeled error. Herein, τ = FTs where F and Ts denote
the frequency offset and the sampling interval of the receiver,
respectively. The definition of the frequency offset can be
found in Lombardi (2002).

In addition, the generalized ambiguity zi that incorporates
the clock differences of the receiver and the i th base station
is defined as

zi = Ni − fcδti + fcδt
u
0 . (5)

Putting (5) and (4) into (1), it can be obtained that

φi
k = λ−1‖si − uk‖ + zi + fckτ + fcek + wi

k (6)

Then, the carrier measurement is squared as follows:

(φi
k − zi − fcτk)

2 = (λ−1‖si − uk‖ + fcek + wi
k)

2. (7)

With somemanipulations, the square of carrier phasemea-
surement is written as

(φi
k)

2 = λ−2‖si − uk‖2
+ 2φi

k(zi + fcτk) − (zi + fcτk)
2 + 2nik (8)
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where

nik = λ−1‖si − uk‖(wi
k + fcek). (9)

Here, the higher-order term of the error is ignored since it is
considered to be far less than the true distance.

With (8), it can be obtained that

yi jk = λ−2(si − s j )T(si + s j − 2uk) + 2φi
k zi − 2φ j

k z j

+ 2φi j
k fcτk − z2i + z2j − 2 fcτk(zi − z j ) + 2ni jk

(10)

where ni jk = nik − n j
k .

3.2 Combined difference square observation

It can be seen that the unknown variables in (10) are the
receiver’s coordinates uk , the clock parameter τ , the general-
ized ambiguities zi and z j . Accordingly, the terms in the right
side of (10) are divided into linear, nonlinear and noise terms.
For the sake of discussion, the DS observation is rewritten as

yi jk = αi j + kβi j + γ
i j
k + 2ni jk (11)

where αi j = −z2i + z2j and βi j = −2 fcτ(zi − z j ). It can be

seen thatαi j andβi j are nonlinear terms, while γ
i j
k represents

the linear terms.
It should be pointed out that in (11), αi j and βi j do not

change with the receiver’s motion. Therefore, these nonlin-
ear terms can be eliminated by the linear combination of DS
observations at different epochs. The definition of the com-
bined difference square (CDS) observation is

yi jk1k2···km =
∑m

l=1
akl y

i j
kl

(12)

where k1 �= k2 �= · · · �= km and akl �= 0.
It is necessary to determine the combination numberm and

the coefficients {akl }ml=1. To eliminate the nonlinear terms, the
coefficients should satisfy

⎧
⎨

⎩

∑m
l=1 akl = 0

∑m
l=1 klakl = 0

(13)

It is not difficult to see that as long as m is large enough,
solutions of (13) can be found. However, similar to the case
of GNSS, it increases the noise by combiningmultiple obser-
vations. For this reason, it is a design principle to use as few
observations as possible.

Let us start with m = 2, in which case the CDS observa-
tion can be written as yi jk1k2 = ak1 y

i j
k1

+ ak2 y
i j
k2
. It needs to

determine ak1 and ak2 that make both of coefficients of αi j

and βi j to be zero. This is equivalent to solving the following
equations

{
ak1 + ak2 = 0

k1ak1 + k2ak2 = 0
(14)

It is not difficult to obtain that (14) has only a trivial solution
(ak1 , ak2) = (0, 0).

It should be pointed out that the DDS observation inWang
et al. (2019) is a combination of two DS observations with
(ak1 , ak2) = (1, −1). In this way, the DDS observation does
not eliminate the nonlinear term βi j . Instead, the parameter
τ is estimated in advance and then βi j can be considered a
linear term. However, the static state is not always available
in practical applications, especially when the movement of
the receiver cannot be stopped.

The DDS observation satisfies the second equation in (14)
and takes βi j as linear terms with known τ . Inspired by this,
one might try to propose another CDS observation withm =
2 that only satisfies the first equation in (14). However, αi j

cannot be considered as linear terms until the generalized
ambiguities have been determined, which is a trivial case.

Therefore, taking the clock parameter τ as an unknown
variable, the CDS observation with m = 2 is not feasible.
Then, theCDSobservation yi jk1k2k3 = ak1 y

i j
k1

+ak2 y
i j
k2

+ak3 y
i j
k3

is considered, i.e., m = 3. In this case, the coefficients ak1 ,
ak2 and ak3 should satisfy the following equations

{
ak1 + ak2 + ak3 = 0

k1ak1 + k2ak2 + k2ak3 = 0
(15)

The general solution of (15) can be written as

(ak1 , ak2 , ak3) = c(k2 − k3, k3 − k1, k1 − k2) (16)

where c is an arbitrary nonzero coefficient. Let c = 1, and
in this case, the CDS observation yi jk1k2k3 with (16) can be
written as

yi jk1k2k3 = (k2 − k3)
[
(φi

k1)
2 − (φ

j
k1

)2
]

+ (k3 − k1)
[
(φi

k2)
2 − (φ

j
k2

)2
]

+ (k1 − k2)
[
(φi

k3)
2 − (φ

j
k3

)2
]
. (17)

According to the rotational symmetry of (k1, k2, k3), the
observation defined in (17) is named as the rotational-
symmetry CDS (RS-CDS) observation.

Putting (10) into (17), the RS-CDS observation yi jk1k2k3 can
be expressed as

yi jk1k2k3 = − 2λ−2(si − s j )Txk1k2k3 + 2φi
k1k2k3 zi

− 2φ j
k1k2k3

z j + 2 fcφ
i j
k1k2k3

τ + 2ni jk1k2k3 (18)
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where

xk1k2k3 = (k2 − k3)uk1 + (k3 − k1)uk2 + (k1 − k2)uk3
φi
k1k2k3 = (k2 − k3)k1φ

i
k1 + (k3 − k1)k2φ

i
k2 + (k1 − k2)k3φ

i
k3

φ
i j
k1k2k3

= (k2 − k3)k1φ
i j
k1

+ (k3 − k1)k2φ
i j
k2

+ (k1 − k2)k3φ
i j
k3

ni jk1k2k3 = (k2 − k3)n
i j
k1

+ (k3 − k1)n
i j
k2

+ (k1 − k2)n
i j
k3

.

It should be pointed out that in (18), the combination of
uk1 , uk2 and uk3 , denoted as xk1k2k3 , is taken as one variable.
In addition, according to the definition in (5), the general-
ized ambiguities zi and z j should be float values instead of
integers.

From the above analysis, it can be seen that theCDSobser-
vation involves only carrier phasemeasurements anddoes not
require accurate time synchronization of base stations.

The RS-CDS observation is proved to have the minimum
number of combined terms, taking the clock parameter τ as a
variable. Although more complicated CDS observations can
be obtained in similar ways, the proposed SD generalized
ambiguity determination method in this research is based on
the RS-CDS observation, considering that combining more
observations can increase the noise.

3.3 SD Generalized ambiguity determination

It can be seen that the unknown terms in (18) are xk1k2k3 ,
τ , zi and z j , and the RS-CDS observation model is linear.
Assuming that there are enough base stations, since τ and
zi (1 ≤ i ≤ L) do not change with the receiver’s motion,
the movement of the receiver will make the problem solv-
able. The receiver can obtain K L carrier measurements at K
epochs, and the RS-CDS observations are then generated as
follows.

Here, we let k2 = 1 and k3 = K , while other values can
be alternative. Let j = 1, and at the kth epoch, the L − 1
RS-CDS observations are written in vector form as

yk = Akz + Bkxk1K + ckτ + nk (19)

where

yk =
[
y21k1K y31k1K · · · yL1k1K

]T

Ak = 2

⎡

⎢⎢⎢⎣

−φ1
k1K φ2

k1K−φ1
k1K φ3

k1K

−φ1
k1K

. . .

−φ1
k1K φL

k1K

⎤

⎥⎥⎥⎦

z = [z1 z2 · · · zL ]
T

Bk = −2λ−2 [s2 − s1 s3 − s1 · · · sL − s1]T

ck = 2 fc
[
φ21
k1K φ31

k1K · · · φL1
k1K

]T

nk = 2
[
n21k1K n31k1K · · · nL1k1K

]T
.

The additional RS-CDS observations obtained at the same
positions do not contribute to geometric diversity and are
considered to be almostmeaningless.Detailed discussion can
be found in “Appendix A.” For this reason, it is assumed that
all RS-CDS observations are obtained at different positions.
Then, all RS-CDS observations can be written as

y = Az + Bx + cτ + n (20)

where

y =
[
yT2 yT3 · · · yTK−1

]T

A =
[
AT
2 AT

3 · · · AT
K−1

]T

B =

⎡

⎢⎢⎢⎣

B2

B3
. . .

BK−1

⎤

⎥⎥⎥⎦

c =
[
cT2 cT3 · · · cTK−1

]T

x =
[
xT21K xT31K · · · xT(K−1)1K

]T

nk =
[
nT2 nT3 · · · nTK−1

]T
.

In (20), the total number of RS-CDS observations is
(L−1)(K−2) and the unknownvariables include K−2 com-
bined coordinates, L generalized ambiguities and the clock
parameter τ . For D-dimensional positioning, the solvability
condition for a RS-CDS model is obtained as

(L − 1)(K − 2) ≥ L + 1 + D(K − 2). (21)

This condition can be decomposed into two inequalities

L ≥ D + 2 (22)

K ≥ 2L − D

L − D − 1
+ 1. (23)

It can be seen that to make the RS-CDS model solvable, the
minimum number of base stations is D + 2.

The generalized ambiguities can be estimated by solving
the following equation

ẑ = argmin
z, x, τ

‖y − Az − cτ − Bx‖Q (24)

where ‖·‖2p = (·)TP−1(·) and Q = E{nnT} represents the
noise covariance matrix. As can be seen from (9), the expres-
sion of the noise term is related to the true distances that are
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not accessible. Therefore, an approximate expression ofQ is
derived in the “Appendix B.” It is a simple alternative to use
an identity matrix but not recommended.

The RS-CDS observation combines the squares of six
carrier measurements, and meanwhile, the noise level is
increased. Hence, if a refined solution is needed, the refine-
ment of the estimate given by (24) can be performed based
on SD observations.

Putting (5) into (2), the SD observation can be rewritten
as

φ
i j
k = λ−1(‖si − uk‖ − ‖s j − uk‖) + zi j + w

i j
k (25)

where zi j is the SD generalized ambiguity

zi j = zi − z j = Ni j − fcδti j . (26)

Rewrite all SD generalized ambiguities in vector form as

zSD = [z21 z31 · · · zL1]
T . (27)

From the estimate ẑ given by (24), ẑSD which is referred to
as the initial solution can be easily obtained, as well as the
initial position estimates.

Taking ẑSD as the initial input, a refined solution with high
accuracy can be obtained by solving the following problem

zSD = argmin
z, u

‖φ − ρ(u) − zSD‖R (28)

where u = [uT1 uT2 · · · uTK ]T, φ = [φT
1 φT

2 · · · φT
K ]T

and ρ(u) = [ρT
1 (u1) ρT

2 (u2) · · · ρT
K (uK )]T. Here, φk =

[φ21
k φ31

k · · · φL1
k ]T denotes the vector composed by the L−1

SD observations at kth epoch, while ρk(uk) = [‖s2 − uk‖ −
‖s1−uk‖ ‖s3−uk‖−‖s1−uk‖ · · · ‖sL −uk‖−‖s1−uk‖]T
denotes the vector consisting of corresponding distance dif-
ferences.

In (28), R denotes the noise covariance matrix of all SD
observations. If the autocovariance of the SD observation,
denoted as σ 2

φ , is assumed to be twice as large as the covari-
ance, R can be deduced to be

R =

⎡

⎢⎢⎢⎣

R1

R2
. . .

RK

⎤

⎥⎥⎥⎦ (29)

where

Rk = 1

2

⎡

⎢⎢⎢⎣

2σ 2
φ σ 2

φ · · · σ 2
φ

σ 2
φ 2σ 2

φ · · · σ 2
φ

...
...

. . .
...

σ 2
φ σ 2

φ · · · 2σ 2
φ

⎤

⎥⎥⎥⎦ . (30)

The proposed method is summarized in the following algo-
rithm.

Algorithm 1

1. RS-CDS model: Move the receiver and obtain the RS-CDS
observations from original carrier phase measurements;
2. Initial solution: Obtain the initial solution from problem (24)
that integrates all RS-CDS observations;
3. Refined solution: Based on the initial solution given by the
previous step, solve problem (28) to obtain the refined solution of
SD generalized ambiguities.

Compared with the earlier method based on the DDS
observation (Wang et al. 2019), Algorithm 1 does not require
the receiver to be stationary to estimate τ or F in advance. It
can be applied to dynamic applications, such as high-speed
moving vehicles, aircraft and ships.

It should be noted that the ambiguity solution given by
Algorithm 1 refers to the SD generalized ambiguities zi j ,
rather than Ni j , and it does not estimate the clock difference
of the receiver. It can be seen from (25) that once zi j are
known, the SD observation can be used for positioning. In the
following simulations and experiments, the accuracy of the
ambiguity solution refers to the SD generalized ambiguity.

4 Numerical simulations

4.1 Influences of geometry changes

This numerical simulation will show the influence of the
geometry diversity on the performance of our method. The
signal carrier frequency is set as 2465.43MHz and the data
output rate of the receiver, denoted as fs , is 10Hz.

According to several previous researches, the standard
deviation (STD) of the measurement noise wi

k in (6) is
assumed to be 0.04 cycles (Amt 2006; Bertsch et al. 2009;
Wang et al. 2019). The STD of fcek in (6) is set as 0.04 cycles
according to the real-world experiment results (Wang et al.
2019). Since establishing an accurate distribution of the error
terms can be very tricky, both error terms are assumed to obey
zero mean Gaussian distribution like earlier researches (Amt
2006; Bertsch et al. 2009; Wang et al. 2019).

As shown in Fig. 1, six base stations marked by blue tri-
angles are located in a space of 20m by 20m by 3m. The
receiver is assumed to move along a horizontal circle for 10 s
at an angular velocity of 0.2π rad/s. The center of the circle
is at (0, 0, 0). The minimum radius is 3m, depicted by the
red solid line in Fig. 1, while the maximum radius is 6m,
depicted by the yellow dashed line with stars. The radius
R is increased in 1m, and 100 trials with each radius are
performed.

123



Combined difference square observation-based ambiguity determination for ground-based… 1873

BS3(10,10,0)

0
10

BS4(-10,10,0)

1Z(
m

) 2

BS5(0,10,3)

Y(m)

3

0
10

X(m)

50

BS2(10,-10,0)

BS6(-10,0,2)

-5-10

BS1(-10,-10,0)

-10

Base station
Trajectory, R=3m
Trajectory, R=6m

Fig. 1 Diagram of the receiver trajectory and positions of base stations
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Fig. 2 RMSE of F of the initial solutions with different radii

Figure 2 shows the RMSE of F for the initial solutions
with different radii. The horizontal axis represents the lap
counts of the receiver’s motion. It can be seen that the estima-
tion of F is improvedwith the increase of geometry diversity,
and in all cases, the estimation error is smaller than 0.01ppm.
In addition, a larger radius means more significant geometry
changes, and the estimation accuracy with a larger radius is
better than that with a smaller radius.

TheRMSEofSDgeneralized ambiguities of the initial and
refined solutionswith different radii is shown inFig. 3, aswell
as the Cramer–Rao lower bound (CRLB) of the estimation
given by problem (28).

It can be clearly seen that as the receiver turns, the
RMSE of both ambiguity solutions and CRLB gradually
decreases. In addition, a larger radius results in smaller
RMSE. This again indicates that the increase in geometric
diversity improves the accuracy of the ambiguity determina-
tion.

On the other hand,when the receiver only reaches 0.2 laps,
the RMSE of the refined solution exceeds 100 cycles and is
much larger than that of the initial solution. This is due to the
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Fig. 3 RMSE of the initial and refined solutions of SD generalized
ambiguities with different radii
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Fig. 4 ADOP of SD generalized ambiguities with different number of
base stations

fact that when the range of motion is small, the accuracy of
the initial solution is so poor that the linearization in solving
(28) brings serious errors. In this case, the performance of
the refined solution is far from the CRLB.

After the receiver motion reaches 0.5 laps, the estimation
error of the refined solution is much smaller than that of the
initial solution, and is quite close to CRLB. The RMSE of
the refined solution is less than 0.1 cycles or 1.22cm after
one lap.

In addition, the geometry diversity of the base stations
also has a crucial influence on the estimation performance.
Figure 4 shows the ambiguity dilution of precision (ADOP)
with different numbers of base stations (Teunissen and Odijk
1997). For L = 6, the configuration is the same as in Fig. 1.
For L = 5, BS4 is removed, while for L = 7, an additional
base station is assumed to be located at (0, −10, 1).
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Fig. 5 RMSE of the initial and refined solutions of SD generalized
ambiguities with different data output rates and noise levels

It can be seen from Fig. 4 that additional base station
increases the geometry diversity and leads to better estima-
tion performance. In L = 7 case, the ADOP is smallest,
while in all cases, the ADOP decreases with the receiver’s
motion. It can be said that the additional base station and
the receiver’s motion can increase the geometry diversity,
decrease ADOP and improve the estimation performance of
SD generalized ambiguities.

4.2 Influences of sampling rate and noise level

In this simulation, the influences of data output rate fs and
noise level are investigated. The configuration of the base
stations is the same as in Fig. 1. The receiver moves along
the horizontal circle with R = 3m.

The data output rate increases from 5 to 20Hz, i.e., K
increases from 50 to 200, which means the sampling points
are more densely distributed since the trajectory is constant.
In addition, the STD of the carrier measurement noise in (1)
increases from 0.01 to 0.05 cycles, and it is assumed to be
the same as that of the unmodeled error in (4).

The RMSE of the initial and refined solutions are depicted
in Fig. 5. The solution at the end of one lap is considered,
and 100 trials are performed for each sample rate and noise
level. As can be seen, the larger the noise, the larger the error.

Additionally, when fs increases from 5 to 10Hz, K
increases from 50 to 100, and the RMSE of both solutions
is significantly improved. Nevertheless, when fs increases
from 15 to 20Hz, K increases from 150 to 200, but the
improvement is not so significant. This is due to the fact that
when the trajectory is constant, excessively increasing the
data output rate will hardly improve the geometric diversity.

This simulation shows that the performance of our ambi-
guity determination method is improved by increasing the
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Fig. 6 RMSE of the initial solutions of SD generalized ambiguities
based on the RS-CDS and DDS observations

data output rate fs . However, excessively increasing fs
brings little benefit. Instead, extending the range of motion
of the receiver can be a promising way to achieve better per-
formance.

4.3 Comparison with the DDSmodel

In this simulation, we compare the performance of the RS-
CDS observation and the DDS observation. The data output
rate is 10 Hz, and other settings are the same as the previous
simulation.

To use the DDS observation, it is necessary to estimate
the clock parameter τ or the frequency offset F (Wang et al.
2019). However, the stationary state can be unavailable for
receivers in practical applications. Therefore,we consider the
cases where the clock model (4) is not accurately estimated,
and add error that increases from0 to 0.04ppm in the estimate
of F .

The results of the initial and refined solutions are shown
in Figs. 6 and 7, where DDS (0ppm) means the additional
estimation error of F is 0ppm. It can be seen from Fig. 6
that the RS-CDS observation has the smallest RMSE in the
initial solution, followed by DDS (0ppm).

In addition, the initial solution based on the DDS obser-
vation deteriorates with an increase in the estimation error
of F . As shown in Fig. 6, the RMSE of the initial solution
exceeds 10 cycles, when the estimation error of F exceeds
0.02ppm. It can be seen that in this case, the performance
of the DDS observation hardly changes with the noise level.
This is because the estimation error of F is so large that its
influence is dominant and exceeds the noise influence.

As can be seen from Fig. 7, the refined solutions of
RS-CDS observation, DDS (0ppm), and DDS (0.01ppm)
have similar RMSEwhich gradually increaseswith increased
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Fig. 7 RMSE of the refined solutions of SD generalized ambiguities
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noise levels. This is because the refined solution is obtained
from single difference measurements. As long as the initial
solution has sufficient accuracy, the solution can converge
correctly, and in this case, the performanceof the refined solu-
tion mainly depends on the noise level. However, when the
estimation error of F exceeds 0.02ppm, the refined solution
does not converge correctly. This is due to the poor accuracy
of their initial solutions.

This simulation shows that the RS-CDS observation has
better performance in ambiguity determination than the DDS
observation and is especially suitable for dynamic applica-
tions.

5 Real-world experiments

In this section, two real-world experiments were performed
to validate the accuracy of ambiguity determination as well
as the positioning results in practice.

We used a total station to precisely measure the coor-
dinates of the receiver and base stations. The measured
coordinates of the receiver were not provided for the pro-
posed method, but only used to evaluate the results in the
performance analysis.

5.1 Turntable positioning experiment

The first experiment was conducted in December, 2018.
An in-house-developed prototype ground-based positioning
system was deployed on the roof of a building. The main
hardware components are shown in Fig. 8. All base stations
maintain frequency synchronization through a wireless link
(Wang et al. 2019). The carrier frequency is 2465.43MHz,
and the output rate of measurements is 10 Hz.

RF channelDAC & ADC

Host computer

Fig. 8 Hardware components of base stations except for the antenna

Antenna
(S3)

Antenna
(S2)

Antenna
(Receiver)

Antenna
(S4)

Total station

Antenna
(S1)

Turntable 
control unit

Antenna
(receiver)

Fig. 9 Environment of the turntable experiment

The experiment environment is shown in Fig. 9, while
the configuration of the turntable and six base stations is
depicted in Fig. 10. The receiver antenna was fixed on a
turntable. The coordinates of the base stations’ antennaswere
measured by a total station and are listed in Table 1. The
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Table 1 Coordinates of the six base stations

Station S1 S2 S3 S4 S5 S6

X (m) − 13.25 15.45 15.83 − 9.53 − 2.89 5.08

Y (m) − 4.19 − 5.26 2.55 6.29 7.36 7.35

Z (m) 3.23 3.26 3.19 3.27 4.57 4.81
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Fig. 11 RMSE of the initial and refined solutions of SD generalized
ambiguities

turntable performed a clockwise movement at 0.1 rad/s, and
the trajectory is a circle centered at (3.171, 0.236) with a
1.033 m radius. During the motion, the HDOP ranges from
1.70 to 1.83, while the VDOP ranges from 5.76 to 7.05.

The RMSE of the ambiguity solution is shown in Fig. 11,
and the horizontal axis represents the number of laps. In the
first lap, the RMSE error of the initial solution significantly
decreases. In the next few laps, the additional observations
bring almost no improvement, and in the end, the RMSE of
the initial solution is about 6.6 cycles (80.31cm).

Similar to the initial solution, the refined solution is hardly
improved after the first lap, and its RMSE is about 0.6 cycles
(7.30cm) in the end. It can be seen from Fig. 11 that in the
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Fig. 12 Absolute values of the error of each SD generalized ambiguity
with different start points

first half lap, the refined solution has poorer accuracy than the
initial solution. The reason is that the linearization in solving
(28) is based on a poor initial estimate.

In addition, we extract the measurements in several peri-
ods, and the start points of these periods arewhen the receiver
reached 0 laps, 0.5 laps, 1 lap, . . ., 4 laps, respectively. The
receiver is rotated for one lap in each period. In other words,
their end points are when the receiver reached 1 lap, 1.5 laps,
2 laps, . . ., 5 laps, respectively. The absolute value of the
error of each refined SD generalized ambiguity is given in
Fig. 12. As can be seen, there is notmuch difference in the SD
generalized ambiguities for different periods. The reason is
that the receiver turned just one lap in each period, resulting
in the same geometry diversity.

On the other hand, the results in Fig. 12 show that the
estimation accuracy of different SD generalized ambiguities
is significantly different, which is considered to be related
to the geometric distribution of the base stations, instead of
the start points of the receiver. Moreover, the error of z61 is
largest, about 0.9 cycles, while the error of z41 is smallest,
about 0.2 cycles.

The positioning accuracy is examined. The horizontal and
vertical positioning results are plotted in Figs. 13 and 14,
respectively. It is shown in Fig. 13 that the horizontal results
are very close to the true values. The horizontal RMSE is
2.2cm, while the vertical RMSE is 24.4cm. As can be seen
in Fig. 14, the vertical error is significantly larger than the
horizontal error, and this is mainly because the VDOP is
much larger than the HDOP.

5.2 Wheeled robot positioning experiment

The second experiment was conducted in November, 2018.
The receiver was installed on a wheeled robot performing
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non-circular motion. The configuration of the base station
was the same as in the previous experiment. The wheeled
robot and the experiment environment are shown in Fig. 15,
while the trajectory of the robot is shown in Fig. 16.

The movement of the wheeled robot is divided into two
stages:

1. Stage 1: The start point of the wheeled robot is marked by
the purple square in Fig. 16. In Stage 1 (0–39s), the ambi-
guity determination was continuously performed during
the motion and the trajectory of the wheeled robot is
shown by the solid line in Fig. 16.

2. Stage 2: In Stage 2, the solution of SD generalized ambi-
guity was no longer updated. The wheeled robot arrived
at the four points P1–P4 in turn along the trajectory shown
by the dotted line in Fig. 16. The wheeled robot stayed

Antenna 
(S3)

Antenna 
(S2)

Antenna 
(receiver)

Antenna 
(receiver)

Host 
computer

RF channel

DAC & ADC

Fig. 15 Wheeled robot equipped with a receiver and experiment envi-
ronment
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Fig. 16 Configuration of the real-world experiment and the trajectory
of the wheeled robot

Table 2 Coordinates and DOP values of the known points

Point X (m) Y (m) Z (m) HDOP VDOP

P1 0.004 − 3.456 1.065 1.60 8.58

P2 − 4.683 − 1.432 1.041 1.45 7.33

P3 − 2.890 1.653 1.039 1.69 5.45

P4 1.380 2.512 1.046 1.93 5.11

at each point for a period of time, and the positioning
results were recorded. The coordinates of the four points
were measured by a total station and are given in Table 2.
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Fig. 17 RMSE of the initial and refined solutions of SD generalized
ambiguities

Table 3 Positioning error of the refined solution at fourmeasured points

RMSE X (cm) Y (cm) Z (cm)

P1 1.32 1.69 6.52

P2 1.65 0.73 7.30

P3 0.15 1.24 5.31

P4 0.27 2.59 6.11

We first examine the performance of the ambiguity deter-
mination. Figure 17 shows the RMSE of the ambiguity
solutions obtained in Stage 1. It can be seen that the initial
solution is improvedwith themovement of thewheeled robot.
The RMSE of the refined solution is greater than that of the
initial solution in the first 11 seconds. Then, as the wheeled
robot moves, the RMSE of the refined solution decreases
rapidly. After 25 s, there is no significant further improve-
ment. The RMSE of the refined solution is about 0.29 cycles
(3.54cm) at 39 s.

We examine the positioning results at the four known
points P1–P4. The positioning error is summarized in Table
3, and it can be seen that the maximum horizontal RMSE
is at P4, which is about 2.6cm, while the maximum vertical
RMSE is at P2, which is about 7.3cm.

Since it is difficult to obtain accurate coordinates dur-
ing the motion, we compare the positioning results of our
method with those of the KPI method. The comparisons of
the positioning results are shown in Fig. 18. The stationary
intervals at the four known points have beenmarked by P1-P4
in Fig. 18, during which the differences are almost constant.
The largest differences in X, Y and Z are 1.77cm, 2.19cm
and 6.63cm, respectively.

This experiment demonstrates that the proposed method
can enable precise point positioning without accurate time
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Fig. 18 Differences of the positioning results between the KPI and
proposed methods

synchronization of base stations, reliable codemeasurements
or other measuring instruments. In addition, the proposed
method can start at any point and be applied to dynamic
applications. With these advantages, the proposed method is
very convenient in practical applications.

6 Conclusions

Weproposed a newOTFambiguity determinationmethod for
ground-based positioning systems in this research. The most
important innovation is the concept of the CDS observation,
solely involving carriermeasurements. The CDS observation
is suitable for situations without reliable code measurements
and allows inaccurate synchronization of base stations, thus
enable easier deployment of the system.

The CDS observation provides a framework to eliminate
nonlinear terms that need no approximate linearization based
on initial coordinates. To overcome the shortcomings of the
DDS observation, we designed the RS-CDS observation to
estimate the clock parameter jointly with the generalized
ambiguities. Based on the RS-CDS observation, a new ambi-
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guity determinationmethod is proposed and it is desirable for
the convenience in dynamic applications.

The performance of our method was validated by a series
of numerical simulations and two real-world experiments.
The results show the significant impact of geometric diversity
on the accuracy of ambiguity solutions. Our in-house devel-
oped prototype ground-based positioning systemwas used in
the two experiments which demonstrate that our method can
achieve centimeter-level positioning accuracy in real-world
applications.

The proposedmethod improves the convenience and prac-
ticality of ambiguity determination for ground-based precise
point positioning. In our present conditions, the system are
deployed in a limited area.We are planning to conduct exper-
iments to validate the system in a larger area, and in the future,
our important work is to enhance the robustness of our sys-
tem in challenging environments, where there could be cycle
slip, signal interruption and interference issues.

Acknowledgements This work is supported by National Natural Sci-
ence Foundation of China (NSFC), under Grant 61771272. The datasets
of the two experiments are available from the corresponding author on
reasonable request.

Appendix A: RS-CDS observations at a same
position

In the following analysis, the noise is temporarily ignored,
and itwill be seen that anRS-CDSobservation can be linearly
represented by others at the same position.

Assume um1 = umq for 1 ≤ q ≤ M . Then, with (1) and
(4), we have

φi
m1

− φi
mq

= fcτ(m1 − mq) (31)

and

φ
i j
mq = λ−1(‖si − umq‖ − ‖s j − umq‖) + Ni j − fcδti j .

(32)

With (32), it can be obtained that

φ
i j
m1 = φ

i j
mq , for 1 ≤ q ≤ M . (33)

With (31) and (33), we have
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= 2φi j
m1 fcτ(m1 − mq). (34)

Then, it can be obtained that

yi jm11K
− yi jmq1K
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+ 2(m1 − mq)(1 − K )φ
i j
m1 fcτ. (35)

In other words, we have

yi jm11K
− yi jm21K

m1 − m2
=

yi jm11K
− yi jmq1K

m1 − mq
, for 2 ≤ q ≤ M . (36)

As a result, if the noise is neglected, the RS-CDS observa-
tions yi jmq1K

can be linearly represented by others at the same
position and considered to be redundant. In fact, these obser-
vations provide no additional geometric diversity.

Appendix B: Expression of the autocovari-
ancematrix

Denote Qkl = E{nknTl }and we have

Q =E{nnT}

=

⎡

⎢⎢⎢⎣

Q22 Q23 · · · Q2(K−1)

Q32 Q33 · · · Q3(K−1)
...

...
. . .

...

Q(K−1)2 Q(K−1)3 · · · Q(K−1)(K−1)

⎤

⎥⎥⎥⎦ . (37)

The expression is derivedwith the following assumptions:

1. The measurement noise wi
k and the unmodeled clock

error ek are independent, that is E{wi
kel} = 0.

2. Errors at different epochs are independent. In other
words, for k �= l, we have E{wi

kw
j
l } = 0 and E{ekel} =

0.
3. The signal noise of different base stations is independent,

that is E{wi
kw

j
l } = 0 for i �= j .

According to (9), we have

ni jk = λ−1‖si − uk‖wi
k − λ−1‖s j − uk‖w j

k

+ λ−1(‖si − uk‖ − ‖s j − uk‖) fcek . (38)

As can be seen from (38), it is necessary to know the
true distances ‖si − uk‖ to compute the accurate statistical
characteristics of noise. However, this is impossible until the
positioning procedure is completed. So the following approx-
imation is made to simplify the derivation for all k
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E

{(
λ−1‖si − uk‖wi

k

)2} ≈ σ 2
w (39)

E

{[
λ−1(‖si − uk‖ − ‖s j − uk‖) fcek

]2} ≈ σ 2
e , for i �= j

(40)

where σ 2
w and σ 2

e are approximate estimates. Then, it can be
obtained that

E

{
ni1k n

j1
l

}
= δkl

(
δi jσ

2
w + σ 2

w + σ 2
e

)
(41)

where

δi j =
{
0, i �= j

1, i = j
(42)

With (41), we have

E

{
ni1k1K n

j1
l1K

}

= [(K − k)(K − l) + (k − 1)(l − 1)]
(
δi jσ

2
w + σ 2

w + σ 2
e

)

+ δklδi j (1 − K )2σ 2
w + δkl [(1 − K )2 + (K − k)2

+ (k − 1)2](σ 2
w + σ 2

e ). (43)

Then, it can be obtained from (43) that

Qkl = 4[(K − k)(K − l) + (k − 1)(l − 1)]
· [σ 2

wIL−1 + (σ 2
w + σ 2

e )1L−11TL−1]
+ 4δkl(1 − K )2σ 2

wIL−1 + 4δkl [(1 − K )2

+ (K − k)2 + (k − 1)2](σ 2
w + σ 2

e )1L−11TL−1 (44)

where IL−1 represents an L −1 dimensional identity matrix,
and 1L−1 denotes a column vector of L −1 elements that are
all one.

By substituting (44) into (37), the approximate expression
of Q can be obtained.

References

Amt JH (2006) Methods for aiding height determination in pseudolite-
based reference systems using batch least-squares estimation.
Master thesis, Air Force Institute of Technology

Barnes J, Rizos C,Wang J, Small D,Voigt G,GambaleN (2003) Locata:
A new positioning technology for high precision indoor and out-
door positioning. In: ION GPS/GNSS, pp 1119–1128

Bertsch J, ChoudhuryM,RizosC,KahleH (2009)On-the-fly ambiguity
resolution for Locata. In: International symposium onGPS/GNSS,
pp 1–3

Beser J, Parkinson BW (1982) The application of NAVSTAR differen-
tial GPS in the civilian community. Navigation 29:107–136

Cobb HS (1997) GPS pseudolites: theory, design, and applications.
Doctor thesis, Stanford University

Dai L, Wang J, Tsujii T, Rizos C (2001) Pseudolite applications in
positioning and navigation: modelling and geometric analysis. In:
International symposium on kinematic systems in geodesy, geo-
matics & navigation (KIS2001), pp 482–489

Guo X, Zhou Y, Wang J, Liu K, Liu C (2018) Precise point position-
ing for ground-based navigation systems without accurate time
synchronization. GPS Solut 22(2):34. https://doi.org/10.1007/
s10291-018-0697-y

Jiang W, Li Y, Rizos C (2013) On-the-fly Locata/inertial naviga-
tion system integration for precise maritime application. Meas
Sci Technol 24(10):105104. https://doi.org/10.1088/0957-0233/
24/10/105104

Jiang W, Li Y, Rizos C (2015) Locata-based precise point positioning
for kinematic maritime applications. GPS Solut 19(1):117–128.
https://doi.org/10.1007/s10291-014-0373-9

Kee C, Jun H, Yun D (2003) Indoor navigation system using asyn-
chronous pseudolites. J Navig 56(3):443–455. https://doi.org/10.
1017/S0373463303002467

Khan FA,RizosC,DempsterAG (2010) Locata performance evaluation
in the presence of wide- and narrow-band interference. J Navig
63(3):527–543. https://doi.org/10.1017/S037346331000007X

Kiran S, Bartone CG (2004) Flight-test results of an integrated
wideband-only airport pseudolite for the category IV/III local
area augmentation system. IEEE Trans Aerosp Electron Syst
40(2):734–741

Lee HK, Wang J, Rizos C, Park W (2003) Carrier phase processing
issues for high accuracy integrated GPS/pseudolite/INS systems.
In: Proceedings of 11th IAIN world congress, Berlin, Germany,
paper 252

Lee HK, Wang J, Rizos C (2005) An integer ambiguity resolution
procedure for GPS/pseudolite/INS integration. J Geodesy 79(4–
5):242–255. https://doi.org/10.1007/s00190-005-0466-x

Li X, Zhang P, Guo J, Wang J, Qiu W (2017) A new method for single-
epoch ambiguity resolution with indoor pseudolite positioning.
Sensors 17(4):921. https://doi.org/10.3390/s17040921

Lombardi M (2002) Fundamentals of time and frequency. Book section
17, CRC Press. https://doi.org/10.1201/9781420037241.ch10

Montillet JP, Roberts GW, Hancock C, Meng X, Ogundipe O, Barnes J
(2009)Deploying aLocata network to enable precise positioning in
urban canyons. J Geodesy 83(2):91–103. https://doi.org/10.1007/
s00190-008-0236-7

Montillet JP, Bonenberg LK, Hancock CM, Roberts GW (2014) On
the improvements of the single point positioning accuracy with
Locata technology. GPS Solut 18(2):273–282. https://doi.org/10.
1007/s10291-013-0328-6

Niwa H, Kodaka K, Sakamoto Y, Otake M, Kawaguchi S, Fujii K,
Kanemori Y, Sugano S (2008) GPS-based indoor positioning sys-
tem with multi-channel pseudolite. In: 2008 IEEE international
conference on robotics and automation, IEEE, New York, USA,
pp 905–910

Teunissen PJ, Odijk D (1997) Ambiguity dilution of precision: defini-
tion, properties and application. In: Proceedings of IONGPS1997,
Kansas City, MO, USA, pp 891–899

Wang J (2002) Pseudolite applications in positioning and navigation:
progress and problems. J Glob Position Syst 1(1):48–56

Wang T, Yao Z, Lu M (2018) On-the-fly ambiguity resolution based
on double-differential square observation. Sensors 18(8):2495.
https://doi.org/10.3390/s18082495

Wang T, Yao Z, Lu M (2019) On-the-fly ambiguity resolution involv-
ing only carrier phasemeasurements for stand-alone ground-based
positioning systems. GPS Solut 23(2):36. https://doi.org/10.1007/
s10291-019-0825-3

Yang L, Li Y, Jiang W, Rizos C (2015) Locata network design and
reliability analysis for harbour positioning. J Navig 68(2):238–
252. https://doi.org/10.1017/S0373463314000605

123

https://doi.org/10.1007/s10291-018-0697-y
https://doi.org/10.1007/s10291-018-0697-y
https://doi.org/10.1088/0957-0233/24/10/105104
https://doi.org/10.1088/0957-0233/24/10/105104
https://doi.org/10.1007/s10291-014-0373-9
https://doi.org/10.1017/S0373463303002467
https://doi.org/10.1017/S0373463303002467
https://doi.org/10.1017/S037346331000007X
https://doi.org/10.1007/s00190-005-0466-x
https://doi.org/10.3390/s17040921
https://doi.org/10.1201/9781420037241.ch10
https://doi.org/10.1007/s00190-008-0236-7
https://doi.org/10.1007/s00190-008-0236-7
https://doi.org/10.1007/s10291-013-0328-6
https://doi.org/10.1007/s10291-013-0328-6
https://doi.org/10.3390/s18082495
https://doi.org/10.1007/s10291-019-0825-3
https://doi.org/10.1007/s10291-019-0825-3
https://doi.org/10.1017/S0373463314000605

	Combined difference square observation-based ambiguity determination for ground-based positioning system
	Abstract
	1 Introduction
	2 Basic carrier phase measurement model
	3 Ambiguity determination based on RS-CDS observation
	3.1 Difference square observation
	3.2 Combined difference square observation
	3.3 SD Generalized ambiguity determination

	4 Numerical simulations
	4.1 Influences of geometry changes
	4.2 Influences of sampling rate and noise level
	4.3 Comparison with the DDS model

	5 Real-world experiments
	5.1 Turntable positioning experiment
	5.2 Wheeled robot positioning experiment

	6 Conclusions
	Acknowledgements
	Appendix A: RS-CDS observations at a same position
	Appendix B: Expression of the autocovariance matrix
	References




