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Abstract
The paper presents a modified formulation of least-squares collocation. This residual least-squares collocation (RLSC)
includes a remove–compute–restore procedure with a high-resolution global geopotential model (GGM) and a topographic
gravitational potential model. In contrast to previous approaches, in RLSC, the remaining input residuals are modeled with
error covariancematrices instead of signal covariancematrices. Therefore,we include the full variance–covariance information
of a high-resolution GGM, namely the XGM2016, to the procedure. The included covariance matrices are anisotropic and
location-dependent and enable a realistic error modeling of a target area. This fact represents an advantage over covariance
matrices derived from signal degree variances or empirical covariance fitting. Additionally, due to the stochastic modeling
of all involved components, RLSC provides realistic accuracy estimates. In a synthetic closed-loop test case with a realistic
data distribution in the Andes we demonstrate the advantages of RLSC for regional geoid modeling and quantify the benefit
which results mainly from a rigorously handled high-resolution GGM. In terms of root mean square deviations from the true
reference solution, RLSC delivers an improvement of about 30% compared to a standard LSC approach, where the benefit is
particularly pronounced in areas with a sparse data distribution. This improved performance, together with the fact that the
resulting stochastic error estimates better reflect the true errors, might be an important aspect for the application of RLSC to
derive gravity potential values and their uncertainties at reference stations of the international height reference system.

Keywords Least-squares collocation · Regional geoid modeling · Covariance function · Remove–compute–restore ·
XGM2016 · High-resolution GGM

1 Introduction

In this paper, we present a method for improving regional
geoid modeling by including full covariance information
from a high-resolution global geopotential model (GGM)
in least-squares collocation (LSC). Since its foundation by
Krarup (1969), and the key publication by Moritz (1980)
LSC is considered as one of the most important methods for
local and regional geoid modeling. Although the main con-
cept of LSC has never changed, a few adaptations have been
introduced recently. Nowadays, frequently a satellite-only
model is used in LSC as background for the long wave-
length part of the Earth’s gravity field. LSC thereby benefits
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from the good model quality in the long wavelength part that
is mainly provided by the Gravity Recovery And Climate
Experiment (GRACE; Tapley et al. 2004) mission and the
Gravity field and steady-state Ocean Circulation Explorer
(GOCE; Drinkwater et al. 2003) mission.

Compared to satellite-onlyGGMs, high-resolutionGGMs
(we use this term for models with a maximum degree of
719 or higher) have included a wider spectral range of the
Earth’s gravity signal and therefore exhibit a higher com-
mission error. For many of these high-resolution GGMs, the
associatedvariance–covariance information is not fully avail-
able. As an example, in the case of EGM2008 only grids of
geographic error variances of gravity anomalies and geoid
undulations are provided (Pavlis et al. 2012). Additionally,
EGM2008 and other high-resolution GGMs like EIGEN-6c
(Förste et al. 2014) assume constant accuracy for their
input ground data. However, with GOCO05c (Fecher et al.
2017) and its successor XGM2016 (Pail et al. 2018) we
have two high-resolution GGMs that apply regional vary-
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ing weighting which results in an improved, more realistic
and location-dependent accuracy estimation that enables us
to use covariance matrices from these models for LSC. In
this paper, we present the first inclusion of high-resolution
GGMswith their full covariancematrices inLSC, develop the
corresponding methodology and demonstrate its improve-
ment to standard LSC in a numerical closed-loop simulation.
The benefit of consistently including covariance matrices
from a satellite-only GGM has already been demonstrated
in various publications. This was first performed with a full
covariance matrix by Haagmans and van Gelderen (1991).
Pail et al. (2010) then demonstrated the rigorous inclusion
of a GGM and its full accuracy information to LSC in a
remove–compute–restore (RCR) approach. However, unlike
other methods, our approach is specifically adjusted to work
with high-resolution GGMs which leads us to an extended
formalism of the LSC problem. Gerlach and Fecher (2012)
showed that for GOCE covariance information, the very high
computation effort of calculating full covariancematrices can
be significantly reduced using approximations such as sparse
or block-diagonal covariance matrices without losing much
benefit. However, this simplification is not valid in our case
since GGMs with regional weighting cause strong correla-
tions among the gravity field parameters (Fecher et al. 2017).

The LSC approach is in practice still a frequently applied
method for regional gravity geoid modeling. According to
Moritz (1980) and Sansò (1986) the disturbing gravity fieldT
of the Earth can be described as a random field. Also, it is
possible to derive a statistical and homogeneous description
of T that determines a global average part of the gravity
field (Moritz 1980; Tscherning 1999). However, this does
not coincide with reality because the correlation length and
the covariance change with location. As a result, the use
of homogeneous and isotropic covariance functions (e.g., in
Moritz 1980) does not always give an optimal result in LSC
(Tscherning 1999). Therefore, we adapt the LSC notation
from Moritz (1980) in several, closely connected ways: (1)
we include consistent treatment of covariance information
in an RCR approach, (2) we change the definition of covari-
ancematrices by replacing the total average operator with the
mathematical expectation value, and (3) we use only residu-
als as LSC input which changes the nature of the covariance
matrices as they describe only uncertainties instead of signal
content. Here, our approach differs from previous studies by
Moritz (1980), Pail et al. (2010), Forsberg and Tscherning
(1981), Tscherning and Rapp (1974), or Sansò (1986). Only
through these adaptations, we are able to use the location-
dependent covariance matrices that are derived directly from
the normal equation system of a high-resolution GGM. Fur-
thermore, our notation offers the advantage that every input
quantity in LSC is directly described by a covariance matrix
which is in contrast with, for example, the definition by
Haagmans and van Gelderen (1991). We see these adapta-

tions as a necessary step towards using modern high-quality
models effectively in LSC. At the present stage, we use
the XGM2016 (Pail et al. 2018) and the topographic grav-
ity model dV_ELL_Earth2014 (Rexer et al. 2016) for the
RCR approach.

This paper is structured as follows. In Sect. 2 we derive
in detail the adaptations to LSC by Moritz (1980). Next, in
Sect. 3 we describe the specifications of a synthetic test case
scenario in South America as well as the data sets that we
use to show the benefit of our method. The results of three
numerical test cases are visualized andoutlined inSect. 4, and
finally Sect. 5 draws conclusions, describes ways to benefit
from the demonstrated approach, and provides an outlook.

2 Theoretical background

2.1 LSC according toMoritz (1980)

This section adopts the content andnotation ofMoritz (1980).
For our purposes we rewrite only those parts that are essen-
tial for the next sections. The formulas of the least-squares
prediction for random observations l and a random output
signal s are given in Moritz (1980, Chapter 9) with

s = Csl C
−1
ll l, (1)

Ess = Css − CslC
−1
ll Cls, (2)

where Ess is the error covariance of the output s, and C are
covariance matrices with the subscripts giving the positions
and functionals of the related points. This is valid for all l
and s with

E{l} = 0, E{s} = 0, (3)

where E describes the expectation operator in form of amath-
ematical probability distribution. Afterwards, in the section
‘Collocation with random errors’ (Moritz 1980, Chapter 14)
the observations l as a functional of the gravitational
potential T are redefined as a combination of the true input
signal t and a random (stochastic) noise n. So that, in sym-
bolic notation we have

l = t + n. (4)

In analogy to the definition of t, s is defined as the true output
signal. The gravity field functionals t and s are not random
in a mere statistical manner since every evaluation point has
a value without uncertainty. However, as it is done byMoritz
(1980, Chapter 14), we treat t and s as statistical values in a
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formal sense. This justifies the usage of the expectation oper-
ator E which, however, leaves the signals t and s unaffected

E{s} = s,

E{t} = t,

E{n} = 0,

E{l} = E{t} + E{n} = t. (5)

In contrast to the expectation in a probabilistic sense, the
operator M describes a homogeneous, isotropic average over
the sphere which gives the mean global behavior of the grav-
itational field. t, s and l are all functionals of the disturbing
potential. Therefore, applying the operator M to t, s and l
gets zero. Thus, we write for the spatial average M

M{s} = 0,

M{t} = 0,

M{l} = 0,

M{n} = n. (6)

In Eq. 5, we can see that in general the observations l are not
centered, but in a global view with the definition of a total
average operator Ē

Ē = EM, (7)

which is an average over the probability distribution and the
global distribution (sphere), they can be considered as cen-
tered quantities

Ē{s} = EM{s} = 0,

Ē{t} = EM{t} = 0,

Ē{l} = EM{t} + EM{n} = 0. (8)

To be able to distinguish between different forms of covari-
ance matrices in the following sections, we write covariance
matrices that are derived from the total average Ē with C̄
instead of C. Consequently, the covariance matrices of the
centered quantities defined by the total average Ē are

C̄ss = Ē{ssT} = EM{ssT} = M{ssT},
C̄tt = Ē{ttT} = EM{ttT} = M{ttT},
C̄nn = Ē{nnT} = EM{nnT} = E{nnT} = Cnn. (9)

By considering the fact that t and s are uncorrelated to n, we
write by using Eq. 4

C̄ll = Ē{llT}
= Ē{(t + n)(t + n)T}
= Ē{(ttT)} + Ē{(tnT)} + Ē{(ntT)} + Ē{(nnT)}

= C̄tt + C̄tn
︸︷︷︸

=0

+ C̄nt
︸︷︷︸

=0

+Cnn

= C̄tt + Cnn, (10)

C̄sl = Ē{slT}
= Ē{(s)(t + n)T}
= Ē{(stT)} + Ē{(snT)}
= C̄st + C̄sn

︸︷︷︸

=0

. (11)

Applying these expressions, the fundamental formula for
least-squares collocation with noise is obtained from Eq. 1

s̄ = C̄st (C̄tt + Cnn)
−1l. (12)

For consistency with the following sections and in contrast
to Moritz (1980) we retain the bar over all quantities with
inclusion of the global average operator Ē, and write for the
corresponding error covariance matrix Ēs̄s̄ according to Eq. 2

Ēs̄s̄ = C̄ss − C̄st(C̄tt + Cnn)
−1C̄T

st. (13)

This description of least-squares collocation by Moritz
(1980, Chapter 14) has been established as standard proce-
dure in the literature (see Tscherning 2015; Arabelos and
Tscherning 2009; Hofmann-Wellenhof and Moritz 2006;
Rieser 2015) and we follow this notation because in our
opinion it is the most consistent and detailed description.
However, it should be kept in mind that these definitions are
only valid for centered observations l and a centered output s,
because this was set as a requirement (Eq. 3) and is used
in the definitions of the covariance matrices (Eqs. 9–11).
Furthermore, the covariance matrices as defined in this sec-
tion assume a normal distribution of gravitational functionals
and describe an average part of the Earth’s surface. Accord-
ingly, these covariance matrices are mainly independent of
the location on the Earth (homogeneous) as well as of the
direction (isotropic), and as a consequence may not be opti-
mal for local gravity field collocation (Tscherning 1999).
Note, that most of the covariance matrices in Moritz (1980)
are calculated from signal degree variances, but the discus-
sion in this paragraph holds also for analytical covariance
matriceswhich are calculated by empirical covariance fitting,
e.g., from a Tscherning–Rapp model (Tscherning and Rapp
1974). While the latter do not consider a global view, they
use the same assumptions, namely centered and normally
distributed observations, for a target regional area, therefore
resulting in homogeneous and isotropic covariance functions
as well.
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2.2 The remove–compute–restore (RCR) approach

For many applications, LSC is combined with a remove–
compute–restore (RCR) approach (Forsberg and Tscherning
1981; Forsberg 1984). According to the name, RCR means
that a part l̂ of the signal is removed from the observations l
before the computation

�l = l − l̂. (14)

Accordingly, the collocation Γ is performed only with the
residuals of the input signal �l

�s = Γ �l, (15)

and afterwards, the removed part ŝ is restored again

s = �s + ŝ, (16)

to yield the output s of the collocation. The main reason for
using RCR in collocation is that LSC with residuals is more
accurate than it would be with the full signal content. For
more detailed background, we refer to Hofmann-Wellenhof
and Moritz (2006, Chapter 11) or Rieser (2015, Chapter 4).
Usually, the remove and restore steps describe different
functionals of the gravity field, and the RCR thereby implic-
itly includes a field transformation. Moreover, because a
field transformation moves signal energy between different
degrees in the frequency domain an error in the remove step
may not be consistently restored after a field transforma-
tion. This might even be the case when remove and restore
steps are calculated consistently. Therefore, we see the need
to model the accuracy of the remove step consistently in
LSC. Only some of the LSC approaches take the accuracy
of the reduction model into account (e.g., Haagmans and
van Gelderen 1991; Pail et al. 2010; Sansò 2013) while
other approaches do not (e.g., Forsberg andTscherning 1981;
Hofmann-Wellenhof and Moritz 2006; Rieser 2015).

In general, the corresponding covariance matrices in all
these approaches are calculated either from signal degree
variances (Heiskanen and Moritz 1967, Chapter 7.3; Moritz
1980, Chapter 10) or from empirical covariance fitting (Tsch-
erning and Rapp 1974). Those approaches that include the
accuracy of a reduction model directly in the calculation,
additionally introduce the covariance matrix of a satellite-
only model to the method (e.g., Haagmans and van Gelderen
(1991)). Since all of these LSC approaches are formulated
differently and use various notations, we do not go into fur-
ther detail but point out only the differences of our approach
to the existing ones in the following sections.

2.3 Residual least-squares collocation

Although observations l and output s of a LSC as func-
tionals of the disturbing gravity field T of the Earth
are centered globally (Heiskanen and Moritz 1967,
Chapter 2.19), it is not possible to automatically assume
the same for regional gravity field modeling. However,
the definition of LSC according to Sect. 2.1 is only valid
if the observations and the output are centered over the
target area (Eq. 3). We propose rather to use covari-
ance matrices from a purely stochastic point of view
and thereby follow the standard definition of a covari-
ance with an expectation value in a mathematical
sense E (Eqs. 17–19). As a result, we are no longer
limited to the requirements of Eq. 3. The gravity function-
als t and s are furthermore regarded as statistical quantities
in a formal sense. As they are defined as true signal con-
tent of the gravity field, repeated error-free measurements at
one point always give the same result (see Eq. 5). Consid-
ering this, we write for the covariance matrices Css, Ctt

and Cll

Css = E{(s − E{s}
︸︷︷︸

=s

)(s − E{s}
︸︷︷︸

=s

)T} = {0}, (17)

Ctt = E{(t − E{t}
︸︷︷︸

= t

)(t − E{t}
︸︷︷︸

= t

)T} = {0}, (18)

Cll = E{(l − E{l}
︸︷︷︸

= t

)(l − E{l}
︸︷︷︸

= t

)T} = E{nnT} = Cnn, (19)

which differs from the equivalent formulation in Moritz
(1980) (Eqs. 9, 10). The covariance of the uncorrelated
observations that is named Cnn in Moritz (1980) is here-
inafter called Cll. We consider this notation as more con-
sistent, because it describes the accuracy of the observa-
tions. Note at this point, that t and l are not centered
(Eq. 5). Now, we assume that we can calculate an unbi-
ased GGM without systematic errors that is able to describe
the full signal content of the Earth’s gravity field. From
this model we derive different gravity field functionals t

at the input points. Since this variable is not error-free,
we denote the quantity l̂ and write for its expectation
value E

E{l̂} = t. (20)

We use the hat operator for quantities that are derived from
an introduced model in order to distinguish them from mea-
surements and error-free quantities. Since we assumed that l̂
does not contain systematic errors, the difference �l

�l = l − l̂, (21)
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is centered and describes a remove step (see Sect. 2.2). By
analogy, we write ŝ as the result of the same model as an
approximation of the true gravity signal s and obtain

�s = s − ŝ. (22)

The resulting covariance matrices Cl̂l̂ , Cŝl̂ and Cŝŝ of our

estimated values l̂ and ŝ are defined by

Cl̂l̂ = E{(l̂ − E{l̂})(l̂ − E{l̂})T}
= E{(l̂ − t)(l̂ − t)T}, (23)

Cŝl̂ = E{(ŝ − E{ŝ})(l̂ − E{l̂})T}
= E{(ŝ − s)(l̂ − t)T}, (24)

Cŝŝ = E{(ŝ − E{ŝ})(ŝ − E{ŝ})T}
= E{(ŝ − s)(ŝ − s)T}. (25)

They are used in the following to form the covariance matri-
ces C�l�l, C�s�l and C�s�s. For the transcription of C�l�l

we use Eqs. 4, 19, 21 and 23 and the fact that the random
noise n is uncorrelated to a signal.

C�l�l = E{(�l − E{�l}
︸ ︷︷ ︸

=0

)(�l − E{�l}
︸ ︷︷ ︸

=0

)T}

= E{�l�lT}
= E{((t + n) − l̂)((t + n) − l̂)T}
= E{((t − l̂) + n)((t − l̂) + n)T}
= E{(t − l̂)(t − l̂)T} + E{(t − l̂)nT}

︸ ︷︷ ︸

=0

+ E{n(t − l̂)T}
︸ ︷︷ ︸

=0

+E{nnT}

= Cl̂l̂ + Cll (26)

�l contains the uncertainty of the observations l as well as
the uncertainty of observations l̂ synthesized from a GGM.
Correspondingly, we can divide the covariance matrixC�l�l

into the covariance of the model accuracyCl̂l̂ , and the covari-
ance Cll that describes the observation noise according to
Eq. 19. Again applying the fact that the random noise n is
uncorrelated to s and ŝ, we write analogously for C�s�l and
C�s�s

C�s�l = E{(�s − E{�s}
︸ ︷︷ ︸

=0

)(�l − E{�l}
︸ ︷︷ ︸

=0

)T}

= E{�s�lT}
= E{(s − ŝ)((t + n) − l̂)T}
= E{(s − ŝ)((t − l̂) + n)T}

= E{(s − ŝ)(t − l̂)T} + E{(s − ŝ)nT}
︸ ︷︷ ︸

=0

= Cŝl̂, (27)

C�s�s = E{(�s − E{�s}
︸ ︷︷ ︸

=0

)(�s − E{�s}
︸ ︷︷ ︸

=0

)T}

= E{�s�sT}
= E{(s − ŝ)(s − ŝ)T}
= Cŝŝ, (28)

with Cŝl̂ being the covariance of the introduced model that
describes the uncertainties and correlations between the posi-
tions and functionals of the input to those of the output.
Analogously, the covariance Cŝŝ describes the uncertainties
and the correlations of ŝ among different output positions
(and functionals).
Thus, we can rewrite the definition of LSC from Eq. 12
with �l and �s instead of l and s and use the findings from
Eqs. 21, 26 and 27, resulting in a notation of LSC that uses
only residuals as input

�s = C�s�l (C�l�l)
−1�l

= Cŝl̂ (Cll + Cl̂l̂)
−1(l − l̂). (29)

After restoring the subtracted signal part ŝwedefine the resid-
ual least-squares collocation (RLSC)

s = Cŝl̂ (Cll + Cl̂l̂)
−1(l − l̂) + ŝ. (30)

Instead of centered observations and a centered output which
are used as requirements in Sect. 2.1, we introduce the
assumption that it is possible to describe the observations l
and the output s by means of an unbiased model (l̂ and ŝ).
In this way, the input (l − l̂) of RLSC stays centered. We
have two key factors of RLSC in comparison with other
LSC methods: (1) the input consists only of residuals, and
(2) the covariance matrices Cll and Cl̂l̂ describe the accu-

racy of the input l and l̂ directly. With these considerations,
we differ from previous LSC approaches (e.g., Moritz 1980;
Haagmans and van Gelderen 1991; Pail et al. 2010; Sansò
2013; Rieser 2015), which always include signal covariance
matrices in LSC, while in our approach the covariance matri-
ces contain only the uncertainties of input and output. For
example, Haagmans and van Gelderen (1991) also include a
reduction step with full covariance information in LSC, but
at the same time they use a third covariance matrix inside
the brackets of Eq. 30 that describes the covariance of the
gravity signal itself (equal to C̄tt from Sect. 2.1). The reason
for the difference at this point is that we assume the exis-
tence of a high-quality GGM, whose uncertainties can be
fully described by a variance–covariance matrix (no system-
atic errors), which other approaches do not.
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The interpretation of Eq. 30 is quite different from the
definitions in Sect. 2.1 where the covariance matrices in
the collocation describe the signal content instead of the
error characteristics. Nevertheless, RLSC is consistent with
the theory of Moritz (1980), which can be demonstrated
by the following thought experiment. If the model l̂ in
Eq. 30 becomes worse, then the elements of the covariance
matrix Cl̂l̂ that describe its uncertainties will become larger.
This is also valid for an extreme casewherewedonot subtract
a model at all, so that l̂ becomes zero. In this case, the covari-
anceCl̂l̂ describes the full signal content of the observations l
which is basically the same idea as in Moritz (1980). How-
ever, the covariance Cl̂l̂ is still regarded as the uncertainty of
the bad (or missing) model instead of the covariance of the
signal content (as it is in Sect. 2.1). Even with l̂ = 0 there is a
difference in the approaches, since in general the expectation
value E is not equal to the total average Ē (Eq. 7). However,
it is possible to use the total average Ē as an approximation
of the expectation value E, which means that for l̂ = 0 we
can approximate

Cl̂l̂ ≈ C̄tt,

Cŝl̂ ≈ C̄st. (31)

With this approximation our formulation of least-squares
collocation with errors (Eq. 30) becomes identical to stan-
dard LSC from Moritz (1980) (Eq. 12) including the RCR
approach (Eqs. 14, 16). Accordingly, we write for the error
covariance matrix Ess of the output s in Eq. 30 and refer
to Moritz (1980, Chapter 14) for an analogous and detailed
derivation

Ess = Cŝŝ − Cŝl̂ (Cll + Cl̂l̂)
−1CT

ŝl̂
. (32)

Note that, by definition there is no difference between E
and C in our approach since both describe error covariance
matrices.Nevertheless,we retain this notation because it clar-
ifies that Ess refers to the covariance of the output s instead
of the true gravity signal s or the model ŝ.

2.4 Inclusion of a GGM and a topographic gravity
model into RLSC

To calculate RLSC from Eq. 30 we require estimates of the
input l̂ and the output ŝ aswell as the related covariancematri-
ces for the input Cl̂l̂ , the output Cŝŝ and the combination Cŝl̂ .
All of these can be derived from the normal equation system
related to a GGM

Nm
ff x̂

m
f = qmf . (33)

Here, Nm
ff is the normal equation matrix, qmf is the right-

hand side, and x̂mf are the estimated Spherical Harmonic (SH)

coefficients. The superscript ‘m’ refers to quantities that are
derived from a GGM. In the following we continue to use
superscripts to clarify the origin of covariance matrices and
vectors. In contrast, the subscripts are continuously applied
to describe the corresponding functionals and their positions
with the subscript ‘f’ standing for the frequencydomainof the
SH coefficients. For more details about the normal equation
systemdescribing the SH coefficientswe refer to Fecher et al.
(2015). Next, the normal equation matrix Nm

ff is inverted

Cm
ff = (Nm

ff )
−1, (34)

to obtain the covariance matrix Cm
ff of the SH coefficients,

which is used to solve the normal equation system and esti-
mate the SH coefficients x̂mf

x̂mf = Cm
ff q

m
f . (35)

Afterwards, we write the transformations of the SH coeffi-
cients to different functionals and point positions in the space
domain with the design matrices Afrom

to .

l̂m = Af
l x̂

m
f ,

ŝm = Af
s x̂

m
f , (36)

and for the calculation of the covariance matrices

Cm
l̂l̂

= Af
l C

m
ffA

f T
l ,

Cm
ŝl̂

= Af
s C

m
ffA

f T
l ,

Cm
ŝŝ = Af

s C
m
ffA

f T
s . (37)

Here, the covarianceCm
l̂l̂
describes the uncertainties and cor-

relations of theGGMat the input points,Cm
ŝŝ the covariance at

the output points, andCm
ŝl̂
their cross correlations. The square

root of themain diagonal ofCm
l̂l̂
gives the standard deviations

of the GGM parameters at the input points in terms of the
respective functional. Note that as the result of a GGM, l̂m is
a representative of the gravity field up to a certain spherical
harmonic degree N , but does not consider the full frequency
spectrum of l. However, we can use l̂m from a GGM, because
it centers the difference �l (in the degrees up to N)

�l = l − l̂m, (38)

as introduced in Eq. 14.When aGGM is considered, there are
two possibilities: either a GGM from a satellite-only solution
that describes the gravity field up to degrees around 200–280
(e.g., GOCO05s; Mayer-Gürr et al. 2015) is used, or a GGM
with much higher spatial resolution that already contains
terrestrial information like EGM2008 (Pavlis et al. 2012),
EIGEN-6c4 (Förste et al. 2014) or XGM2016 (Pail et al.
2018). In both cases, the approximation of the true gravity
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field t by l̂ can be improved by additionally considering the
information in the frequencies above themaximum degree of
the GGM. In general, large parts of the gravity signal beyond
a GGM’s resolution are related to the topography (Forsberg
and Tscherning 1981; Hirt et al. 2013; Rexer et al. 2016),
which is why we use an additional model for the topographic
gravity effect above the maximum degree N of the GGM and
calculate its effect l̂t (with ‘t’ standing for topography) at the
input points

l̂ = l̂m + l̂t, (39)

and the output points

ŝ = ŝm + ŝt. (40)

The same requirements that apply for the definition of l̂m also
apply for l̂t , so that the resulting �l is normally distributed
and centered (up to the maximum degree of the topographic
gravity model)

�l = l − l̂m − l̂t. (41)

From a practical point of view it is also important that l̂m and
l̂t can be considered as independent of each other so that the
variance propagation from Eq. 39 yields

Cl̂l̂ = Cm
l̂l̂

+ C t
l̂l̂
, (42)

with C t
l̂l̂
being the covariance of the topographic gravity

model that describes the models uncertainties and correla-
tions. This is analogous to the character ofCm

l̂l̂
for the GGM,

and the same is valid for the covariance matrices Cŝl̂ and Cŝŝ

Cŝl̂ = Cm
ŝl̂

+ C t
ŝl̂
,

Cŝŝ = Cm
ŝŝ + C t

ŝŝ. (43)

As we use the topographic gravity model only in the degrees
above the maximum degree N of the GGM, we regard the
two models as uncorrelated and write for their degree n

nm ∈ {2,N},
nt ∈ {N + 1,Nmax}, (44)

where Nmax is the maximum degree of l̂t . Usually, there is
neither a normal equation system available for the degrees
above a GGM nor another source for a covariance matrix
that describes the accuracy of the topographic gravity model.
Therefore, without the possibility of deriving direct accuracy
or covariance information for the topographic gravity model,
we must use the total average Ē for the derivation of a covari-
ancematrix. The resulting covariance is an approximation for

the accuracy and the correlations of the topographic grav-
ity model and is derived under the assumptions mentioned
in Sect. 2.1. This covariance can for example be calculated
from the residuals�l, because the topography is usually asso-
ciated with the largest source of uncertainties in �l. The
approach of empirical covariance fitting is quite common in
regional geoid modeling and is described in Tscherning and
Rapp (1974). Note that the resulting covariance matrices are
designed to describe a finite dimensional space and therefore
disregard the gravity signal above degreeNmax.Adopting this
approach our notation changes as follows, again marking the
covariance matrices derived from the total average Ē with a
bar, as in Sect. 2.1.

C t
l̂l̂

≈ C̄ t
l̂l̂

C t
ŝl̂

≈ C̄ t
ŝl̂

C t
ŝŝ ≈ C̄ t

ŝŝ (45)

By insertingCŝl̂ ,Cl̂l̂ , l̂ and ŝ from the previous equations into
Eq. 30, we obtain the final formulation of RLSC including
the GGM and the topographic gravity model

s = (Cm
ŝl̂

+ C̄ t
ŝl̂
)

︸ ︷︷ ︸

Part 1

(Cll + Cm
l̂l̂

+ C̄ t
l̂l̂
)−1

︸ ︷︷ ︸

Part 2

(l − l̂m − l̂t)
︸ ︷︷ ︸

Part 3

+ ŝm + ŝt
︸ ︷︷ ︸

Part 4

.

(46)

Since Eq. 46 is very important in the following sections, we
look at its various parts in more detail. Part 3 contains the
residual input to RLSC subject to the condition that it is cen-
tered. Here, the remove step is performed by reducing l̂m and
l̂t from the observations l. Part 2 describes the uncertainties of
part 3 accordingly. Every quantity from the input (l, l̂m, l̂t) has
its own covariance matrix (Cll, Cm

l̂l̂
, C̄ t

l̂l̂
). Similarly, we have

the covariance matrices between input and output uncertain-
ties in part 1, except that the covariance between the accuracy
of the observations and the output s is missing because the
two are assumed to be uncorrelated (Eq. 27). Finally, part 4
describes the restore step in the output functional (ŝm, ŝt).

The approach taken from Eq. 46 uses the full covari-
ance information of a GGM up to a certain degree N , and
topographic information above, from degree N + 1 up to
degree Nmax. The approach therefore delivers several advan-
tages compared to the approach of Moritz (1980):

1. The observations l themselves do not have to be centered.
Instead, we use the condition that GGM and topographic
gravity model have the same offset as the observations l
so that l − l̂m − l̂t is centered.

2. The covariance matrices Cm
ŝl̂

and Cm
l̂l̂

are neither homo-
geneous nor isotropic but fit perfectly to a target area and
can benefit from the continuously improving quality of
(high-resolution) GGMs.
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3. This approach uses only residuals as input for LSC,
because it can be shown that this yields the best results
(see Sect. 2.2).

4. RLSC can give a realistic formal error estimate, because
with the inclusion of the GGM uncertainties all the
stochastic information is included in the resulting error
covariance matrix Ess, which is calculated (analogously
to Eq. 46) by inserting Cm

l̂l̂
, Cm

ŝl̂
and Cm

ŝŝ into Eq. 32

Ess = Cŝŝ − Cŝl̂ (Cll + Cl̂l̂)
−1CT

ŝl̂

= (Cm
ŝŝ + C̄ t

ŝŝ) − (Cm
ŝl̂

+ C̄ t
ŝl̂
)

× (Cll + Cm
l̂l̂

+ C̄ t
l̂l̂
)−1(Cm

ŝl̂
+ C̄ t

ŝl̂
)T. (47)

In comparison with the existing literature that has already
included accuracy information from a satellite-only model
(e.g., Haagmans and van Gelderen 1991; Pail et al. 2010;
Sansò 2013) our approach still maintains the advantages 1
and 2. Point 4 is only advantageous in comparison with
approaches that do not include all stochastic parts in LSC
(e.g., Forsberg and Tscherning 1981; Hofmann-Wellenhof
and Moritz 2006; Rieser 2015).

3 Data and simulation concept

We show the benefit of including full covariance matrices
from a high-resolution GGM in collocation by a comparison
between RLSC (Eq. 46) and a comparable approach without
GGM covariance matrices, which we refer to as standard
LSC. We derive standard LSC

s̄ = C̄ t
ŝl̂

(Cll + C̄ t
l̂l̂
)−1(l − l̂m − l̂t) + ŝm + ŝt, (48)

from the approach by Moritz (1980) (Eq. 12), but include
an RCR approach for the GGM and the topographic gravity
model that is analogous to Eq. 46. Standard LSC is thereby
equivalent to RLSC (Eq. 46) except that the two covariance
matricesCm

l̂l̂
andCm

ŝl̂
are missing, because the GGM is either

assumed to be error-free or its noise component is implicitly
included in the model covariance function, which is used to
fit the empirical covariance function (Tscherning and Rapp
1974). In case of an error-free GGM the corresponding error
covariance matrix Ēs̄s̄ results in accuracy estimates of s̄ that
are overly optimistic

Ēs̄s̄ = C̄ t
ŝŝ − C̄ t

ŝl̂
(Cll + C̄ t

l̂l̂
)−1C̄ t T

ŝl̂
. (49)

The comparison of the two methods works best within
a synthetic test case scenario that allows us to compute the
residuals of the two methods by knowing the pre-defined
truth.Moreover, itmakes it possible to evaluate and assess the

formal error estimate of the stochastic part of the collocation
(compareRLSC:Eq. 47 and standardLSC:Eq. 49). To obtain
realistic results from a synthetic test case, we add noise to
the observations and to the GGM (as shown below).

The synthetic test case is calculated for one of the most
common challenges of regional geoid modeling, i.e., the cal-
culation of the geoid fromgravity anomalies given at selected
input points. As the calculation should be an evaluation test
for a real geoid computation, we use the input positions of
actual gravity observations for our synthetic test case. Output
is a regular grid of geoid heights in the target area, the South
American Andes. This is a useful test area for the study since
the Andes are one of the most demanding regions worldwide
in terms of gravity signal variations, heterogeneous data dis-
tribution, and topographic effects. Also, we have access to
the actual terrestrial database for this area (Hosse et al. 2014)
and can therefore realistically simulate the data distribution
on land.

The terrestrial gravity observation points are inhomoge-
neously distributed in an area between longitude [− 72◦ to
− 66◦] and latitude [− 29◦ to − 18◦] that is the northern
part of Chile (CHL), north-western Argentina (ARG) and
south-western Bolivia (BOL, Fig. 1a). Furthermore, we add
altimetry observations to cover the ocean region of the test
area. The altimetry observations are given as a regular grid
with 5′ spacing in the Pacific Ocean (PAC) bordered by the
− 74◦ longitude meridian and the − 31◦ parallel. Altimetric
gravity data on a regular grid are available fromvarious ocean
products, e.g., DTU13 (Andersen et al. 2015) or Sandwell
and Smith (2009) and can be found for download at the cor-
responding websites. The distribution of the input points in
Fig. 1a is displayed together with the terrain height. The
image shows the Pacific Ocean to the West and the main
ridge of the Andes from north to south. The test case includes
areas with quite dense terrestrial observations, while oth-
ers show large data gaps. Overall, there are 14,613 gravity
anomaly input points with 7814 from terrestrial observations
and 6799 altimetry grid points. As output, geoid heights N
are estimated for the whole study area as a regular 5′ grid,
which results in 21,901 output points (Fig. 1b).

As a GGM we use the XGM2016 (Pail et al. 2018),
because we have its full normal equation system available
that allows the calculation of the covariance matrices Cm

l̂l̂
,

Cm
ŝl̂
and Cm

ŝŝ (Eq. 37), as well as input and output function-

als (l̂m, ŝm) in Eq. 36. The XGM2016 is a combined gravity
field model up to degree 719 which uses relative regional
weighting for the combination of terrestrial and satellite
information. Compared to theGOCO05cmodel (Fecher et al.
2017), the XGM2016 includes an improved terrestrial data
set provided by the National Geospatial-Intelligence Agency
(NGA). In our opinion the XGM2016 is one of the most
consistently calculated high-resolution GGMs, and its good
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Fig. 1 LSC input points and
pre-defined truth of the test
scenario with borders as white
lines. a Terrain heights with the
distribution of the input points
with altimetry observations (red
dots) and terrestrial
measurements (black dots).
b Regular 5′ resolution grid of
geoid heights that are the
pre-defined truth s for the
synthetic test case

performance in comparison with other high-resolution grav-
ity field models such as EGM2008 (Pavlis et al. 2012),
EIGEN-6c4 (Förste et al. 2014) and GOCO05c (Fecher et al.
2017) is demonstrated in Pail et al. (2018). In a post-analysis
of the variance–covariance matrix of XGM2016, however,
we found out that the accuracy estimates in the higher degrees
(beyond the resolution of the satellite data) underestimate
the true noise behavior. The regionally varying weights of
XGM2016 have been computed empirically from compari-
son of satellite and low-pass filtered ground data (Pail et al.
2018). This procedure ensures an adequate relativeweighting
of satellite and ground data, but implicitly disregards signal
content in the high degrees. In a new version of XGM2016,
which shall be released soon, we will take this omission error
into account by means of scaling the error estimates by their
high-frequency signal content. From this analysis, we con-
sider a factor of 3 as a reasonable value to calibrate the error
estimates in the area of our synthetic test case. Therefore, we
scale the XGM2016 accuracy estimates in Sects. 4.1 and 4.2
by a factor of 3 and hence must increase the elements of
the covariance matrices Cm

l̂l̂
, Cm

ŝl̂
and Cm

ŝŝ by a factor of 9.
However, in Sect. 4.3 we present results with the original
XGM2016 accuracy and thus investigate the impact of the
accuracy of the GGM.

For the definition of the true gravity signal, we choose
a XGM2016 and EIGEN-6c4 combination model [‘GOCE-
OGMOC’, Gruber and Willberg (2019)] up to degree 2190
and calculate s and t from it. The main reason for using
this model is that we can be sure it does not contain sys-

tematic errors relative to the XGM2016 model because the
long wavelength parts are identical. The geoid heights s that
we use as pre-defined truth, and to which we subsequently
compare our results, are presented in Fig. 1b. In the tar-
get area, the geoid heights vary from 10 m in the Atacama
Trench up to almost 50 m in the plateau of Bolivia. The
true gravity anomalies t are used to calculate the simulated
gravity observations l by adding white noise n which is cal-
culated from a randomnoise vector el and the accuracy of the
observations σ l

l = t + n = t + σ lel. (50)

σ l is also used in the covariancematrixCll of the observations
where we assume the accuracies of different observations l
to be uncorrelated and therefore obtain the diagonal
matrix Cll

Cll = σ lI . (51)

Wemust consider this as a simplification because we assume
that we know the accuracy σ l of the input observations which
is not guaranteed in reality.

For l̂t and ŝt we use a spherical harmonic synthesis from
the topographic gravity model dV_ELL_Earth2014 (Rexer
et al. 2016) from degree N + 1 to Nmax. Note that it is not
necessary for l̂t (or ŝt) to contain all remaining gravity sig-
nals above the degree N of the GGM provided it is without
systematic error and independent of l̂m (conditions in the
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Table 1 Overview of all quantities, their definition and source in our synthetic test case scenario

Quantity Description Source Equations

t Pre-defined truth synthesized in input functional GOCE-OGMOC –

s Pre-defined truth synthesized in output functional GOCE-OGMOC –

Cm
l̂l̂

GGM: error covariance function for input points XGM2016 37

Cm
ŝl̂

GGM: error covariance function for input and output XGM2016 37

Cm
ŝŝ GGM: error covariance function for output points XGM2016 37

l̂m GGM: synthesized in input functional (remove step) XGM2016 36

ŝm GGM: synthesized in output functional (restore step) XGM2016 36

N Maximum degree of the GGM XGM2016 44

ln Colored noise of GGM at input points (synthetic case only) White noise and XGM2016 56

sn Colored noise of GGM at output points (synthetic case only) White noise and XGM2016 56

κn Combined colored noise of GGM (synthetic case only) White noise and XGM2016 54

C̄ t
l̂l̂

Topo. gravity: error covariance function for input points Fit to empirical covariance 45

C̄ t
ŝl̂

Topo. gravity: error covariance function for input and output Fit to empirical covariance 45

C̄ t
ŝŝ Topo. gravity: error covariance function for output points Fit to empirical covariance 45

l̂t Topo. gravity: synthesized in input functional (remove step) dV_ELL_Earth2014 39

ŝt Topo. gravity: synthesized in output functional (restore step) dV_ELL_Earth2014 40

Nmax Maximum degree of the topographic gravity model dV_ELL_Earth2014 44

σ l Assumed accuracy of input observations Accuracy of observations 50

Cll Error covariance function of observations, diagonal matrix Accuracy of observations 51

el White noise vector (synthetic case only) White noise 50

em White noise vector (synthetic case only) White noise 54

definition of Sect. 2.4). An overview of all quantities of the
synthetic test case can be found in Table 1.

Finally, we add noise to the GGM. Since the XGM2016
model uses regional varying weighting, colored noise that
actually describes the regionally varying accuracy of the
model is added in terms of a (random) realization based
on the variance–covariance information. For the calculation
of this covariance, we combine the observations l and the
output s in one vector κ

κ =
(

l
s

)

, (52)

and propagate the variance–covariance matrix of the GGM
Cm
ff to the combined covariance matrixCm

κ̂ κ̂
of input and out-

put by attaching the three formulas of Eq. 37 to give

Cm
κ̂ κ̂

= Af
κ C

m
ffA

f T
κ , (53)

where Af
κ is the design matrix for the transformation from

SH coefficients to the input and output points κ . We obtain
the colored noise κn of input and output by multiplying a
random vector em with white noise characteristics and the
Cholesky decomposition of the combined covariance matrix
Cm

κ̂ κ̂

κn = chol(Cm
κ̂ κ̂

) em = chol

(

Cm
l̂l̂

CmT
ŝl̂

Cm
ŝl̂

Cm
ŝŝ

)

em, (54)

which is defined by

X = chol(X) chol(X)T, (55)

whereX is a positive definitematrix (e.g., covariancematrix).
Consequently, we obtain the noise of the GGM for the
input ln and the output sn analogously to the definition in
Eq. 52 by

κn =
(

ln

sn

)

, (56)

and add them correspondingly to l̂m and ŝm. Thus, for a syn-
thetic test case we adjust the formula of RLSC (Eq. 46) with
the inclusion of the observation noisen (Eq. 50) and the noise
of the XGM2016 model ln and sn (Eqs. 54, 56)

s = (Cm
ŝl̂

+ C̄ t
ŝl̂
) (Cll + Cm

l̂l̂
+ C̄ t

l̂l̂
)−1((t + n) − (l̂m + ln) − l̂t)

+ (ŝm + sn) + ŝt, (57)
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Fig. 2 LSC remove step for the gravity anomalies: a terrestrial observations with σn = 1mGal, b observations after reduction of XGM2016 model,
c LSC input �l after reducing XGM2016 and topographic gravity

and analogously, for standard LSC from Eq. 48

s̄ = C̄ t
ŝl̂

(Cll + C̄ t
l̂l̂
)−1((t + n) − (l̂m + ln) − l̂t) + (ŝm + sn) + ŝt.

(58)

In both cases, the stochastic part of the collocation does not
change, so that the calculation of the error covariance matri-
ces Ess (Eq. 47) and Ēs̄s̄ (Eq. 49) remain unchanged in the
synthetic test case.

The effect of the remove step in Eqs. 57 and 58 is pre-
sented in Fig. 2, where the observations always include a
white noise of σ l = 1 mGal (see Eq. 50). The XGM2016
model up to degree N = 719 contains the colored noise
that is calculated from the Cholesky decomposition (Eq. 54),
and the topographic gravity reduction is used from N + 1
to 2190. Figure 2a shows the original, noisy observations l.
We reduce the observations l first by the high-resolution
XGM2016 model (l̂m + ln) (Fig. 2b) and afterwards also by
the gravity signal that is related to the topography, resulting
in the residual input vector l − (l̂m + ln) − l̂t (Fig. 2c). Note
that the color scale decreases significantly between Fig. 2a
and Fig. 2c. This is also apparent in Table 2, which shows the
mean value and the standard deviation of the corresponding
data sets in Fig. 2. Regarding its standard deviation (SD), the
signal is reduced by about 80% by subtracting the XGM2016
model and more than 90% in combination with the topog-
raphy. With a mean value of only 0.2 mGal the condition

of a centered LSC input is almost fulfilled in this case. In
our numerical simulation, the final LSC input contains the
noise of the observations and the GGM as well as the inac-
curacy of the topographic gravity model. These three effects
are modeled in the related error covariance matrices of our
approach (Eq. 57). The inaccuracy of the topographic gravity
model thereby also includes density anomalies in the spec-
tral range from N + 1 to Nmax, which are contained in the
residual observations. These anomalies are not adequately
represented in the topographic gravity model, because it
assumes a constant topographic density (Rexer 2017, Chap-
ter 3.2).

Currently we do not have accuracy information for the
topographic gravity model (see Sect. 2.4) and this kind of
information is not available for any of the topographic gravity
models (Rexer et al. 2016; Grombein et al. 2016). However,
because we assume the largest part of the LSC input results
from differences between the topographic gravity model and
the observations in the high frequencies (as they contain
also the effect of density anomalies), we calculate a Model
Covariance Function (MCF) that fits the LSC input. This
is considered to be a standard approach in LSC which is
used for the calculation with signal degree variances (Moritz
1980, Chapter 12) as well as for empirical covariance fitting
with the most common approach by Tscherning and Rapp
(1974). The result is an isotropic and homogeneous covari-
ance matrix for the spectral range above degree 719 that fits
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Table 2 Consistent numerical analysis of the LSC remove step in Fig. 2

Signal description Notation Mean value (mGal) SD (mGal) Figures

Observations l = t + n 10.2 78.7 2a

Reduced by XGM2016 only l − (l̂m + ln) − 3.3 15.2 2b

Reduced by XGM2016 + topographic gravity l − (l̂m + ln) − l̂t 0.2 5.5 2c

Fig. 3 Empirical covariance function that is calculated from the LSC
residuals in the target area (red) and the scaled covariance from signal
degree variances (blue) as it is used for LSC. Both covariance functions
are shown dependent on the spherical distance between two points

to our input residuals. In general, we calculate the covari-
ance matrices C̄ t

l̂l̂
and C̄ t

ŝl̂
from signal degree variances and

refer to Moritz (1980) for more details. However, global sig-
nal degree variance models describe an average Earth, but
the South American Andes are not an average area in terms
of gravity signal (due to large topographic masses). Thus,
we have to use a scale factor to fit model degree variances
(blue, Fig. 3) to the Empirical Covariance Function (ECF)
of the LSC input residuals (red). In Fig. 3, we calculate
signal degree variances, according to our data simulation,
from the difference between the GOCE-OGMOC and the
dV_ELL_Earth2014 model from degree 720 to 2190 and
scale them by a factor of 4.25. Figure 3 then shows the ECF
and MCF in dependence of the spherical distance between
two points. In this case the correlation length amounts to
only 0.12◦.

4 Results of the synthetic test scenario

Section 3 describes the method, the parameters and the
sources that are used to evaluate RLSC (Eq. 57) in com-
parison with standard LSC (Eq. 58). Both methods use the
RCR concept where a GGM and the topographic gravity are
removed before the collocation, and their effects are restored
(to the output functional) afterwards. For the calculation we

set the degree N of the GGM first and use the topographic
gravity model always from degree N + 1 to Nmax = 2190.
The results of s (or s̄) are compared with the assumed truth s,
and the difference indicates the accuracy of the collocation
result under these pre-defined conditions. In terms of numer-
ical classification we define the Root Mean Square (RMS)
over a target area with npoints points as a quality criterion for
the LSC result s (or s̄)

RMS =
√

∑

points (s − s)2

npoints
. (59)

We use an equivalent formula to characterize the Mean
estimated standard deviation (MSD), which describes the
stochastic accuracies and is derived from Ess (or Ēs̄s̄) with
diag(X) giving the main diagonal of a square matrix X

MSD =
√

∑

points diag(Ess)

npoints
. (60)

4.1 Simulation with satellite-only model resolution

At first we compare LSC for calculations with the XGM2016
model but use the model only up to degree 200 (case A).
Consequently, RLSC resembles other approaches in which
covariance functions from satellite-only global gravity fields
are included to LSC (e.g., Pail et al. 2010; Sansò 2013). How-
ever, the actual computation of the covariance matrices in
our case is still different (Eq. 37). Standard LSC in case A is
similar to LSC approaches that do not account for the accu-
racy of the GGM (e.g., Rieser 2015; Hofmann-Wellenhof
and Moritz 2006). The main reason why it is so common to
use a GGM up to degree of 180–250 in LSC is the high accu-
racy of GGMs in this frequency range (Gruber et al. 2011),
which is mainly due to the GOCE mission (Drinkwater et al.
2003). Thus, in the first case we use the XGM2016 model
with nm ∈ {2, 200} for all quantitieswith the superscript ‘m’,
and nt ∈ {201, 2190} accordingly. The accuracy of the input
observations σn is assumed to be 1mGal. For the calcula-
tions in Sects. 4.1 and 4.2, the accuracy of the XGM2016
model is multiplied by a factor of 3 (see Sect. 3). It is added
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Fig. 4 Case A: Geoid height
residuals with the XGM2016
model up to degree 200.
Presented is a the absolute
difference between the
pre-defined truth s and the
RLSC result s, b the difference
between the result of standard
LSC s̄ and RLSC s

as described in Sect. 3 but limited to degree 200 in case A.
An overview of all quantities is given in Table 1.

The collocation result s of RLSC from Eq. 57 in case A
is presented as an absolute geoid height difference (residu-
als) to the pre-defined truth s in Fig. 4a. In Fig. 4 and the
following images, we separate a region with terrestrial data
coverage (R1, left side) from an area without ground data
(R2, right side) by a white line, because we see large differ-
ences between these two regions. For the interpretation we
focus mainly on the region R1. In Fig. 4a, we see a high cor-
relation between the LSC residuals and the positions of the
input observations (see Fig. 1a): in the Pacific Ocean and the
bulge in the north we have dense observations and therefore
only small residuals mainly below 1 cm. In region R2, the
residuals amount to more than 10 cm which is also the case
for large parts of R1 in the Argentinian area (southeast). We
conclude that the number of terrestrial observations in this
area is not dense enough to describe the geoid height sig-
nals above degree 200. The RMS (Eq. 59) of the region R1
accounts for 6.0 cm, and is obviously significantly larger
in R2.

In case A, the RLSC results s (Fig. 4a) and standard LSC s̄
(Eq. 58) show almost the same RMS (Table 3) and only small
differences among each other. The difference s̄ minus s in
Fig. 4b shows maximum values of about ± 5.0 cm, but these
values occur to a large extent in areas without observations.
In areas with dense gravity observations (e.g., Pacific Ocean)
the differences between the two methods are of the order of
just a few millimeters. The reason for the differences being

so small is the fact that the extracted variances from Cm
l̂l̂

and Cm
ŝl̂

of the GGM are insignificantly small compared to

the corresponding variances of the topographic gravity in C̄ t
l̂l̂

and C̄ t
ŝl̂
. Therefore, C̄m

ll and C̄m
sl from RLSC do not have an

essential effect on the summation in Eq. 57.

diag(Cm
l̂l̂

) << diag(C̄ t
l̂l̂
)

diag(Cm
ŝl̂

) << diag(C̄ t
ŝl̂
) (61)

This is demonstrated in Fig. 5 which shows the variances
that are extracted from C̄ t

l̂l̂
(Fig. 5a) and Cm

l̂l̂
(Fig. 5b). The

variances from the topographic gravity in C̄ t
l̂l̂
are in the order

of 1000 times larger than the variances of the GGM in Cm
l̂l̂
.

We can conclude that in case A the additional benefit of
adding the covariance matricesCm

l̂l̂
andCm

ŝl̂
to LSC is small.

This is also the explanationwhyLSCapproaches often ignore
the accuracy of a satellite-only resolution GGM completely
(e.g., Hofmann-Wellenhof and Moritz 2006; Rieser 2015).

4.2 Simulation with full GGM resolution

However, this changes in case B where we use the full
degree N = 719 of the XGM2016 model for reduction
(nm ∈ {2, 719}) and thus apply the topographic gravity
for nt ∈ {720, 2190}. In principle, the procedure remains
the same, but we would like to emphasize that this set-up
increases all matrix elements in Cm

l̂l̂
,Cm

ŝl̂
andCm

ŝŝ , and there-
fore also the noise of the XGM2016 model (see Eq. 54).
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Table 3 Overview of the three
synthetic test cases and the
numerical results for region R1

Case Sections N Signal Method RLSC (cm) Standard LSC (cm) Figures

A 4.1 200 Residuals RMS 6.0 6.1 4

200 Formal error MSD 5.2 5.2 –

B 4.2 719 Residuals RMS 3.9 6.9 6

719 Formal error MSD 3.6 2.2 7

C 4.3 719 Residuals RMS 2.9 3.3 8

719 Formal error MSD 2.6 2.2 –

Fig. 5 Case A: Comparison of
the extracted variances that are
used in RLSC. a Variances
extracted from the covariance
matrix C̄ t

l̂l̂
of the topographic

gravity model which depends
only on latitude and height.
b Regional varying variance
elements from the covariance
matrix Cm

l̂l̂
of the XGM2016

model (to degree 200)

The results of a collocation with XGM2016 to full degree
(case B) are visualized in Fig. 6, where we show again the
absolute differences to the pre-defined truth s. From this
point, we retain the form in which we present RLSC with
GGM covariance (Eq. 57) on the left-hand side (Fig. 6a) and
standard LSC (Eq. 58) on the right-hand side (Fig. 6b). It is
obvious thatRLSCperformsmuchbetter in caseB. InFig. 6a,
we again see a high correlation with the distribution of the
input points. In areas with dense terrestrial observation, e.g.,
the Pacific Ocean or the bulge in the north, the residuals
are mainly below 1 cm. The residuals over the well-covered
Chilean area are much smaller than on the Argentinian side,
which also results from the corresponding point distributions.
In the region R2 the residuals are largest and often above
10 cm. In Fig. 6b, we have in general much larger residu-
als, so that even areas with dense gravity observations show
residuals of at least 2 cm. The higher residuals primarily
result from the noise of the GGM since standard LSC regards
the noisy XGM2016 model as error-free and therefore fully
reflects its error in the result. The RMS of standard LSC in

regionR1 accounts for 6.9 cm,while the one of RLSC is only
3.9 cm (Table 3).

In summary, RLSC and standard LSC perform very sim-
ilarly with a satellite-only resolution GGM in case A, but
when using a high-resolution GGM as in case B, there are
significant improvements when including the GGM covari-
ance (Table 3, Fig. 6). Furthermore, the benefit of including
a high-resolution GGM itself is demonstrated when we com-
pare the RLSC result in case B (Fig. 6a) with the result in
case A (Fig. 4a). Even with the much higher error from
the GGM in case B, the RMS for RLSC in region R1 is
reduced from 6.0 to 3.9 cm. This improvement results at
least partly from the area with sparse terrestrial measure-
ments in Argentina that has clearly higher residuals in case A
(Fig. 4a). However, even areas with small data gaps which
are common in mountainous areas and the edges of observed
areas benefit highly from the inclusion of a high-resolution
GGM in RLSC. The latter is for example visible at the south-
ern end of the Pacific Ocean where case A clearly shows
edge effects while case B does not. Standard LSC, on the
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Fig. 6 Case B: Geoid height
residuals with the XGM2016
model that is the absolute
difference between the
pre-defined truth s and a the
RLSC result s, b the standard
LSC result s̄

other hand, performs worse in case B, and its RMS increases
due to the noise ln of the GGM from 6.1 cm in case A to
6.9 cm in case B. We conclude that, in contrast to stan-
dard LSC, RLSC is able to handle the noise in the GGM
and gives good results in areas with a sufficient number
of observations.

Figure 7 shows the formal error of caseB,which is derived
from the error covariance matrix Ess or respectively Ēs̄s̄ as
square root of the main diagonal elements (Eq. 60). The dif-
ference betweenFig. 7a andFig. 7b results from the neglected
covariance matricesCm

l̂l̂
andCm

ŝl̂
in Eq. 58, and since covari-

ance matrices are positive definite, the estimated error for
standard LSC (Fig. 7b) is always smaller than the one from
RLSC (Fig. 7a). The corresponding MSD (Eq. 60) in region
R1 is 3.6 cm for RLSC and 2.2 cm for standard LSC. Thus,
we see that the residuals and the formal errors agree much
better (see Table 3) for RLSC (Figs. 6a+7a) than for stan-
dard LSC (Figs. 6b+7b). We again point out the Pacific
Ocean and the bulge in Bolivia where in both cases the dark
green values of Fig. 7b do not fit to the corresponding error
in Fig. 6b. In contrast, we see that for RLSC essentially all
peaks in the residuals (Fig. 6a) are indicated by higher val-
ues in Fig. 7a as well, which demonstrates that the formal
error of RLSC fits much better to its residuals. We con-
clude that standard LSC cannot realistically represent the
formal error since the accuracy of the GGM is not included.
Therefore, the result of Ēs̄s̄ is always too optimistic. The con-
sistent calculation of Ess is considered as a main advantage
of RLSC.

4.3 Simulation with a different XGM2016 accuracy

To analyze the behavior of RLSC in dependence of the
accuracy of the GGM, we repeat the computations with the
original XGM2016 accuracy, i.e., without multiplying it by
a factor of 3. Therefore, we recalculate case B with the orig-
inal XGM2016 covariance matrices Cm

l̂l̂
, Cm

ŝl̂
and Cm

ŝŝ and
name it case C. Note, that this will generally improve the
results since the downscaling of the covariance matrices also
decreases the noise ln and sn of the GGM which is used in
the RCR step.

Figure 8 shows again the resulting absolute geoid height
differences between the results of RLSC and standard LSC
to the pre-defined truth s. At first glance the two images in
Fig. 8 look similar. As in case B, in general we have small
errors in the Pacific Ocean, medium errors in the land areas
with observations, and the largest errors in region R2. But
nevertheless, we see that the result of RLSC (Fig. 8a) is bet-
ter than standard LSC (Fig. 8b). The RMS from region R1
amounts to 2.9 cm (Fig. 8a) and 3.3 cm (Fig. 8b), respec-
tively. Especially, the dark green area in the Pacific which
indicates residuals below 1 cm is more uniform in Fig. 8a.
Also, for RLSC the bulge in the north shows mainly resid-
uals below 1 cm, while for standard LSC it shows much
higher residuals.

Table 3 summarizes the RMS andMSDvalues of the three
synthetic test cases in region R1, from which the follow-
ing conclusions can be drawn. Generally, in all three test
cases RLSC performs better than standard LSC. However,
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Fig. 7 Case B: Formal error of
the geoid height calculation.
This derives a from Ess for
RLSC, b from Ēs̄s̄ for standard
LSC, as the square root of the
main diagonal

Fig. 8 Case C: Geoid height
residuals with the original
XGM2016 accuracy. Presented
is the absolute difference
between the pre-defined truth s
and a the RLSC result s, b the
standard LSC result s̄

the benefit in case A is negligibly small. With the given point
distribution in the target area we see a benefit from including
a high-resolution GGM in RLSC which decreases the RMS
from 6.0 cm (case A) to 3.9 cm (case B). This benefit is
particularly apparent in areas with sparse or medium-dense
data distributions and at the edges of the terrestrial observa-

tions. The inclusion of a high-resolution GGMwithout using
RLSC yields with 6.9 cm the worst result among the three
cases. Figure 6b demonstrates this even more clearly than
the RMS comparison. As expected, the inclusion of a higher
quality GGM (case C) gives better results in both of the LSC
methods, but still favors RLSC. In contrast to standard LSC,
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in all three cases the accuracy of RLSC is well approximated
by the formal error estimates. In case B and C the MSD of
the formal error differs by only 0.3 cm from the RMS of the
residuals (Table 3).

5 Conclusion and outlook

In this paper, we derive and evaluate an approach named
residual least-squares collocation that includes several adap-
tations to previous LSC methods. Principally, we use only
residuals as input to RLSC and the stochastic properties of
all inputs in the RCR step are separately described by a
corresponding covariance matrix. As a result, this adapted
formulation only uses error covariance matrices instead of
covariance matrices that describe the gravity signal as used
in Moritz (1980), Pail et al. (2010), Sansò (2013) or Haag-
mans and van Gelderen (1991).

We derive the formulation of RLSC from the basics of
Moritz (1980) but use the mere stochastic expectation opera-
tor E instead of the total average operator Ē for the definition
of the covariance matrices. On this basis, for the first time
we include a full covariance matrix of a high-resolution
GGM in regional geoid modeling. The method also allows
us to use covariance matrices that are tailored to a target
area. It was already formulated by Tscherning (1999) that
the use of isotropic covariance functions does not yield the
optimal result in estimating the non-isotropic functionals of
the Earth’s disturbing gravity field T . Therefore, we derive
covariance functions directly from the normal equation sys-
tem of the high-resolution GGM (here: XGM2016) and use
them for the collocation. In general, these location-dependent
and non-isotropic covariance matrices fit better to a target
area than covariance matrices derived purely from signal
degree variances (Moritz 1980; Heiskanen and Moritz 1967)
or empirical covariance fitting (Tscherning and Rapp 1974),
which both describe only an average part of the Earth (or
respectively an average part of a target area). Furthermore,
similar to the LSC methods in Pail et al. (2010) or Sansò
(2013) RLSC offers the advantage that all stochastic effects
are included in a consistent way directly in LSC, which
should lead to a realistic accuracy estimation of the output
quantities. The downside of the presented approach is that the
computation of the covariance matrices for the input and the
output points (Cm

l̂l̂
, Cm

ŝl̂
and Cm

ŝŝ ) is very CPU-intensive. For
the calculation we exploited the LRZ supercomputing sys-
tem SuperMUC phase 2 where we used 80 Haswell nodes
(Xeon E5-2697 v3). These nodes have 28 cores each with a
peak performance of 41.6 GFlops/s, which results in a com-
putation time less than an hour. Additionally, it is necessary
to have access to the full normal equation system of theGGM
which is frequently not available to the public.

For an optimum evaluation of the benefit of the RLSC
method we formulate a synthetic test case with a pre-defined
truth. To obtain realistic results from it we add noise to the
GGM and to the terrestrial gravity observations. However,
a number of assumptions must be included in the scenario.
In particular, we assume that the variance–covariance infor-
mation of the XGM2016 model is correct, since we use it
to derive the noise of the GGM. Furthermore, we band-limit
the gravity signal to degree 2190. In a case where we use real
gravity data, wewould have to extend the topographic gravity
reduction to higher frequencies. Nevertheless, the simulation
of three different test cases yields meaningful results and
allows us to evaluate RLSC compared to a standard LSC.
We see that regional gravity modeling can benefit from the
inclusion of a high-resolution GGM with RLSC. In our test
case, the numerical advantage of this is an RMS reduction
from 6.0 cm (case A) to 3.9 cm (case B) for RLSC where
the RMS values are largely affected by the areas with sparse
ground data distribution. In areas with a good data coverage
RLSC gives residuals mainly below 1 cm in all of the three
test cases. In general, by including a high-resolution GGM
in RLSC, we obtain better results especially in areas with
sparse observations or close to data gaps. In our opinion, this
constitutes a big advantage, because terrestrial gravity mea-
surements are often inhomogeneously distributed and data
gaps are almost inevitable especially inmountainous regions.
Furthermore, it is shown that the stochastic error estimates of
the RLSC approach provide realistic uncertainty estimates,
which becomes very importantwhen real gravity data is used.

An additional advantage of the inclusion of a high-
resolution GGM in LSC and thus working with rather
high-frequency residuals is, that it can significantly reduce
the amount of terrestrial data that is needed for the calcula-
tion. As shown in Sect. 3, the correlation length when using
XGM2016 and a topographic gravity model in the remove
step is only 0.12◦. Therefore, it is possible to reduce the
amount of data that is included toRLSC locally and for exam-
ple use only those observations for the calculation that are
within a specified distance from the output. Considering this,
we regard the calculation of height reference stations for the
International Height Reference System (IHRS; more infor-
mation in Ihde et al. 2017 or Sánchez and Sideris 2017) as a
predestined application forRLSC.The high-resolutionGGM
could be used as the basis of a worldwide height unification,
and terrestrial observationswould be used for the local refine-
ment around a height reference station. The unique advantage
of RLSC in this context is that terrestrial data coveragewould
not be needed in an area as large as about 200 km around an
IHRF station, which is the current default for a satellite-only
GGM. Furthermore, IHRS stations will be distributed glob-
ally, so that numerous IHRF stations can either benefit from
the in general good quality of high-resolution GGMs over
oceans that results from satellite altimetry, or are set to areas
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with little terrestrial data coverage where RLSC appears to
perform best. Finally, a correct stochastic accuracy estima-
tion is very important for the calculation of potential values
at the IHRF stations.

The next step will be to validate the performance of the
presented approach within the IAG Joint Working Group
(JWG, 2.2.2: the 1 cm geoid experiment) with real measure-
ments. JWG 2.2.2 aims to assess the calculation of gravity
potential values at IHRS stations from different calculation
methods, and therefore enables another comparison of RLSC
to other regional gravity field determination methods. In any
case, with continuously improving high-resolution GGMs
and especially with the announcement of the Earth Gravi-
tational Model 2020 (EGM2020) by the NGA, we see the
impact of high-resolution GGMs for regional geoid model-
ing even increasing in the future.
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