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Abstract
Residual terrain modelling (RTM) plays a key role for short-scale gravity modelling in physical geodesy, e.g. for interpolation 
of observed gravity and augmentation of global geopotential models (GGMs). However, approximation errors encountered 
in RTM computation schemes are little investigated. The goal of the present paper is to examine widely used classical RTM 
techniques in order to provide insights into RTM-specific approximation errors and the resulting RTM accuracy. This is 
achieved by introducing a new, independent RTM technique as baseline that relies on the combination of (1) a full-scale 
global numerical integration in the spatial domain and (2) ultra-high-degree spectral forward modelling. The global inte-
gration provides the full gravity signal of the complete (detailed) topography, and the spectral modelling that of the RTM 
reference topography. As a main benefit, the RTM baseline technique inherently solves the “non-harmonicity problem” 
encountered in classical RTM techniques for points inside the reference topography. The new technique is utilized in a 
closed-loop type testing regime for in-depth examination of four variants of classical RTM techniques used in the literature 
which are all affected by one or two types of RTM-specific approximation errors. These are errors due to the (1) harmonic 
correction (HC) needed for points located inside the reference topography, (2) mass simplification, (3) vertical computation 
point inconsistency, and (4) neglect of terrain correction (TC) of the reference topography. For the Himalaya Mountains 
and the European Alps, and a degree-2160 reference topography, RTM approximation errors are quantified. As key finding, 
approximation errors associated with the standard HC ( 4�G�HRTM

P
) may reach amplitudes of ~ 10 mGal for points located 

deep inside the reference topography. We further show that the popular RTM approximation ( 2�G�HRTM

P
− TC ) suffers from 

severe errors that may reach ~ 90 mGal amplitudes in rugged terrain. As a general conclusion, the RTM baseline technique 
allows inspecting present and future RTM techniques down to the sub-mGal level, thus improving our understanding of 
technique characteristics and errors. We expect the insights to be useful for future RTM applications, e.g. in geoid modelling 
using remove–compute–restore techniques, and in the development of new GGMs or high-resolution augmentations thereof.
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1  Introduction

In physical geodesy, residual terrain modelling (RTM) 
is a key technique that is widely used to forward-model 
high-frequency gravity effects from topographic mass 
models (Forsberg and Tscherning 1981; Forsberg 1984). 
The RTM can be used to smooth gravity field observations 
for field interpolation (densification), e.g. in the context of 
remove–compute–restore gravity field computations (e.g. 
Denker 2013), mostly applied to determine high-resolution 
geoid models from gravimetric (Märdla et al. 2017) but 
also astrogeodetic data (Schack et al. 2018). Second, RTM 
gravity effects can be used to extend the spectral content 
of global geopotential models (GGMs) to the short-wave-
length domain not resolved by the GGM (e.g. Hirt 2010; 
Bucha et al. 2016). This approach, also known as spectral 
enhancement method, has proven its value in the devel-
opment of GGMs as fill-in method over areas with poor 
gravity coverage (Pavlis et al. 2007), enabled improved 
validation of GGMs (Hirt et al. 2011) and shown its util-
ity in height system unification (Vergos et al. 2018). It has 
also facilitated the construction of ultra-high resolution 
maps of gravity field functionals (e.g. GGMplus, Hirt et al. 
2013). RTM was also used in related applications, e.g. ice 
modelling (Schwabe et al. 2014), coastal zone modelling 
(Hirt et al. 2013), geophysics (AllahTavakoli et al. 2015) 
and combined with mass-density maps (Yang et al. 2018).

The main benefit of the RTM technique is its ability to 
directly deliver—in approximation—high-frequency grav-
ity effects, solely based on the integration of gravity effects 
of elementary mass bodies (e.g. prism or tesseroids, e.g. 
Heck and Seitz (2007) or polyhedra, e.g. D’Urso (2014)) 
within some limited integration cap. Compared to other 
gravity forward modelling techniques that require more 
tedious global numerical integrations (e.g. Kuhn et al. 
2009), residual gravity effects largely cancel out beyond 
some distance from the computation point, thus reducing 
the numerical costs (Forsberg and Tscherning 1981).

As disadvantage, RTM gravity computations can be 
subject to approximation errors. The most prominent 
example is the so-called harmonic correction (HC) that 
is needed when computation points reside inside the ref-
erence topography (Forsberg 1984; Omang et al. 2012; 
Denker 2013), but there are other RTM-specific approxi-
mations that are identified and investigated in this paper.

When the RTM is to be used for high-frequency GGM 
augmentation, spectral inconsistencies can act as error 
sources, e.g. when simplified methods, such as block-mean 
values or moving averages (Elhabiby et al. 2009; Fors-
berg 2010), are used to high-pass filter the digital eleva-
tion model (DEM) that represents the topographic masses. 
The spectral inconsistencies can be reduced by using a 

spherical harmonic (SH) reference surface (Hirt 2010) 
which is ideally derived from the DEM data itself via 
spherical harmonic analysis (Hirt et al. 2014). However, 
even when a rigorously consistent SH reference surface 
is used, the computed RTM gravity effects are subject to 
approximation errors, because filtering in the topography 
and gravity domains are not equivalent operations (“RTM 
filter problem”). On the one hand, high-frequency grav-
ity signals as implied by the band-limited SH reference 
surface (e.g. Hirt and Kuhn 2014) are missing. On the 
other hand, unwanted low-frequency gravity signals may 
enter the RTM gravity effects. The RTM filter problem can 
be avoided by filtering gravity from a global numerical 
integration with a spectral topographic potential model 
(Grombein et al. 2017), or solved by applying filter cor-
rections (Rexer et al. 2018).

While some of the RTM-specific approximation errors 
affecting the “classical” Forsberg (1984) RTM technique can 
be mitigated with the recent works, others, notably those 
associated with the harmonic correction, can still be present, 
but are little studied. With recent advances in ultra-high-
resolution spectral gravity forward modelling (e.g. Balmino 
et al. 2012; Hirt et al. 2016; Rexer 2017), it has now become 
possible to close this knowledge gap and improve our under-
standing of RTM techniques, which is important considering 
the widespread use of RTM in physical geodesy.

The goal of the present paper is to validate widely used 
RTM techniques and to provide insights into RTM-specific 
approximation errors and the resulting RTM accuracy. This 
is achieved by introducing a new, independent RTM tech-
nique that serves as baseline. It relies on the combination of 
(1) a full-scale global numerical integration in the spatial 
domain with (2) an ultra-high-degree spectral topographic 
potential model that accurately delivers gravity implied by 
the reference topography. The RTM schemes are tested in 
a closed-loop type test environment using identical input 
data in order to avoid inconsistencies associated with the 
use of, e.g. different mass models or constants. Our testing 
allows comparisons between the “classical” RTM compu-
tation schemes (or variants thereof) with a baseline RTM 
solution that, while computationally demanding to obtain, 
is sufficiently accurate to provide meaningful feedback on 
the RTM approaches. This strategy is used here to constrain 
the approximation error associated with the harmonic cor-
rection, and to provide accuracy estimates for four classi-
cal RTM techniques used together with N = 2160 reference 
topographies over rugged terrain. To our knowledge, this is 
the first comprehensive attempt to study these errors, and 
our RTM validation experiment is the first of its kind that is 
reported in the literature.

We start with general aspects of the methodology 
(Sect. 2.1), give a short review of the classical RTM techniques 
(Sect. 2.2) and introduce the new RTM baseline technique 
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based on ultra-high-degree spherical harmonics (Sect. 2.3). We 
then present a numerical experiment and its results (Sect. 3), 
which are discussed in Sect. 4 before conclusions are drawn 
in Sect. 5. The main focus of this paper is on the identifica-
tion and numerical study of error sources specifically occur-
ring in the RTM computation scheme, but not so much on the 
quantification of all possible error sources affecting forward 
computations, such as grid resolutions or choices for the mass 
model discretization (e.g. tesseroids vs. polyhedra) that are 
already discussed in the literature.

2 � Methodology

2.1 � General

RTM techniques can be considered as special cases of grav-
ity forward modelling (GFM) techniques to compute the 
gravity field generated by some topographic mass distribu-
tion. Through global evaluation of Newton’s integral, GFM 
techniques deliver the (topography-implied) gravity field at 
all spatial scales. In contrast, RTM techniques yield the short-
wavelength gravity field constituents only. This is commonly 
achieved by high-pass filtering of the topography prior to the 
forward modelling. In our study, a global digital elevation 
model (DEM) is used to approximate the upper bound of the 
topographic mass distribution, while the lower bound is rep-
resented by the geoid. We use the DEM in spherical approxi-
mation, i.e. with the heights H referring to some Earth refer-
ence sphere with radius R as an approximation of the geoid. 
The gravity signal �gH (first negative radial derivative of the 
potential) generated by the topographic mass model (defined 
through elevations H , mass density �) is obtained via global 
evaluation of Newton’s integral [after Heck an Seitz (2007), 
Eq. 30 ibid]

where r,�, � are the radius, latitude and longitude of the 
computation point P . Variables rQ,�Q, �Q are the radius and 
the geographical coordinates of the integration points Q and 
�,� are the spherical distance and azimuth between P and 
Q which are separated by the Euclidian distance l . Variable 
�0 denotes the radius of the integration cap, with �0 = � 
required for global integrations.

For the practical evaluation of Newton’s integral, either 
numerical integration in the spatial domain (NI) or spectral 

(1)

�gH(r,�, �) = G�

2�

∫
�Q=0

�∕2

∫
�Q=−�∕2

R+H

∫
rQ=R

r2
Q
(r − rQ cos�)

l3
drQ cos�Q d�Q d�Q

= G�

�0=�

∫
�=0

2�

∫
�=0

R+H

∫
rQ=R

r2
Q
(r − rQ cos�)

l3
drQd� sin�d�

gravity forward modelling (SGM) techniques can be used 
(e.g. Hirt and Kuhn 2014; Hirt et al. 2016). For NI, the 
topographic mass distribution is subdivided into elemen-
tary mass elements (e.g. prisms or tesseroids) for which the 
gravitational effect can be computed analytically or numeri-
cally. The composite gravity effect is then obtained through 
summation of all individual gravity contributions. Opposed 
to this, SGM does not require such a discretization. Instead, 
Newton’s integral is evaluated using spherical harmonics 
(Sect. 2.3).

For the high-pass filtering of the topography, we intro-
duce a reference topography HREF that represents the long-
wavelength part of H up to spherical harmonic (SH) degree 
N

where Ȳnm(𝜑, 𝜆) are the fully normalized surface SH func-
tions of degree n and order m and H̄nm are the fully normal-
ized SH height coefficients obtained through spherical har-
monic analysis (SHA) of H . The gravitational effect implied 
by HREF can be computed with

By subdividing the mass distribution into the two con-
stituents H and HREF , residual gravity

is obtained that can be computed in two fundamentally dif-
ferent ways. The first way is the joint evaluation of both 

terms of Eq. (4) in one integration run (cf. Sect. 2.2.1 and 
Fig. 1). The second way is the separate evaluation of the 
terms �gH and �gHREF (Fig. 2) that can be done by two NIs 
(over H and HREF ) in the spatial domain (Sect. 2.2.2), or 
alternatively, by a combination of global NI (over H) with 
spectral forward modelling (over HREF ). The last case is suit-
able to provide a baseline solution that avoids some approxi-
mation errors of classical RTM techniques (Sect. 2.3).

(2)HREF(𝜑, 𝜆) =

N∑

n=0

n∑

m=−n

H̄nmȲnm(𝜑, 𝜆)

(3)

�gHREF = G�

�0=�

∫
�=0

2�

∫
�=0

R+HREF

∫
rQ=R

r2
Q
(r − rQ cos�)

l3
drQd� sin�d� .

(4)�gRTM = �gH − �gHREF
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2.2 � The classical RTM techniques

2.2.1 � RTM with harmonic correction (RTM‑A and RTM‑B)

In its basic form, the RTM is constructed as difference 
between the high-resolution topography H and the refer-
ence topography HREF (Forsberg 1984), also see Fig. 1. The 
implied gravity signal �gRTM that follows from the RTM 
integral is evaluated with NI techniques (e.g. Heck and Seitz 
2007). The RTM integral reads in spherical approximation

Because of the oscillating nature of the residual heights 
HRTM = H − HREF , the gravitational effects associated with 
the masses beyond radius �0 cancel out to a large extent 
(Forsberg and Tscherning 1981; Forsberg 1984). The inte-
gration in Eq. (5) may therefore be restricted to a spheri-
cal cap of radius �0 instead of a global integration (as in 
Eqs. 1 and 3), significantly reducing the computational 
costs. The associated truncation error can be kept reason-
ably small by choosing �0 large enough (e.g. �0 = 2° for 
gravity and HREF with N = 2160).

The fundamental difficulty of the RTM technique using 
NI methods (Eq. 5) comes into play when the computa-
tion points are located inside the reference topography 
(i.e. HP < HREF

P
 ). In this case, the (RTM-delivered) gravi-

tational potential is non-harmonic and cannot be used to 
describe the field external to the mass distribution which 
is almost exclusively needed for the purposes of physical 
geodesy. Conventionally, this problem is solved by remov-
ing the masses above and condensing them just below the 
computation point. This solution is known as the harmonic 
correction (HC)

(Forsberg and Tscherning 1981) that relies on a mass con-
densation based on a double Bouguer reduction with slab 
thickness HRTM

P
 . It ensures that �gRTM values from NI 

become “compatible” with field representations such as (a) 
exterior spherical harmonics (e.g. GGMs), which are har-
monic per definition, and (b) field observations, e.g. grav-
ity measurements, carried out in harmonic space (above the 
Earth’s surface). For points with HRTM

P
≥ 0 , hc = 0 . Approx-

imation errors associated with the HC from Eq. (6) have 
been acknowledged in the literature (e.g. Forsberg 2010; 
Omang et al. 2012), but not yet precisely characterized and 
quantified. In the literature, “the non-harmonicity [] below 
the reference height surface is considered today as a major 
theoretical problem with the RTM method” (Denker 2013).

(5)

�gRTM ≈ hc + G�

�0

∫
�=0

2�

∫
�=0

R+H

∫
rQ=R+HREF

r2
Q
(r − rQ cos�)

l3
drQd� sin�d� .

(6)hc ≈ 4𝜋G𝜌HRTM

P
, HRTM

P
< 0

In this study, we denote the formalism to compute RTM 
gravity values �gRTM with Eqs. (5) and (6) as RTM-A tech-
nique. In Eq. (5), the integration of mass-density effects in 
radial direction ( rQ) is done between the limits R + HREF 
and R + H. Alternative choices for the integration limits 
have been reported in the literature, e.g. using residual 

Fig. 1   Basic principle of residual terrain modelling (technique RTM-
A). The figure shows the two elevation models (high-resolution 
detailed DEM and long-wavelength reference DEM) relative to the 
height reference surface and residual topographic masses (in grey). 
Computation point always resides at the detailed DEM, so can be 
inside the reference DEM (see point P2). In that case, some form of 
the HC is required when integration techniques are employed. Com-
putation point P1 is outside the reference DEM and no HC is required

Fig. 2   Residual terrain modelling via two components, a detailed 
topography, b reference topography. The computation of the gravity 
signal of the reference topography (b) using numerical integration 
is the difficult part. When computation points reside at the reference 
topography (this is the case in technique RTM-C), no HC is required 
at the expense of approximation errors associated with vertically dif-
ferent point locations for components a, b. The key contribution of 
this paper is the accurate evaluation of the gravity signal of the refer-
ence topography with spectral techniques at the orange points. Even 
for points of the detailed topography buried in the reference topogra-
phy (P2), no HC is required (b). This allows using identical computa-
tion points in a, b in the RTM baseline solution without additional 
approximation errors
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heights HRTM only (Hirt et al. 2010). In this case, denoted 
herein as RTM-B technique, the integration limits are R 
and R + HRTM in Eq. (5). The use of residual heights only 
gives rise to an approximation error in technique RTM-
B, denoted the mass simplification error. In RTM-A, we 
use r = R + HP such that the computation points reside at 
the high-resolution DEM, i.e. at the surface just outside 
Earth’s masses, while r = R + HRTM

P
 in RTM-B.

2.2.2 � RTM without harmonic correction (RTM‑C 
and RTM‑D)

Point locations inside the reference topography (RTM tech-
nique A, Fig. 1) can be circumvented—and the HC entirely 
avoided—by using two NIs (Fig. 2) where the computation 
points reside on the surface of the respective mass model. 
With this strategy (Forsberg 1984, p. 38), a first integration 
run with r = R + HP yields the gravity effect �gH implied by 
the detailed topography H (Eq. 1), and a second integration 
run with r = R + HREF

P
 yields the gravity effect �gHREF implied 

by the reference topography (Eq. 3). RTM gravity �gRTM is 
obtained with Eq. (4) as difference �gH − �gHREF (denoted 
here as technique RTM-C). The avoidance of the HC comes 
at the cost of another inconsistency because �gH and �gHREF 
are not computed at the same 3D location. The computation 
point heights differ by the residual topography HRTM , so can 
reach ~ 1 to ~ 2 km or even more in steep terrain (denoted here 
as the computation point inconsistency error). 

Following Forsberg (1984, p. 38) and Märdla et  al. 
(2017), each term occurring on the right-hand side in Eq. (4) 
can be split into the Bouguer slab gravity effect ( 2�G�H) 
and the terrain correction (tc). Equation (4) can thus be 
rewritten to

such that two TC computations are required instead of two 
full-scale NI runs. For N = 180 reference topographies, 
Forsberg (1984, p. 39) argued that the TC of the HREF com-
ponent is generally small and can be neglected. Equation (7) 
was therefore rewritten in Forsberg (1984) to (technique 
RTM-D)

such that the RTM gravity is obtained as effect of a Bouguer 
slab of thickness HRTM and TC. This expression, used, e.g. 
in Tziavos et al. (2010), Tocho et al. (2012) and Tziavos and 
Sideris (2013), is subject to (at least) two approximations: 
These are the neglect of TC associated with the reference 
topography (denoted reference topography TC error) and 
the previously discussed computation point inconsistency 

(7)�gRTM = 2�G�HP − tc
|||
H
HP

−

(

2�G�HREF

P
− tc

|
|||
HREF

HREF

P

)

(8)�gRTM ≈ 2�G�
(
HP − HREF

P

)
− tc

||
|
H
HP

error because two different evaluation point heights are used 
in Eqs. (7) and (8). As advantage, Eq. (8) relies on the ini-
tial idea of using two integration runs to avoid the HC and 
associated approximation errors. Table 1 gives a summary 
of the four RTM variants (RTM-A to RTM-D) that will be 
examined in our numerical study.

2.3 � The baseline RTM technique (this work)

This section describes the new RTM baseline technique 
which mitigates the approximation errors of the classical 
RTM techniques. To obtain the RTM baseline solution, we 
evaluate Eq. (4) through a combination of gravity forward 
modelling techniques in the spatial domain (e.g. Heck and 
Seitz 2007; Kuhn et al. 2009) and in the spectral domain 
(e.g. Rummel et al. 1988; Chao and Rubincam 1989): A 
global NI in the spatial domain is used to compute term 
�gH (Sect. 2.3.1), while spectral-domain gravity forward 
modelling (SGM) to ultra-high degree delivers term �gHREF 
(Sect. 2.3.2), also see Fig. 3. The decisively crucial factor 
is the application of SGM instead of NI to obtain �gHREF 
even when points are inside HREF. Because SGM relies on 
exterior spherical harmonics—which are harmonic func-
tions per definition anywhere outside the geocenter (cf., e.g. 
Remark 2.26 of Freeden and Gerhards 2013)—the problem 
of non-harmonicity (inside the reference topography, but 
outside the detailed topography, cf. Fig. 2) is not occurring.

2.3.1 � Full‑scale global NI

Newton’s integral (Eq. 1) is evaluated in the spatial domain 
with NI techniques (e.g. Kuhn et al. 2009; Kuhn and Hirt 
2016). Global integration (that is, an integration domain 
of �0 = 180°) yields the full-scale gravitational signal 
�gH = �gNI

0…∞
 implied by the detailed topographic mass 

model ( H, �) at computation points residing at the surface 
of the detailed topography H. For the practical evaluation of 
Eq. (1), the high-resolution DEM is subdivided into elemen-
tary mass elements that are analytically evaluated (Sect. 3.3) 
before addition of all individual effects yields the total gravity 
signal �gNI

0…∞
. Because of attenuation of gravity signals with 

distance, the use of coarser grid resolutions to represent remote 
masses is permitted and common practice (e.g. Forsberg 1984; 
Smith 2002), without compromising the accuracy of the inte-
gration procedure.

2.3.2 � Ultra‑high‑resolution SGM

Ultra-high-resolution SGM yields the gravity signal �gHREF 
without employing NI. The SGM formalism and its practical 
aspects are well documented in the literature (e.g. Rummel 
et al. 1988; Balmino et al. 2012; Hirt and Kuhn 2014), so 
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only a brief summary is given here. Input data for the SGM 
(cf. Fig. 3) are the SH coefficients H̄nm of the detailed topog-
raphy H computed via a surface SH analysis. Heights of the 
reference topography HREF are computed via SH synthesis 
(Eq. 2) from H̄nm to maximum harmonic degree N . A set of 
topographic height functions 

(
HREF∕R

)p of integer powers 
p = 1… pmax is formed and expanded into SH coefficients 
H

(p)
nm via surface SH analyses. Importantly, raising HREF∕R to 

integer power p gives rise to additional short-scale signals with 
spectral energy in band of degree N + 1 to pN (cf. Freeden 
and Schneider 1998; Hirt and Kuhn 2014) which must be 
taken into account to model the gravitational field of HREF up 
to ultra-high degrees. In spherical approximation, the topo-
graphic potential coefficients V̄nm implied by the reference 

topography HREF are obtained as function of the H(p)
nm (after 

Chao and Rubincam 1989)

where M is the planetary mass and V̄nm =
(
C̄nm, S̄nm

)
 are 

the potential SHCs evaluated to kN with k ≤ pmax . Gravity 
values are computed via

(9)V̄nm =
4𝜋R3

𝜌

(2n + 1)M

pmax�

p=1

∏p

i=1
(n − i + 4)

p!(n + 3)
H(p)

nm

(10)𝛿gSGM
N1…N2

=
GM

r2

N2∑

n=N1

(n + 1)

(
R

r

)n n∑

m=−n

V̄nmȲnm(𝜑, 𝜆)

Fig. 3   Test environment for RTM gravity computations—workflow, 
operations and comparisons. The figure shows how three forward 
modelling techniques are combined. Global NI and SGM give a ref-
erence solution (left and middle part) that is used to benchmark the 

performance of the RTM technique (right). The test environment 
allows examination of different RTM technique variants (A, B, C, D) 
as described in Sect. 2.2

Table 1   Brief characterization of RTM variants examined in this study

Name Brief description HC RTM boundaries Equations Example

RTM-A RTM with H and HREF
4�G�H

RTM

P
H and HREF 5 and 6 Forsberg (1984)

RTM-B RTM with residual height HRTM
4�G�H

RTM

P
H

RTM and 0 5 and 6 Hirt et al. (2010)
RTM-C RTM with two integration runs No H and 0

H
REF and 0

1 and 3 Märdla et al. (2017)

RTM-D RTM via residual terrain correction No n/a 8 Forsberg (1984) 
and Tziavos et al. 
(2010)

RTM baseline RTM via global NI and ultra-high-degree SGM n/a H and 0
H

REF and 0
1, 9–11 This work
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in spectral band of degrees N1 and N2 at the location of the 
computation point 

(
r = R + HP,�, �

)
 . For efficient evalua-

tion of Eq. (10) at densely spaced topography grids, 3D syn-
thesis techniques based on Taylor series continuation (e.g. 
Balmino et al. 2012; Hirt 2012; Bucha and Janák 2014) can 
be used. The SGM delivers the gravity signal implied by the 
reference topography �gHREF

that we split into three components with different spectral 
content. The first is the gravity signal �gSGM

0..N
 that is implied 

by the reference topography HREF in spectral band of har-
monic degrees 0 to N and contains the bulk of the signal, 
while the other capture very short-scale gravity signals 
�gSGM

N+1..kN
 and �gSGM

kN+1…∞
 implied by HREF beyond N (cf. Hirt 

and Kuhn 2014). Because SGM can never be applied with 
infinite resolution, we choose the k factor large enough such 
that the third term �gSGM

kN+1…∞
 becomes negligibly small. For 

a reference topography to N = 2160 , reasonable choices are, 
e.g. pmax = 30… 40 , k = 5 (cf. Hirt et al. 2016) to allow 
sub-mGal to � Gal accurate modelling of the implied grav-
ity signal to ultra-high degree kN = 10, 800 over most areas 
of Earth.

3 � Numerical study

3.1 � Data set

We use the 3″ v1.0.1 MERIT (Multi-Error-Removed 
Improved-Terrain DEM) data set by Yamazaki et al. (2017). 
Opposed to many other SRTM products, the MERIT DEM 
has been stripped of the tree canopy signal and further radar 
error sources (see Yamazaki et al. 2017), so it represents—in 
good approximation—the bare ground. The MERIT DEM 
represents the surface of water bodies (oceans or lakes) 
where present and the surface of ice masses where present.

3.2 � Generation of the SH reference surface

For testing of the various RTM techniques (Sect. 2.2) and 
computation of the RTM baseline solution (Sect. 2.3), a 
SH representation of the MERIT topography is required to 
degree 2160. It serves as high-pass filter in the construc-
tion of RTM data (Sect. 2.3.1) and is used as band-limited 
input topography in the SGM (Sect. 2.3.2). To derive an 
accurate SH expansion of the MERIT topography model, 
the 3″ MERIT global elevation grid was block averaged to 
15″, 30″, 1′, 2′ and 5′ resolution using simple block means. 

(11)

�gHREF = �gSGM
0…∞

= �gSGM
0…N

+ �gSGM
N+1…kN

+ �gSGM
kN+1…∞

≈ �gSGM
0…N

+ �gSGM
N+1…kN

Then, the down-sampled MERIT grids were harmonically 
analysed using the ultra-high-degree Gauss–Legendre SH 
analysis (GL-SHA) algorithm, as implemented in Rexer and 
Hirt (2015). In any case, a maximum SH expansion degree 
commensurate with the grid resolution (e.g. N = 2160 for 
5′ grids, N = 43, 200 for 15″ grids) was assigned to the GL-
SHA algorithm, but the coefficients were used to N = 2160 
only. Figure 4 shows the degree amplitudes (= square root of 
degree variances) of the SH coefficients as a function of the 
input grid resolution. The estimated SH spectrum strongly 
depends on the chosen input grid resolution used in the GL-
SHA. When the block sizes are too large, the resulting SH 
spectrum is underpowered particularly at high harmonic 
degrees. We interpret the influence of the block size on the 
SH spectrum a result of down-sampling errors, including 
(1) aliasing, the effect of which lessens with smaller block 
sizes, (2) smoothing (block-mean averaging is a smoothing 
operation) and (3) to some degree also the influence of the 
interpolation to the GL grid nodes. To estimate the SH spec-
trum to N = 2160 widely free of down-sampling errors, very 
high-resolution grids must be used in the harmonic analysis. 
The coefficient differences between the N = 2160 SH spec-
tra from 15″ and 5′ input grids reach maximum values of 
670 m (14.8 m RMS) in the space domain. This is reduced 
to a maximum of 2.5 m (0.06 m RMS) for the differences 
between 15″ and 30″ grids. The associated error level will be 
at the sub-m level for 15″ resolution. These numbers exem-
plify the importance of using sufficiently small block sizes 
for accurate recovery of the SH coefficients of the global 
topography. If the coefficients of the SH topography were 
estimated from, e.g. 5′ blocks, down-sampling errors would 
reduce the quality of the RTM high-pass filtering, and thus 
of the RTM computations when seeking to spectrally aug-
ment GGMs at short spatial scales. Note that other studies 
thus far commonly used much lower spatial resolutions than 
15″ to derive the N = 2160 spectra.

3.3 � Test area and computations

As test area, we use the Himalaya Mountains bounded by 
27°–28° geodetic latitude and 87°–88° longitude to cover 
extreme mountain topography providing a “worst-case” 
scenario. Results for a second test area (European Alps) 
are reported in “Appendix 1”. We use computation point 
grids with 15″ point separation in cell-centred registration 
(240 × 240 points per 1° tile), the high-resolution MERIT 
topography at 3″ resolution and the SH expansion of the 15″ 
block-averaged MERIT topography to N = 2160 , a mass-
density value � = 2670 kg m−3, a spherical reference radius 
R = 6, 378, 137.0 m and G = 6.67384 × 10−11 m3 kg−1 s−2 
to ensure consistency in all computations. Both in the full-
scale global NI (Sect. 2.3.1) and in the RTM (Sect. 2.2), the 
MERIT topography is used at 3″ resolution to 0.5° radius 
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around each computation point, and lower grid resolutions 
(between 15″ and 15′) beyond. While the 180° NI radius is 
needed to capture the full gravitational signal of the global 
MERIT topography, all our RTM computations (Sect. 2.2) 
rely on 200 km integration caps. For the discretization of the 
RTM integral (Eq. 5), a combination of polyhedra (in the 
near zone), tesseroids, prisms and point-masses was used 
as described in Yang et al. (2018). For the full-scale global 
NI, a combination of prisms (near-zone) and tesseroids 
(far-zone) was used, as implemented in the Curtin-inhouse 
Newtonian integrator that allows gravity forward modelling 
with a precision well below the mGal level (e.g. Hirt and 
Kuhn 2014).

The SGM relies on the same SH topography as input 
model ( HREF ) that is used in the RTM computations (Fig. 3). 
For accurate recovery of the high-frequency signals asso-
ciated with topographic height functions of p > 1 , all (
HREF∕R

)p values were computed in terms of 60″ grids, and 
the H(p)

nm coefficients were computed to kN = 10, 800 with 
the ultra-high-degree GL-SHA extension by Rexer and Hirt 
(2015) that builds upon the SHTools package (Wieczorek 
and Meschede 2018). Figure 5 shows the first 40 contribu-
tions to the topographic potential implied by HREF (contri-
butions with pmax > 35 are negligibly small) and the sum of 
all contributions V̄

nm
 (Eq. 9) in terms of degree variances of 

solid harmonic coefficients. For the synthesis of �gSGM
0…2160

 

values from V̄
nm

 , 3D-SHS was applied with the isGrafLab 
software (Bucha and Janák 2014) with the computation 
points at the 3″ MERIT topography, a mean reference height 
of 3000 m and series expansions of 10th order. For the com-
putation of the HF correction ( �gSGM

2161…10,800
 ), series expan-

sions to 22nd order were used, which ensure sub-microGal 
precision (tested against 30th order).

3.4 � Results

For our Himalaya test area, Fig. 6 illustrates the three grav-
ity constituents �gNI

0…∞
 , �gSGM

0…2160
 and �gSGM

2161…10,800
 . Term 

�gSGM
0…2160

 captures the bulk of the gravity signal and has a 
similar range of values (about 800 mGal) as �gNI

0…∞
 . It deliv-

ers the large-scale features to ~ 10 km scales, but lacks—as 
expected—the fine structure of the field. The �gSGM

2161…10,800
 

term reaches ~ 28 mGal amplitude and ~ 5.7 mGal RMS 
(root-mean-square) signal strength (cf. Table 2), so is non-
negligible for gravity validation experiments at the mGal 
level. Residual gravity obtained from the combination of 
�gRTM−Baseline

0…∞
= �gNI

0…∞
− �gSGM

0…N
− �gSGM

N+1…kN
 represents the 

RTM baseline solution (Fig. 6d).
Figure 7 shows the RTM gravity values from the four 

RTM variants A–D, see Table 1 for a summary of the most 
important conceptual differences. Variants A and B are simi-
larly based on a single-run integration of residual masses, 

Fig. 4   Degree amplitudes of SH 
coefficients obtained through 
GL-SHA with different input 
grid resolutions, ranging from 
300″ (= 5 min) to 15″, and 
degree standard deviations of 
selected differences (dashed 
lines). The grey panel shows 
a zoom into the high-degree 
spectra. The figure shows the 
importance of using very high-
resolution global grids for stable 
recovery of the SH spectrum to 
degree 2160
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but differ in the mass geometry. Their differences—the mass 
simplification error—reach ~ 2 mGal RMS signal strength 
and amplitudes of ~ 13 mGal (panel e). Variants C and D 
equally decompose the mass model into two components 
(detailed and reference topography), but variant D neglects 
the TC associated with the reference topography. This 
error (panel f) is seen to reach very substantial RMS sig-
nal strengths of ~ 16 mGal and amplitudes of ~ 37 mGal (cf. 
Table 2).

The key results of this paper—the comparisons between 
the RTM baseline solution and the classical RTM variants 
(A–D)—are shown in Fig. 8. The original Forsberg (1984) 
technique (RTM-A) is in good agreement with the RTM 
baseline solution with ~ 1mGal RMS (Fig. 8a). However, 
larger differences at the ~ 10 mGal level are occasionally 
present; these differences likely reflect approximation 
errors of the “standard” 4�G�HRTM

P
 HC (see discussion 

in Sect. 4). In variant RTM-B, the additional errors asso-
ciated with a simplified mass geometry (use of residual 
heights only instead of two surfaces to bound the resid-
ual masses) previously seen in Fig. 7e come into effect, 
reducing the agreement with the reference solution to 
the ~ 2.5 mGal level (~ 15 mGal maximum differences), 
cf. Fig. 8b. The simplification of the mass geometry in 
RTM-B that has been used, e.g. for the GGMplus gravity 
maps (Hirt et al. 2013) as well as for Mars gravity maps 
(MGM 2011, Hirt et al. 2012), is not necessary and should 

be avoided in future computations. The RTM-C technique 
(two separate integration runs) avoids the previous error 
sources, but suffers from the problem of computation 
point inconsistency: the computation points reside at the 
surface of their respective mass model, so are vertically 
different. Figure 8c shows that this effect gives rise to 
approximation errors at the ~ 4.6 mGal RMS level (maxi-
mum differences of ~ 60 mGal). The HC issue of RTM-A is 
avoided in RTM-C at the expense of approximation errors 
much larger than those associated with the standard HC 
approach (Eq. 6) itself. The residuals between RTM-D and 
the RTM baseline solution, depicted in Fig. 8d, addition-
ally reflect the effect of the neglected TC of the reference 
topography. The RTM-D technique (the 2�G�HRTM

P
− tc 

approximation) differs by ~ 16 mGal RMS and 95 mGal in 
the worst case from the reference solution. Further insight 
into the characteristics of the approximation errors affect-
ing the four RTM techniques is given by Fig. 9 that shows 
the residuals �gRTM−Baseline

0…∞
− �gRTMvariants

0…∞
 as function of 

the RTM height HRTM . For RTM-A and RTM-C, a clear 
dependency of the residuals on HRTM is visible (Fig. 9a).

•	 For RTM-A, residuals are consistently at the sub-
mGal level when HRTM

> 0 , whereas its scatter width 
increases with ||HRTM|| when HRTM

< 0 . In the latter 
case, the approximative 4�G�HRTM

P
 HC was applied to 

Fig. 5   Degree variances of 
the topographic potential V̄

nm
 

implied by the degree-2160 
MERIT topography (black) and 
individual contributions to the 
topographic potential V̄

nm
 asso-

ciated with the 40 topographic 
height functions (various 
colours). The figure also shows 
which part of the spectrum is 
required to compute the RTM 
high-frequency correction (band 
of degrees 2161–10,800)
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Fig. 6   Constituents and RTM baseline solution over the test area a full-scale NI, b SGM with N = 0–2160, c SGM with N = 2161–10,800, d 
RTM baseline solution = NI—SGM (0–2160)—SGM (2161–10,800). Unit in mGal

Table 2   Descriptive statistics of 
the constituents NI, SGM, HF, 
of the RTM (baseline solution 
and variants A, B, C, D) and 
their differences over the 1° × 1° 
test area “Himalaya Mountains”

Statistics based on 57,600 computation points, unit for all values in mGal

Quantity Description Min. Max. Mean RMS

NI Global numerical integration 41.32 785.62 335.76 378.75
SGM Spectral modelling, N = 0–2160 73.56 741.83 352.68 392.56
SGM (HF) Spectral modelling, N = 2161–10,800 − 25.76 27.80 0.05 5.66
RTM baseline Baseline RTM solution = NI-SGM-HF − 193.07 109.85 − 16.97 48.35
RTM variants RTM-A − 195.82 109.18 − 17.34 48.98

RTM-B − 197.16 109.86 − 17.17 48.88
RTM-C − 188.66 122.72 − 17.00 48.57
RTM-D − 208.01 106.22 − 31.50 56.32

Differences Baseline minus RTM-A − 5.64 11.01 0.37 1.08
Baseline minus RTM-B − 12.59 15.38 0.20 2.37
Baseline minus RTM-C − 38.36 58.33 0.04 4.61
Baseline minus RTM-D − 9.79 94.56 14.53 16.78
RTM-A minus RTM-B − 13.36 14.34 − 0.17 2.11
RTM-C minus RTM-D 0.98 36.80 14.50 16.11
Baseline minus RTM-A (H_RTM ≥ 0) − 0.77 1.89 − 0.01 0.22
Baseline minus RTM-A (H_RTM < 0) − 5.64 11.01 0.75 1.50
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all computation points, thus suggesting that the residu-
als reflect HC approximation errors. The residuals are 
constrained not to exceed a value of ∼ 0.012

mGal

m
⋅ HRTM 

(see light grey line in Fig. 9a). The mostly positive 
residuals suggest that the 4�G�HRTM

P
 HC is often too 

small, so underestimates the true but unknown HC.

•	 For RTM-C, residuals are at the sub-mGal level only 
when the computation point inconsistency vanishes 
(i.e. HRTM ≈ 0) , but otherwise increase with ||HRTM|| 
both for positive and negative values of HRTM. The 
computation point inconsistency error can be con-

Fig. 7   RTM gravity values from variants A–D and selected differ-
ences. a RTM-A (integration of RTM masses bounded by H and 
HREF), b RTM-B (integration of RTM masses bounded by H_RTM 
and 0), c RTM-C (RTM via two computations), d RTM-D (RTM 

via residual terrain correction). RTM-A and RTM-B rely on the 
harmonic correction, while RTM-C and RTM-D are free of the har-
monic correction. e Differences RTM-A minus RTM-B, f differences 
RTM-C minus RTM-D, all units in mGal
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Fig. 8   Gravity residuals between RTM baseline solution and RTM 
variants A to D shown in Fig. 7. Error patterns visible are in a har-
monic correction, b as before, plus the simplified use of H_RTM 
heights, c different 3D point locations in both integration runs, d as 
before, plus the neglected terrain correction of the reference topog-

raphy. The harmonic correction is only necessary for RTM-A and 
RTM-B, while no such correction is needed for RTM-C and RTM-
D. The circle indicate locations where harmonic correction errors are 
largest in RTM-A, while errors are mostly smaller in RTM-C. Unit in 
mGals

Fig. 9   Gravity residuals for RTM variants A–D in mGal as func-
tion of the RTM height in m. a Residuals for techniques A and C, 
b residuals for techniques B and D. a Also shows the functions (in 

grey) constraining the maximum approximation errors as function of 
the RTM height (see text)
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strained not to exceed a value of ||
|
∼ 0.035

mGal

m
⋅HRTM||

|
 

(dark grey line in Fig. 9a).
•	 For RTM variants B and D (cf. Fig. 9b), the residuals are 

not so closely related to HRTM , but there is a tendency 
that residuals are largest for RTM-B for large negative 
HRTM values (reflecting the harmonic correction issue). 
For RTM-D, residuals associated with the neglect of 
reference topography’s TC scatter within several 10s of 
mGal for a given HRTM value. The RTM-D technique, 
known as 2�G�HRTM

P
− tc RTM approximation, is there-

fore considered not suitable when high-degree reference 
topographies, e.g. to N = 2160, are used.

For the classical technique RTM-A that is the least affected 
by approximation errors, a detailed analysis of residuals 
is presented in Fig. 10. The figure distinguishes between 
areas of negative (top row) and positive (bottom row) 
HRTM and shows the RTM topography (left) and residuals 
�gRTM−Baseline

0…∞
− �gRTM−A

0…∞
 (right). For areas with HRTM

< 0 , 
the 4�G�HRTM

P
 HC was applied. Over these areas, residuals 

often exceed 5 mGal amplitudes (Fig. 10b) and are generally 
largest where the computation points reside deep inside the 
RTM reference topography (Fig. 10a). However, there is no 
1:1 relation recognizable between negative RTM heights and 
residuals which would have allowed a further error reduc-
tion through simple correction models. In the bottom row, 
the HC issue is absent because RTM heights are always 
positive (Fig. 10c). As a result, excellent agreement at the 
sub-mGal level (0.22 mGal RMS) is visible between resid-
ual gravity from RTM-A and our RTM baseline solution 
(Fig. 10d), also see Table 2. The remaining residuals reflect 
all remaining error sources affecting any of the modelling 
techniques involved to compute the terms �gNI

0…∞
 , �gSGM

0…N
 and 

�gSGM
N+1…kN

 on the one hand and �gRTM−A
0…∞

 on the other hand. 
Therefore, the chosen test set-up allows to control possible 
error sources well below the mGal level. These include (1) 
the discretization of the RTM and NI integrals, (2) trunca-
tion errors resulting from using limited integration radii in 
the RTM method, and errors in the SGM such as (3) remain-
ing aliases, (4) truncation of the �gSGM

N+1…kN
 term beyond 

kN = 10,800 and (5) possible divergence of gravity series 

Fig. 10   Detailed analysis of gravity residuals of RTM variant A. a 
negative RTM heights, b residuals for computation points with nega-
tive RTM heights, c positive RTM heights, d residuals for computa-

tion points with positive RTM heights. Unit for heights in m (left col-
umn), unit for gravity residuals in mGal (right column)
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expansions (Eq. 10) inside the Brillouin sphere (sphere 
encompassing all field-generating masses). Note that in our 
case, the largest contributor to the ~ 0.2 mGal RMS level is 
the difference in the near-zone modelling (polyhedra in the 
RTM software vs. flat prisms in the global NI software); a 
further reduction is therefore possible.

4 � Discussion

From a conceptual point of view, our work suggests two 
fundamentally different “mechanisms” that govern gravity 
evaluations inside the residual topographic masses.

•	 When NI techniques are employed for the computation of 
residual gravity—as in the classical RTM technique—the 
gravitational potential is non-harmonic for points inside 
the reference topography, requiring some form of the HC 
in the context of the RTM approach.

•	 In SGM, there is strong evidence that gravity values can 
be computed without the need to apply a harmonic cor-
rection when the computation points are located inside 
the field-generating reference topography. This is because 
with SGM, the needed harmonicity of the gravitational 
potential is implicitly ensured.

The key hypothesis of our paper is that spectral modelling 
techniques do not require a special treatment of the HC issue 
because they offer an inherent solution.

In agreement with the potential field theory, NI techniques 
deliver the gravitational potential that is harmonic outside 
the masses (that is, HRTM ≥ 0) , but non-harmonic inside 
the masses (that is, HRTM

< 0) . As such, there is nothing 
wrong with the NI, but it is the non-harmonicity inside the 
RTM masses that makes the RTM gravity values from Eq. (5) 
“incompatible” with, e.g. field functionals that can be observed 
outside the Earth’s surface where the gravitational potential 
is harmonic. To overcome the inconsistency for the purpose 
of external gravity field modelling, some solution is required:

•	 Use of the mass condensation scheme by Forsberg 
(1984), where the non-harmonicity of the gravitational 
potential obtained from NI inside the reference topogra-
phy is corrected with the harmonic correction (Eq. 6), or

•	 Use of spectral techniques (SGM) which yield the gravi-
tational potential via a finite linear combination of spher-
ical harmonics, which are, by definition, harmonic also 
inside the masses. The gravitational potential from SGM 
can be thought of as a regularized downward continua-
tion of the external harmonic potential inside the RTM 
reference topographic masses, but outside the detailed 
(Earth’s) topography.

Throughout our numerical study, no correction has been 
applied in the SGM for points inside the reference topog-
raphy, while the standard 4�G�HRTM

P
 HC was considered 

for those points in the RTM masses. The fact that the 
4�G�HRTM

P
 term is known to be approximative provides 

a plausible explanation for the (overall rather small) RMS 
residuals of ~ 1.5 mGal (cf. Table 2). It strongly suggests 
that a separate modelling of the HC is not required for the 
SGM. Importantly, however, for the SGM techniques to be 
applicable for computation of �gHREF , the solid external 
spherical harmonic series (Eq. 10) must not suffer from the 
effect of series divergence (e.g. Moritz 1980; Hu and Jekeli 
2015; Hirt and Kuhn 2017) that may seriously deteriorate 
(or even render useless) the results obtained from SGM 
based on external spherical harmonics. However, results by 
Hirt et al. (2016) suggest that gravity �gSGM

0…N
 from SGM and 

N  = 2160 reference topographies is not affected by series 
divergence, and the high-frequency signals �gSGM

N+1…kN
 only 

little affected (say ~ 1–2 mGal at most) over very few loca-
tions around the globe when the computation points reside 
at the surface of the reference topography. Therefore, series 
divergence is not an obstacle for SGM-based gravity com-
putations from N  = 2160 Earth reference topographies. 
However, we emphasize that we cannot rigorously prove 
our hypothesis and therefore cannot exclude a part of the 
differences shown in Fig. 10b to be associated with grav-
ity syntheses inside the degree-2160 field-generating mass 
distribution. Then, our hypothesis would be not valid and 
some correction procedure required. In that case however, 
the corrections would be substantially smaller than those 
associated with the 4�G�HRTM

P
 HC.

Compared to the strategy of assessing the RTM technique 
performances with ground-truth data (e.g. from gravity 
data bases) and GGMs (e.g. EGM2008, Pavlis et al. 2012 
or EIGEN-6C4, Förste et al. 2015), the central benefit of 
the RTM test environment (Fig. 3) is its independence from 
any errors affecting real data (observation errors, biases, 
GGM commission errors), and from the effect of unknown 
mass-density anomalies. Our RTM testing scheme allowed 
scrutinizing classical RTM techniques (Sect. 2.2) down to 
the sub-mGal level (Table 2; Figs. 9, 10), so may provide 
insight into even subtle effects affecting the modelling qual-
ity in future studies.

We note that in Grombein et al. (2017), a related proce-
dure has been presented. Similar to our work, Grombein et al. 
(2017) applied spatial and spectral techniques to high-pass fil-
ter gravity functionals implied by the topography. Different to 
our work, they obtained their spectral solution as a SH expan-
sion of global geoid/potential values from numerical integra-
tion of a detailed 60″ topography. This aspect is conceptu-
ally similar to the �gNI

0…∞
− �gSGM

0…N
 part of our RTM baseline 

solution. As the main difference to our work, Grombein et al. 
(2017) did not model the very high-frequency gravity signal 
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term �gSGM
N+1…kN

 , because this was not required in their study. 
In our study, this term forms an important constituent of the 
RTM test environment required for a rigorous examination of 
the classical RTM techniques in Sect. 3. Note that the Rexer 
et al. (2018) HF correction is identical with our �gSGM

N+1…kN
 

term as a key component of the RTM test environment. We 
acknowledge that all RTM variants as well as the RTM base-
line strategy conceptually suffer also from the RTM low-fre-
quency (LF) error, as defined in Rexer et al. (2018). However, 
in the comparisons, this effect cancels out which is why a 
correction was not attempted in this study.

5 � Conclusions

This study has assessed four selected RTM techniques using 
a new RTM baseline solution relying on a combination of 
ultra-high SGM with global NI. The RTM baseline tech-
nique has been used in a test environment to characterize and 
quantify four different types of approximation errors (1. har-
monic correction, 2. mass model simplification, 3. computa-
tion point inconsistency, 4. neglect of terrain correction of 
reference topography) for N = 2160 reference topographies 
commonly used in physical geodesy over the last ten years. 
All tested RTM techniques were shown to be affected by one 
or two of the approximation errors (Table 3).

RTM technique A that uses a single cap integration over 
residual masses and applies the 4�G�HRTM

P
 harmonic correc-

tion for HRTM
< 0 has been shown to be in RMS agreement 

of ~ 1.1 mGal over our test area with the baseline solution, so 
is the best of the four tested classical RTM techniques. For 
the other variants, RMS approximation errors were shown 
to increase to ~ 2.4 mGal for RTM-B, ~ 4.6 mGal for RTM-C 
and ~ 16.8 mGal for RTM-D, the latter may be unacceptably 
large for most applications. In a relative sense, among the 
four identified RTM approximation errors, the 4�G�HRTM

P
 

HC approximation influences the quality of RTM grav-
ity values the least. It should be noted that the empirical 
accuracy values depend on chosen test area, with the Hima-
laya Mountains likely providing a worst-case scenario. For 

numerical results from the European Alps area, see “Appen-
dix 1”.

While technique A offers excellent sub-mGal agreement 
(~ 0.2 mGal) with the baseline solution where HRTM ≥ 0 , 
approximation errors associated with the 4�G�HRTM

P
 HC 

govern the error budget where HRTM
< 0 . To further reduce 

these errors, higher-order series expansions of the harmonic 
correction should be explored in the future, as already 
pointed out in Forsberg (2010), Omang et al. (2012) and 
Bucha et al. (2016) and tested in Omang et al. (2012) to 
first order, or the improved HC solution based on multipole 
expansion of the terrain gravity field (Vermeer and Forsberg 
1992).

The RTM baseline solution itself is not subjected to three 
of the four RTM approximation errors and most likely not 
affected by the harmonic correction problem. Therefore, it 
can be considered as superior to classical RTM techniques. 
One could consider using the RTM baseline instead of 
RTM-A in practical applications, thus mitigating the har-
monic correction issue. However, for global-scale forward 
modelling application of 1″ or 3″ DEMs, the computational 
requirements for a full-scale global NI will be challenging, 
though with the increased availability of supercomputing 
resources becoming more feasible. An appealing alterna-
tive might be the combination of the new cap-integration 
SGM technique by Bucha et al. (2019) with classical spatial 
cap integration. This combination is considered promising 
because it could combine all conceptual benefits of the RTM 
baseline solution with the numerical efficiency of the clas-
sical RTM techniques.

The RTM test environment presented in this study should 
be suitable to validate other future short-scale gravity for-
ward modelling techniques, to study effects such as ellipsoi-
dal mass geometry at short scales and to clarify the role of 
non-harmonicity in evaluations inside the residual masses 
for other RTM functionals such as quasigeoid heights and 
vertical deflections. So far, the harmonic corrections for 
functionals other than RTM gravity are often assumed to be 
negligible, but a quantification is still missing for N = 2160 
reference topographies. The insights into RTM approxima-
tion errors is expected to be useful for application of RTM 
approaches for gravity interpolation or prediction, e.g. in the 

Table 3   Summary of RTM 
variants and technique-inherent 
approximation errors

a Also compare with the hypothesis and discussion given in Sect. 4

Variant Harmonic cor-
rection error

Mass simplifica-
tion error

Computation point 
inconsistency error

Reference topography 
terrain correction error

RTM-A Yes No No No
RTM-B Yes Yes No No
RTM-C No No Yes No
RTM-D No No Yes Yes
RTM Baseline Likely nota No No No
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context of remove–compute–restore geoid computations or 
the development of future GGMs such as EGM2020 (Barnes 
et al. 2015) where forward modelling might be used as fill-
in, or to further reduce approximation errors in future global 
gravity maps.
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Appendix 1

Results for the European Alps area

Table 4 reports the descriptive statistics of all gravity com-
ponents and their differences over the European Alps. The 

RTM-A is in ~ 0.6 mGal RMS agreement with the baseline 
solution. For RTM-B, the agreement deteriorates to the 
level of ~ 1.8 mGal RMS (reflecting the mass simplification 
error) and RTM-C to the level of ~ 3.2 mGal RMS (compu-
tation point inconsistency error). For RTM-D, the RMS-
differences w.r.t. the baseline solution are ~ 12.6 mGal and 
maximum errors exceed 50 mGal (cf. Table 4). Focussing 
on RTM-A and points with positive (negative) RTM eleva-
tions, the agreement with the baseline solution is 0.21 mGal 
(0.77 mGal). In the latter case, maximum errors may reach 
amplitudes of up to ~ 7.5 mGal, reflecting the approxima-
tive character of the harmonic correction. Overall, the error 
level associated with the various RTM approximations is 
somewhat lower over the European Alps (Table 4) than the 
Himalayas (Table 3) which is explained by the different rug-
gedness of the test areas.

Table 4   Descriptive statistics of 
the constituents NI, SGM, HF 
of the RTM (baseline solution 
and variants A, B, C, D) and 
their differences over the 2° × 2° 
test area “European Alps” 
(45°–47° latitude and 7°–9° 
longitude)

Statistics based on 230,400 computation points, unit for all values in mGal

Quantity Description Min. Max. Mean RMS

NI Global numerical integration 7.78 433.28 154.67 181.84
SGM Spectral modelling, N = 0–2160 27.30 390.01 166.37 191.42
SGM (HF) Spectral modelling, N = 2161–10,800 − 13.23 19.28 0.05 2.69
RTM baseline Baseline RTM solution = NI-SGM-HF − 219.37 99.81 − 11.75 41.34
RTM variants RTM-A − 218.36 99.90 − 11.84 41.54

RTM-B − 217.33 99.71 − 11.95 41.50
RTM-C − 209.72 114.23 − 11.73 40.75
RTM-D − 223.79 99.57 − 23.39 46.16

Differences Baseline minus RTM-A − 6.45 7.51 0.10 0.57
Baseline minus RTM-B − 10.63 12.97 0.20 1.80
Baseline minus RTM-C − 29.52 28.40 − 0.01 3.20
Baseline minus RTM-D − 10.32 51.76 11.65 12.57
RTM-A minus RTM-B − 10.40 12.55 0.10 1.72
RTM-C minus RTM-D 5.63 26.63 11.66 12.21
Baseline minus RTM-A (H_RTM ≥ 0) − 2.01 1.58 − 0.02 0.21
Baseline minus RTM-A (H_RTM < 0) − 6.45 7.51 0.21 0.77
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