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Abstract
We present a new global time-variable gravity mascon solution derived from Gravity Recovery and Climate Experiment
(GRACE) Level 1B data. The new product from the NASA Goddard Space Flight Center (GSFC) results from a novel
approach that combines an iterative solution strategy with geographical binning of inter-satellite range-acceleration residuals
in the construction of time-dependent regularization matrices applied in the inversion of mascon parameters. This estimation
strategy is intentionally conservative as it seeks to maximize the role of the GRACEmeasurements on the final solution while
minimizing the influence of the regularization design process. We fully reprocess the Level 1B data in the presence of the
final mascon solution to generate true post-fit inter-satellite residuals, which are utilized to confirm solution convergence
and to validate the mascon noise uncertainties. We also present the mathematical case that regularized mascon solutions are
biased, and that this bias, or leakage, must be combined with the estimated noise variance to accurately assess total mascon
uncertainties. The estimated leakage errors are determined from the monthly resolution operators. We present a simple
approach to compute the total uncertainty for both individual mascon and regional analysis of the GSFC mascon product, and
validate the results in comparison with independent mascon solutions and calibrated Stokes uncertainties. Lastly, we present
the new solution and uncertainties with global analyses of the mass trends and annual amplitudes, and compute updated trends
for the global ocean, and the respective contributions of the Greenland Ice Sheet, Antarctic Ice Sheet, Gulf of Alaska, and
terrestrial water storage. This analysis highlights the successful closure of the global mean sea level budget, that is, the sum of
global ocean mass from the GSFC mascons and the steric component from Argo floats agrees well with the total determined
from sea surface altimetry.

Keywords GRACE · Time-variable gravity · Mascons · Range-acceleration · Regularization · Model resolution · Estimator
bias

1 Introduction

The GRACE satellite mission monitored the temporal vari-
ability of the global gravity field with unprecedented accu-
racy for ∼15years, enabling new research and discoveries
in the hydrologic, oceanographic, atmospheric, cryospheric,
and solid Earth sciences. The accuracy of GRACE-derived
time-variable gravity (TVG) solutions has improved over the
course of the mission as the data processing and parameter
estimation strategies have matured. Of primary importance
in recent years has been the emergence of global mascon
solutions as an alternative TVG product to the unconstrained
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Stokes coefficients (Wahr et al. 1998), which were relied
upon for the first decade of the mission. Mascon estimation
from the GRACE Level 1B data was first done regionally
(Rowlands et al. 2005; Luthcke et al. 2006, 2008) before
being expanded to various global parameterizations (Sabaka
et al. 2010;Luthcke et al. 2013;Watkins et al. 2015; Save et al.
2016). These mascon products have the important advan-
tage of applying regularization in the least-squares gravity
inversion, thus optimally combining the full noise and signal
covariances (Sabaka et al. 2010). The most important design
consideration for mascon estimation is the signal covariance,
for which different strategies have emerged among the dif-
ferent GRACE processing centers that produce them.

Here, we present the new generation of NASA GSFC
global mascon solutions, which advances the solutions pre-
sented in Luthcke et al. (2013). We estimate the same set of
41,168 1-arc-degree mascon cells as in the original solution

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00190-019-01252-y&domain=pdf
http://orcid.org/0000-0002-9370-9160


1382 B. D. Loomis et al.

(mascons have 1-degree latitude span, while the longitude
spans are selected so that all mascons are approximately
the same area, and a spherical cap mascon is used at each
pole), but have now improved global signal recovery with
the application of a new regularization strategy. The original
solution was successful at its intended purpose to accurately
recover high-latitude land ice changes, but the regularization
matrices (equal to the inverse of the signal covariance) had
not yet been globally optimized. The new product presented
here improves global signal recovery by combining solution
iteration with a new approach to spatiotemporally bin the
inter-satellite range-acceleration residuals in the design of
time-dependent regularization matrices. Our strategy is con-
servative by design in an effort to minimize the role of the
regularization scheme on the final solution.

We also present a new detailed assessment of the solution
uncertainties, which includes the data-driven estimation of
the solution covariance (noise) and new estimates of solution
bias (leakage) determined by monthly resolution operators.
A simple procedure for end users to construct the total uncer-
tainties of the GSFC mascon product for both individual
mascons and regional analyses is provided, and the results
are validated against and compared to several independent
data sets.

We conclude by applying the new solution and uncer-
tainties to determine the mass contributions to global mean
sea level (GMSL), and demonstrate successful closure of
the GMSL budget. The processing and estimation strategies
presented here will also form the basis for the NASA GSFC
globalmascon solutions in support of theGRACEFollow-On
mission (GRACE-FO), which launched in May 2018.

2 Data andmethods

2.1 Level 1B processing strategy and iteration

The GRACE gravity recovery processing procedures require
the K-band range-rate (KBRR) inter-satellite measurements,
GPS-determined satellite positions (Level 1B navigation
files), star camera attitude data, and onboard accelerome-
ter measurements of the non-conservative forces. Processing
the Level 1B data also requires the application of forward
models, which are needed to remove the effects of certain
geophysical processes on satellite dynamics and the TVG
estimates. These include the static gravity field, solid Earth
and ocean tides, solid Earth and ocean pole tides, and atmo-
sphere and ocean de-aliasing (AOD). The AOD product aims
to mitigate the aliasing of the high-frequency atmosphere
and non-tidal oceanographic signals into the monthly grav-
ity solutions. It is important to note that the AOD model
applied here is ECMWF/MOG2D (Carrère and Lyard 2003),
which differs from the GRACE project AOD1B RL05.

We apply two notable design choices in our Level 1B
processing strategy: the inclusion of additional TVG infor-
mation in our set of forward models, and solution iteration.
Prior studies have demonstrated the benefit of forward mod-
eling the TVG signals of known hydrologic processes toward
the further reduction of theKBRR residuals andmitigation of
signal leakage (Luthcke et al. 2008; Sabaka et al. 2010). This
strategy, however, requires the output of a high-quality hydro-
logic model, which is not readily available in near real time,
as would be needed to meet GRACE-FO solution latency
requirements. Instead, we choose to apply GRACE-derived
trend and annual TVG signals in our a priori set of forward
models, which is also an effective approach to reduce the
magnitude of the KBRR residuals and the corresponding
adjustment to the mascon parameters. Specifically, we apply
the best-fit trend and annual periodic regression of a previous
mascon solution (GSFC v1.1) and extrapolate the values for-
ward in time to cover the current data span.We plan to utilize
the same approach for constructing the a priori TVG portion
of the forward models for GRACE-FO processing. The start-
ing model does not necessarily need to be computed from an
earlier GSFCmascon solution, but could be determined from
any TVG product appropriately placed onto the GSFC mas-
con grid. However, it is important to note that if the selected
TVG forward model contains information outside the spa-
tiotemporal spectrum of the monthly mascon adjustments,
then that portion of the signal will pass through unaffected
to the final solution (e.g., AOD or hydrologic model out-
put smaller than ∼300km). The starting model applied here
is within the observable spectrum of the monthly adjust-
ments, so is not expected to affect the final solution, and
is included to improve the determination of the arc-specific
parameters (discussed below) and facilitate solution conver-
gence. The inclusion of additional TVG information in the
forward model is analogous to the selection of a reference
model when estimating the static gravity field (e.g., Pavlis
et al. 2012).

The benefit of an iterative solution strategy was demon-
strated in Luthcke et al. (2013) by the increased signal-to-
noise ratio with each iteration until the solution converged.
The same general strategy is applied here and is summarized
in Table 1. The initial processing of the Level 1B data applies
the a priori TVG signal discussed above, and produces the
first adjustment to themascon parameters,�ĥ1. The iterative
mascon updates have dimension M×N and are defined by

�ĥiter ≡ [
m̂1, m̂2, ..., m̂M

]T
iter , (1)

where m̂i is the N×1 global mascon estimate for the i th
month, M is the number of months, and N is the number of
mascons (41,168). With each iterative mascon adjustment,
the TVG forward model is updated, the Level 1B data are
reprocessed, and a new set of monthly mascons is estimated.
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Table 1 Overview of iterative processing and solution strategy

Iter. TVG forward model Output

1 Trend and annual �ĥ1

2 Trend and annual + �ĥ1 �ĥ2

3 Trend and annual + �ĥ1 + �ĥ2 �ĥ3

4 Trend and annual + �ĥ1 + �ĥ2 + �ĥ3 post-fits

Iteration continues until convergence occurs, with our analy-
sis showing that three iterations are sufficient. The finalM×N
mascon solution matrix, x̂, is then defined as the sum of the
a priori model (trend and annual) and the full set of iterative
updates:

x̂ ≡ a priori model + ∑3
iter=1 �ĥiter. (2)

We execute a fourth and final processing of the Level 1B data
in order to generate the true post-fit inter-satellite residuals,
which confirm solution convergence and aid in validating the
estimated mascon uncertainties, as discussed in Sect. 2.4.1.
The effect of iteration on the mascon solution and inter-
satellite range-acceleration residuals is illustrated in Figs. 1
and 2. In Fig. 1, we show the mass change time series
and corresponding range-acceleration residuals for individ-
ual mascons in three distinctly different regions: the West
Antarctic Ice Sheet, Gulf of Alaska, and the Chesapeake
drainage basin. It is interesting to note the different con-
vergence behavior of the different mascons, specifically, the
nonlinear convergence behavior of the residuals in West
Antarctic Ice Sheet, and the more rapid convergence in Gulf
of Alaska where a separate constraint region is defined. Fig-
ure 2 presents the global picture of convergence, with maps
of the root mean square (RMS) of the range-acceleration
residuals. The lack of coherent signal that remains in the
final post-fits (iteration 4) confirms that the solution has
converged. The daily time series of inter-satellite range-
acceleration residuals used throughout are determined as in
Loomis andLuthcke (2017), which applies a simple low-pass
filter to the KBRR residuals followed by quadratic Lagrange
polynomial numerical differentiation. This procedure sup-
presses the high-frequency component that is geophysically
uncorrelated and dominated by the spacecraft instrument
noise.

Each GRACE processing center has a unique set of arc-
specific parameters that are applied to the determination
of the satellite orbits and/or co-estimated with the gravity
parameters (note that for the sake of simplicity, these param-
eters are not explicitly included in the equations developed
below). For each iteration, we process the KBRR and nav-
igation files in daily arcs, and converge the following set
of arc parameters with the updated TVG model: daily 12-
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Mascon located in the Gulf of Alaska:
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Mascon located in the Chesapeake drainage basin:
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Fig. 1 Iterative solutions and residuals of sample individual mascons.
(Left column) The effect of iteration on recovered mass change. (Right
column) The effect of iteration on the binned range-acceleration resid-
uals, ρ̈. (Top row) Mascon located in the West Antarctic Ice Sheet,
between Pine Island Glacier and Thwaites Glacier. (Middle row) Mas-
con located in the Gulf of Alaska. (Bottom row) Mascon containing
Greenbelt, MD, USA, located in the Chesapeake drainage basin. The
iteration numbers follow the definitions in Table 1, where iteration 4
defines the final mass change solution and the post-fit residuals to the
final solution

Fig. 2 RMS of the mascon-binned range-acceleration residuals for all
four iterative Level 1B processing steps. See Table 1 and text in Sect. 2.1
for details
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parameter satellite initial states, 3-hourly KBRR constant,
trend, and one cycle-per-revolutionmeasurement biases, 1.5-
hourly 3-D accelerometer biases, and 1.5-hourly 3-D one
cycle-per-revolution empirical accelerations. We then form
monthly KBRR-only normal equations (including the regu-
larizationmatrix discussedbelow) and solve for the following
set of parameters: global mascons, the baseline parameter
satellite initial states (Rowlands et al. 2002), and the KBRR
measurement biases. The accuracy of the final mascon esti-
mates may be affected somewhat by the selected set of
non-gravitational state parameters and their errors, and quan-
tifying this error type is beyond the scope of this study, and
to our knowledge has not been analyzed for other GRACE
data products. We expect that the iterative solution approach
applied here minimizes the impact of the arc-specific param-
eters, as they are re-converged after each update to the TVG
model.

Our choice to omit the actual GPS measurements in favor
of the Level 1B navigations files significantly reduces the
computer processing time, which is a major advantage when
applying our iterative solution procedure. However, it is
important to note that the satellite orbits contained in these
files have been fit to a static gravity field, making them at
a certain level incompatible with the KBRR measurements
of TVG. This issue is easily addressed by first tuning our
orbit and arc parameters with an existing TVG solution (a
low degree expansion of Stokes coefficients is sufficient,
e.g., 10×10) prior to initiating the iterative solution pro-
cess summarized in Table 1. We have observed that failing
to properly calibrate the orbits prevents the full recovery of
some low degree Stokes coefficients, particularly the sec-
torals. The low degree portion of the gravity field is well
determined by all of the readily available Level 2 products
(except C20 which is replaced by the value determined from
Satellite Laser Ranging) and is unaffected by the mascon
regularization; therefore, the “value added” of mascon esti-
mation is only relevant for Stokes degree and order above
∼10 (Watkins et al. 2015).

2.2 Mascon regularization

2.2.1 Mathematical formulation

The regularized mascon system of equations for a particular
month and iteration is described by:

d = Am + ν, ν ∼ N (0,W−1)

A ≡ HL

ma = m + η, η ∼ N (0, (1/λ)P−1), (3)

where m is the global set of mascon parameters for one
month, A is the design matrix, H contains the partial

derivatives of the KBRR measurements with respect to the
differential Stokes coefficients, L contains the partial deriva-
tives of the differential Stokes coefficients with respect to the
mascon parameters, d is the KBRR measurement residuals,
andma is the a priori mascon state. The notationN describes
Gaussian distributed random errors with a certain mean and
covariance so that ν describes the data noise with zero mean
and covarianceW−1, and η describes the a priori state uncer-
tainty with zero mean and signal covariance (1/λ)P−1. The
term λ is a scalar damping parameter that is tunable to pro-
vide the desired level of regularization. If we assume the a
priori mascon statema is zero, and seek to minimize the cost
function:

J (m) = νTWν + ηTλPη, (4)

we arrive at the least-squares mascon estimate:

m̂ =
(
ATWA + λP

)−1
ATWd, (5)

which is commonly referred to as Tikhonov regularization
(Tikhonov 1963), and can be described by the Wiener–
Kolmogorov filter (Foster 1961).

The applied regularization, λP, is the most critical design
consideration for producing mascon solutions, and a primary
focus of this work is the newly developed strategies to define
the monthly regularization matrices, P. Departing somewhat
from the solution presented in Luthcke et al. (2013), we have
removed the temporal constraints and now only apply spa-
tial regularization in the estimation of independent monthly
solutions. Our P is developed below, where Eqs. 6–11 are the
same as Eqs. 18–23 in Sabaka et al. (2010) except for Eq. 8,
which has beenmodified to include a newmascon-dependent
weighting.

We begin by defining the N(N−1)/2×N discrete first-
difference operator constraint matrix D, where the kth row
constrains the ith and jth mascons:

Dki = 1, Dk j = −1, Dkq = 0 for all q �= i, j . (6)

The constraint equations are written as

0 = Dm + e, (7)

where e is assumed to be a Gaussian distributed error with
zero mean and covariance �−1, denoted as e ∼ N (

0,�−1
)
.

The components of the diagonal matrix � are defined by

Γkk =
⎧
⎨

⎩
exp

(
1 − di j

D

)
wi + w j

2
, ψi = ψ j

0, ψi �= ψ j ,

(8)
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where D is the correlation distance, di j is the distance
between mascon centers, wi and w j define the new mascon-
dependent weighting, andψi andψ j designate the constraint
region for the ith and jth mascons. We enforce conservation
of mass by appending Eq. 7 with an additional constraint as

(
0
0

)
=

(
D
1T

)
m +

(
e
e

)
, (9)

where 1 is a vector of ones and e ∼ N (
0, w−1

c

)
. As noted

by Sabaka et al. (2010), this additional constraint is needed
because the constant vector 1 is in the null spaces ofL andD,
meaning a uniform layer ofmass over the spherewill not pro-
duce observable gravity signals in the KBRRmeasurements.
The augmented system of equations in Eq. 9 is rewritten as

0 = Dm + e, (10)

and our final P is defined by

P = D
T
	D, (11)

where the upper left portion of � contains � and the lower
right diagonal iswc.Assigning a value of 10 towc is sufficient
to ensure that the inversion in Eq. 5 exists and that mass is
conserved.

2.2.2 Regularization regions

The constraint regions referenced in Eq. 8 have been slightly
modified from those used in Luthcke et al. (2013). The new
solution defines eleven constraint regions, forwhichmascons
in separate regions are uncorrelated.These regions areGreen-
land Ice Sheet low elevation (<2000m),Greenland Ice Sheet
high elevation (>2000m), Antarctic Ice Sheet including the
Ronne and Ross ice shelves, Gulf of Alaska, land, ocean
including smaller ice shelves, Mediterranean Sea, Black Sea,
Red Sea, Caspian Sea, and Hudson Bay. The correlation
distance, D, in Eq. 8 is 100 km everywhere except in the
Antarctic Ice Sheet constraint region where the spatiotempo-
ral sampling of the GRACE ground tracks supports a value
of 50 km.

2.2.3 Iterative regularization design motivations

The most significant improvement in the regularization
design is through the introduction of the mascon-dependent
weighting in Eq. 8. The strategy for building these weights
differs between the first iteration and subsequent iterations.
The goal of the first iterative mascon adjustment, �h1, is
to recover the large spatial scale components of TVG not
contained in the a priori model, so the initial regularization
matrix is intentionally overconstrainted. The GRACE error

analysis of Wahr et al. (2006) demonstrated a strong latitude
dependence in the Stokes errors, presumably due to the spa-
tiotemporal sampling, where midlatitude bands have higher
errors than high-latitude bands due to fewer observations per
degree longitude. We apply this known error structure in the
design of a static (same for allmonths) set ofmasconweights,
and select the damping parameter, λ, so that the north–south
striping patterns contained in unregularized GRACE solu-
tions are not present in the mascons. Preserving the latitude
dependence, we scale the ocean weights by a factor of 10 to
account for the lower signal-to-noise ratio relative to the land
and ice regions in the initial iteration.

A distinctly different regularization strategy is used
for all subsequent iterations (�h2 and �h3), where the
remaining Level 1B inter-satellite residuals are applied
in the construction of Eq. 8 mascon weights. This new
approach was largely motivated by the results of Loomis
and Luthcke (2017), which demonstrated a strong linear
relationship between unresolved local mass signals and the
local range-acceleration residuals, once the long-wavelength
components of TVG have been well determined. Similarly,
justification for our regularization design strategy can be
inferred from the discussion and analysis of the acceleration
approach presented in Weigelt (2017). To briefly summa-
rize, the derived range-acceleration gravimetric observable
is written as

ρ̈ = ẍAB · eAB + 1
ρ
ẋAB · ẋAB − ρ̇2

ρ
, (12)

where ρ, ρ̇, and ρ̈, respectively, are the inter-satellite range,
range-rate, and range-acceleration, ẋAB and ẍAB, respec-
tively, are the velocity and acceleration difference vectors
between the two GRACE satellites, and eAB is the line-of-
sight direction unit vector between the satellites. The first
term on the right-hand side of Eq. 12 is a direct function of the
desired gravity parameters, while the remaining components
of the right-hand side are termed the centrifugal acceleration.
When working with residual quantities to a reference gravity
field and reference obit (e.g., δρ̈ = ρ̈ − ρ̈ref ), the magnitude
of the centrifugal component is sufficiently small at higher
spatial frequencies (Stokes degree and order > 10) that it
can be ignored. In other words, once the lower frequency
signals in the gravity field have been well recovered, as is the
case beginning with the second iteration, the remaining sig-
nals in the range-acceleration residuals are linearly related
to unresolved TVG (i.e., δρ̈ ≈ δẍAB · eAB), and that use-
ful information is applied in creating unique regularization
matrices for each iteration and month.

Procedurally, we bin the mission-long set of range-
acceleration residuals by mascon, storing the mascon num-
ber, time tag, satellite altitude, and value of every residual
for the duration of the mission. This binning procedure cre-
ates a time series with irregular temporal sampling for each
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mascon, which is then Gaussian smoothed with σ =30days
and resampled at the center of each GRACE monthly win-
dow. The applied smoothing procedure is effectively the
same as computing monthly means within each mascon,
but does allow some influence from data in neighboring
months, which is helpful in obtaining reliable values formas-
cons with fewer observations. The global set of binned and
smoothed range-acceleration values for a particular GRACE
month defines the inverse (1/w) of the month-dependent
mascon weights in Eq. 8. It is useful to note the concep-
tual difference here to iteratively reweighted least squares
(IRLS), which assumes that larger residuals are indica-
tive of less reliable data and so reduces their effect on
the solution by decreasing the data weights defined by W.
In our case, we are instead assuming that larger residu-
als are not errors in the data, but rather due to unresolved
TVG signal, so we decrease the weighting applied by P
for particular mascons to allow weak restrictions for those
parameters.

The residual binning procedure is illustrated in Fig. 3, and
shows the monthly map of binned residuals for a particular
month along with the full time series of all binned residuals
for a single mascon. The regularization damping parameter,
λ, is empirically determined to be just large enough to sup-
press the non-geophysical north–south striping errors that
primarily result from the lack of sensitivity of the inter-
satellite measurements to the east–west gravity gradients. A
similar empirical approach for selecting the damping param-
eter is also applied by Luthcke et al. (2013) and Watkins
et al. (2015). The iterative estimation procedure applied here
allows for a gradual reduction in the magnitude of the damp-
ing parameter through the final iterative adjustment.

We note one final important difference between the
currentmascon estimationprocedure and the iterativeGauss–
Newton nonlinear constrained least-squares procedure app-
lied in Luthcke et al. (2013), which used the same regular-
ization matrix with each iteration. As summarized in Table 1
and Eq. 5, we treat each re-processing of the Level 1B data
as an independent regularized linear least-squares problem,
where we update the starting model using the mascon update
from the previous iteration, and reset the a priori state vector,
ma , to be equal to zero. Recognizing the useful information
available in the range-acceleration residuals for the redesign
of regularization matrices for each iteration and month, we
instead have adopted the approach presented here, which
leverages valuable information to guide the solution path
toward the final solution for which the residuals have been
sufficiently minimized.

2.3 Mascon post-processing

There are several post-processing steps commonly applied
to GRACE TVG solutions, whether in Stokes coefficients or

Fig. 3 Overviewof iterative procedure to designmonthly regularization
matrices. (Top) Map of binned range-acceleration residuals for June
2009. (Bottom) Time series of binned range-acceleration residuals for
a single mascon in the Amazon basin. This information is used to define
the mascon-dependent weights in Eq. 8

mascon form. First, the GRACE satellites are insensitive to
variations in the geocenter, so we apply a degree 1 correction
to our mascon solution following the procedure in Swenson
et al. (2008). Next, GRACE TVG solutions are known to
provide poor estimates of C20, so those are replaced with the
values determined from Satellite Laser Ranging provided in
GRACE Technical Note 07 (Cheng et al. 2013). We also fol-
low the recommendations of Wahr et al. (2015) by adjusting
the trends of C21/S21 in order to remove the GIA trend com-
ponent of the long-term changes to the pole tide. Note that
this C21/S21 correction will not be needed for future GSFC
mascon solutions (after v02.4), as we will be adopting an
updated linear mean pole model.

Designing mascon regularization matrices to maximize
signal recoverywhileminimizingnoise is a challengingprob-
lem, andwe acknowledge that a very small subset of adjusted
mascon parameters over the course of the mission could be
unrealistic due to data noise or poor spatiotemporal sam-
pling of particular mascons. Rather than over-regularizing
the solution to address these outliers, we have instead cho-
sen to perform a simple outlier detection-and-replacement
procedure prior to releasing our solution that identifies all
mascons over the course of the mission that are 5-σ outliers,
and replaces them with values that are linearly interpolated
from neighboring months. The number of identified outliers
represents ∼ 0.002% of the total set of mascon parameters.

123



Regularization and error characterization of GRACE mascons 1387

Table 2 Summary of available GSFC mascon solutions available for download at https://neptune.gsfc.nasa.gov/grace/

Solution name Description Applications

v02.4 Comparable to GRACE Project GSM after
corrections

Terrestrial water storage and cryosphere after
removal of GIA

v02.4-ICE6G v02.4 – GIA (Peltier et al. 2015) Terrestrial water storage and cryosphere

v02.4-GeruoA v02.4 – GIA (AG and Zhong 2013) Terrestrial water storage and cryosphere

v02.4-GeruoA_OBP v02.4 – GIA + AODa
� + GADb Ocean bottom pressure, comparable to bottom

pressure recorder data and other mascon solutions

v02.4-GeruoA_SLA v02.4 – GIA + AODa
� + GADb – GAD

c
Ocean mass, comparable to steric-corrected sea level
anomalies

a GSFC uses a different AOD model than the GRACE project GAD, so the model differences must first be restored
bThe GAD contains the monthly surface pressure means of the non-tidal and atmospheric models used in Level 1B processing.
cThe mean of GAD over the entire ocean is removed

Similarly, we also interpolate all of the Antarctic Ice Sheet
values in July 2015 due to the lack of GRACEmeasurements
in that region for that particular month.

Lastly, in order to facilitate the application of our mas-
con product to a variety of geophysical applications, we
have elected to provide multiple versions of our mascons
with various models removed or restored, as summarized in
Table 2. Our current solution is v02.4, and the standard ver-
sion is comparable in information content to the GRACE
Project Level 2 Stokes solutions with the geocenter,C20, and
C21/S21 post-processing corrections applied. Additionally,
we provide two separate solutions where the GIA models,
Peltier et al. (2015) and AG and Zhong (2013), have been
removed. Finally, we provide two different ocean-only solu-
tions, OBP and SLA, both of which have removed the AG
andZhong (2013)GIAmodel. TheOBPsolution is computed
by restoring the surface pressure values of the atmospheric
and non-tidal ocean model used in processing the Level 1B
data (GAD), and is comparable to ocean bottom pressure
recorder data and the ocean mascons provided by the Jet
Propulsion Laboratory (JPL) and the University of Texas,
Center for SpaceResearch (CSR). TheSLAsolution removes
the mean atmospheric surface pressure over the ocean from
the OBP product, providing the ocean mass change vari-
ability, which can be compared to steric-corrected sea level
anomalies observed by altimetry. As previously mentioned,
currentGSFCprocessing applies a differentAODmodel than
that provided by the GRACE project, and this difference is
accounted for inTable 2with the termAOD�, equal to the dif-
ference between ECMWF/MOG2D and the GRACE project
AOD RL05 (ECMWF/OMCT).

2.4 Mascon error assessment

As defined in Eq. 3, we assume stochastic errors that are
second-order stationary, which are fully described by their
mean and covariance. Themean (bias) component to the error
is often ignored, butwe show in “AppendixA” that depending

on the assumed statistics, a regularized solution will indeed
be biased, and that this component of the error must be con-
sidered in order to appropriately quantify the uncertainty of
the estimated mascons. This conclusion is not limited to the
GSFCmascons, but is arguably true formost regularized geo-
physical inversion problems, where the assumed statistics of
the a priori state are likely invalid to some extent. These
invalid assumptions are necessary to create an invertible sys-
tem that provides solutions with any geophysical meaning,
but it is important to consider their effect when defining the
total uncertainty. First, we present the estimated covariance
of the GSFC mascons, which is commonly the only compo-
nent of the error that is considered. We then discuss the bias
component, which in the context of GRACE gravity analysis
is synonymous with the term “leakage,” and so the terms bias
and leakage are used interchangeably throughout.

2.4.1 Mascon covariance

Following Eqs. 5 and A.12, the formal covariance for the
mascon adjustment, m̂i j , for the i th month and j th iteration,
is defined by

cov
(
m̂i j

) =
(
AT
i jWAi j + λPi j

)−1
. (13)

Though readily available as a part of our processing, there
are two issues with using this quantity for assigning noise
uncertainties to the final mascon product. The first is that
formal covariances usually need to be calibrated, and this is
often done by scaling the covariance so that the variances
approximately match the misfit to in situ data. The effective-
ness of the calibration is then somewhat dependent on the
assumed accuracy of the in situ data. This calibration process
is a form of variance component estimation (VCE), details
of which can be seen in Kusche (2003) with application to
gravity estimation in Lemoine et al. (2013). The more sig-
nificant issue in this context is the fact that the covariance in
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Eq. 13 is for a particular iteration, and as we have discussed
above, the regularization matrices, Pi j , are updated with the
range-acceleration pre-fit residuals on each iteration. In other
words, for the regularization strategy adopted here, the result
of Eq. 13 is only valid (though still uncalibrated) for a par-
ticular iteration.

To overcome this limitation, we have instead applied a
data-driven approach to estimate the variance–covariance of
themascon parameters.We begin by defining theM×N noise
matrix, n̂, as the difference between the solution and the
temporally filtered mascon solution:

n̂ ≡ x̂ − F (
x̂
)
, (14)

where F(·) is a second-order Savitzky–Golay filter (Sav-
itzky and Golay 1964), which has been selected so that it
approximately matches the noise level predicted by the post-
fit observation residuals (discussed below). If we assume
that E[n̂]=0, then the spatial error covariance, Cs (dimen-
sion N×N), and temporal error covariance, Ct (dimension
M×M), are, respectively, defined and computed as,

Cs = C(x̂−x)s = C(n̂)s

= E

[(
n̂ − E[n̂]) (

n̂ − E[n̂])T
]

= 1

N − 1

N∑

i=1

n̂n̂T

Ct = C(x̂−x)t = C(n̂)t

= E

[(
n̂T − E[n̂T]

) (
n̂T − E[n̂T]

)T]

= 1

M − 1

M∑

i=1

n̂Tn̂. (15)

The square root of the diagonal elements of Cs and Ct

defines the noise standard deviation map and time scales
shown in Fig. 4, respectively. If we define the time scale
of the i th month as T (i) ≡ √

Ct (i, i), then the i th month
and the kth mascon components of theM×N noise standard
deviation matrix are defined as

σ̂ik = T (i)
√
Cs (k, k). (16)

The covariance matrices in Eq. 15 and the final noise
estimate in Eq. 16 are only valid if the selected temporal
filter, F , produces an estimated noise matrix, n̂, that well
describes the true noise of the solution, x̂. (The noise could
be under- or overestimated based on the aggressiveness of the
filter.) To validate the selected temporal filter, we compare
the gravity degree variance of the spatial standard deviation
(temporal mean of Eq. 16) to that predicted by the KBRR
post-fit residuals as determined by the semi-analytic error

Fig. 4 Noise covariance results and validation. (Top) Global map of
noise standard deviation values; equal to the square root of the diagonal
elements of the spatial covariance in Eq. 15. (Middle) Time series of
temporal standard deviation, or time scales that should be applied to
the spatial map; equal to the square root of the diagonal elements of
the temporal covariance in Eq. 15. (Bottom) Validation of the selected
Savitzky–Golay filter used to define the covariance matrices; results
are compared to a wavelet-based noise assessment, and a semi-analytic
approach that uses the KBRR post-fit residuals

analysis procedure described in Sect. 3.7.1 of Kim (2000).
It is well known that the degree variance of the GRACE-
derived Stokes coefficient errors increases dramatically at
higher degrees, while the degree variance of the TVG sig-
nal we seek to recover decreases. The benefit of regularized
TVGestimation is demonstrated in the spectral domain by the
fact that the degree variance of the recovered TVG approxi-
mates the expected TVG signal (see (Rowlands et al. 2010)
for a detailed discussion). This divergent behavior between
the gravity degree variances of regularized and unregular-
ized estimates of TVG is true of both the signals and the
errors, a fact that is relevant to the efforts to validate our mas-
con uncertainties, as the regularized and unregularized error
assessments will diverge above the lowest Stokes degrees
where the effects of regularization are clearly seen.

To that end, Fig. 4 compares themonthly degree error vari-
ances determined from the KBRR residuals (Kim 2000) to
that determined by the selected Savitzky–Golay filter, where
the former is descriptive of the unregularized TVG solution.
This comparison is then only expected to be valid at the low-
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est degrees, which is exactly what is observed in Fig. 4.
The ratio of the average KBRR-determined errors and the
Savitzky–Golay errors is between 0.5 and 2.0 for all Stokes
degrees 10 and below, that is, the ratios are close to 1.0 and the
actual noise-related errors are well described by the selected
filter.

As an additional validation exercise, we also apply
wavelets in the computation of the spatial noise standard
deviation map following the method discussed in Donoho
and Johnstone (1994) and Loomis and Luthcke (2014).
This wavelet-based validation is useful because there are
no parameters that need to be tuned, unlike the Savitzky–
Golay filter. Figure 4 shows excellent agreement between the
selected Savitzky–Golay filter and the independent wavelet-
based noise estimate.

2.4.2 Mascon bias (leakage)

The unregularized least-squares estimator (i.e., λ=0) is
applied when solving for the GRACE Level 2 Stokes coeffi-
cients, inwhich case the estimate is guaranteed to be unbiased
and the covariancematrix fully describes the uncertainty. Fol-
lowing the results of Eq. A.9, Hoerl and Kennard (1970), and
Kusche and Springer (2017), the regularizedmascon solution
bias is equal to:

E
[
x̂ − x

] = (R − I) x, (17)

where x is the unknown truth state, x̂ is the estimated state,
and R is the resolution operator:

R ≡
(
ATWA + P

)−1
ATWA, (18)

which may be used to relate the unknown truth state to the
estimated state if noise is neglected (Menke 2015):

x̂ = Rx. (19)

To test the validity of these expressions and their applica-
bility to defining mascon uncertainty, we performed a simple
one-month simulation. We generated a month of “truth”
Level 1B KBRR observations for a certain set of background
models, which are perfect noise-free observations of the
“true” TVG field. If these perfect data are processed with
the same exact set of background models, the observations
agree perfectly with the model, and all mascon updates are
equal to zero. We then perturbed the background model by a
known amount x, reprocess the data, and generate the mas-
con estimate, x̂. In this case, our perfect noise-free data will
recover the perturbed field x, up to the spatial resolution that
is observable by GRACE. (We define the perturbed model as
10% of a single epoch of a high-resolution hydrology model
averaged into the 1-arc-degree GSFC mascon grid, which

Fig. 5 Leakage simulation results. (Top left) Simulated high-resolution
truth; RMSland = 0.90 cm. (Top right) The resolution operator,R, mul-
tiplied by the simulated high-resolution truth, x; RMSland = 0.72 cm.
(Bottom left) The estimated mascons, x̂, using the same regulariza-
tion matrix, P, used in the construction of the resolution operator, R;
RMSland = 0.72 cm. (Bottom right) The difference between the top
right and bottom left; RMSland = 0.02 cm. The excellent agreement
between Rx and x̂ validates Eq. 19, and therefore the use of Eq. 17 for
defining the leakage error

is a much higher than the true spatial resolution of monthly
GRACE solutions. The model power was reduced to 10%
to ensure that the large majority of recoverable signal would
be obtained with a single iteration.) Finally, we apply the
same processes and regularization matrix used to estimate
the final (third) global mascon update for January 2006, in
order to validate Eq. 19, i.e., that x̂ ≈ Rx. The results of this
simulation study are shown in Fig. 5, confirming the validity
of using Eq. 17 to define the bias (leakage) of the mascon
solutions.

Unlike for our simulated case, the true state in reality is
unknown. We instead define for the i th month, the estimated
bias, �̂i , by substituting the true monthly state with the esti-
mated monthly state, x̂i :

�̂i = (Ri − I) x̂i . (20)

The N×N resolution operator, Ri , needs to be computed
monthly as theA and Pmatrices in Eq. 18 are unique to each
month. The same strategy to substitute the estimated state for
the true state ismentionedbyKusche andSpringer (2017) and
was applied by Luthcke et al. (2013) for estimating regional
leakage for land ice mass signals.

Upon inspection, the full set of leakage estimates, �̂,
contains both a deterministic (trend) and stochastic (other)
component, so may be written as:

�̂ = �̂trend + �̂other, (21)

123



1390 B. D. Loomis et al.

Fig. 6 Mascon leakage components. (Top) The standard deviation of
the stochastic component of mascon leakage, �̂other . (Bottom) The trend
component of mascon leakage, �̂trend. See Eq. 21

where �̂trend contains the best-fit trends of �̂, and �̂other is
what remains after removing �̂trend from �̂. In light of the
assumption in Eq. 20 that Rx ≈ Rx̂, we do not directly
apply the stochastic component of the leakage, �̂other, for
constructing the total error budget. We instead assume that
the distribution of �̂other is a more accurate descriptor of the
true bias than the individual values of �̂other, so define the
stochastic portion of the leakage for the i th month and the
kth mascon as

(�̂σ )ik =

√√√
√

∑M
j=1

(
�̂other( j, k) − 1

M

∑M
j=1 �̂other( j, k)

)2

M − 1
;

(22)

i.e., we compute the standard deviation over time for each
mascon, noting that the estimated stochastic leakage error
for each mascon defined in Eq. 22 is the same for all months.
To summarize, the total leakage estimate for a single mas-
con is defined by two parameters: the leakage trend and the
leakage standard deviation, which are applied in the M×N

matrices �̂trend and �̂σ , respectively. Maps summarizing the
two components of leakage error are shown in Fig. 6.

It is important to note that the resolution operator, R, as
it is defined and applied here, is only valid for the case of a
single iteration of linear least squares. As previously noted,
we have modified the Gauss–Newton constrained nonlinear
least squares of Luthcke et al. (2013) in favor of an iterative
linear least-squares approach, in order to leverage the useful
information contained in the range-acceleration residuals for
the construction of month- and iteration-dependent regular-
ization matrices. The final iteration is the least regularized,
so the resolution operators from the final iteration are most
descriptive of the resolution properties of the final mascon
solution, x̂. This differs from the earlier discussion regard-
ing the covariances, for which the iteration-dependent formal
covariances were only valid for a particular mascon update,
�ĥiter.

2.4.3 Building the total error budget

As detailed in Eqs. A.3 and A.4, the total error is defined
by the sum of the error covariance and bias. We provide
here a simple procedure to construct 1-dimensional Gaussian
95% uncertainties, for both individual mascons and regional
analysis. To ensure that the provided uncertainties are at the
level of ∼95%, we examine the statistics of n̂ and �̂other.
Figure 7 compares the cumulative sum statistics for the noise
n̂, the stochastic leakage �̂other, and a normal distribution.
We observe that all curves include ∼95% of data points at
2σ , even though the data distributions themselves deviate
somewhat from the normal.

We conclude, then, that the M×N total 95% uncertainty
for the mission-long set of individual mascons is defined by:

εmascon = |�̂trend| + 2
(
�̂σ + σ̂

)
, (23)

and the uncertainty time series for the kth mascon is the kth
column of εmascon. The three components that define Eq. 23
are provided separately with the GSFC mascon product. As
previously noted, the values of �̂σ are the same for allmonths.
The leakage trend time series, �̂trend, is populated using an
epoch of 2010.0, where the value is zero. The user can easily
modify this epoch if desired.

As expected, the ratio of the signal to the uncertainty
is quite low for most individual mascons. Regardless of
methodology, GRACE is not able to fully resolve mass
change at the 1-arc-degree spatial resolution that the GSFC
mascons are estimated, and a more typical application of
GRACE products is to aggregate the signal over a region of
interest to determine the regional mass change time series.
As the size of the region increases, the total noise and leakage
errors are expected to decrease. In the case of uncorrelated
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Fig. 7 Error distributions. The distribution of estimated errors is shown
in terms of cumulative sum per standard deviation for the estimated
mascon noise, n̂, the stochastic leakage component, �̂other , and a normal
distribution. We note that all three contain ∼95% of the data points at
2σ

errors, the standard error of the mean dictates that the factor
1/

√
n be applied, where n is the number of observations.

We know, however, that the mascons within a region are
highly correlated over a certain distance (i.e., the spatial res-
olution of the solution), so each mascon cannot be treated
as an independent observation when defining the regional
uncertainties. Accounting for the correlation between neigh-
boring mascons, the regional 95% uncertainty time series is
then defined as:

εregion = |�̂trend| + 2(�̂σ + σ̂ )
√

(nregion/z)
, (24)

where nregion is the number of mascons that defines the
region, z is the number ofmascons that defines the spatial res-
olution, and χ indicates the average value of parameter χ in
centimeters water height equivalent (abbreviated as cmw.e.),
or equivalently the sum of the total mass in Gt. Appropriate
values for z are easily determined using the set of resolution
operators, by applying and analyzing the impulse response
for mascons in various regions, and characterizing the spatial
resolution at which distinct signals are observable. In other
words, we compute x̂ = Rx, where x has only one nonzero
value, and we examine x̂ to define the resolution; this is sim-
ilar to the approach discussed by Luthcke et al. (2013). We
conclude that appropriate values are z=6 (resolution ∼270
km) for regional analysis of the Antarctic Ice Sheet, and
z =22 (∼520km) for regional analysis everywhere else. The
reported resolutions are consistent with previously published
results (Wahr et al. 2006; Luthcke et al. 2013), and the higher
resolution at high latitudes agrees with the error analysis of
Wahr et al. (2006). If z ≥ nregion, we set z = nregion, as
this indicates that all errors within the region are correlated.
As an example, the components and total error budget for
two different regions in the Antarctic Ice Sheet are shown in
Fig. 8. The first shows the results for a smaller region with
20 mascons: basin 21 in Luthcke et al. (2013) which contains

Fig. 8 Regional time series with uncertainties. (Left) Solution and
uncertainties for Antarctic Ice Sheet basin 21, which contains Pine
Island Glacier. (Right) Solution and uncertainties for West Antarctic
Ice Sheet. These solutions have had the IJ05_R2 GIA model removed

the Pine Island Glacier (PIG). The second result is for the full
West Antarctic Ice Sheet, which is defined by 223 mascons.

We note that the regional uncertainty time series defined
by Eq. 24 uses the same three components as Eq. 23 (�̂trend,
�̂σ , and σ̂ ), which are provided with the GSFCmascon prod-
uct. Alternatively, one could first compute the leakage time

series as the average leakage over the basin: ŷ = �̂, sep-
arate it into its deterministic and stochastic components:
ŷ = ŷtrend + ŷother, and then define the regional 95% uncer-
tainty time series as:

εregion = |ŷtrend| + 2
(
ŷσ + σ̂ /

√
(nregion/z)

)
, (25)

where ŷσ is the standard deviation of ŷother. This approach
fully accounts for the shape of the selected basin, but numer-
ous tests show little difference between the results of Eq. 24
and Eq. 25. All presented results apply Eq. 24, as we have
elected not to distribute �̂with themascon product in an effort
to simplify the procedure for data users.

2.4.4 Uncertainty validation and comparison

We conclude this discussion on the total GSFC mascon
uncertainties with comparative analysis to GRACE products
released by other processing centers. First, we propose that
if our total uncertainties are well defined, they should con-
tain ∼ 95% of independent mascon estimates, such as those
provided by JPL and CSR. To that end, Table 3 summarizes
the percentage of JPL and CSRmascon observations of mass
change that are contained by the GSFC mascons and uncer-
tainties for three separate cases: all 41,168 GSFC individual
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Table 3 Comparison between GSFC mascon solution and uncertain-
ties, to JPL and CSR mascon solutions. The provided values are the
number of mission-long values contained within the 95% GSFC mas-
con uncertainties for both individual and regional analyses

Region JPL CSR
mascons (%) mascons (%)

Individual mascons 92.8 95.6

Global hydrology basins 94.8 96.5

Antarctic Ice Sheet basins 95.2 94.8

Fig. 9 GSFCmascon uncertainties. The estimated uncertainties for dif-
ferent components of the GSFCmascons are compared to the calibrated
CSR RL05 Stokes coefficient uncertainties and the JPL RL2 mascon
uncertainties. Refer to the text in Sect. 2.4.4 for detailed discussion

mascons (Eq. 23); the 187 largest global hydrology basins
(Eq. 24 with z =22); and 36 drainage basins in the Antarc-
tic Ice Sheet (Eq. 24 with z =6). The resulting percentages
for all cases are remarkably close to the predicted value of
95%, providing strong evidence that our uncertainties are
well defined.

Lastly, in Fig. 9 we compare the degree error variance of
our uncertainties to the calibrated uncertainties provided for
the CSRRL05 Stokes coefficients and the JPLRL2mascons.
We first note the excellent agreement between the 2σ GSFC
noise-only (variance) uncertainties and the 1σ JPL uncer-
tainties. As discussed in Wiese et al. (2016), the JPL mascon
formal uncertainties have been scaled by a factor of 2 over
land, where land signals dominate the power in both the solu-
tion and uncertainties. This result suggests that the JPL 1σ
formal uncertainties approximately match the GSFCmascon
noise-only uncertainties, and that the discrepancy between
JPL and the GSFC total uncertainties is likely due to the fact
that the bias/leakage component is not included in the esti-
mated values for JPL. This result should not be interpreted
as the GSFC product having larger errors in reality (when

aggregated to the same spatial scale as the JPL 3-arc-degree
mascons). We also note that the total 1σ GSFC uncertain-
ties showmuch better agreement with the calibrated 1σ CSR
RL05 Stokes coefficient uncertainties at the low degrees than
the JPL mascon uncertainties. As previously discussed, the
Stokes uncertainties should only approximate the mascon
uncertainties at the lowest degrees and will not have a bias
component, as the Stokes coefficients are not regularized and
are therefore unbiased.

3 Science results

The primary focus of this work has been to summarize the
procedures applied in the estimation of GSFC mascons and
the assessment of uncertainties.Weconcludeherewith a brief
summary of science results extracted from the latest product,
highlighting the application of the new uncertainties.

Globalmapsof the best-fitmascon trend and annual ampli-
tude are shown in Fig. 10. The first column of figures shows
the global set of best-fit parameters, while the second shows
the same values over land and ice, where we have highlighted
the individual mascons with statistically significant fits. It is
important to reiterate that this analysis is strictly related to
the statistical significance of individual mascon fit parame-
ters and is not at all indicative of the statistical significance of
any regional analyses. The fit parameter 95% uncertainties
are defined as the root sum squared (RSS) of the calibrated fit
uncertainty, the stochastic noise and leakage, and the leak-
age trend. The calibrated trend fit is determined following
Eq. 3.10 of Lee and Lund (2004), while the other compo-
nents are defined in Eq. 23. The effect of the stochastic part
is determined by applying a simple Monte Carlo approach
where many random realizations of the time series are gener-
ated with the appropriate standard deviation and the resulting
spread of the fit parameters is computed. The leakage trend
component does not affect the annual amplitudes.Manymaps
similar to Fig. 10 have been produced fromGRACE data, but
this is the first that we are aware of that identifies individ-
ual locations where these important geophysical parameters
are identified by their statistical significance. It is a notable
achievement of the GRACE mission and the GSFC product
that such a high percentage of fit parameters are statisti-
cally significant at 1-arc-degree spatial resolution. We have
excluded the ocean here, as it is commonly analyzed in terms
of ocean bottom pressure, which is the sum of the AOD sur-
face pressure and the estimated mascons.

Many of the geophysical signals highlighted in Fig. 10
have been discussed at length in the scientific literature. The
observed trends are significant for 59% of land and ice sheet
mascons, where the largest negative trends are due to ice
mass losses in the Greenland Ice Sheet and West Antarctic
Ice Sheets, with other significant ice mass losses occurring in
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Fig. 10 Regression trend and annual amplitude best-fit parameters.
(Top row) Global mascon trends. (Bottom row) Global mascon annual
amplitudes. (Left column) All mascons. (Right column) Statistically
significant land and ice sheet values are identical to values in the left

column, while lack of statistical significance is indicated by gray col-
ored mascons. Important note: This analysis is strictly related to the
statistical significance of individual mascon fit parameters and is not
indicative of the statistical significance of regional analyses

theAntarctic Ice Sheet Peninsula, theGulf ofAlaska glaciers,
the ice caps in and around the Ellesmere and Baffin Islands,
and the Patagonia ice fields. Positive trends are observed in
the northern interior of the Greenland Ice Sheet and in the
Queen Maud Land region of the Antarctic Ice Sheet. Other
notable trends are the result of changes in terrestrial water
storage, with our results showing good qualitative agreement
to other recent global hydrologic trend analyses (Reager et al.
2016; Scanlon et al. 2018;Rodell et al. 2018).Negative trends
in terrestrial water storage are the result of climate variabil-
ity, irrigation, and groundwater withdrawals, while positive
trends are generally attributed to climate variability (Scanlon
et al. 2018). The annual amplitudes are significant for 81%
of mascons, where the lack of statistical significance exists
primarily in arid regions, the interior of the Greenland Ice
Sheet, and over large portions of the Antarctic Ice Sheet.

One of the most important applications of GRACE data
has been the monitoring of the mass component of global
mean sea level (GMSL). Total GMSL has been continuously
observed by a series of satellite altimeter missions from the
launch of TOPEX/Poseidon in 1992 up to the present day.

GMSL is the sum of the changes in ocean mass observed by
GRACE, and the steric (density) changes. The steric com-
ponent is primarily observed by in situ point measurements
from the network of Argo floats that provide profiles of tem-
perature and salinity, up to a depth of 2000m. The Argo
sampling has continuously improved, and began to produce
reliable estimates of the steric contribution to GMSL around
2005 (Leuliette and Willis 2011). With concurrent observa-
tions of the total, mass, and steric components, it is possible
to determinewhether or not theGMSLbudget is closed. Lack
of budget closure could be the result of errors in one or more
of the observation methods, or unobserved steric changes in
the deep ocean.

In Fig. 11 and Table 4, we present the successful clo-
sure of the GMSL budget using the ocean mass change
solution from the GSFC mascons, and the total GMSL and
steric solutions presented in a recent survey of the global sea
level budget (WCRP 2018). Over the common data span of
2005.0–2016.0, the sum of the full-depth steric and GSFC
ocean mass trends is equal to 3.69 ± 0.44 mm a−1, achiev-
ing remarkable agreement with the total GMSL trend of
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Fig. 11 Globalmean sea level budget closure.GMSL (black) is the total
change observed by multiple decades of sea surface altimetry measure-
ments, alongwith 90%confidence interval (gray). The sumof theGSFC
mascon total ocean mass and steric components (yellow) shows excel-
lent agreement to the altimetry observations. The contributions to total
ocean mass (dark blue) are shown for the Greenland Ice Sheet (green),
the Antarctic Ice Sheet (orange), Gulf of Alaska (light blue), and all
other land (purple). All time series have had the annual and semiannual
components removed and Gaussian smoothing applied with σ =30days

3.70 ± 0.70 mm a−1. For both the total and steric GMSL,
we apply the ensemble means presented in WCRP (2018),
which are the average of the solutions computed by a number
of participating researchers. We also present the mass contri-
butions to sea level trend from the Greenland Ice Sheet, the
Antarctic Ice Sheet (AIS), the Gulf of Alaska, and all other
land including the Caspian Sea, and note that our AIS mass
change time series is included in and agreeswell with theAIS
gravimetric comparisons presented byShepherd et al. (2018).
The provided regional trend contributions do not exactly sum
to the total ocean mass value provided for several reasons:
The ocean total includes the restored AOD model which is
nonzero over the ocean, we have excluded contributions from
theMediterranean,Black, andRedSeas andHudsonBay, and
we have selected the IJ05_R2 GIA model with a revised ice
loading history (Ivins et al. 2013) for AIS to be consistent
with the results presented in Shepherd and Ivins (2012) and
Luthcke et al. (2013). Estimated AIS mass trends are partic-
ularly sensitive to the selected GIA model (Shepherd et al.
2018). It is also important to note that due to the relatively
short data record, the reported trend estimates are somewhat
sensitive to the selected beginning and end dates. Exami-
nation of the GRACE-related uncertainty values in Table 4

Table 4 Trends and uncertainties for 2005.0–2016.0 are listed for the
global ocean mass with regional contributions (GSFC mascons), the
steric component (WCRP 2018), and the total global mean sea level
(GMSL) from the merged satellite altimetry solution (WCRP 2018)

Trend Error components

Fit Stocha Leakb Total

Regional mass

Global ocean 2.38 0.17 0.03 0.07 0.19

Greenland I.S. 0.84 0.04 0.02 0.02 0.05

Antarctic I.S.c 0.36 0.02 0.01 0.02 0.03

Gulf of Alaska 0.17 0.04 0.01 0.00 0.04

Land/Caspian 0.50 0.12 0.06 0.07 0.15

GMSL components

GMSL (total) 3.70 – – – 0.70

Steric 1.31 – – – 0.40

Mass + stericd 3.69 – – – 0.44

Themajor regional contributions to the oceanmass trends are computed
separately. All results apply the AG and Zhong (2013) GIA model cor-
rection, except for the Antarctic Ice Sheet which uses IJ05_R2 (Ivins
et al. 2013) to follow results presented in Shepherd and Ivins (2012).
The 95% uncertainties are provided and all units are mm a−1. The total
mass trend errors are the root sum square (RSS) of all error components
aEqual to 2(�̂σ + σ̂ )/

√
(n/z) from Eq. 24

bEqual to �̂trend from Eq. 24
cIJ05_R2 GIA applied; 0.61 for (AG and Zhong 2013) GIA
dSum of global ocean mass and steric; total error is RSS

Fig. 12 Comparison between Multivariate ENSO Index (MEI), global
mean sea level, and the contribution to global sea level from continental
hydrology and glaciers. The sea level signals lag the MEI, so we show
theMEI with a time shift of +51days, which maximizes the correlation
between MEI and GMSL

shows that the stochastic and leakage components are small
compared to the fit uncertainties. The small leakage errors
for the separate constraint regions are not surprising, as one
major purpose of the applied regularization is to limit signal
leakage across constraint region boundaries (Luthcke et al.
2013).

We conclude with a brief discussion of the interannual
variations of GMSL and the relation to the well-known El
Niño–Southern Oscillation (ENSO), the most influential cli-
mate pattern used in seasonal forecasting. A useful index for
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quantifying ENSO is the Multivariate ENSO Index (MEI),
which is determined from observations of sea level pressure,
surface winds, sea surface temperature, surface air tempera-
ture, and cloud cover in the tropical Pacific Ocean. Figure 12
shows the MEI and the de-trended GMSL and ocean mass
signals. The high correlation between GMSL and ENSO has
been noted by multiple researchers (e.g., Nerem et al. 2010;
Cazenave et al. 2012), and the time lag of the GRACE-
observed mass change relative to ENSO is discussed by
Phillips et al. (2012). We determine that a time lag of 51 days
maximizes the correlation between the MEI and GMSL time
series, and the MEI in Fig. 12 has been time-shifted accord-
ingly. We compute the following correlation coefficients for
the time-shifted MEI: 0.83 for GMSL; 0.68 for GSFC mas-
con land (including Gulf of Alaska and Caspian Sea); -0.02
for the Greenland Ice Sheet; 0.27 for the Antarctic Ice Sheet.
To summarize, the interannual variability in GMSL is largely
explained by ENSO, and a significant portion of that inter-
annual GMSL variability is due to terrestrial water storage
changes over land, with little input from the large ice sheets
whose large contribution is to the GMSL trend.

4 Conclusions

We have presented a novel approach to iteratively solve for
mass change anomalies from GRACE Level 1B data, by
applying the range-acceleration residuals in the construc-
tion of the monthly regularization matrices. This data-driven
procedure seeks to minimize the influence of the regulariza-
tion design on the final solution of this nonlinear estimation
problem. The estimation of arc-specific parameters and reg-
ularized mascons is highly nonlinear, and we argue that it
should be solved iteratively. Theoriginal iterativeGSFCmas-
con estimation processing in Luthcke et al. (2013) applied
nonlinear constrained least squares, while here we have
adopted a new approach in order to leverage the useful infor-
mation available in the Level 1B residuals.

We have also presented a new and thorough uncertainty
assessment of the latestmascon solution, andhave argued that
regularized geophysical inversion problems are likely to pro-
duce biased solutions, and that this bias should be considered
when defining solution uncertainties. This bias, or leakage,
has been computed here with the full resolution operator,
and we have demonstrated the accuracy of this approach
with a simulated test case. The noise and leakage uncertain-
ties are now provided with the GSFC mascon products so
that end users can easily assign accurate uncertainties for
both individual mascons and regions of interest, where both
cases have been validated in comparison with independent
mascon solutions and calibrated Stokes coefficient uncer-
tainties. Including leakage errors with the mascon product
is particularly important, as it is a major error source for

GRACE time-variable gravity solutions, is difficult to com-
pute, and is frequently ignored.With thewidespread adoption
of GRACE solutions, and the launch of GRACE-FO, it is
critically important that time-variable gravity products be
properly interpreted, especially with regard to the parame-
ter uncertainties. The detailed uncertainty analysis presented
here should clarify both the usefulness and inherent limita-
tions of GRACE products.

Lastly, we have demonstrated the quality of the newGSFC
mascon solution by presenting high-resolution global maps
of the trend and annual amplitudes, where we have applied
the new uncertainties toward the identification of fits with
statistical significance. We also presented the successful clo-
sure of the globalmean sea level budget, when accounting for
uncertainties, and noted that for individual constraint regions
(e.g., the ocean) that the leakage errors are very small.
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A Least-squares and statistical assumptions

A.1 Introduction

Linear least-squares parameter estimation and error assess-
ment typically rely on a set of statistical assumptions thatmay
not be valid. Here, we examine the effect of the assumed sta-
tistical properties of the linear systemof equations on the bias
and covariance of the least-squares state estimator, x̂. We are
specifically interested in the properties of the a priori state
equation, which we show defines the bias of the estimator,
and must be accounted for when assessing the error of the
mascon parameters.

We begin by defining linear system of equations for the
assumed and truth cases:

costfunction : J (x) = νTWν + ηTPη

assumed :
{
d = Ax + ν , ν ∼ N (0,W−1)

xa = x + η , η ∼ N (0,P−1)

truth :
{
d = Ax + ζ , ζ ∼ N (0,R−1)

xm = x + ε , ε ∼ N (0,Q−1),

(A.1)

where J is the least-squares cost function to be minimized
by the parameters of interest x, d is the data vector, A is the
designmatrix, xa is the a priori best estimate of the true mean
state xm of x, and W−1, R−1, P−1, and Q−1 are the covari-
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ance matrices of the various zero-mean errors ν, ζ , η, and ε,
respectively. The errors in statistical information considered
here arise in the a priori information as misspecifications in
the mean and covariance of the distribution of x, that is, the
difference between xa and xm and the difference between P
and Q, respectively, and misspecification in the covariance
of the data noise, that is, the difference between W and R.
The least-squares minimizer of J for the assumed statistical
information is given by:

x̂ =
(
ATWA + P

)−1 (
ATWd + Pxa

)
. (A.2)

A.2 The dispersionmatrix andmean squared error

The stochastic processes consideredhere are assumed second-
order stationary, and thus, are completely explained by their
mean and covariance. For a vector stochastic process z, these
are related by considering the expected value of the total
variation, or dispersion, between all pairs of elements, which
can be assembled into a dispersionmatrixDz that can decom-
posed as follows:

Dz = E

[
zzT

]

= E

[
(z − E[z] + E[z])(z − E[z] + E[z])T

]

= E

[
(z − E[z])(z − E[z])T

]
+ E

[
E[z]E[z]T

]

= Cz + zmzTm, (A.3)

where E[·] is the expectation operator, Cz is the covariance
matrix of z, and zm = E[z] is the mean vector.

The mean squared error (MSE) of the estimate is then
defined as follows:

MSE
(
x̂
) = E

[
(x̂ − x)T(x̂ − x)

]

= Tr
[
E

[
(x̂ − x)(x̂ − x)T

]]

= Tr [Dx̂−x ]
= Tr [Cx̂−x ] + bTb, (A.4)

where Tr [·] is the trace operator and b = E[x̂−x] is the esti-
mate bias vector. Therefore, we see that the error-covariance
matrixCx̂−x and bias vector b completely define the discrep-
ancy between x̂ and x.

A.3 Error covariance and bias

We now rewrite the true statistics of the underlying true state
x as:

xm = x + ε

xa = x + xb + ε, (A.5)

where xb = xa − xm , and substitute this and d = Ax + ζ

into A.2 such that

x̂ =
(
ATWA + P

)−1

(
ATWAx + ATWζ + Px + Pxb + Pε

)
. (A.6)

The error may now be written as

x̂ − x =
(
ATWA + P

)−1 (
ATWζ + Pxb + Pε

)
, (A.7)

whose expected value, or bias b, is

E
[
x̂ − x

] =
(
ATWA + P

)−1
Pxb. (A.8)

If we define the a priori value of xa to be zero, as is the case
for GSFC mascon estimation, then this can be rewritten as

E
[
x̂ − x

] = −
(
ATWA + P

)−1
Pxm

= (R − I) xm, (A.9)

where R is the resolution operator defined in Eq. 18. As
previously noted, the solution bias of Eq. A.9 matches the
ridge regression bias presented by (Hoerl andKennard 1970).
To derive the covariance, we note that

x̂ − x − E
[
x̂ − x

] =
(
ATWA + P

)−1 (
ATWζ + Pε

)
,

(A.10)

which leads to

C′
x̂−x =

(
ATWA + P

)−1 (
ATWR−1WA + PQ−1P

)

(
ATWA + P

)−1
, (A.11)

where it has been assumed that E[ζ εT] = 0.
To conclude, we observe in Eqs. A.9 and A.11 the effect

of invalid statistical assumptions on the bias and covariance,
respectively. If the covariance statistics are assumed to be
valid, that is, W = R and P = Q, then Eq. A.11 reduces to
the familiar form:

Cx̂−x =
(
ATWA + P

)−1
. (A.12)

It can be shown that C′
x̂−x > Cx̂−x, which indicates that this

difference in symmetric positive-definite matrices is itself
a symmetric positive-definite matrix, that is, it has positive
eigenvalues. This means that any variance produced through
covariance propagation will be larger for C′

x̂−x than the cor-
responding variance produced by Cx̂−x.
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