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Abstract
The thin plate spline (TPS) is an interpolation approach that has been developed to investigate a frequently occurring problem
in geosciences: the modelling of scattered data. In this paper, we carry over the concept of the thin plate spline from the
plane to the sphere. To develop the spherical TPS, we utilize the idea of an elastic shell that is attributed with the bending
energy and the external energy. The bending energy describes the shape of the membrane, while the external energy reflects
deviations between the shell and the data to be modelled. Minimizing both energy terms leads to the variational problem with
the solution in the form of the Euler–Lagrange equations. We provide the solution of the variational problem for two cases:
(1) total energy minimization over the whole sphere and (2) total energy minimization over a closed region of the sphere. In
case (1) we found a closed analytical solution in the form of collocation in a reproducing kernel Hilbert space. The local case
(2) solution is based on a discretization of the corresponding Euler–Lagrange equation using the spherical Laplace operator.
The performance of the introduced spherical TPS is demonstrated on two real world data sets. It is shown quantitative that
the thin plate approach is significantly more effective than Gaussian filter in terms of the GRACE data de-striping. We also
show that the TPS can be used effectively for the modelling of the vertical total electron content. It allows the reduction of the
computational effort in comparison with well-established planar TPS approximation. Moreover, the harmonicity property of
the TPS can be utilized to solve various issues related to Earth gravity modelling.

Keywords Thin plate spline · Approximation · Spline interpolation · Reproducing kernal Hilbert spaces · Biharmonic
equation · Finite differences approximation · vTEC interpolation

1 Introduction

The interpolation and smoothing of scattered data is a
frequently occurring problem in Geodesy and other Geo-
sciences. Usually, nothing is known about the behaviour of
the data in the gaps between the measurements and some
hypotheses have to be used to construct a proper interpolation
and smoothing algorithm. One frequently used hypothesis is
that the solution is smooth. Depending on what is understood
by smoothness, different algorithms can be designed. Usu-
ally, in geodesy the concept of smoothness is associated with
a certain asymptotic behaviour of the spectrum of the inter-
polation or, in stochastic interpretation, with a behaviour of
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the its degree variances. Only in a few cases these concepts
have a clear geometrical interpretation.

In this paper the concept of smoothness is borrowed from
mechanics: imagine themeasured data to be elevations above
a plane or a sphere and imagine an membrane going through
these elevations but is left free otherwise. Then this shell is
certainly a smooth interpolation of the given data. The geo-
metric shape of this shell is characterized by the minimum
of the total bending energy. The concept of minimal bending
energy is well known in the plane and leads directly to the
well-established technique of thin plate spline (TPS) inter-
polation.
In this paper, the idea of thin plate spline interpolation will be
carried over from the plane to the sphere. It will be discussed
for two cases

1. The minimum will be computed over the whole surface
of the sphere (global approach) and

2. the minimum will be computed only over a simply con-
nected region of the sphere (local approach).
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For each version, plane approximation, global and local
spherical approximation examples coming from GRACE
data smoothing and vTEC interpolation are studied.

2 Related work

Many approximation and interpolation methods have been
developed to solve specific problems of scattered data mod-
elling. These methods were subject of a large number of
studies (e.g. Franke and Nielson 1980; Franke 1982) and
textbooks (e.g. Hoschek and Lasser 1992). Besides the well-
known polynomial and spline interpolation, also radial basis
function-basedmethods, such as kriging and linear prediction
interpolation, are used to solve different geodetic interpola-
tions problems.

Methods of radial basis functions represent a set of inter-
polants having the form,

z(x) =
n∑

i=1

αi R(‖x − yi‖), (1)

with the parameters αi and a radial basis function R, that
depends on the Euclidean distance between data points y
and an interpolation point x. This class of the interpolants
also includes the thin plate splines considered in this paper.

Furthermore, this paper is focused on interpolation issues
on the sphere. To apply a planar interpolation technique to
the spherical problem, the data has to be projected on the
plane or planar approximation has to be utilized locally.

Spherical polynomials (e.g. Sloan and Womersley 2002;
Wang and Sloan 2017) are the most commonly used inter-
polation technique on the unit sphere. However, spherical
harmonics have several disadvantages. Oscillating properties
and convergence problems can be mentioned in this context.
To avoid these limitations, spherical splines have been intro-
duced. Freeden (1990) provides a comprehensive survey to
this interpolation tool.
The idea of spline interpolation on the sphere is not a newone.
Maybe the earliest contribution is by Wahba (1981). And a
lot of contributions came from the Kaiserslautern GeoMath-
ematics group (Freeden 1981, 1982, 1984) or (Freeden and
Hermann 1986). All these contributions have in common that
they are aminimal norm interpolation in a reproducing kernel
Hilbert space with a kernel of the type

K (ξ , η) =
∞∑

n=0

2n + 1

a2n
Pn(ξ · η), |ξ | = |η| = 1,

with Pn denoting the Legendre polynomials. In most cases,
the choice of the spherical symbols an is driven by the exclu-
sion or inclusion of certain parts of the spherical harmonics

spectrum. For these choices, a geometrical interpretation is
not obvious. In this paper, it will be shown that the mechan-
ical principle of minimal bending energy in a natural way
leads to the choice

an = n(n + 1).

In the geodetic community, the spline interpolation on the
sphere is known under the name of collocation in reproduc-
ing kernel Hilbert spaces. There are numerous contributions
to this topic. For instance (Moritz 1987; Tscherning 1978;
Forsberg and Tscherning 1981; Tscherning 2001) or (Keller
1998). In all these applications, the spherical symbols are
chosen as the degree variances of a statistical auto-covariance
model. The determination of these degree variances is based
on the very strong assumptions of isotropy and ergodicity.
Despite to the fact, that in real cases these assumptions will
hardly be fulfilled, the method proved to be very successful.

According to Hubbert et al. (2015), spherical radial basis
functions represent a technique that is rapidly emerging and
very promising for solving interpolation problems on the sur-
face of a sphere. In Hubbert et al. (2015), the theoretical
background is provided and practical details for implemen-
tation of radial basis functions to solve spherical real world
problems are given.

But already before 2015 radial basis functions were fre-
quently used for the modelling of the gravity field. For
instance in the publications (Klees et al. 2008b; Freeden and
Michel 1999; Freeden and Schreiner 2005; Freeden et al.
1998) or (Schmidt et al. 2007).

In this paper, we generalize the thin plate spline, which is a
variant of radial basis function interpolation to spherical thin
plate spline. This problem has also been studied by Hubbert
and Morton (2004). The authors propose a strategy of the
planar thin plate spline for the sphere using stereographic
projection and a Sobolev space on the sphere.
All the previously mentioned contributions are based on a
global minimization. For regional applications a regional
minimization principle is more appropriate. By developing
the Euler equation for the spherical thin plate spline inter-
polation such a regional minimization is developed. It leads
to a boundary value problem for the biharmonic equation on
the sphere.

3 Planar thin plate spline approximation

To describe mathematical properties of splines and to make
them more plausible, more “natural”, mechanical analogies
are used frequently. Here, we consider an elastic flat thin
plate that underlay stress which distributes internal tension
forces due to external forces (Balek and Mizera 2013). The
stress causes deformation. We consider elastic deformations
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Thin plate spline interpolation 1253

only, that occur if the stress does not exceed a critical value. It
means, the deformations are reversible. According to Hook’s
law the stress is proportional to deformation. Provided that
the deformation is small, the relation between deformation
and stress is linear. The physical model discussed here is a
thin plate, that is represented by a function f (x, y). Apply-
ing a bending energy to the plate, the upper layers of the
plate are stretched and the lower ones are compressed, both
according to the Hook’s law. Neglecting a squeezing in the
perpendicular direction to stretching (Poisson ratio equal to
zero) the bending of the plate can be interpreted as univariate
stretching or squeezing in the principal axis direction. The
mean squared dilatation is than proportional to the square of
the curvature, that can be approximated, in two-dimensional
case, by the Hessian H of f (x, y). The deformation energy
can be obtain as the integral of trace(H2) (Balek andMizera
2013). Therefore, if the shape of a planar thin plate is given
by the function z = f (x, y), the integral

Eint =
∫ ∞

−∞

∫ ∞

−∞

[(
∂2 f

∂x2

)2

+ 2

(
∂2 f

∂x∂ y

)2

+
(

∂2 f

∂ y2

)2
]
dxdy (2)

represents its bending energy.
In the locations (xi , yi ), i = 1, . . . , n the values

f (xi , yi ) have to be as close as possible to the measured
data zi . This means the external energy

Eext =
n∑

i=1

(zi − f (xi , yi ))
2 (3)

has to be as small as possible. Therefore, we have to solve
the following mixed target minimization problem

Etot := Eext + αEint → min (4)

with the tuning parameter α.
To solve the above variational problem, the first varia-

tion of (4) has to vanish, δEtot = 0. It yields the following
associated biharmonic equation, the Euler–Lagrange equa-
tion (Eberly 2018):

n∑

i=1

(zi − f (xi , yi )δ(x − xi , y − yi ))

+α

(
∂4 f

∂x4
+ 2

∂4 f

∂x2∂ y2
+ ∂4 f

∂ y4

)
= 0, (5)

where δ(x − xi , y − yi ) is the Dirac delta function. The
fundamental solution of this equation is the thin plate spline

(Duchon 1976; Terzopoulos 1986; Eberly 2018). The Euler–
Lagrange differential equation can be solved using a Green
function, here in the form f (r) = r2 ln(r). Evaluating the
solution at data points z, it can be written in the matrix form:

z = (A + αI)λ + Nd, (6)

where A consists of Green functions, I is the n × n identity
matrix and Ni = [1, xi , yi ], i = 1, 2, . . . , n are the rows
of N. The bivariate polynomials form the null space for the
internal energy. In order to generate a unique solution, the
solution has to be in the orthogonal complement of the null
space. The functions {1, x, y} form a basis of the null space.
The condition of being in the orthogonal complement of the
null space is formulated by (7).

N�λ = 0. (7)

The combinedEq. (6) is a linear systemwith two unknown
vectors: λ = [λ1, λ2, . . . , λn]� and d = [d00, d10, d01]�.

The system of equations (6) and (7) allows to compute
the unknown parameter vectors separately. Alternatively, (6)
and (7) can be formulated as the following linear equation
system (e.g. Borkowski and Keller 2005)

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α a12 a13 . . . a1n 1 x1 y1
a21 α a23 . . . a2n 1 x2 y2
...

...
...

...
...

...
...

...

an1 an2 an3 . . . α 1 xn yn
1 1 1 . . . 1 0 0 0
x1 x2 x3 . . . xn 0 0 0
y1 y2 y3 . . . yn 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1
λ2
...

λn
d00
d10
d01

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1
z2
...

zn
0
0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

with r2i = (x − xi )2 + (y − yi )2 and ai j = r2i j ln ri j ; i, j =
1, 2, . . . , n. The effect of the additionally orthogonality con-
dition is the modification of the thin plate spline from

f (x, y) =
n∑

i=1

λi r
2
i ln ri

to

f (x, y) =
n∑

i=1

λi r
2
i ln ri + d00 + d10x + d01y.
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Having measured the data zi , the Eq. (8) allows the deter-
mination of the TPS parameters: λi , d00, d10, d01. Of course,
it is possible to determine the parametersλi anddi j separately
when applying block matrix elimination. For α = 0 TPS is
the interpolation spline, otherwise (8) is an approximation
function controlled by the smoothing parameter α.

Finally, the TPS-value in any point can be calculated
according to:

f (x, y) =
n∑

i=1

λi r
2
i ln ri + d00 + d10x + d01y. (9)

4 Bending energy on the sphere

In this section, the concept of bending energy will be car-
ried over from the plane to the unit sphere. If F{ f } denotes
the Fourier transform of the function f , the Sobolev space
H2(R2) is defined as the set of all functions f with

(1 + |ω|2)F{ f }(ω) ∈ L2(R2). (10)

In H2(R2) the integration by parts simplifies to

∫

R2

∂ f

∂xi
· g dx = −

∫

R2
f · ∂g

∂xi
dx, i = 1, 2. (11)

If (11) is applied to twice to the following expression

∫ ∞

−∞

∫ ∞

−∞
∂2 f

∂x∂ y
· ∂2 f

∂x∂ y
dxdy,

once with respect to x and once with respect to y, we can
conclude

∫ ∞

−∞

∫ ∞

−∞

(
∂2 f

∂x∂ y

)2

dxdy

=
∫ ∞

−∞

∫ ∞

−∞
∂2 f

∂x∂ y
· ∂2 f

∂x∂ y
dxdy

= −
∫ ∞

−∞

∫ ∞

−∞
∂ f

∂ y
· ∂3 f

∂x2∂ y
dxdy

=
∫ ∞

−∞

∫ ∞

−∞
∂2 f

∂x2
· ∂2 f

∂ y2
dxdy. (12)

After this preparations the expression for the bending energy
in the plane can be rewritten

Eint =
∫ ∞

−∞

∫ ∞

−∞

(
∂2 f

∂x2

)2

+2

(
∂2 f

∂x∂ y

)2

+
(

∂2 f

∂ y2

)2

dxdy

=
∫ ∞

−∞

∫ ∞

−∞

(
∂2 f

∂x2

)2

+ 2
∂2 f

∂x2
· ∂2 f

∂ y2
+

(
∂2 f

∂ y2

)2

dxdy

=
∫ ∞

−∞

∫ ∞

−∞

(
∂2d

∂x2
+ ∂2d

∂ y2

)2

dxdy

=
∫ ∞

−∞

∫ ∞

−∞
(Δ f )2dxdy. (13)

This makes it easy to carry over the concept of bending
energy from the plane to the sphere: the planar Laplace oper-
ator

Δ = ∂2

∂x2
+ ∂2

∂ y2

has to be replaced by the Laplace–Beltrami operator

ΔS = 1

sin ϑ

∂

∂ϑ

(
sin ϑ

∂

∂ϑ

)
+ 1

sin2 ϑ

∂2

∂λ2
. (14)

As a consequence, we arrive at the following thin plate spline
principle on the sphere

min

{∫

S
(ΔS f )

2dS | f (ϑi , λi ) = zi , i = 1, . . . , n

}
(15)

for data zi measured at the locations (ϑi , λi ).

5 Thin plate spline interpolation on the
sphere

5.1 Reproducing kernel Sobolev spaces on the
sphere

Let us denote by C∞
0 (S) the set of all infinite often differen-

tiable functions ϕ on the sphere with vanishing mean value

∫

S
ϕdS = 0. (16)

Obviously,

〈 f , g〉 :=
∫

S
ΔS f · ΔSgdS (17)

is a scalar product inC∞
0 (S). For the norm, derived from this

scalar product holds

‖ f ‖2 =
∫

S
(ΔS f )

2dS. (18)

The completion of C∞
0 (S) in the norm (18) is a Sobolev

space, which will be denoted by H2,2
0 (S). If we denote by
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Yl,m the fully normalized surface spherical harmonics, then
the functions

Zl,m = 1

l(l + 1)
Yl,m (19)

form an orthonormal set on H2,2
0 (S). Since H2,2

0 (S) is a
subset of L2(S) and because the Yl,m form a complete
orthonormal system in L2(S) the functions Zl,m are complete
in H2,2

0 (S). Hence, H2,2
0 (S) is separable and has a reproduc-

ing kernel

K (ϑ1, λ1;ϑ2, λ2) =
∞∑

l=1

l∑

m=−l

Zl,m(ϑ1, λ1)Zl,m(ϑ2, λ2)

=
∞∑

l=1

1

l2(l + 1)2

l∑

m=−l

Yl,m(ϑ1, λ1)Yl,m(ϑ2, λ2)

=
∞∑

l=1

2l + 1

l2(l + 1)2
Pl(cosψ) (20)

with ψ denoting the spherical angle between the two argu-
ments of the kernel

cosψ = cosϑ1 cosϑ2 + sin ϑ1 sin ϑ2 cos(λ1 − λ2). (21)

5.2 Thin plate spline interpolation in reproducing
kernel spaces

In reproducing kernel Hilbert spaces, there is a closed solu-
tion for the minimization problem (15). In order to derive
this closed solution, some subsets of H2,2

0 (S) have to be
introduced. First of all, we denote the set of all interpolating
functions as

H2,2
0,z (S) := {u ∈ H2,2(S) | u(ξ i ) = zi , i = 1, . . . , n}

ξ i =
⎡

⎣
sin(ϑi ) cos(λi )
sin(ϑi ) sin(λi )

cos(ϑi )

⎤

⎦ . (22)

The set of all functions with zero values in the interpolation
nodes will be denoted by

H2,2
0,0 (S) := {u ∈ H2,2(S) | u(ξ i ) = 0, i = 1, . . . , n}. (23)

The first observation is that the linear span of the kernel func-
tions at the interpolation nodes is the orthogonal complement
of H2,2

0,0 : If we denote the linear span by

V = span{K (ξ1, •), . . . , K (ξn, •)} (24)

than for every u ∈ H2,2
0,0 and for every v ∈ V holds

〈u, v〉 =
〈
u,

n∑

i=1

αi K (ξ i , •)

〉

=
n∑

i=1

αi 〈u, K (ξ i , •)〉

=
n∑

i=1

αi u(ξ i )

= 0

Both V and H2,2
0,0 (S) are subspaces of H2,2

0 (S). While V

is m-dimensional, H2,2
0,0 (S) is of infinite dimension.

The thin plate spline interpolator is that element of
H2,2
z (S) with the smallest norm, i.e. that element with the

smallest distance from the zero element 0 of H2,2
0 (S). From

the geometry of the problem (see Fig. 1), it is clear that the
orthogonal projection of the minimal norm interpolator to
the sub-space H2,2

0,0 (S) is the zero element 0. Since V is

orthogonal to H2,2
0,0 (S), the minimal norm interpolator is the

intersection of the sets V and H2,2
0,z (S). Because the minimal

norm interpolator f is an element of V it has the representa-
tion

f =
n∑

i=1

αi K (ξ i , •)

and because it is also an element of the interpolation space
H2,2
0,z (S) it has to fulfil the conditions

z j = f (ξ j ) =
n∑

i=1

αi K (ξ i , ξ j ), j = 1, . . . , n. (25)

Fig. 1 Sketch of the minimal norm interpolation problem
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This is a system of linear equations for the weights αi with
the solution

α =
⎡

⎢⎣
α1
...

αn

⎤

⎥⎦ =
⎡

⎢⎣
K (ξ1, ξ1) . . . K (ξ1, ξn)

. . .

K (ξn, ξ1) . . . K (ξn, ξn)

⎤

⎥⎦

−1

·
⎡

⎢⎣
z1
...

zn

⎤

⎥⎦ .

(26)

Putting everything together, we find the interpolating spher-
ical thin plate spline by

f = [K (ξ1, •), . . . , K (ξ1, •)]α
= [K (ξ1, •), . . . , K (ξ1, •)]

⎡

⎢⎣
K (ξ1, ξ1) . . . K (ξ1, ξn)

. . .

K (ξn, ξ1) . . . K (ξn, ξn)

⎤

⎥⎦

−1

· z. (27)

This is the well-known collocation in reproducing kernel
Hilbert spaces.
All in all, the spherical thin plate spline is a linear combina-
tion of kernel functions

f =
m∑

i=1

αi K (ξ i , •)

The kernel functions themselves are series of Legendre poly-
nomials

K (ξ i , •) =
∞∑

n=0

2n + 1

(n(n + 1))2
Pn(ξ i · •),

whichmeans that the spherical thin plate spline is also a series
of Legendre polynomials

f (•) =
∞∑

n=0

2n + 1

(n(n + 1))2

(
m∑

i=1

αi Pn(ξ i · •)
)

.

Unfortunately, there is no closed expression for the series
expansion of the kernel. For numerical computations, the
kernel has to be truncated. For local approximations, as dis-
cussed in this paper, a truncation n = 40 was sufficiently
accurate. For spherical distances smaller than 4 ◦, series trun-
cated at n = 40 is practically identical to the series truncated
at n = 200.

So far, it was always supposed that the data z are samples
from a function, belonging to H2,2

0 (S). If this was the case,
the condition

m∑

i=1

zi = 0

would automatically be fulfilled. If for practical applications
the condition is violated and a rudimentary remove-restore
technique has to be applied: the mean value of the data has
to be subtracted prior to interpolation and added to the inter-
polation function once it is computed.

For practical applications, the fact is important that for the
spherical thin plate spline a harmonic continuation can easily
be found

f (r , •) =
∞∑

n=0

2n + 1

(n(n + 1))2
r−n−1

(
m∑

i=1

αi Pn(ξ i · •)
)

.

So far, only the exact interpolation has been discussed. If
an additional smoothing has to be carried out, the Eq. (26)
changes into

α=
⎡

⎢⎣
α1
...

αn

⎤

⎥⎦ =
⎡

⎢⎣

⎡

⎢⎣
K (ξ1, ξ1) . . . K (ξ1, ξn)

. . .

K (ξn, ξ1) . . . K (ξn, ξn)

⎤

⎥⎦ + γ I

⎤

⎥⎦

−1

·
⎡

⎢⎣
z1
...

zn

⎤

⎥⎦ . (28)

The bigger the smoothing parameter γ , the smaller the
weights α and consequently the smoother the solution f .

5.3 Spherical thin plate interpolation over simply
connected regions of the sphere

So far the internal energy minimization was always carried
out over the complete surface of the sphere. Even in the case
that the data is given only in a small subregion of the sphere.
For the case of local data coverage, with the data given only
at the boundary of the region, it would be more adequate, to
perform the minimization only over the region of interest.

In this special case, the reproducingkernel property cannot
longer be used and instead of the direct solution, the solu-
tion of the corresponding Euler equations has to be found.
The Euler equation will include second order derivatives. If
the derivatives are understood in the generalized sense, we
could stay in H2,2

0 (S.). But in order not to complicate the
derivations, we switch toC2(S0), which has no practical con-
sequences. This means that from now on we work in C2(S0)
instead of H2,2

0 (S).
For this reason, thefirst variationof theminimization func-

tional

I (u) :=
∫

S0
(ΔSu)2 dS (29)
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Thin plate spline interpolation 1257

has to be found. Using the definition of the first variation we
get

δ I (u, h) := lim
ε→0

I (u + εh) − I (u)

ε
(30)

= lim
ε→0

1

ε

∫

S0
(ΔSu)2 + 2εΔSu

·ΔSh + ε2(ΔSh)2 − (ΔSu)2dS (31)

= 2
∫

S0
ΔSu · ΔShdS + lim

ε→0
ε

∫

S0
(ΔSh)2dS (32)

= 2
∫

S0
ΔSu · ΔShdS. (33)

The Euler equations for the minimization problem ask for a
function u such, that the first variation disappears for every
function h:

0 = δ I (u, h) =
∫

S0
ΔSu · ΔShdS, ∀h. (34)

If we insert the spherical harmonics expansions for the func-
tions u′, h′, which coincide with u, h on S0 and are zero
elsewhere,

u′ =
∑

l,m

ul,mYl,m, h′ =
∑

p,q

h p,qYp,q , (35)

we obtain

0 =
∫

S0
ΔSu · ΔShdS

=
∫

S

∑

l,m

l(l + 1)ul,mYl,m ·
∑

p,q

p(p + 1)h p,qYp,qdS

=
∑

l,m

l2(l + 1)2ul,mhl,m

=
∫

S

∑

l,m

l2(l + 1)2ul,mYl,m ·
∑

p,q

h p,qYp,qdS

=
∫

S
Δ2

Su
′ · h′dS

=
∫

S0
Δ2

Su · hdS. (36)

Since the equation has to hold for every function h, this is
only possible for

Δ2
Su(x) = 0, x ∈ S0. (37)

Equation (37) has to be supplemented by the boundary con-
ditions

u
∣∣
∂S0

= f ,
∂u

∂n

∣∣
∂S0

= g. (38)

This means the regional thin plate spline approximation is
the solution of a biharmonic boundary value problem on a
subset S0 ⊂ S.
Since the normal derivative of the unknown function u is
unknown, a homogeneous normal derivative boundary con-
dition is used. This facilitates the increase of smoothness of
the solution.

5.4 Discretization of biharmonic operator

For an arbitrary simply connected subset S0 of the surface S
of the sphere an analytic solution of (37), (38) is impossible.
A numerical approximate solution has to be found. For the
discretization, we write (37), (38) as a cascaded problem for
the Laplace–Beltramo operator.

ΔSv = 0 (39)

ΔSu = v (40)

u
∣∣
∂S0

= f (41)

∂u

∂n

∣∣
∂S0

= 0. (42)

For the discretization of the spherical Laplace operator, a
equiangular grid in S0 is constructed

G =
⎧
⎨

⎩ξ i, j =
⎡

⎣
sin(ihϑ) cos( jhλ)

sin(ihϑ) sin( jhλ)

cos(ihϑ)

⎤

⎦

| i = 0, . . . , N − 1, j = 0, . . . , M − 1

⎫
⎬

⎭
⋂

S0 (43)

with

hϑ = π

N
, hλ = 2π

M
. (44)

As the next step, the Laplace operator of v in a grid point ξ i, j
is to be approximated by the weighted mean of the values of
v in the neighbouring grid points

ΔSv(ξ i, j ) ≈
1∑

l=−1

1∑

k=−1

ak,lv(ξ i+k, j+l). (45)

Then the values v(ξ i+k, j+l) are replaced by their Taylor
expansions around ξ i, j

v(ξ i+k, j+l) = v(ξ i, j ) + khϑ

∂v

∂ϑ
(ξ i, j )

+ lhλ

∂v

∂ϑ
(ξ i, j ) + · · · (46)
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This leads to the following equation

ΔSv(ξ i, j )

=
[

1

sin(ϑ)

∂

∂ϑ

(
sin(ϑ)

∂v

∂ϑ

)
+ 1

sin2(ϑ)

∂2v

∂λ2

]

(ξ i, j ) (47)

= v(ξ i, j )

1∑

k=−1

1∑

l=−1

ak,l

+ hλ

∂v

∂λ
(ξ i, j )

(−a−1,−1 + a−1,1 − a0,−1 + a0,1 − a1,−1 + a1,1
)

+ h2λ
2

∂2v

∂λ2
(ξ i, j )

(
a−1,−1 + a−1,1 + a0,−1 + a0,1 + a1,−1 + a1,1

)

+ hϑ

∂v

∂ϑ
(ξ i, j )

(−a−1,−1 − a−1,0 − a−1,1 + a1,−1 + a1,0 + a1,1
)

+ h2ϑ
2

∂2v

∂ϑ2 (ξ i, j )

(
a−1,−1 + a−1,0 + a−1,1 + a1,−1 + a1,0 + a1,1

)

+mixed terms (48)

A comparison of the partial derivatives of v on the left and
on the right side of (47) yields the following linear equations
for the weights ak,l

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
− hλ 0 hλ − hλ 0 hλ − hλ 0 hλ

hλ2

2 0
h2λ
2

h2λ
2 0

h2λ
2

h2λ
2 0

h2λ
2− hϑ − hϑ − hϑ 0 0 0 hϑ hϑ hϑ

hϑhλ 0 − hϑhλ 0 0 0 − hϑhλ 0 hϑhλ

− hϑ h2λ
2 0 − hϑ h2λ

2 0 0 0
hϑ h2λ
2 0

hϑ h2λ
2

h2ϑ
2

h2ϑ
2

h2ϑ
2 0 0 0

h2ϑ
2

h2ϑ
2

h2ϑ
2

− h2ϑ hλ

2 0
h2ϑ hλ

2 0 0 0 − h2ϑ hλ

2 0
h2ϑ hλ

2
h2ϑ h

2
λ

4 0
h2ϑ h

2
λ

4 0 0 0
h2ϑ h

2
λ

4 0
h2ϑ h

2
λ

4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a−1,−1

a−1,0

a−1,1

a0,−1

a0,0
a0,1
a1,−1

a1,0
a1,1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

sin−2 ϑ

cot ϑ
0
0
1
0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(49)

with the solution

⎡

⎣
a−1,−1 a−1,0 a−1,1

a0,−1 a0,0 a0,1
a1,−1 a1,0 a1,1

⎤

⎦

=

⎡

⎢⎢⎢⎣

0 2−hϑ cot(ϑ)

2h2ϑ
0

csc2(ϑ)

h2λ
− 2 csc2(ϑ)

h2λ
− 2

h2ϑ

csc2(ϑ)

h2λ
0 hϑ cot(ϑ)+2

2h2ϑ
0

⎤

⎥⎥⎥⎦ . (50)

This is the typical structure of a 5-point difference operator
for the approximation of the Laplace operator. In contrast
to the planar case on the sphere, the weights depend on the
co-latitude ϑ .

The discretization of the biharmonic operator is obtained,
if in the discrete Laplace operator

ΔSv(ξ i, j ) ≈
1∑

l=−1

1∑

k=−1

ak,lv(ξ i+k, j+l) (51)

each value v(ξ p,q) is replaced by the corresponding 5-point
differences star

v(ξ p,q) =
1∑

l=−1

1∑

k=−1

ak,lu(ξ p+k,q+l). (52)

This leads to the 13-point difference star for the biharmonic
operator

Δ2
Su(ξ i, j ) =

2∑

k=−2

2∑

l=−2

bk,lu(ξ i+k, j+l) (53)

with the coefficients bk,l given in the “Appendix”.

5.5 Treatment of the boundary @S0

Inside the region S0, the solution of the biharmonic equation
is unknown. Only in the grid points ξ i j an approximate solu-
tion can be computed by a finite-differences approximation
of the biharmonic operator. There is a difference between
those grid points where the complete stencil is inside the
region S0 and those where a part of the stencil is outside the
region S0. Both situations are discussed in the following. If
the approximate solution of the biharmonic equation in the
grid-point ξ l,k is denoted by ul,k ≈ u(ξ l,k), then each inner
grid-point ξ i, j generates a linear equation for the unknown
values ul,k :

2∑

l=−2

2∑

k=−2

bl,kui+l, j+k = 0. (54)

The situation is more complicated for grid points ξ i, j , which
are close to the boundary ∂S0. Because some of the neigh-
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Fig. 2 Biharmonic difference star for a point ξ i, j close to the bound-
ary. Blue line represents the boundary and black dots are the points
influenced by the difference star

bouring points ξ i+l, j+k might lie outside S0 (see Fig. 2).
Obviously, for some points left to the blue boundary values
of the solution are needed, which are a priori not available,
since the given data are the boundary values. Therefore, the
reproducing kernel thin plate spline interpolation is used
to predict the missing values from the values given on the
boundary.

In the end, for each grid point in the interior, one lin-
ear equation can be derived. The resulting system is sparse
and numerically stable and provides a solution, which is not
strongly affected by measurement errors and represents a
solution where the minimization of the internal energy is not
carried out over the whole sphere, but only over the subset
S0 of the sphere.

6 Applications

6.1 Between ground-tracks interpolation of GRACE
solutions

The discussion of spherical harmonics interpolation from
scattered data has a long tradition in geodesy. Basically, two
problems have to be addressed:

– The aliasing effect due to the discrete sampling of a non
band-limited signal and

– the effect of irregular sampling.

In Sansó (1990) it is shown that if the number of sampling
points tends to infinity, for a regular sampling the aliasing
error tends to zero. But for an irregular distribution of data

points a significant bias in the estimated spherical harmonics
coefficients remains.Due to that bias, the data in the sampling
points is reproduced, while in the gaps between the sampling
points large errors are generated.

This problem got a new attention, when gravity field solu-
tions from the 61/4 repeat orbit of GRACE were computed.
Wagner et al. (2006) showed that due to the sparse sampling
during the repeat mode a resolution only up to degree and
order L = 30 is possible. It was presumed that the loss of
orthogonality of Legendre functions and sine/cosine function
for this irregular grid is responsible for the degradation. This
assumptionwas tested inWeigelt et al. (2009), with the result
that the number of sampling points in a 1◦ stripe does not
significantly change between repeat and non- repeat orbits.
This confirms the result of Sansó (1990) that the irregular
sampling contributes to the degradation.

If GRACE is in a repeat orbit the distance between adja-
cent ground tracks can be rather large (see Fig. 3). Implicitly,
the usual spherical harmonics solution does an interpola-
tion in East–West direction by trigonometric polynomials.
Because the polynomial interpolation tends to an overshoot-
ing with increasing distance from the data points, the quality
of this interpolation is rather poor and contributes to the unde-
sired striping in the GRACE solution (Klees et al. 2008a;
Weigelt et al. 2009; Zheng et al. 2012). Of course, the irregu-
lar data sampling is not the only source of the striping. Much
more important are inaccurate background models or cali-
bration errors.

The only place where the GRACE data is given is along
the ground tracks. Using the energy-balance approach, the
potential differences at orbital altitude are converted into
geoid heights, using the reproducing kernel collocation (as
a modification of the reproducing kernel thin plate interpo-
lation), as already discussed in Sect. 5.5. That means that
the geoid variations are only known along the ground tracks.
In between the ground tracks nothing is known, it is only
reasonably to assume that the solution is smooth. Under this
assumption, a thin plate spline interpolation seems to be an
appropriate tool.

For the test of the thin plate spline interpolation, the spher-
ical harmonics coefficients c(i)

l,m, s(i)
l,m, l = 0, . . . , 90,m =

0, . . . , 90, i = 1, . . . , 12 from the GFZ GRACE solutions
for the year 2004 were selected. By averaging an annual
mean of the coefficients cl,m, sl,m, l = 0, . . . , 90,m =
0, . . . , 90 was computed. Followed by the derivation of the
monthly change for the month September 2004: δcl,m =
c(9)
l,m − cl,m, δsl,m = s(9)

l,m − cl,m, l,m = 0, . . . , 90.

Using the coefficient c(9)
2,0 only, a one month orbit was

computed with a temporal spacing of 10s. In the ground-
track points (ϑ,λ j ), j = 1, . . . , 259,200 of this orbit, the
changes in geoidal heights for September 2004 were com-
puted, using the coefficients δcl,m , δsl,m, l,m = 0, . . . , 90.
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Fig. 3 GRACE ground track for the 61/4 repeat orbit in September 2004

Fig. 4 Interpolation area (left), spherical thin plate spline solution (middle) and biharmonic solution (right)
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Fig. 5 Biharmonic solution (left) and Gaussian smoothed global solution (right)

Two adjacent ground tracks were considered the bound-
aries of a region S0 of the surface of the Earth and a thin
plate spline interpolation from the boundary, where the data
is given, to the interior was carried out and the result is com-
pared to the global Gaussian smoothed standard solution and
to the global application of the Kusche filter (Kusche 2007).

As a test area we use the ground-track gap over western
Africa and from the geoid variations along the boundaries
we interpolate into the interior of the region. Both by spher-
ical thin plate spline interpolation and by the solution of the
biharmonic equation. It is clearly visible (see Fig. 4) that both
solutions follow closely the values on the East- and on the
West boundary. Visually, the biharmonic solution is slightly
smoother than the thin plate spline solution.

Both solutions are significantly better than a 500kmGaus-
sian smoothed global solution, which is than restricted to the
area. From Fig. 5, it is visible that the Gaussian smoothed
global solution ismuch stripier and that it does not pick up the

data on the boundaries very well. In Fig. 6, the biharmonic
solution and the Kusche-smoothed solution are compared.
The biharmonic and the Kusche-smoothed solution show
a similar behaviour. That confirms the applicability of the
biharmonic interpolation.
The fact that the biharmonic solution outperforms the Gaus-
sian smoothing does not depend on the location of the area S0
on the sphere. Also for the ground-track gap over Japan and
Australia a similar behaviour can be observed (see Fig. 7).
Besides the purely visual assessment of de-striping perfor-
mance of the biharmonic solution and theGaussian smoothed
solution, also quantitative performance measures can be
given. Here, the wavelet decompositions of the two solution
can be used.

A direction sensitive wavelet transform as for instance
developed in Antoine et al. (2002) or Demanet and Van-
dergheynst (2003) is essentially the two-dimensional con-
tinuous wavelet transform onR2
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Fig. 6 Biharmonic solution (left) and Kusche-smoothed global solution (right)

W{ f }(a, ϑ,b) = 1√
cψ

∫

R2

1

a
ψ (R(ϑ)(x − b)) · f (x)dx,

(55)

projected to the sphere by inverse stereographic projection.
This wavelet transform provides information not only about
the location b and the scale a of dominant signal features but
also about their orientation ϑ . Because the horizontal exten-
sion of the signal is much smaller than its vertical extension
the azimuthal resolution of the directional wavelet analysis
is very limited. For a coarse assessment of the anisotropy it
is sufficient to consider the ratio of the energy contained in
the vertical features and the energy contained in the horizon-
tal features. Therefore, the much simpler two-dimensional
discrete wavelet transform was applied.
If we denote by c(0) either the biharmonic or the Gaussian
smoothed solution, its wavelet decomposition yields

c( j+1) = HRHCc( j), d( j+1)
1 = GRHCc( j), (56)

d( j+1)
2 = HRGCc( j), d( j+1)

3 = GRGCc( j). (57)

Here, H ,G are the smoothing and the differencing operators
of Mallat’s algorithm, respectively (e.g. Keller 2004). The
indices R,C indicate the application of these operators to the
rows and to the columns. Due to the small number of data
points in the rows, the Haar wavelet transform was applied,
with the smoothing and differencing operators according to

H =

⎡

⎢⎢⎢⎢⎣

1√
2

1√
2

0 . . . 0 0

0 1√
2

1√
2

. . . 0 0

. . .
1√
2

0 . . . 0 1√
2

⎤

⎥⎥⎥⎥⎦
(58)

and

G =

⎡

⎢⎢⎢⎢⎣

1√
2

− 1√
2

0 . . . 0 0

0 1√
2

− 1√
2

. . . 0 0

. . .

− 1√
2

0 . . . 0 1√
2

⎤

⎥⎥⎥⎥⎦
(59)
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Fig. 7 Biharmonic solution (left) and Gaussian smoothed global solution (right)

On the scale j , the East–West and the North–South
features are pronounced in d( j)

2 and in d( j)
1 , respectively.

Hence

a j = Var(d( j)
2 )

Var(d( j)
1 )

(60)

measures the anisotropy on scale j . An a j value close to
one means isotropy on scale j , bigger values indicate ver-
tical, smaller values indicate horizontal features. In Fig. 8,
the isotropy measures both for the biharmonic solution and
for the Gaussian smoothed solution are displayed. For both
solutions, the strongest anisotropy is on scale 4, which cor-
responds to a scale size of about 16◦. But the anisotropy
for the Gaussian smoothed solution is four times big-
ger than for the biharmonic solution, which indicates that
the biharmonic solution provides a much more effective
de-striping.

6.2 Modelling of the total electron content

Ionospheric delay modelling is essential for precise Global
Navigation Satellite System (GNSS) positioning. In order
to calculate very accurate ionospheric corrections, reliable
information about the parameters of the ionosphere such as
total electron content (TEC) is needed. There exist various
global, regional and local TECmodels, mostly characterized
by low spatial and temporal resolution. Recently, a high-
accuracy regional model has been introduced by Krypiak-
Gregorczyk et al. (2017). This model is based exclusively on
precise un-differenced multi-GNSS carrier phase data and
planar TPS interpolation. It is assumed that the geometry-
free linear combination L4 of dual-frequency carrier phase
measurements consists of a slant ionospheric delay ΔI and
carrier phase bias B (Leick et al. 2015),

L4sr = L1sr − L2sr = Bs
r − uΔI sr (61)
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Fig. 8 Anisotropy measures for
the biharmonic/Kusche-
smoothed solution(left) and
Gaussian smoothed global
solution (right)

Fig. 9 Location of ionosphere pierce points (left) and colour-coded vTEC values in TECU there (right)

with the constant factor u = 1/ f 21 − 1/ f 22 = −0.6477
that maps L4 slant ionospheric delay onto L1 delay. L1, f1
and L2, f2 are phase measurements and signal frequen-
cies, respectively. The indices s and r stand for satellites
and receivers, respectively. The bias B comprises of hard-
ware delay and carrier phase ambiguities and is constant in
time. In order to estimate this parameter, the ionosphere is
parametrized in intervals 10–20min bymeans of a functional
model. In this study, we use two-dimensional polynomial of
second degree. Further details related to ionosphere parame-
terization can be found inKrypiak-Gregorczyk andWielgosz
(2018). Therefore, for each continuous data arc, the unknown
epoch depended coefficients of the applied ionospheremodel
and time-constant carrier phase bias values have to be esti-
mated. It is performed using the least squares adjustment of
observations from all available GNSS stations. After figur-
ing out of bias values, the slant ionosphere delays can be
calculated using L4 observations according to

ΔI sr = Bs
r − L4sr

u
. (62)

In the next step, the ΔI values are converted to slant
TEC values. Utilizing the single layer model mapping func-

tion vertical TEC (vTEC) values can be figured out. Finally,
we receive a set of vertical TEC at the ionosphere pierce
points (IPP) {φ, λ, vT EC}. An example of such scattered
data is visualized in Fig. 9, which indicates the distribution
of IPP and colour-coded the values of vTECobserved in these
points. To achieve these results, observations from over 200
European stations of permanent ground GNSS network were
used.

The last important step of the presented approach is the
spatial vTEC interpolation on a grid. This is done in two
independent ways:

1. using planar spherical thin plate splines and
2. using spherical thin plate splines.

For the testing purpose of the spherical TPS, we use vTEC
data for DoY 75/2015, 11:40 GPST (GPS system time).
Further information related to vTEC processing, including
accuracy assessment and comparison with other modelling
approaches are given in Krypiak-Gregorczyk and Wielgosz
(2018).
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Fig. 10 Planar TPS gridded
vTEC values in TECU

6.2.1 Gridding by planar thin plate splines (TPS)

Since the data is given on a sphere and the planarTPS requires
planar data the conversion of the one into the other is done
in the following way:

1. SinceTPS (9) is a planar function, vTECdata scattered on
the sphere related to IPP, has to bemapped onto the plane.
The Universal Transverse Mercator (UTM) projection is
used for this purpose.

2. Then, the parameters of TPS are determined according
to (8).

3. Using UTM, the spherical grid φ, λ is mapped on to the
plane.

Fig. 11 Spherical TPS gridded
vTEC values in TECU
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Fig. 12 Residuals of the
spherical TPS in the data points
in TECU

Fig. 13 Difference between the
planar and the spherical solution
in TECU

4. vTEC values are computed for the grid.
5. vTEC values calculated by TPS are merged with the

spherical grid.

The received grid of vTEC values for our demonstration
data is shown in Fig. 10. An extended validation of the out-
lined here approach is given in Krypiak-Gregorczyk et al.
(2017) and Wielgosz et al. (2017). The comparison of the

TEC-modelling results with five other, most popular, well-
established models has justified the introduced approach.

Because the thin plate spline is the planar interpolation
model using a projection (UTM) is needed,what is connected
with additional computations. This additional computational
effort related to mapping the original data (steps 1, 3, 5) can
be reduced, if we use the proposed spherical thin plate spline.
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6.2.2 Gridding by spherical thin plate splines

Using the same data and the method described in Sect. 5, the
gridded data is shown in Fig. 11. Comparing Figs. 10 and 11,
one can conclude that there is no visible difference between
the outcomes of the planar and the spherical gridding. An
indication of the quality of the gridding is the residuals of the
interpolated vTEC values in the data points. These residuals
are shown in Fig. 12. The residuals behave irregularly and
their RMS is about 1% of the signal, which indicates a fairly
good interpolation. The difference between the planar and the
spherical TPS is shown in Fig. 13. Except at the boundaries,
both solutions are practically identical. There is a very small
offset of about 0.028 TECU between the two solutions which
is way below the data accuracy. The RMS values 7.46 TECU
for the planar and 7.30 TECU for the spherical solution are
practically identical. Therefore, there seems to be no need to
convert spherical data into planar data and then to apply the
planar TPS interpolation.Adirect application of the spherical
TPS interpolation generates practically the same results.

7 Conclusions

In this contribution, we have proposed a new approach of
smooth data interpolation on a sphere. This approach is a
spherical generalization of the planar thin plate spline inter-
polation. In contrary to many other spherical spline models,
that are solutions of a minimal norm interpolation in a repro-
ducing kernel Hilbert space we have utilized a concept from
the mechanics. According to this concept, measurement data
are approximated by an shell that has both to be smooth and
has to be as close as possible to the data. These properties
are described by the internal and the external energy of the
shell. Both energies express deviations between the data and
the spline function and smoothing properties of the spline,
respectively.Minimizing of the internal and the external ener-
gies leads to the variational problem that has the solution in
the form of the Euler–Lagrange equation. The variational
problem has been solved for two cases:

– as a global solution, minimizing the total energy for the
whole sphere and

– as a local solution, minimizing the total energy over a
simply connected region of the sphere.

For the global case, we found the close solution of the vari-
ational problem in the form of collocation in reproducing
kernel Hilbert space. For the local case, the direct analytical
solution of the variational problem is not possible. There-
fore, the local approach is based on a discretization of the
corresponding Euler–Lagrange equation using the spherical
Laplace operator.

The performance of the local spherical thin plate spline
is demonstrated on GRACE data. The between ground-track
interpolation of this data is comparedwith the standardGaus-
sian smoothing method. Utilizing wavelets-based measure,
it is shown quantitative that the thin plate approach is sig-
nificantly more effective than Gaussian filter in terms of
de-striping of the GRACE data. Moreover, it turned out that
the global thin plate spline is also the effective interpolator
of the GRACE data, even if it produces slightly smoother
solution in comparison with the local thin plate approach.

Additionally, we deployed the global spherical thin plate
spline tomodel the total electron content overEurope, despite
the fact that the data is given only regional. But because the
data is given in the whole region and not only at its boundary,
the local thin plate spline interpolation is not applicable. A
spherical thin plate spline is an effective tool in this context
that allows for gridding the vertical TEC data and to reduce
computational afford in comparison with well-established
planar TPS approximation. Nevertheless, it turned out that
the spherical approach has worse extrapolation properties
what demonstrates by the occurrence of small deviations on
the border of the investigating area whenmissing data points.

Finally, it should be mentioned that the introduced spher-
ical thin plate spline can easily be continued to a function
harmonic outside the sphere. Therefore, it can be used to
investigate various issues related to the Earth gravity mod-
elling.

Of course, spherical thin plate splines are not the only
method to interpolate and smooth data given on the sphere.
Another promising technique has its origin in the diffusion
equation. Since the Green function of the diffusion equation
is the Gaussian hat function, the solution of the diffusion
equation convolves the data with this kernel function and
therefore smoothes the data. Particularly interesting is, that
with the spatial variation of the diffusion parameter also a
spatial variation of the intensity of smoothing can be gener-
ated. This approach was not followed here, but we refer the
reader to Cunderlik et al. (2016) and Cunderlik et al. (2013)

Appendix

b−2,−2 = 0

b−2,−1 = 0

b−2,0 = (hϑ cot(hϑ − ϑ) + 2)(2 − hϑ cot(ϑ))

4h4ϑ
b−2,1 = 0

b−2,2 = 0

b−1,−2 = 0
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b−1,−1 = (2 − hϑ cot(ϑ)) csc2(hϑ − ϑ)

2h2ϑh
2
λ

+ (2 − hϑ cot(θ)) csc2(ϑ)

2h2ϑh
2
λ

b−1,0 =
(2 − hϑ cot(ϑ))

(
− 2 csc2(hϑ−ϑ)

h2λ
− 2

h2ϑ

)

2h2ϑ

+
(2 − hϑ cot(ϑ))

(
− 2 csc2(ϑ)

h2λ
− 2

h2ϑ

)

2h2ϑ

b−1,1 = (2 − hϑ cot(ϑ)) csc2(hϑ − ϑ)

2h2ϑh
2
λ

+ (2 − hϑ cot(ϑ)) csc2(ϑ)

2h2ϑh
2
λ

b−1,2 = 0

b0,−2 = csc4(ϑ)

h4λ

b0,−1 =
2 csc2(ϑ)

(
− 2 csc2(ϑ)

h2λ
− 2

h2ϑ

)

h2λ

b0,0 = 2 csc4(ϑ)

h4λ
+

(
−2 csc2(ϑ)

h2λ
− 2

h2ϑ

)2

+ (2 − hϑ cot(hϑ − ϑ))(2 − hϑ cot(ϑ))

4h4ϑ

+ (hϑ cot(ϑ) + 2)(2 − hϑ cot(hϑ + ϑ))

4h4ϑ

b0,1 =
2 csc2(ϑ)

(
− 2 csc2(ϑ)

h2λ
− 2

h2ϑ

)

h2λ

b0,2 = csc4(ϑ)

h4λ

b1,−2 = 0

b1,−1 = (hϑ cot(ϑ) + 2) csc2(ϑ)

2h2ϑh
2
λ

+ (hϑ cot(ϑ) + 2) csc2(hϑ + ϑ)

2h2ϑh
2
λ

b1,0 =
(hϑ cot(ϑ) + 2)

(
− 2 csc2(ϑ)

h2λ
− 2

h2ϑ

)

2h2ϑ

+
(hϑ cot(ϑ) + 2)

(
− 2 csc2(hϑ+ϑ)

h2λ
− 2

h2ϑ

)

2h2ϑ

b1,1 = (hϑ cot(ϑ) + 2) csc2(ϑ)

2h2ϑh
2
λ

+ (hϑ cot(ϑ) + 2) csc2(hϑ + ϑ)

2h2ϑh
2
λ

b1,2 = 0

b2,−2 = 0

b2,−1 = 0

b2,0 = (hϑ cot(ϑ) + 2)(hϑ cot(hϑ + ϑ) + 2)

4h4ϑ
b2,1 = 0

b2,2 = 0.
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