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Abstract
Despite the benefits of integer ambiguity resolution (IAR) in precise point positioning (PPP), observation outages and harsh
signal environments still impact float ambiguity estimation in kinematic surveying, consequently resulting in ambiguity-
fixed failure. The inertial navigation system (INS) is an autonomous and spontaneous positioning one, which could provide
continuous and superior positioning accuracy over short time. Thus, the INS attains more accurate position than code solution.
Moreover, the tight integration of INS and PPP is capable of continuous operation where there are less than four satellites
available. These advantages can improve float ambiguity estimation and assist in re-initializing the interrupted ambiguity and
PPP solution. Based on the good quality of float ambiguity, the ambiguity dilution precision (ADOP) and the size of integer
ambiguity search space are reduced, and then, the IAR-PPP is improved. In this work, the INS aiding effect on IAR-PPP was
revealed by the sufficient theoretical analysis and performance assessment. A ring laser gyroscope-based navigation-grade
IMU and a fiber optic gyroscope-based tactical-grade IMU were utilized to conduct experiments in an open-sky environment
and urban area. The assessment adopted the following aspects of ADOP, bootstrapping success rate, time to fix and position
errors. It is found that IAR-PPPwith INS aiding achieves an enhanced performance duringGPS outagewhen INS could deliver
a superior accurate position. For the navigation- and tactical-grade IMU, the INS-aided ambiguity re-fixing performance can
be classified as three levels: significant improvement for the outage duration less than 10 s, moderate improvement for the
outage duration from 10 to 60 s and a little or zero improvement for the outage duration longer than 60 s. From the viewpoint
of the INS-predicted position domain, an accuracy better than 0.1 m and 1.0 m is required for the significant and moderate
improvement, while one can only achieve a little or zero improvement if the position error is larger than 1.0 m. Besides,
we also performed the INS-aided IAR-PPP in real urban environment. For the urban environments, the span of clean data is
often shorter than 30 min due to intermittent signal interruptions; thus, ambiguity re-fixing for PPP always fails. INS-aided
information could bridge the data gaps and achieve fast ambiguity re-fixing. In summary, INS aiding information is capable
of improving IAR-PPP performance significantly over a short GPS outage.
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1 Introduction

Real-time kinematic (RTK) or postprocessing kinematic
(PPK) solutions could achieve centimeter-level accuracy
once integer carrier-phase ambiguity resolved, which is one
of the best choices formobile surveying andmapping (Puente
et al. 2013). However, the integer property of the ambigu-
ity in precise point positioning (PPP) is destroyed by the
satellite- and receiver-dependent fractional cycle bias (FCB);
thus, only float ambiguity PPP technology was widely used.
Fortunately, several methods for integer ambiguity resolu-
tion (IAR)-enabled PPP have been developed during the
last decade. According to the description of principles rele-
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vant to PPP-RTKmethods fromTeunissen andKhodabandeh
(2015), there are two types of IAR-PPP models, i.e., the
integer recovery clock/decoupled satellite clock (IRC/DSC)
model and the uncalibrated phase delay/fractional cycle bias
(UPD/FCB) model. The basic idea of these models is to
separate fractional parts from float ambiguities to recover
the integer nature. In accordance with the benefit of the
very precise carrier phase, PPP also has the potential of
providing a reliable centimeter-level positioning accuracy,
whose performance is close to RTK or PPK precision (Geng
et al. 2011). However, there are enormous challenges through
mobile mapping by the kinematic PPP in the case of dealing
with restrictive physical environment. The obstructive con-
ditions encompassing urban canyon, tunnels or high receiver
dynamics will trigger loss of tracking locks for satellites.
As a result, frequent interruptions and cycle slips lead to re-
initialization of the corresponding ambiguities; therefore, a
long re-convergence period to a satisfactory precision of float
solution is required for IAR (Geng et al. 2010). Moreover,
the partial ambiguity-fixed subset with insufficient satellite
visibility and limited spatial geometry may bring risks to
positioning accuracy and reliability.

In order to enhance ambiguity resolution for kinematic
PPP, various efficient methods and schemes are proposed.
First of all, if atmospheric delay augmentation information
derived from dense regional reference network is provided,
instantaneous ambiguity resolution could be realized and
kinematic PPP does not undergo signal-degrading circum-
stances readily (Li et al. 2011). Secondly, multi-GNSS and
triple-frequency observations are straightforward to improve
PPP results and furthermore its ambiguity resolution. Inte-
grating multi-GNSS provides more satellites to strengthen
spatial geometry when single constellation lacks in enough
satellites, thereby making float ambiguities estimated pre-
cisely (Li et al. 2014a). Compared with GPS-only PPP, the
positioning availability with quad-constellations is increased
from 40% to more than 99.5% when elevation cutoff is set
to 40° to simulate corresponding constrained conditions (Li
et al. 2015). On this basis, Li et al. (2017c) accomplished
multi-GNSSphase delay estimation includingBDSGEOand
Galileo satellites and concluded that 13.4 min for fixing is
achievable for GCRE four-system solutions in the case of
30° cutoff elevation, while the GPS-only results are unreli-
able. Liu et al. (2017) investigated some combined IAR-PPP
strategies using GPS, GLONASS and BDS (IGSO, MEO)
hybrid constellations. For kinematic PPP with a 10-min
observation time, only 16.2% fixed epochs could be obtained
with GPS alone, while it reaches up to 75.9% with adding
GLONASS and 90% with BDS collaboration. Meanwhile,
the correct fixing rate is also improved from 51.7% for GPS
alone, to 98.3% for three systems. Similar results on multi-
GNSS IAR-PPPcanbe found inGeng andShi (2017), Li et al.
(2017a) and Yi et al. (2017). Unlike multi-GNSS, the main

purpose of changing from a dual- to a triple-frequencymodel
is to reduce the ambiguity dilution of precision (ADOP)
and improve model strength for successful ambiguity resolu-
tion (Teunissen et al. 2014). By using simulated data, Geng
andBock (2013) constructed an ambiguity-fixed ionosphere-
free observable, which was treated as precise pseudo-range
to assist in speeding up narrow-lane ambiguity resolution.
Ambiguity-fixed solutions at a success rate of 78% were
achieved within 2 min in triple-frequency PPP, whereas
the success rate was almost zero in dual-frequency PPP.
Li et al. (2014b) adopted the similar cascading IAR strat-
egy in Geng and Bock (2013) to implement triple-frequency
IAR-PPP. The difference is that a longer wavelength wide-
lane model is constructed by the optimal triple-frequency
pseudo-range linear combination, which shows that 99.15%
of 2592 stations could surpass the success rate critical value
in 10 s. Gu et al. (2015) and Laurichesse and Blot (2016)
also presented that real triple-frequency GNSS data were
conducive to fast ambiguity resolution and convergence in
PPP. Finally, cycle slips always have impact on position-
ing accuracy, where continuously and precisely estimated
ambiguities are broken. Geng et al. (2010) developed a cycle
slip correction (CSC) method based on precisely predicted
ionospheric delays for rapidly integer resolution. In addi-
tion, Zhang and Li (2012) proposed the WL-L3-LX cascade
cycle slip resolution strategy to connect phase segments.
Ye et al. (2016) as well as Zhang and Li (2016) analyzed
the improvement in GPS+GLONASS observations for cycle
slip fixing and the benefits of triple-frequency observations
on cycle ship correction, respectively. These CSC methods
could achieve high-accuracy kinematic PPP continuously
without re-initialization.

Obviously, none of the above solutions are beyond the
perspective of GNSS itself. In fact, GNSS integrated with
strapdown inertial navigation system (INS) has become a
standard mode in modern navigation systems. The self-
contained manner makes INS free from the external abrupt
changes, the impact of signal deteriorating and blocking
environment. Therefore, its superior and stable positioning
accuracy in a short timescale improves position and float
ambiguity estimation when tightly coupled integration is
applied. For instance, in RTK positioning, the INS-aided
IAR and its performance have been extensively investigated.
Grejner-Brzezinska et al. (1998) utilized separation between
INS-predicted and candidate position to exclude some sus-
picious candidates and shorten on-the-fly ambiguity search
time. Scherzinger (2000) presented that integer ambiguity
recovery time was 1–4 s in INS-aided RTK, which was com-
pared to 10–15 s in standard RTK after full outages lasting up
to 60 s. Han et al. (2017) proposed INS-aided partial ambi-
guity resolution with GPS and BDS data. Consequently, a
success rate greater than 90% and fast ambiguity recovery
within 5 s for a 19-s outage couldbeobtainedwith inertial aid-
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ing. However, as far as we know, few researches focus on the
technique and performance evaluation of IAR-PPP with INS
aiding. Liu et al. (2016) introduced INS to ambiguity-fixed
PPP for the first time, but only provided model description
and initial results. Therefore, a comprehensive analysis and
assessment of IAR with INS aiding for kinematic PPP are
still required.

2 PPP/INS tightly coupledmodel and integer
ambiguity resolution

Tightly coupled (TC) integration is characterized by a single
Kalman filter, which fuses both measurement information
from GNSS and inertial sensor directly. When inertial sen-
sor inherent biases and systematic errors are well calibrated
along with the convergent filtering, INS is capable of pre-
dicting high-accuracy position using mechanization. With
the precisely predicted position information, kinematic PPP
is augmented in terms of positioning continuity, availability
and reliability. System and measurement model construction
are essential prerequisites for implementing integrated filter-
ing. So the PPP/INS TC model is described in this section,
followed by IAR strategy and procedures.

2.1 Systemmodel

The system model is established in the WGS-84 ECEF ref-
erence frame, where GNSS usually operates position calcu-
lation. System states of TCmodel can be classified into three
categories: navigation parameters, INS-dependent param-
eters and GNSS-dependent parameters. The components
of GNSS-dependent parameters rely on which positioning
mode is adopted, such as short- or long-baseline double-
differenced positioning, ionosphere-free or uncombinedPPP.
In our method, ionosphere-free PPP model with single dif-
ferenced (SD) between simultaneously observed satellites
is embedded into TC architecture. Therefore, receiver clock
bias is eliminated, while single-differenced float ambiguities
become estimated states.

The phi angle error equations describing a dynamics pro-
cess of navigation parameters are expressed as follows:

⎧
⎪⎪⎨

⎪⎪⎩

δ ṙe � δve + ξ r

δv̇e � Nδre − 2ωe
ie × δve + f e × φ + Re

ba
b + ξv

φ̇ � −ωe
ie × φ − Re

bε
b + ξφ

(1)

where dots denote the time derivations, the cross product
operator makes a vector to a skew-symmetric matrix, super-
script and subscript e, i, b stand for ECEF, earth-centered
inertial (ECI) and inertial sensor body frames, respectively,
the b-frame is defined as right–front–up axis set which is

aligned with the pitch, roll and yaw. δre, δve and φ are the
position, velocity and misalignment error vectors in the e-
frame, the misalignment φ is the attitude error of b-frame
with respect to e-frame, Re

b is the rotation matrix from b-
frame to e-frame, using the rotation matrix Re

b, the specific
force in b-frame is transformed to f e, rotation rate of earth
ωe
ie relative to i-frame is expressed in e-frame, N is the tensor

of the gravitational gradients, ab and εb are synthetic system-
atic errors of accelerometer and gyroscope; here, only biases
are considered andother inertial sensor errors like scale factor
and non-orthogonality are neglected, ξ r , ξv and ξφ indicate
random walk process driving noise vectors for the position,
velocity and attitude, respectively.

The INS-dependent parameter, only including accelerom-
eter and gyroscope biases, is described as random walk
process:

{
ȧb � ξ a

ε̇b � ξε

(2)

where ξ a and ξε denote noise vectors of random walk pro-
cess. Those spectral densities of process noise vary with
different grade inertial sensors, dynamic conditions and
physical environments. The technical specification of iner-
tial sensors and Allan variance analysis technique provide a
coarse approximate value, and in the case of known refer-
ence trajectory, fine-tuning is followed by analyzing quality
indicators of TC filtering results.

The SD float ambiguity errors δNn×1 and tropospheric
zenith wet delay error (ZWD) δTw both belong to the GNSS-
dependent parameters and are modeled as random walk
process:

{
δ Ṅn×1 � ξ N

δṪw � ξTw

(3)

where ξ N and ξTw show the process noise of SD float ambi-
guities and ZWD.

2.2 Measurement model

Single-differenced ionosphere-free measurement model is
built, where the healthy satellite with the highest elevation
andwithout cycle slip is selected as reference satellite. For the
pseudo-range and carrier-phasemeasurements, the linearized
equations for one satellite–receiver pair can be written as fol-
lows:

⎧
⎨

⎩

v
i,r
P � ⇀

n
i,r · δre +

⇀
n
i,r (

le×) · φ + MFi,r · δTw + η
i,r
P

v
i,r
L � ⇀

n
i,r · δre +

⇀
n
i,r (

le×) · φ + MFi,r · δTw + δNi,r + η
i,r
L
(4)

123



996 X. Zhang et al.

where (·)i,r � (·)i − (·)r refers to a variable between satellites
i and r, the superscript r denotes reference satellite, vP (m)
and vL (m) are the observed-minus-computed pseudo-range
and carrier-phase measurements, which contain errors cor-
rection such as relativistic effect, phase windup, tide loading,
phase center offsets and variations of satellite and receiver

(Kouba and Heroux 2001),
⇀
n represents the direction cosines

of the unit vector from receiver to satellite, le symbolizes
the lever arm vector expressed in e-frame and

(
le×)

is the
skew-symmetric matrix with respect to le, MF indicates the
tropospheric mapping function and global mapping function
(GMF) is applied, ηP and ηL are measurement errors of un-
differencedpseudo-range and carrier phase, they are regarded
as white Gaussian noise and the elevation-dependent weight-
ing scheme is used (Li et al. 2017a), a priori precision of 3mm
and 0.9 m is set for pseudo-range and carrier phase in kine-
matic PPP; then, the single-differenced covariance matrix is
obtained by means of the covariance propagation law.

One can form the final mathematical equations of mea-
surement model for all satellite–receiver pairs at present
epoch according to Eq. (4). Meanwhile, continues-time
system Eqs. (1)–(3) are transformed into discrete-time for-
mulations. With the system propagation and measurement
update, the closed-loop extent Kalman filter is employed to
maintain optimal estimate of the state vector and covariance
matrix in PPP/INS TC integration. Despite the fact that only
position and misalignment error states exist in measurement
Eq. (4), the remaining error states can be still estimated pre-
cisely because of the error covariancematrix. The covariance
matrix represents the degree of correlation between error
states themselves. This kind of highly coupled information
may be used to infer one error state from others.

2.3 Integer ambiguity resolution

Compared to PPP-alone IAR, the natural attribute of SD float
wide-lane (SDWL) and ionosphere-free (SDIF) ambiguities
in the PPP/INS TC integration is unchanged so that they
could share the same procedure and strategy for IAR. Here,
the similar IAR algorithm and strategy in PPP described by
Li et al. (2014a, 2016, 2017a) are adopted. The flowchart
of IAR-PPP/INS TC integration illustrated in Fig. 1 shows
methodology procedures.

In the partial IAR strategy based on LAMBDA method
(Teunissen 1995), some adjustments are made for IAR-
PPP/INS TC integration. Firstly, a narrow-lane (NL) ambi-
guity is discarded, if filtering epochs of the corresponding
IF ambiguity are less than five and the success rate of inte-
ger rounding is less than 0.99. These two criterions are used
mainly to exclude emerging NL ambiguities of lower pre-
cisions. Therefore, the ambiguity involved in IAR for the
first time will be also suspected, if attempt of full ambiguity

Mechanization 

INS

PPP/INS
TC Filter

GNSS 

Preprocessor Aiding

IF 
Ambiguities

Float WL 
Ambiguities

Float NL 
Ambiguities

WL-FCB NL-FCB

 Integer 
Rounding Partial IAR

NL Fixed 
and Hold

 IAR 
Solutions

HMW 
Combination

Integer WL 
Ambiguities

Update

Fig. 1 Flowchart of IAR-PPP/INS TC integration. The block with dot-
ted line and color denotes IAR module. The red line is to eliminate the
confusion of process sequence related to PPP/INS TC filtering module.
All ambiguities are SD form, and “SD” is omitted

resolution fails at this time. Secondly, it is more possible
that satellites of low elevation suffer from contaminated
measurements because of low signal-to-noise ratio andmulti-
path effect. So satellites below an elevation angle of 15°
are rejected one by one from low to high angle, until par-
tial IAR satisfies predefined condition of successfully fixed
or there are no relevant satellites. If the two previous steps
fail to fix ambiguities, the remaining SDNL ambiguities will
be decorrelated by Z-transformation in LAMBDA and their
decorrelated variances are obtained simultaneously. Accord-
ing to the value of decorrelated variances from large to small,
decorrelated ambiguities are excluded one by one to form a
subset for integer candidates searching. The successful ambi-
guity resolution is defined that both bootstrapping success
rate and ratio test could pass the threshold of 0.99 and 2.0,
respectively. For fear of poor spatial geometry, only if at least
five fixed ambiguities are validated successfully, can IAR at
this epoch be attained finally. Otherwise, none of the ambi-
guities is fixed, and float state is kept.

Other non-ambiguity states in PPP/INS TC filter are cor-
related with SDIF ambiguities, while SDIF ambiguities are
correlated with fixed SDNL ambiguities. The chained cor-
relation information could make other non-ambiguity states
and SDIF ambiguities refined by fixed SDNL ambiguities,
which are treated as virtual measurements. Indeed, this state
updating strategy is widely used for ambiguity resolution
in PPP as well as double-differenced positioning (Takasu
and Yasuda 2010; Geng et al. 2011; Li et al. 2017a). The
refined SDIF ambiguities could bring a tight constraint in
the float ambiguity estimation of subsequent epochs and thus
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improve the fixing ratio especially in kinematic positioning.
Such approach is called “hold ambiguity” mode. However, a
successful but not correct fixed ambiguity will lead to nega-
tive impact on subsequent states estimation when the “hold
ambiguity” mode is used. Therefore, dual parallel process-
ing lines are designed, including an “updating” processing
line and a “hold ambiguity” processing line. The “updating”
processing line is in charge of updating a copy of filter-
ing states using all of the successfully fixed ambiguities.
Its primary purpose is to output navigation and positioning
parameters at each epoch, while “hold ambiguity” process-
ing line is designed to update filtering states directly with
“correct” fixed ambiguities for transmitting this tight con-
straint to next epoch. In our algorithm, one is regarded as the
“correct” fixed ambiguity at a high confidence level when
the ambiguity is fixed successfully to an identical integer
over three successive epochs. Similarly, at least five “correct”
fixed ambiguities are required to activate the “hold ambigu-
ity” processing line.

It is worth indicating that the adopted strategies and
parameter setting above are based on empirical considera-
tion in practice. They are relatively effective for reliable IAR
in PPP or PPP/INS TC integration, but may not be suitable
for other applications, such as double-differenced RTK.

3 Theoretical analysis of INS-aided IAR

In this section, theoretical analysis is presented for the
improvement in IAR with INS aiding. As we know, IAR
performance relies on reliable and precise float ambiguity
information. In our PPP/INS TC integration, float ambi-
guity updating is based on different priori information in
three situations. Firstly, the float ambiguities are estimated
continuously and constrained by previous accurate float
ambiguities. Secondly, the “hold ambiguity” mode is acti-
vated and current float ambiguities are constrained tightly
by previous “correct” fixed ambiguities. Finally, the sig-
nal tracking interruption occurs and all ambiguities are
re-initialized with pseudo-range observations. Obviously,
float ambiguities in the first two situations have been esti-
mated precisely by PPP itself, and adding INS information
is barely of extra use. However, in the third situation, float
ambiguities are in the absence of constrain; thus, INS which
retained the high-accuracy position information from previ-
ous results could assist in retrieving initial float ambiguities
with acceptable precision.With the more reliable and precise
float ambiguities, IAR performance is improved automati-
cally. Consequently, the next part was concentrated on the
third condition, where all float ambiguities are re-initialized
during GNSS outages.

To be more explicit, the system and measurement model
of PPP/INS TC integration are rewritten. The filtering states
are partitioned as:

x � (δ r̃, δN, xoth)
T (5)

where δ r̃ is the position error with respect to GNSS antenna,
the position ofGNSSantenna canbe inferred from the inertial
sensor center and the lever arm, and δ r̃ can be expressed as
δ r̃� δre +

(
le×) · φ, δN is SDIF ambiguity errors, xoth

represents all of the remaining errors.
Because the float ambiguities are all re-initialized, there

is no correlation between float ambiguities and other states,
and the priori state covariance P−

x with respect to x can be
partitioned as:

P−
x �

⎛

⎝

P−
δ r̃ 0 P−

δ r̃,oth
0 P−

δN 0
P−
oth,δ r̃ 0 P−

oth

⎞

⎠ (6)

Considering that tropospheric zenith wet delay varies
slowly and could be predicted for subsequent epochs dur-
ing GNSS outages, the corresponding state error is removed
from Eq. (4), which is simplified as:

⎧
⎨

⎩

v
i,r
P � ⇀

n
i,r · δ r̃ + η

i,r
P

v
i,r
L � ⇀

n
i,r · δ r̃ + δNi,r + η

i,r
L

(7)

In fact, the pseudo-range equation is merely used to calcu-
late δ r̃ , such measurement information has been expressed
with a priori information P−

δ r̃ in Eq. (6). Besides, INS could
predict precise position and code solution is not required.
Therefore, the decision is to remove the pseudo-range equa-
tion from Eq. (7). Note that these simplified operations are
only for facilitating analysis.

Assuming there are n satellites (excluding the reference
satellite), the final measurement equation is:

vL � (
Hδ r̃ I 0

)

⎛

⎝
δ r̃
δN
xoth

⎞

⎠+ηL (8)

where vL is the measurement error vector, ηL refers to
the measurement noise vector, whose covariance matrix is
expressed as RL , I is (n×n) identity matrix.

An alternative form for the posteriori state covariance P+

in Kalman filter was applied (Crassidis and Junkins 2011):

P+ � P− − P−HT
(
HP−HT + R

)−1
HP− (9)
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Substituting Eqs. (6) and (8) into Eq. (9) obtains the
updated float ambiguity covariance P+

δN :

P+
δN � P−

δN − P−
δN R−1

δN P−
δN (10)

with

RδN � Hδ r̃ P
−
δ r̃ H

T
δ r̃ + P−

δN + RL (11)

An examination of Eq. (10) reveals that P+
δN is only influ-

encedby the satellite geometry Hδ r̃ and the priori positioning
information P−

δ r̃ due to the fact that items P−
δN and RL are

deterministic. It implies that better satellite geometry and
high-accuracy positioning information could improve float
ambiguity estimation. For the INS-aided IAR, improving the
priori positioning information is dominant.

Presuming that P−
δ r̃,s denotes the priori positioning infor-

mation from INSmechanization, P−
δ r̃,c from a code solution,

two float ambiguity covariance associated with two priori
positioning information are obtained and the difference is
expressed as follows:

P+
δN,s − P+

δN,c � P−
δN

(
R−1

δN,c − R−1
δN,s

)
P−

δN

� P−
δN R−1

δN,c

(
RδN,s − RδN,c

)
R−1

δN,s P
−
δN

� P−
δN R−1

δN,cHδ r̃

(
P−

δ r̃,s − P−
δ r̃,c

)
HT

δ r̃ R
−1
δN,s P

−
δN

(12)

In Eq. (12), P−
δN , R

−1
δN,c and R−1

δN,s are positive definite
matrices, so that the sign of the left side is determined by the

quadratic form Hδ r̃

(
P−

δ r̃,s − P−
δ r̃,c

)
HT

δ r̃ in the right formu-

lation. Then it is easy to derive a matrix inequality:

P+
δN,s <P

+
δN,c iff: P

−
δ r̃,s <P

−
δ r̃,c (13)

It is concluded that the more precise the priori positioning
information is, the better the float ambiguity estimation will
be.

The ADOP and the volume of the ambiguity search space
are defined as follows, respectively (Teunissen et al. 1996,
2014):

ADOP =
(√|PNL|

) 1
n

(cycle) (14)

V � χnUn

√|PNL| (15)

where PNL is the SDNL ambiguity covariance with the unit
in cycle, which is converted from the SDIF ambiguity covari-
ance P+

δN using the covariance propagation law in Eq. (6),
|·| denotes the determinant, n indicates the dimension of the
ambiguity vector, χ is a parameter, which controls the search
space size to contain the solution,Un symbolizes the volume
of the unit sphere in the n-dimensional real space.

It can be found obviously thatADOPandV have a positive
correlation with P−

δ r̃ . That means the ADOP and the size of
integer ambiguity search space would be reduced in the case
of P−

δ r̃,s <P
−
δ r̃,c.

Theoretical analysis above shows that INS-aided IAR out-
performs unaided IAR when positioning accuracy of INS
solutions is superior to code solutions for float ambiguity
estimation duringGNSS outages. However, INS suffers from
accumulative position errors with increasing GNSS outage
periods. Consequently, the position error drift exceeds SPP
accuracy level, which leads to an adverse impact on IAR
performance. Similar issues have been discussed in the iner-
tially aided RTK and reached the same conclusion about the
improvement in INS-aided IAR inmany studies (Scherzinger
2002; Lee et al. 2005; Li et al. 2017b).

4 Data processing and discussion

4.1 Experiment description

In order to adequately assess such assisted IAR performance,
we utilized two sets of integrated navigation equipment
to conduct three different experiments. A ring laser gyro-
scope (RLG)-based navigation-grade IMU and a fiber optic
gyroscope (FOG)-based tactical-grade IMU were tested to
analyze the impact of IMU grades on INS-aided IAR. The
land vehicle and airborne data sets were collected to vali-
date the performance of INS-aided IAR in different dynamic
environments. Three experimentswere labeled asA,B andC,
which refer to vehicular test with RLG-IMU, vehicular test
with FOG-IMU and airborne test with FOG-IMU, respec-
tively.

The well-known commercial product SPNA-FSAS from
NovAtel Company was adopted in the FOG-IMU-based
experiments. The SPNA-FSAS system tightly couples dual-
frequency GPS+GLONASS receiver and a tactical-grade
IMU from iMAR GmbH Company, which consists of
three closed-loop fiber optic gyroscopes and three servo
accelerometers. The RLG-based equipment is a prototype
system, which integrates NovAtel OEM4 receiver, three ring
laser gyroscopes and three servo accelerometers. The main
technical parameters about two IMUs are listed in Table 1.

In order to avoid other adverse effects on INS-aided IAR,
three experimentswere conducted in open-sky environments.
The collected data, including IMU measurements at 200 Hz
and GPS measurements at 1 Hz, were free from interrupts
and exceptions. Since many researches have demonstrated
that multi-GNSS is beneficial for PPP ambiguity resolution,
in this work, only measurements fromGPS systemwere pro-
cessed. In this way, the role of INS aiding for PPP ambiguity
resolution is possible to be truly revealed. PPK solutions are
provided as a reference trajectory using NovAtel GrafNav
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Table 1 Technical parameters of
RLG and FOG IMUs

Equipment Bias Bias instability
(Allan variance)

Gyro (deg/h) Acc. (mg) Gyro (deg/h) Acc. (µg)

RLG-IMU <0.01 <2 <0.01 <8

FOG-IMU <0.75 <1 <0.1 <10

software. It is reported by NovAtel technical documents that
GrafNav could achieve 2–6 cm positioning accuracy when
baseline length is shorter than 130 km and DD ambiguities
can be fixed correctly (Gao et al. 2015). In fact, points on
this reference trajectory refer to GNSS antenna phase cen-
ter, while a navigation solution in PPP/INS TC integration
points toward inertial sensor center. There is a requirement to
convert the navigation solution from INS to GNSS antenna
using lever arm and attitudes.

Figure 2 shows the basic positioning information about
three experiments, including the number of available GPS
satellites, position dilution of precision (PDOP) and DD
ambiguity fixed status. Despite an open-sky environment on
the ground, experiment Bwas influenced by some trees along
the road, which resulted in a degraded signal acquisition, or
signal blockage for some satellites. Therefore, the number of
available GPS satellites is not stable compared with the other
two experiments. Overall, the spatial geometry configura-
tion in the three experiments was appropriate for positioning.
Thus, applying the GrafNav software makes all DD ambigu-
ities fixed, whose status is shown in Fig. 2.

It is widely known that GNSS/INS integrated system can
provide position, velocity and attitude information.However,
the estimation of velocity and attitude is mainly based on the
dynamic information from INS, while the positioning abso-
lute accuracy depends on the precisely estimated ambiguities
in GNSS carrier-phase observables (Zhang et al. 2017; Liu
et al. 2016). Liu et al. (2016) have concluded that ambi-
guity fixing for the PPP/INS integration could only improve
positioning accuracy rather than velocity and attitude. There-
fore, this research only focuses on the analysis of positioning
result.

4.2 INS aiding effect on IAR for clean observation
data

The clean observation data of three experiments were pro-
cessed in PPP and PPP/INS TC mode. Regardless of PPP or
PPP/INS TC, float ambiguity estimation is critical for high-
accuracy positioning and IAR performance. Note that the
standard deviations (STDs) output by Kalman filter reflects
the accuracy of estimated float ambiguities. Hereinafter, the
results of experiment B were presented as a representative
example. Figure 3 shows the STD time series of ionosphere-
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Fig. 2 Number of available satellites, PDOP and DD ambiguity-fixed
status in vehicular experiment Awith RLG-IMU (top), vehicular exper-
iment B with FOG-IMU (middle) and airborne experiment C with
FOG-IMU (bottom), respectively. Here, available satellites refer to ones
involved in position calculation, excluding those satellites of low qual-
ity, such as low elevation angles and large priori residuals

free ambiguity for each satellite using PPP-only andPPP/INS
TC mode. Taken as a whole, the STD variation in the plots
is similar to each other, especially at the beginning stage.
Furthermore, all STD values converge to 0.1 m in 15 min,
and a sudden drop occurs at about 40 min. This is because
ambiguities are fixed correctly at this epoch and “hold ambi-
guity”mode is activated for the first time. The jumps aremore
obvious for those ambiguities with slow convergence. Due to
newly observed satellites or cycle slips, ambiguities which
are initialized or re-initialized arise large STDs in the follow-
ing stage. However, adding INS information can accelerate
STD convergence and decrease their values to below 0.1 m
during those periods.

Figure 4 depicts the ADOP changes of SDNL ambiguities
and the number of ambiguity-fixed satelliteswith andwithout
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Fig. 3 Standard deviation of
ionosphere-free ambiguity for
each satellite, the left panel
refers to PPP, the right panel
refers to PPP/INS TC; different
colors correspond to different
satellites; these results are
acquired from experiment B:
vehicular test with FOG-IMU
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Fig. 4 ADOP time series of SDNL ambiguities and the number of
ambiguity-fixed satellite for PPP and PPP/INS TC, respectively; these
results were obtained from experiment B: vehicular test with FOG-IMU

INS aiding. The ADOP is to measure the intrinsic preci-
sion of float ambiguities and the intrinsic model strength for
successful IAR (Teunissen et al. 2014). Since PPP/INS TC
behaves merely a little better than PPP-only mode in terms
of estimated ambiguities, there is only 5% average ADOP
enhancement. However, a more obvious enhancement up to
14% is obtained during the middle periods, where ambigu-
ity initialization or re-initialization is present. Similarly, a
sudden drop at about 40 min can be found in the ADOP
time series. The number of ambiguity-fixed satellites keeps
zero during the initial convergence and appears intermittently
from 15 to 40 min, and then remains a constant value of 9
for a while. Beginning from these epochs, stable ambiguity
fixing is achieved and the average number of ambiguity-fixed
satellites is around 6.6 for both PPP-only and PPP/INS TC
modes.

The position accuracy improvement is a crucial indica-
tor to evaluate INS aiding effect on IAR. Figure 5 shows
the ambiguity-fixed solutions for PPP and PPP/INS TC.
The position errors in three components are calculated with
respect to the reference trajectory. Both PPP and PPP/INS
TC take about 15 min to get the first ambiguity-fixed solu-
tions. But the ambiguity fixing is not continuously available
until the solutions arrive at 40 min. After achieving the sta-
ble fixing, the position errors keep around zero all the time.
Our designed dual parallel processing method for PAR is

responsible for the emergence of first and stable fixing. At
the place of first fixing, the fixed ambiguities are merely used
to update the float PPP-derived position. This “updating”
processing line is independent of delivering ambiguity-fixed
information to subsequent filtering.When “correct” ambigu-
ities are recorded to satisfy the condition in aforementioned
section, the “hold ambiguity” processing line is activated and
regards the fixed integer as a tight constraint in Kalman fil-
tering. In this paper, the time of stable fixing is defined as
the time to first fix (TTFF), which is also the first time of
activated “hold ambiguity” mode in our program. From the
view of position accuracy improvement and TTFF, the per-
formance of PPP and PPP/INS TC is roughly the same. As
shown in Fig. 4, the number of fixed ambiguities is reduced
to zero at about 1.3 h, where the fixed failure is marked in
Fig. 5 accordingly. Figure 2 shows that only six satellites are
available during these periods of time. Therefore, the main
reason is that available observations in float PPP decrease
suddenly due to the environmental obstructions and the sat-
isfied ambiguities may be insufficient for successful PAR.
Compared with IAR-PPP solutions, the influence of fixed
failure on large position errors is weakened for PPP/INS TC.

The statistical results of three experiments are given in
Table 2 in aspects of the position RMS (root-mean-square),
TTFF and correct fixing rate (CFR). The TTFF in this analy-
sis has been defined above as the first time to achieve stable
fixing. Likewise, the RMS of epoch-wise position errors and
CFR are both computed with removal of those results before
stable fixing. The CFR is expressed as the ratio of the num-
ber of correctly fixed epochs to the number of total epochs.
A correctly fixed solution is identified when the ambiguity-
fixed position agrees well with the reference coordinate, and
its accuracy is better than that of ambiguity-float PPP.

According to the statistical values in Table 2, the average
RMS for the east, north and up components with INS aiding
are reduced by 5.0%, 5.0% and 19.2% from (2.0, 2.0, 7.3) to
(1.9, 1.9, 5.9) cm, respectively. Likewise, the difference of the
TTFF and CFR between PPP-only and PPP/INS TC mode is
also slight. The TTFF ismore than 27min up to 40minwith a
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Table 2 RMS of epoch-wise position errors with ambiguity-fixed solu-
tions, TTFF and CFR values for PPP and PPP/INS TC; the reference
trajectory is obtained from PPK solutions

Experiment Ambiguity-fixed solutions (cm) TTFF
(min)

CFR (%)

E N U

A

PPP 1.8 1.3 6.7 27.9 99.97

TC 1.8 1.3 4.4 27.8 99.98

B

PPP 2.2 2.5 9.6 39.2 91.36

TC 2.2 2.4 7.8 39.1 92.82

C

PPP 2.1 2.3 5.7 31.9 97.52

TC 1.7 1.9 5.4 31.3 97.84

mean value of 33min. The CFR for three experiments ranges
from 91.36 to 99.98%. Regardless of the accuracy improve-
ment in the vertical direction, taking the horizontal accuracy,
TTFF and CFR values to evaluate IAR performance, three
experiments indicate that adding INSonly achieves very little
improvement when the GPS data are clean.
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Fig. 6 Comparison of ionosphere-free ambiguity STDs for PPP (top)
and PPP/INS TC (bottom) solutions during five GPS outages; different
colors correspond to different satellites; this result is from experiment
B: vehicular test with FOG-IMU; here, the outage is also referred to as
gap

4.3 INS-aided ambiguity re-fixing performance

TheGPSoutages in urban areasmaybe lead to all ambiguities
re-initialized simultaneously. As a result, a long convergence
time of 30 min or more is required again to achieve ambi-
guity fixing. In contrast, the INS solutions will not suffer
from such re-initialization and could retain the continuous
and high accuracy during a short time. To some extent, the
precision of INS solution at this epoch is approximately
equivalent to ambiguities before re-initialization. It means
that the prediction information from the INS solution is
superior to re-initialized ambiguities whose precisions are
determined by pseudo-range observations. Hence, not only
ambiguity estimation but also ambiguity re-fixing perfor-
mance is enhanced with the support of INS aiding.

In order to evaluate INS-aided ambiguity re-fixing per-
formance, three indicators including ADOP, bootstrapping
success rate (BSSR) and time tofix are analyzed in detail. The
BSSR has been proved as a lower bound for the integer least
squares (ILS) success rate. The data discontinuity is simu-
lated by means of manually raising the elevation mask to 90°
as well as compulsively interrupting all ambiguities during
GPS outages. Consequently, five complete outage durations
including 1, 5, 10, 30 and 60 s were considered, respectively.
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Firstly, float ambiguity estimation is compared between
PPP andPPP/INSTCsolutions for experimentB, as an exam-
ple. The re-convergence of their ambiguity STDs during five
GPS outages is shown in Fig. 6. Beginning from 40 min, five
GPS outages are inserted orderly into the observation data
every 20 min. For PPP float ambiguities, a process similar
to the initialization with long convergence time is yielded no
matter how short GPS outage durations are. Evenwhen using
20-min observation data, the STDs of some ambiguities are
still larger than 1 cm. By contrast, in the case of 1-s and 5-s
outages, although the STDs of PPP and PPP/INS TC solu-
tions are close initially, a faster re-convergence is obtained
for all ambiguities, and all STDs values reach below0.1 cm in
20min. Nevertheless, alongwith the outage duration increas-
ing from 1 to 60 s, ambiguity STDs of two solutions tends to
be the same.

Secondly, we analyzed ADOP and BSSR indicators,
which represent ambiguity fixing performance indirectly and
are shown in Figs. 7 and 8. Five GPS outages are simulated
individually at a same time point for three experiments. As
expected, the ADOP and BSSR of PPP-only solutions are
interrupted at the place of GPS outages. It takes about 313 s,
322 s and 100 s for the BSSR values to recover to 99.0%,
while the mean time of the ADOP values decreasing to 0.12
cycles are 446 s, 426 s and 143 s for experiments A, B and C,
respectively. Here, the BSSR value of 99.0% is used because
it is one of the thresholds for successful IAR in our inte-
ger ambiguity validation, and the ADOP value below 0.12
cycle level is another theoretical indication of successful IAR
(Teunissen et al. 2014). For PPP/INS TC solutions, the rapid
recovery ofADOPandBSSRcanbe achievedwith the outage
duration less than 10 s. At the first epoch after interruption,
the average values are (0.21, 0.20, 0.20) cycles for ADOP
and (84.36, 78.82, 87.71) % for BSSR, in the case of 1-s, 5-s
and 10-s outages, respectively. Moreover, with the better ini-
tial values, the mean time spent on convergence to a desired
level is only (16, 23, 12) s for the ADOP and (7, 28, 6) s for
the BSSR. When the outage duration prolongs to 30 s and
60 s, there is a little improvement on the ADOP and BSSR
with the INS aiding.

The ADOP and BSSR analyzed above are merely two
kinds of measurements of successful IAR in theory. Nev-
ertheless, smaller ADOP and higher BSSR values do not
guarantee that ambiguity can be fixed correctly. The position
errors and time to re-fix (shown in Figs. 9, 10) are eventu-
ally utilized as the most reasonable indicators to conduct the
assessment of INS-aided ambiguity re-fixing performance.
It is interesting to note that experiment C outperforms the
other two in terms of the ADOP and BSSR, but has a poor
performance in ambiguity re-fixing as shown in Fig. 9. This
suggests the fact again that there is no absolute correlation
between a successful IARand theADOPaswell as theBSSR.
For the same experiment data processed in PPP mode, ambi-

guity re-fixed time exhibits good repeatability and stability
across different outages. The time to re-fix recorded in each
case are shown in Figs. 9 and 10. The mean time to re-fix is
about 29 min, 33 min and 32 min for the PPP solutions of
three experiments.

When using PPP/INS TC mode, the mean time to re-
fix is significantly reduced; especially in the case of outage
durations shorter than 10 s, nearly instantaneous ambiguity
re-fixing is realized only using five epochs, except for exper-
iments B and C with 10-s outage. These two cases spend
26 s and 28 s to achieve ambiguity re-fixed solutions, which
are still much better than PPP-only performance. Moreover,
because of high accuracy in a short time, the continuous nav-
igation information provided by the INS makes experiment
C solutions more stable and precise. If the outage durations
increased to 30 s and 60 s, ambiguity re-fixing improvement
is clearly related to IMU grade and dynamic movement. For
the vehicular test, ambiguity re-fixing can be obtained in
6.2 min and 10.7 min using the navigation-grade IMU, but it
requires 11.2 min and 17.6 min to attain the same goal using
the tactical-grade IMU, while for the same grade IMU, the
time to re-fix of the airborne test is longer than that of the
vehicular test by 1.7 min and 15.3 min. It is noted that the
INS aiding in the case of 60-s outage fails to improve ambi-
guity re-fixing performance for experiment C, but brings an
adverse effect instead. The time to re-fix is extended by 72 s
compared with that of PPP solutions.

4.4 Discussion on ambiguity re-fixing

From the preceding analysis, it is confirmed that the shorter
the outages, the greater the ambiguity re-fixing improvement
with the introduction of the INS dead reckoning informa-
tion. The position error accumulates dramatically along with
time for dead reckoning techniques when operated in a stand-
alonemode. In essence, the ambiguity re-fixing improvement
relies on the position accuracy predicted by the INS. The
high-accuracy information could contribute to decorrelation
between the position and float ambiguity parameters; such
float ambiguities with enhanced observability facilitate the
rapid identification of correct integer candidates (Geng and
Shi 2017). Intuitively, the position solution is simply updated
by quadratic time integration of IMU raw data. However,
there are many factors to influence position accuracy. All
errors in navigation parameters and INS-dependent param-
eters would degrade position accuracy ultimately by means
of error propagation functions. Table 3 lists the simplified
relationship between position drifts in north direction and
each error component; furthermore, similar expressions can
also be derived for the east channel. For the INS-derived
position, it is acknowledged that vertical accuracy can be
maintained much better than the horizontal accuracy dur-
ing outages. Hence, the horizontal errors in the INS-derived
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Table 3 Position error drifts in
north direction with respect of
each error component. Source:
Titterton and Weston (2004,
p. 355)

Error source Position errors with respect of each component

Initial position error (δrN0 ) δr N0
Initial velocity error (δvN0 ) δvN0 · t

Initial yaw error (δγ 0) δγ 0 · Λ · cos B · g · t3

Initial roll error (δβ0) δβ0 · 1
2 · g · t2

Accelerometer bias (aN ) aN · 1
2 · t2

Gyroscope bias ( 2E) εE · 1
6 · g · t3

Gyroscope bias ( 2U ) εU · 1
24Λ · cos B · g · t4

Λ �Ω +vE /(R · cos B), where Ω �earth rotation, R �earth radius, vE �east velocity, B � latitude, g �
gravity and t � integration time

position are the greatest impediment to INS-aided ambiguity
re-fixing performance.

Table 3 illustrates that position errors are made up of a
constant term and other six drift terms, among which the
drift terms are described as a power function of integration
time with different orders. The IMU grade is classified by the
bias and bias instability of accelerometers and gyroscopes.
The higher the IMU grades are, the smaller the bias and bias
instability are. For the low-grade IMU, the remaining uncal-
ibrated biases will enlarge drift of position errors in both
accelerometers and gyroscopes, as Table 3 displays in last
three equations. In addition, according to the expression of
Λ, position error components in north direction with respect
of the initial yaw error and the vertical gyroscope bias are
related to east velocity yet. In the aerial investigation, the
average velocity of aircraft was 80m/s, whichwas faster than
ground vehicles; as a result, it led to larger position errors.
The previous discussion is merely based on theoretical anal-
ysis; however, in practice, position error drifts will become
more complicated due tomany unexpected factors. Figure 11
displays the actual position error drifts in horizontal and ver-
tical components during 60-s outage compared with the SPP
position errors. This simulated outage is the same as that in
Figs. 9 and 10.

Obviously, the position error drifts depend on IMUgrades,
integration time as well as dynamicmotion. Furthermore, the
ambiguity re-fixing enhancement is consistent with position
accuracy changes. Figure 11 demonstrates the position errors
of INSprediction are less than that of SPP throughout the 60-s
outage period for experimentsA andB. For experimentC, the
horizontal errors accumulate too rapidly to exceed the accu-
racy level of SPP when the integration time reaches to 60 s.
Consequently, float ambiguity estimation isworse rather than
better under the influence of the contaminated position infor-
mation from INS prediction. It explains why the ambiguity
re-fixing performance of 60-s outage is impaired by INS aid-
ing for experiment C. The outage duration of 10 s is another
interesting cutoff point, where the accumulated errors are
within 3.0 cm, 6.7 cm and 13.6 cm for three experiments,

respectively. These position errors are better than or approx-
imately equal to half wavelength of L1 GPS carrier phase,
which is also the one half of the NL cycle. In this situation,
float ambiguities deduced from observed-minus-computed
(OMC) carrier-phase observations will become quite close
to correct integer candidates. The caused constant bias in NL
ambiguity determination could be limitedwithin a half cycle.
Meanwhile, with the reduced volume of the ambiguity search
space, rapid ambiguity re-fixing will be achieved eventually.

In order to demonstrate the repeatability of INS-aided
ambiguity re-fixing performance, we selected five different
time points to conduct GPS outages simulated experiments.
Figure 12 shows the time to re-fix statistics of PPP/INS TC
solutions and the corresponding average values are calcu-
lated and given in Table 4. When the outage durations are
1 s and 5 s, the ambiguity re-fixing with INS aiding has a
stable performance for three experiments. Nearly instanta-
neous ambiguity re-fixing can be always achieved with a
re-convergence time of about 5 s. In fact, our IAR strategy
will reject fixing a NL ambiguity if the corresponding IF
ambiguity is estimated less than five epochs. Without this
restriction, it is potential to shorten the ambiguity re-fixed
time further. Nevertheless, the risk of false ambiguity fix-
ing also follows. Therefore, improving ambiguity validation
is a crucial task to ensure rapid and correct fixing. With the
outage duration increasing from10 to 30 s, there is a quite sig-
nificant degradation of the ambiguity re-fixing performance,
which is presented clearly in Fig. 12. The 10-s outage can be
regarded as a turning point in terms of the ambiguity re-fixing
with INS aiding. The re-fixed time deteriorates from tens
of seconds level to tens of minutes level if outage duration
exceeds 10 s. Looking into the statistical values in Table 4,
because of inertial position error growth, ambiguity re-fixing
performance degrades gradually to that of PPP-only solutions
along with increasing GPS outage duration. In spite of per-
formance degradation, adding INS information is still helpful
for PPP-only solutions in the case of 60-s outage, where
the ambiguity re-fixed time is decreased by 16.4, 13.8 and
8.3 min for three experiments. Especially for the navigation-
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Fig. 11 Position error drifts
during 60-s outage for
horizontal and vertical
components, dL and dH denote
the horizontal and vertical
components; subplots from left
to right indicate the results of
experiments A, B and C,
respectively
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Fig. 12 Time to re-fix statistics for five GPS outages, subplots from left to right denote the PPP/INS TC results of experiments A, B and C,
respectively

Table 4 Comparison of average
time to re-fix

Gap time Time to re-fix (s)

Experiment A Experiment B Experiment C

1 s 5.0 5.0 5.6

5 s 5.0 5.4 5.6

10 s 11.0 22.6 41.4

30 s 457.6 736.8 815.0

60 s 627.0 896.4 1427.6

PPP 1608.2 1721.8 1925.6

grade IMU, its average time to re-fix is kept around 10 min,
which is close to the PPP-only result of 9.21 min by employ-
ing GCRE four-system data (Li et al. 2017c). It implies that
a joint processing of multi-GNSS and high-grade IMU will
promise faster ambiguity re-fixing, without the support of
other sophisticated approaches, such as cycle slip correc-
tion.

In conclusion, for the navigation- and tactical-grade IMU,
the INS-aided ambiguity re-fixing performance can be clas-
sified as three levels: significant improvement for the outage
duration less than 10 s, moderate improvement for the outage
duration from 10 to 60 s, a little or zero improvement for the
outage duration longer than 60 s. Strictly speaking, the per-
formance improvement in ambiguity re-fixing is determined
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A

B

C

D

Fig. 13 Field test in urban environment. The trajectory is from GPS-
alone PPP solutions. Different colors on the trajectory correspond to
different number of satellites. Red represents n≤5, yellow represents n

≤7, purple represents n ≤9, and green represents n >9, where n is the
number of satellites. Four data outages are regarded as representative
examples, which are labeled as A, B, C and D

by the position accuracy maintained by the INS solution dur-
ing the GPS outage.

4.5 INS-aided IAR-PPP in real urban environment

We also performed the INS-aided IAR-PPP in real urban
environment. From the preceding analysis in Sect. 4.2, there
is only a little improvement for the TTFF with INS aiding
information. It still takes about 30 min to achieve first sta-
ble fixing. Therefore, the experimental vehicle was driven
in open-sky environment at the beginning 45 min and then
entered into urban area. The equipment is still the commer-
cial product SPNA-FSAS.

Figures 13 and 14 show the trajectory in urban environ-
ment and thenumber of available satellites. FourGPSoutages
in the enlarged panels are presented as representative exam-
ples. Place A is a long tunnel in the mountains and place D is
a short tunnel, the overpasses and high buildings in the places
B and C make the satellite signals blocked. There are totally
nine places with data interruptions in the trajectory, whose
gaps are listed in Table 5. Figure 14 displays that the num-
ber of available GPS satellites is not stable compared with
the previous clean data. During some periods with complex
environment, available GPS satellites are less than six and
the PDOP values are large. Besides, more cycle slips and
outliers in observations are detected.

We performed the IAR-PPP with and without INS aid-
ing. The four solutions are compared in Fig. 15, including
ambiguity-float and ambiguity-fixed results for PPP and
PPP/INS TC. And Fig. 16 shows the ambiguity-fixed sta-
tus. The RTS smoothed coordinates of DGPS/INS TC are
regarded as reference trajectory. Obviously, the ambiguity-

Fig. 14 PDOP and number of available satellites

float position time series suffers from large errors and
intermittent re-convergences. In contrast, the high short-term
accuracy provided by INS is capable of bridging the gaps
caused by re-initialization. At about 1.5 h, the experimen-
tal vehicle passed though the long tunnel with an outage
duration of 68 s, which is place D in Fig. 13. The hori-
zontal position error accumulates to about 3 m. Taken as
a whole, the PPP/INS TC solutions are with the better con-
tinuity. Due to the good quality data at the beginning stage,
both PPP-only and PPP/INSTCmode can achieve first ambi-
guity fixing successfully. The TTFF is 28.7 min for PPP
and 27.0 min for PPP/INS TC integration. When the exper-
imental vehicle was driven in urban area, environmental
obstructions appears intermittently to make satellite signal
blocked. As we know, the integer ambiguity recovery for
PPP usually requires 30min. However, the span of each clean
data is shorter than 30 min due to intermittent interruptions.
Therefore, ambiguity re-fixing for PPP always fails and the
ambiguity-float solutions are kept from the first interruption,
which is shown in Fig. 16. For the INS-aided IAR-PPP, a
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Table 5 Statistics of time to re-fix for each outage

Outage
(s)

TTFF
(min)

Time to re-fix (s)

14 (D) 1 6 (C) 9 2 11 (B) 5 68 (A) 10

PPP 28.7 – – – – – – – – –

PPP/INS
TC

27.0 5 5 5 5 5 18 50 835 322

These outages occurred in chronological order
Letter A, B, C and D in the parentheses following the outages are related to the areas illustrated in Fig. 13

Fig. 15 Comparison of
ambiguity-float and
ambiguity-fixed solutions for
PPP and PPP/INS TC. The left
plots are PPP results, while the
right plots are PPP/INS TC
results. The top and bottom are
ambiguity-float and
ambiguity-fixed results,
respectively. The yellow vertical
line represents the time to first
fix

dE dN dU

-2

-1

0

1

2 dE dN dU
B

ia
s(

m
)

0.0 0.5 1.0 1.5 2.0 2.5
GPS Time(hour)

0.0 0.5 1.0 1.5 2.0 2.5
-2

-1

0

1

2

B
ia

s(
m

)

GPS Time(hour)

Fig. 16 Number of ambiguity-fixed satellite and ambiguity-fixed status
for PPP and PPP/INS TC, respectively

significant improvement on position accuracy is shown in
Fig. 15. The position RMS of ambiguity-fixed solutions is
2.7 cm, 5.8 cm and 3.6 cm for the east, north and up compo-
nents. Although the ambiguity is not resolved continuously,
theCFRwith a value of 68.87% is still obtained. Ifwe remove
these epochs during the re-convergence stage, the statistical
value of CFR increases to 80.30%.

The time to re-fix with INS aiding for each outage is listed
in Table 5. There are four outages associated with the four
scenarios selected in Fig. 13. Since PPP is unable to recover
integer ambiguity after the first interruption in our urban test,
there is no value for time to re-fix in Table 5. However, nearly
instantaneous ambiguity re-fixing can be achieved with INS

aiding in the case of the first five outages. For the outage dura-
tion of 11 s and 5 s, the time to re-fix is relatively longer with
a value of 18 s and 50 s. The longest outage duration of 68 s
occurred when the experimental vehicle passed through the
tunnel in the mountains. It takes 835 s to achieve ambiguity
re-fixing with INS aiding. This time to re-fix is close to the
result in the case of 60 s simulated outage in Table 4, whose
average ambiguity re-fixed time is 896.4 s for the tactical-
grade IMU in the vehicular test. It indicates that the analysis
on simulated outages is beneficial to some degree. For the
last outage duration of 10 s, the time to re-fix is abnormal
with a value as large as 322 s, which happens at about 1.93 h.
The main reason is that some satellites are interrupted fre-
quently by the environmental obstructions and the satisfied
ambiguities are insufficient for successful PAR. Neverthe-
less, Fig. 15 shows that the position accuracy for INS-aided
IAR-PPP does not degrade.

In summary, INS-aided IAR-PPP could achieve an excel-
lent performance in urban environment. For more complex
urban areas, however, only integrating INS for PPP may be
insufficient.Adding other navigation sensors such as distance
measurement indicator (DMI) or stereo camera is expected
to enhance ambiguity re-fixing and positioning performance
further for kinematic PPP.
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5 Conclusions

In this study, the PPP/INS TC model with integer ambiguity
resolution is described in detail. In order to use the ambiguity-
fixed information reasonably, we designed dual parallel
processing lines: one line to update non-ambiguity states
using all of the successfully fixed ambiguities and another
one to hold ambiguities using “correct” fixed ambiguities.
Besides, the partial IAR strategy and some identification cri-
terions of correct integer candidates are introduced to make
the ambiguities as fixed correctly as possible.

On the other hand, the theoretical analysis states that the
IAR-PPP performance with INS aiding can be improved
in the case of GNSS outages, when the position accuracy
maintained by the INS solution is superior to SPP solutions.
Real data experiments equipped with navigation-grade and
tactical-grade IMUs were conducted in an open-sky envi-
ronments and urban area. For the clean GPS data, since the
float ambiguities of PPP-only solutions have been estimated
precisely, adding INS information is unable to improve ambi-
guity fixing. However, owing to the ability of dead reckoning
in a stand-alone mode, the INS could deliver position with
high accuracy over a short period. As a result, during the
GPS outage, this high-accuracy information is used to assist
in accelerating re-convergence for re-initialized float ambi-
guities. According to the INS prediction accuracy, the INS
aiding effect on ambiguity re-fixing can be classified into
three levels roughly. Firstly, when the position accuracy is
better than one half cycle, nearly instantaneous or rapid ambi-
guity re-fixing is achieved. In practice, the outage duration is
required less than 10 s. Secondly, for the outage duration from
10 to 60 s, the average time to re-fix for INS aiding is shorter
than that of PPP-only solutions. It is regarded as a moder-
ate improvement. Finally, if the outage duration continues to
increase, the INS drift error is close to that of SPP solutions.
As a result, the contribution of INS aiding will become less
and less. Moreover, there is an adverse impact on ambiguity
re-fixing performance for the large INS prediction error. In
essence, the INS-predicted position accuracy is the critical
factor for ambiguity recovery performance, where an accu-
racy better than 0.1m and 1.0m is required for the significant
and moderate improvement. For the urban environments, the
span of clean data is often shorter than 30 min due to inter-
mittent signal interruptions; thus, ambiguity re-fixing for PPP
always fails, while INS-aided information could bridge the
data gaps and achieve fast ambiguity re-fixing.

In practice, especially for the real kinematic scenario,
the observation environment is more complex due to a vari-
ety of unexpected problems. In order to enhance kinematic
PPP, future studies are focused on the combination of multi-
GNSS, multi-frequency and multi-sensor and its effects on
PPP model strengthening. Besides, the quality control for
reliable integer ambiguity resolution is also crucial.
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