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Abstract
Gravity gradiometry on a moving platform, whether ground or airborne, has the potential to offer an efficient and accurate
determination of the deflection of the vertical by simple line integration. A significant error in this process is a trend error
that results from the integration of systematic gradient errors. Using an airborne full-tensor gradiometry data set of regularly
spaced and intersecting tracks over a 10km square region and the USDOV2012 vertical deflection model to calibrate these
long wavelength errors, it is shown that the gradient-derived deflections agree with the USDOV2012 model at the level of
0.6–0.9arcsec. Moreover, it is shown by graphical inspection that these differences represent high-frequency signal rather
than error. Another data processing technique is examined using only (simulated) single-gradiometer instrument data, i.e.,
the local differential curvature components, (Γyy − Γxx)/2 and Γxy, of the gravity field. While in theory these data can yield
deflection components using two parallel data tracks, the results in the tested case are unsatisfactory due to implicit additional
cross-track integration errors that accumulate systematically. The analysis thus demonstrates the importance of using the
individual horizontal gradient components, Γxx, Γyy, to derive the deflection of the vertical.
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1 Introduction

Determination of the deflection of the vertical (DOV) has
deep roots in geodesy going back to traditional horizon-
tal control that required correcting astronomically observed
latitude and longitude in order to obtain corresponding
geodetic coordinates. In addition, horizontal angles (and
azimuths) measured by transit or theodolite require correc-
tion (Laplace’s condition) in the transformation to angles
turned about the ellipsoid normal. Conversely, a compari-
son of astronomically observed latitude and longitude (or
azimuth) and geodetic quantities obtained from a triangu-
lation network were used to derive the DOV components
(Heiskanen and Moritz 1967, p. 197–9). Concern for the
deflection of the plumb line already entered geodesy in the
eighteenth century when the Earth’s shape, whether flattened
at the equator or at the poles,was hotly debated. P.Bouguer on
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a deciding expedition to Ecuador to determine an arc length
(for comparison with the length of an equal latitudinal incre-
ment determined at high latitude) questioned the accuracy of
astronomically observed positions due to the predicted large
deflection caused by the mountainous terrain. Finally con-
vinced of the observational accuracy, the conclusion led to
a rejection of the predicted deflection and the first ideas of
isostatic compensation (Watts 2001, p. 6). Even today with
global navigation satellite systems, such as GPS, providing
the majority of geodetic control, DOVs still play an impor-
tant, albeit less prominent, role. Being closely related to the
horizontal components of the gravity vector in a local coordi-
nate system they are needed to compensate inertial navigation
and guidance systems that do not directly sense the influence
of gravitation. The DOV also plays a supporting role, though
merely as a stepping stone, in transforming satellite altimetry
to the gravity anomaly on the ocean surface (Sandwell and
Smith 1997, Appendix B).

While the historical geodetic determination of the DOV is
primarily of a geometric nature,moremodern determinations
are usually done from a geophysical or gravimetric perspec-
tive. The most famous is the Vening–Meinesz formulation
that convolves surface gravity anomalies with a Green’s
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function (Heiskanen and Moritz 1967, p. 114; Hofmann-
Wellenhof and Moritz 2005, p. 119). Yet even today the
astrogeodetic method is still pursued with very accurate
portable astrolabes (Hirt and Bürki 2002). Besides the
Vening–Meinesz integral method, other gravimetric meth-
ods have been used in the past. For example, Rose and Nash
(1972) used the horizontal accelerometers of an inertial nav-
igation system (INS) to infer the DOV and, among others,
Jekeli andKwon (1999) demonstrated vector gravimetrywith
an airborne INS and GPS.

Another gravimetric method to determine the DOV is
by gravity gradiometry and the earliest such results came
from torsion balance observations reported by K. Oltay of
the Eötvös Geophysical Research Institute, Budapest, in
the 1920s (Heiland 1940, p. 169). Other determinations
were made by Badekas and Mueller (1968) with torsion
balance data obtained in southwestern Ohio, USA. Also
Herring (1978, 1979) investigated the feasibility of such
determinations and Völgyesi (1977, 2005) carried out DOV
computations from extensive torsion balance data in Hun-
gary. The first airborne gradiometer test in the 1980s (Jekeli
1988) also stimulated a number of attempts to study and
determine the deflection of the vertical from such data (Heller
and MacNichol 1983; Arabelos and Tziavos 1992; Jekeli
1993). Although these latter results were not particularly
fruitful, the concept of gradiometry for determination of the
deflection of the vertical remains interesting for applications
in inertial navigation and guidance (e.g., Jekeli 2006), as well
as in geophysics (Sun and Zhou 2012).

Obtaining the horizontal components of gravity, and hence
the deflections of the vertical, from gravity gradients along
a survey line is not complicated, being essentially an along-
track integration. The complications arise if the measured
gradients are not the required individual elements of the grav-
ity gradient tensor and because the line integration turns any
data error into more systematic errors; e.g., white noise turns
into a randomwalk, and ameasurement bias turns into a trend
error. It is the objective of this paper to demonstrate some of
these complications with airborne gravity gradiometry data
and to show, at the same time that, by suitable processing
methods, these data yield a DOV map that improves pre-
viously available models. Also, of particular interest is the
comparative capability of single-instrument and full-tensor
gradiometers in estimating the DOV components.

2 Mathematical theory

The deflection of the vertical (DOV) is the angle between the
true vertical, as defined by the direction of Earth’s gravity
vector, e.g., in terms of astronomic coordinates of latitude
and longitude,Φ,Λ, of a point, and either a geometrically or
a physically defined reference direction. The corresponding

geometric definition of the reference direction is given by
the geodetic coordinates associated with a particular ellip-
soid that approximates the Earth. The DOV is then of the
Helmert, or also, astrogeodetic type. An alternative refer-
ence definition is the direction of normal gravity. The DOV
is then of theMolodensky type, where the normal gravity vec-
tor is defined at the point where the normal and actual gravity
potentials are equal (Fig. 1). If the geometric ellipsoid and
the normal ellipsoid are identical in size, shape, location,
and orientation, then for points on the geoid the Helmert and
Molodensky DOVs are the same and are also known as the
Pizzetti DOV (Jekeli 1999).

It can be shown that the south-to-north and west-to-east
components, ξ and η, respectively, of the Helmert DOV at a
point, P , are given (Pick et al. 1973, p. 432) by

ξHelmert = Φ − φ + 1

2
η2 tan φ + 3rd-order terms, (1)

ηHelmert = (Λ − λ) cosφ + 3rd-order terms, (2)

where φ, λ are the geodetic coordinates of P . The Moloden-
sky DOV components differ from these by the curvature of
the normal plumb line, which is given (Heiskanen andMoritz
1967, p.196; Hofmann-Wellenhof and Moritz 2005, p.233)
by

δξnorm.curv. = −δφ
(
H∗) � 0.17H∗ sin 2φ (arcsec), (3)

where H∗ is the normal height of P with respect to the quasi-
geoid in units of km (or, of Q with respect to the ellipsoid;
see Fig. 1). Since there is no curvature of the normal plumb
line out of themeridian plane, one has the simple relationship
between the geometric and physical types of DOV,

ξMolodensky = ξHelmert − δφ
(
H∗) , (4)

ηMolodensky = ηHelmert. (5)

Here the curvature of the normal plumb line between the
points, P and Q, is neglected since their separation nominally
is only of order of about 30m. The normal curvature effect
can reach a significant fraction of an arcsecond, or more, for
heights greater than several kilometers (which is the case, in
particular, for points at aircraft altitude).

If the geometric ellipsoid (geodetic datum) and the ellip-
soid of the reference gravity field are not identical, standard
formulas exist to transform deflections of the vertical from
one to the other geometric reference directions (e.g., Heiska-
nen and Moritz 1967, p. 207).

The Molodensky definition comes close to the meaning
of the DOV as determined by gravimetric methods. In linear
approximation it can be shown (Jekeli 1999) that the Molo-
densky DOV components are also
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Fig. 1 Deflection of the vertical (south-to-north component, ξ ) accord-
ing to various definitions. The normal gravity potential is U and the
actual gravity potential is W . See the main text for an explanation of
the other symbols

ξMolodensky(P) = ξgrav(P) = − 1

γQ

1

MP + hP

∂T

∂φ

∣∣∣
∣
P

, (6)

ηMolodensky(P) = ηgrav(P)

= − 1

γQ

1

(NP + hP ) cosφP

∂T

∂λ

∣∣∣
∣
P

, (7)

where T = W −U is the disturbing potential, N , M are the
principal radii of curvature of the ellipsoid, h is the geodetic
height (along the ellipsoid perpendicular), and γ is the mag-
nitude of normal gravity. The linear approximation neglects
terms of the order of the squared DOV components. Inas-
much as ξ and η have typical orders of magnitude of 10′′,
the linear approximation generally is in error by less than a
milliarcsecond.

In local areas, defined by a Cartesian coordinate system,
x, y, z, say, north-east-down, one can make a further planar
approximation that replaces (6) and (7) with

ξgrav(P) = − 1

γQ

∂T

∂x

∣∣∣∣
P

, (8)

ηgrav(P) = − 1

γQ

∂T

∂ y

∣∣∣∣
P

. (9)

This local planar approximation of the DOV, and also for
the gravity gradients, essentially neglects the curvature of
the ellipsoid (or, approximately, the sphere), as well as the
local convergence of meridians and is adequate for present

purposes (Appendix). Indeed, the difference between using
spherical and planar coordinates is found to be completely
negligible using the gradient data at hand (Sect. 3). In this
paper only the Molodensky, or gravimetric, DOV is consid-
ered; and, a transformation to the Helmert DOV can be made
using (4) (and (5).

With the availability of horizontal gravity gradient mea-
surements, a determination of the DOV is feasible that is
more direct than the classical Vening–Meinesz approach. In
the local Cartesian coordinate system, let the gravity gradient
disturbances be

� = ∇(∇T )T =

⎛

⎜⎜
⎝

∂2T
∂x2

∂2T
∂x∂ y

∂2T
∂x∂z

∂2T
∂ y∂x

∂2T
∂ y2

∂2T
∂ y∂z

∂2T
∂z∂x

∂2T
∂z∂ y

∂2T
∂z2

⎞

⎟⎟
⎠

=
⎛

⎝
Γxx Γxy Γxz

Γyx Γyy Γyz

Γzx Γzy Γzz

⎞

⎠ . (10)

In free space, the disturbing potential is twice differentiable
and satisfies Laplace’s equation,

∂2T

∂x2
+ ∂2T

∂ y2
+ ∂2T

∂z2
= 0; (11)

hence, the gradient tensor,�, is traceless. It is also symmetric
because the gradients are independent of the order of partial
differentiation of T .

The total differentials of the horizontal partial derivatives
of T are

d

(
∂T

∂x

)
= ∂2T

∂x2
dx + ∂2T

∂x∂ y
dy + ∂2T

∂x∂z
dz, (12)

d

(
∂T

∂ y

)
= ∂2T

∂ y∂x
dx + ∂2T

∂ y2
dy + ∂2T

∂ y∂z
dz. (13)

Substituting from (8) through (10) and integrating (12) and
(13), one has the line integrals for the DOV components in
planar approximation,

{
ξ(P)

η(P)

}
=

{
ξ(P0)
η(P0)

}
− 1

γ

P∫

P0

{
Γxx

Γyx

}
dx − 1

γ

P∫

P0

{
Γxy

Γyy

}
dy

− 1

γ

P∫

P0

{
Γxz

Γyz

}
dz. (14)

Therefore, a discrete set of gradient tensor elements along a
trajectory can be numerically integrated to obtain the DOV
components along that trajectory, provided that components
at the initial point are known. For example, with the trape-
zoidal rule for numerical integration applied to a set of
gradients, Γ

( j)
xx , Γ

( j)
xy , Γ

( j)
xz , Γ

( j)
yy , Γ

( j)
yz , j = 0, . . . , J − 1,

one has
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{
ξ (PJ−1)

η (PJ−1)

}
�

{
ξ (P0)
η (P0)

}

− 1

2γ

J−2∑

j=0

{
Γ

( j)
xx + Γ

( j+1)
xx

Γ
( j)
xy + Γ

( j+1)
xy

}

�x j, j+1

− 1

2γ

J−2∑

j=0

{
Γ

( j)
xy + Γ

( j+1)
xy

Γ
( j)
yy + Γ

( j+1)
yy

}

�y j, j+1

− 1

2γ

J−2∑

j=0

{
Γ

( j)
xz + Γ

( j+1)
xz

Γ
( j)
yz + Γ

( j+1)
yz

}

�z j, j+1

(15)

where �x j, j+1 = x j+1 − x j , �y j, j+1 = y j+1 − y j ,
�z j, j+1 = z j+1−z j . In the local Cartesian north-east-down
coordinate system, the coordinates, x and y, are associated,
for example, with northings and eastings of a UTM projec-
tion,while heights, h, are typically given as positive upwards,
hence, z = −h.

If only a single-gradiometer instrument is available (and
leveled), which consists of only two pairs of accelerometers,

such as the Lockheed Martin gravity gradiometer instru-
ment [formerly, the Bell Aerospace gravity gradiometer,
(Jekeli 1988)], then the measurements are two gradients,
Γ� = (Γyy − Γxx)/2 and Γxy, being the two components of
the differential curvature of the gravity field (Heiland 1940,
p. 174). Even neglecting the vertical gradient along a nearly
horizontal trajectory, it is not possible to simply integrate
these in order to obtain the DOV components. It is possible,
however, by using two essentially parallel trajectories. This
was the idea described by Badekas and Mueller (1968) in
processing torsion balance data, exactly of this type, for the
DOV determination in southwestern Ohio.

Consider a single pair of points, Pj and Pj+1, for which
the DOV component differences are, from (15) (based on the
trapezoidal method of numerical integration),

{
�ξ j, j+1

�η j, j+1

}
= − 1

2γ

({
Γ

( j)
xx + Γ

( j+1)
xx

Γ
( j)
xy + Γ

( j+1)
xy

}

�x j, j+1

+
{

Γ
( j)
xy + Γ

( j+1)
xy

Γ
( j)
yy + Γ

( j+1)
yy

}

�y j, j+1

+
{

Γ
( j)
xz + Γ

( j+1)
xz

Γ
( j)
yz + Γ

( j+1)
yz

}

�z j, j+1

)

. (16)

Fig. 2 Geometry of coordinates with x, y as northing and easting,
respectively

Defining the azimuth, α j, j+1, of Pj+1 at Pj (Fig. 2), and the
distance, �s j, j+1, between them, one has

�x j, j+1 = �s j, j+1 cosα j, j+1,

�y j, j+1 = �s j, j+1 sin α j, j+1. (17)

Substituting these into (16), and assuming that�z j, j+1 = 0,
it is easy to see that

{
�ξ j, j+1

�η j, j+1

}
= −�s j, j+1

2γ

⎧
⎨

⎩

(
Γ

( j+1)
xx + Γ

( j)
xx

)
cosα j, j+1 +

(
Γ

( j+1)
xy + Γ

( j)
xy

)
sin α j, j+1(

Γ
( j+1)
xy + Γ

( j)
xy

)
cosα j, j+1 +

(
Γ

( j+1)
yy + Γ

( j)
yy

)
sin α j, j+1

⎫
⎬

⎭
, (18)

which, when appropriately combined, leads to

�ξ j, j+1 sin α j, j+1 − �η j, j+1 cosα j, j+1

= �s j, j+1

2γ

((
Γ

( j)
� + Γ

( j+1)
�

)
sin 2α j, j+1

+
(
Γ ( j)
xy + Γ ( j+1)

xy

)
cos 2α j, j+1

)
(19)

Equation (19) does not separate thedifferences,�ξ j, j+1 =
ξ j+1 − ξ j and �η j, j+1 = η j+1 − η j . But for three distinct
points, Pj−2, Pj−1, Pj , there are two constraints on the DOV
differences—the sums of the three corresponding differences
must vanish,

�ξ j−2, j−1 + �ξ j−1, j + �ξ j, j−2 = 0,

�η j−2, j−1 + �η j−1, j + �η j, j−2 = 0. (20)

Equation (19) is ineffectual in providing information on one
of the DOV components if the azimuth is an integer mul-
tiple of π/2. If α j, j+1 = 0◦, 180◦, then (19) provides no
information on �ξ j, j+1; and, if α j, j+1 = 90◦, 270◦, then
(19) provides no information on �η j, j+1. Also, a singular-
ity arises if the three points, Pj−2, Pj−1, Pj , are co-linear,
and solution instability results for nearly co-linear triplets.
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Fig. 3 Geometry of a J × K grid of gradient observations, Γ� and Γxy

Nevertheless, in general, a pair of parallel tracks of gradi-
ents, Γ� = (Γyy − Γxx)/2 and Γxy, can lead to estimates of
the DOV components. Consider roughly parallel tracks of K
observation points each (assume no azimuth degeneracies),
as in Fig. 3. For the first two tracks there are 4K unknown
DOV components, ξ , η, and an equal number (4K ) of obser-
vations, Γ� and Γxy. Per track, there are K − 1 along-track
connections (equations) of the form (19), and K cross-track
connections between the tracks, for a total number of only
3K−2 equations. Clearly the constraints (20) are needed and
can be incorporated by adding K − 1 diagonal connections,
as shown in Fig. 3, again in the form of Eq. (19). Still, these
final 4K − 3 equations require at least three additional con-
straints to solve for all the DOV components. For example,
one could include observations of the DOV components at
the two endpoints of one of the tracks.

Each additional track of points adds 2K unknowns and
2K observations, but only 2K − 1 additional along-track
and cross-track connections. Thus, without further external
DOV control, additional diagonal connections are needed to
supply the necessary constraints. But, it is noted that diagonal
connections do not provide extra observational information,
only geometric stability. On the other hand, one cannot add
arbitrarily more diagonal connections because having too
many such constraints simply means that observations are
used multiple times, which is not permitted from an estima-
tion viewpoint. Indeed, let “derived observations”, defined
by the right-hand side of (19),

G j1, j2 = �s j1, j2
2γ

((
Γ

( j1)
� + Γ

( j2)
�

)
sin 2α j1, j2

+
(
Γ ( j1)
xy + Γ ( j2)

xy

)
cos 2α j1, j2

)
, (21)

be collected in the vector, G; and, let the actual observa-
tions, Γ� and Γxy, constitute the vector, y. For two tracks
triangulated as in Fig. 3, the total number of derived obser-
vations in G is less than the total number in y. If the error
dispersion matrix of y is non-singular then so is that of G.

However, as soon as the size of G is greater than the size of
y, its error dispersion matrix becomes singular, indicative of
perfect error correlations between, or multiple uses of obser-
vations, Γ� and Γxy. Thus, one must carefully trade between
geometric stability (i.e.,DOVestimability) and observational
independence. Performing a Delaunay triangulation, having
O(3J K ) sides, on a spatial distribution of J K points with
observations of Γ� and Γxy and treating quantities, G j1, j2 ,
corresponding to all sides as observations is technically not
correct. The exceptions include a single triangulated pair of
tracks, as done by Badekas and Mueller (1968), or includ-
ing vertical gradients, Γxz, Γyz (also available with torsion
balance measurements). The other, theoretically untenable,
option is to use the G j1, j2 as true observations (and neglect
their correlation). In this respect, the actual data processing
performed byVölgyesi (2005) for the triangulation of the spa-
tial distribution of torsion balance data over a 25 km×30 km
test area is not clear in his documentation.

In flat terrain, or in an aerial survey, the vertical gradients
provide much less local information to the DOV estimation
than the horizontal gradients. This is obvious from Eq. (15)
which shows that the contribution of Γxz and Γyz depends
on �z. In addition, the relationship between the vertical
gradients alone and the DOV components is analogous to
the relationship between gravity anomalies and the geoid
undulation (i.e, the former is just the horizontal derivative of
the latter). This means that the estimation of DOV compo-
nents from vertical gradients only requires a global, at least
a regional, distribution of data, just as Stokes’s integral for
the geoid undulation requires such a distribution of gravity
anomalies. Again, there is minimal DOV information from
the vertical gradients along a track.

3 Parkfield data

The theory of Sect. 2 is tested on an airborne gradiometer data
set that was collected in a 10km by 10km area over the San
Andreas Fault near Parkfield, California, by Bell Geospace,
Inc., in 2004 (Bell Geospace 2004) using a full-tensor gra-
diometer (FTG).Both free-air and terrain-corrected gradients
are provided. From these data one can also simulatemeasure-
ments of a single-gradiometer instrument that measures only
Γ� and Γxy.

The airborne data points, shown in Fig. 4, have an average
spacing of 63±5 m along roughly straight tracks. There are
49 survey tracks, labeled L11 through L491 from north-west
to south-east, that are approximately 200m apart. In addition,
there are 10 cross tracks, labeled T10 through T100, from
south-west to north-east, that are spaced approximately 1 km
apart. Theflight altitudes above the ellipsoidwere designed to
follow the general terrain and resulted in altitudes increasing
from about 840 m in the west corner to about 1350m in
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Fig. 4 Airborne gravity gradiometer data points in the Parkfield, CA,
area along survey tracks, L11 through L491, and cross tracks, T10
through T100

Fig. 5 Altitude profiles of the survey tracks and cross tracks in the
Parkfield survey area

the east corner of the survey area (Fig. 5). The differences
in elevations between survey tracks and cross-tracks at their
intersections, however, are practically negligible with amean
value of 1.5m and a standard deviation of 13.6m.

The tensor elementswere pre-processed byBell Geospace
to remove internal biases and trends, as well as other
inconsistencies, using proprietary algorithms and filters. The
resulting gradients are given in a local, left-handed, east-
north-down coordinate system. For consistency with the
notation of Sect. 2 (Fig. 2), these gradients are transformed to
the north-east-down coordinate system. The pre-processing
essentially yields gravity gradient disturbances with respect
to a high-degree reference field, which, however, is unknown
since it is embedded in the removal of internal biases and
trends. Locally these data describe the short-wavelength fea-
tures of the gradient field. The statistical means and standard
deviations of the gradients and their cross-over discrepancies

Table 1 Statistics of the free-air gravity gradients along the Parkfield
survey tracks and their discrepancies with respect to corresponding
gradients on the cross-tracks. Subscripts, x, y, z, refer to the north-east-
down coordinate system (the units are 1 E ≡ 1 Eötvös = 10−9 s−2)

Gradient Bell Geospace data Cross-over discrepancy

Mean (E) SD (E) Mean (E) SD (E)

Γxx − 27.22 40.43 0.373 6.94

Γxy 3.02 24.34 − 0.066 6.00

Γxz 13.13 51.25 0.169 5.90

Γyy − 43.36 34.93 − 0.216 7.12

Γyz 22.80 37.96 − 0.667 6.46

Γzz 70.58 61.96 − 0.157 7.32

at the points of intersection of the survey and cross-tracks
are listed in Table 1. The cross-over discrepancies have a
mean value close to zero and are relatively much smaller
than the magnitudes of the gradients, thus indicating a rea-
sonably large signal-to-noise ratio, as well as internal signal
consistency over the survey area. In calculating these discrep-
ancies, the vertical differences of the order of 14m between
the survey and cross-tracks are neglected. The statistics of
the data, themselves, are given only formally, since the data
are not random, but have large systematic components due to
the geologic nature of the San Andreas fault. Bell Geospace
does not provide an uncertainty of their data, and one may
use the cross-over discrepancies as a conservative measure
of the data error. The average of the standard deviations in
Table 1 (last column), σΓ = 6.5 E, is used where needed in
the subsequent data processing.

A “truth” model is required in order to assess the quality
of the DOV components estimated from the gravity gradi-
ent data as described in Sect. 2. The astrogeodetic DOVs
available in the region (Jekeli 1999), with stated accuracy
of 0.2′′–0.4′′, are rather sparse as shown in Fig. 6 and fall
entirely outside the gravity gradient survey area.

On the other hand, the National Geodetic Survey has com-
puted a high-resolution DOV model, USDOV2012, from
their gravimetric geoid model, USGG2012, which is based
on 1′ × 1′ gravity data for the conterminous US and the
long-wavelength GOCO03S satellite geopotential model
(Mayer-Gürr et al. 2012). A comparison of the USDOV2012
values to the astrogeodetic DOVs near the Parkfield survey
area yields the following statistics, mean, μ, and standard
deviation, σ , for the differences, �ξ = ξastro − ξUSDOV2012,
�η = ηastro − ηUSDOV2012,

μ�ξ = 0.58′′, μ�η = 0.11′′ and σ�ξ = 1.65′′,
σ�η = 1.02′′. (22)

It is noted that the Parkfield astrogeodetic DOVs refer to
the WGS84 datum, which is consistent with the normal
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Fig. 6 Astrogeodetic stations (crosses) near the Parkfield survey area
(parallelogram)

field implied by the USDOV2012 values. The astrogeodetic
deflection components, ξ , are corrected for the normal plumb
line curvature (3), although the effect (mean of absolute
values = 0.04′′) is significantly below the stated accuracy
of the astrogeodetic values and does not affect the compar-
ison. Assuming the astrogeodetic values are closer to the
truth, the accuracy of the USDOV2012 model is of the order
of 1.0′′–1.7′′ in this area. On the other hand, this model has
much higher spatial resolution than the astrogeodetic data,
and serves as a reasonable substitute for truth when calibrat-
ing systematic errors and assessing the gradient-integrated
DOVs.

4 DOV estimation

4.1 Full-tensor gradiometer data

Much can be learned from the Parkfield data set by investi-
gating the integration of the gradients along a single track,

e.g., the survey track, L51. Applying Eq. (15) and setting the
integration constants to zero (ξ(P0) = 0, η(P0) = 0), the
estimated DOV components along this track are shown in
Fig. 7. The maximum along-track contributions to ξ and η

from the vertical gradients, Γxz and Γyz, are 0.23′′ and 0.06′′,
respectively, for a total vertical distance travelled of about
110 m. The relative contributions to the deflections along the
other tracks are similar. Thus, as expected, the main contrib-
utors to the DOVs along a dominantly horizontal track are
the horizontal gradients.

Integrated gradient errors tend to accumulate rather than
averageout and theDOVestimates have expected trend errors
when compared to the USDOV2012 values (Fig. 7). Despite
these systematic errors the DOV estimates appear to con-
tain slightly higher resolution structure than implied by the
USDOV2012model, which is limited by the resolution of the
gravity input data. The gradient data used in this case are free-
air gradients; and; terrain corrections, commonly applied for
ground surveys, do not improve the estimation. In fact, the
resultingDOVestimates are expectedly smoother and tend to
annihilate their short-wavelength features, as demonstrated
in Fig. 8. All subsequent results are thus based on the free-air
gradients.

Trend errors can be calibrated with truth data at both ends
of the track. They can also be calibrated to a large extent by
adjusting the cross-over discrepancies of the DOV compo-
nents at the multiple intersections of the 59 Parkfield tracks.
The methodology developed by Serpas (2003) is adopted
for each component separately. The model for the estimated
component, ξ , on the survey track, s, is

ξs ( j) = ξ trues ( j) + bξ,s + mξ,sds ( j) + εξ,s ( j) ,

j = 0, . . . , ns − 1; (23)

and, on the cross-track, c, it is

ξc (k) = ξ truec (k) + bξ,c + mξ,cdc (k) + εξ,c (k) ,

k = 0, . . . , nc − 1. (24)

Fig. 7 Contributions to the DOV components, ξ (left) and η (right), along the survey track, L51, of the Parkfield gravity gradient survey and
comparison to the USDOV2012 values. All values are referenced to the initial point
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Fig. 8 Comparison of DOV components estimated from free-air gradients and terrain-corrected gradients (assumed mass density, 2670 kg/m3)

with USDOV2012 values

Here ξ trues and ξ truec represent the true values of ξ , while bξ,s

and bξ,c are biases for the corresponding tracks, and, mξ,s

and mξ,c are corresponding trend parameters. The distances,

ds ( j) =
√(

x (s)
j − x (s)

0

)2 +
(
y(s)
j − y(s)

0

)2
,

dc (k) =
√(

x (c)
k − x (c)

0

)2 +
(
y(c)
k − y(c)

0

)2
, (25)

are computed on the assumption that the tracks are essentially
straight lines. The random errors in ξ are denoted by εξ,s

and εξ,c. A similar formulation holds for the west-east DOV
component, η.

The points of intersection of the survey and cross-tracks
are represented by jc and ks . The actual coordinates of these
points and the corresponding gradient-integrated values of ξ

for each track are derived by linear interpolation. The height
difference of the tracks at a point of their horizontal intersec-
tion is neglected (see Fig. 4). Since the true values, ξ trues ( jc)
and ξ truec (ks), are the same, subtracting (24) from (23) at these
points yields

�ξ ( jc, ks) = bξ,s − bξ,c + mξ,sds ( jc)

−mξ,cdc (ks) + �εξ ( jc, ks) , (26)

for s = 1, . . . , J , c = 1, . . . , K , where J is the number of
survey tracks and K is the number of cross-tracks. The left
side constitutes a set of observations and the right side a set
of parameters and observation errors. The distances, ds( jc)
and dc(ks), are known quantities. There are J K intersection
points, hence J K observations for J survey tracks intersected
by K cross-tracks; and, the total number of parameters is
2(J + K ). If K = 2, then there is a datum defect, or rank
deficiency, of 4. That is, the configuration for the ξ -profiles
constructed from the survey tracks and 2 cross-tracks is float-
ing with 4 degrees of freedom, e.g., the two biases and two
trends of the cross-tracks. Adding another cross track with
its own bias and trend does not constrain the configuration
in any absolute way, and so, regardless of the number of
cross-tracks, the rank deficiency is always 4.

For the purpose of reducing the cross-over discrepancies
for all tracks the first and last cross-track profiles, T10 and
T100, are fitted to the USDOV2012 model in terms of a bias
and a trend (Fig. 9). The four parameters, bξ,1, mξ,1, bξ,K ,
mξ,K , for these tracks are then assumedknownandused in the
corresponding equations (26) (that is, for c = 1 and c = K ).
The system of equations then has full rank and the remaining
parameters may be solved and applied, thus minimizing the
cross-over discrepancies over the entire set of intersecting
tracks.

The model represented by (26) is linear and has the com-
pact form,

l = Ap + ε, (27)

where l is the vector of observed cross-over discrepancies,
p is the vector of unknown biases and slopes, A is the cor-
responding design matrix, and ε is the random error in the
observations. For the case at hand, there are J K = 490 obser-
vations and 2(J + K ) − 4 = 114 unknown parameters (and
rank(A) = 114). It is assumed that the random errors in the
gradient-integrated DOVs are independent and have identi-
cal statistical distributions, meaning that all observations are
given equal weight. Therefore, the least-squares solution for
the parameters is

p̂ =
(
ATA

)−1
ATl. (28)

The estimated parameters are then applied to the gradient-
integrated component, ξ , according to (24). An identical
procedure is implemented for the other DOV component, η.

The statistics, mean and standard deviation, for the cross-
over discrepancies of the gradient-integrated DOV compo-
nents before and after the cross-over adjustment are shown in
Table 2, which also includes the overall statistical compari-
son to theUSDOV2012model after the adjustment. Figure 10
compares theUSDOV2012model to the cross-over-adjusted,
gradient-integrated DOVs. Each of these surface plots was
generated by first linearly interpolating the values at the track
points onto a 100 × 100 grid. There is considerably more
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Fig. 9 Comparison of USDOV2012 deflections (ξ on the left, η on the right) and gradient-integrated deflections on cross-tracks T10 (top) and
T100 (bottom) of the Parkfield survey, before and after adjustment with respect to USDOV2012 in terms of bias and trend error

Table 2 Statistics (mean |
standard deviation) of DOV
cross-over discrepancies and
differences (all points) with
respect to the USDOV2012
model

�ξ (arcsec) �η (arcsec)

Cross-over points before adjustment − 2.98|3.64 2.55|2.68
Cross-over points after adjustment 0.00|0.144 0.00|0.247
All points on all tracks w.r.t. USDOV2012a − 0.095|0.59 0.22|0.88
aAfter the DOV cross-over adjustment

structure, presumably induced by geology, in the gradient-
integrated DOVs than in the USDOV2012 model. The small
systematic linear features aligned with the cross-tracks are
artifacts of the imperfect cross-over adjustment. In order to
reduce these one might consider more elaborate cross-over
adjustments for additional parameters besides bias and trend.

4.2 Single-instrument gradiometer data

If only a single-gradiometer instrument is available, mea-
suring the components, Γ� = (Γyy − Γxx)/2 and Γxy, then
DOV components can be estimated using multiple parallel
tracks, as developed in Sect. 2 for a J ×K grid of data points.
The model (19) is augmented with observables of the DOV
components, specifically the USDOV2012 values, at the two
ends of a specified track of data and is written in the form,

f (y,χ) = By + Hχ = 0, (29)

where the 2JK × 1 vector of parameters is

χ = (
ξ1,1 η1,1 · · · ξ1,K η1,K | · · · | ξJ ,1 ηJ ,1 · · · ξJ ,K ηJ ,K

)T ;
(30)

and, the (2J K + ndov) × 1 vector of observables is

y =
(
Γ

(1,1)
� Γ (1,1)

xy · · · Γ
(1,K )
� Γ (1,K )

xy | · · · | Γ
(J ,1)
� Γ (J ,1)

xy

· · · Γ
(J ,K )
� Γ (J ,K )

xy | yTdov
)T

, (31)

where the ndov×1 vector, ydov, comprises the observedDOV
components. Matrices B and H can be inferred from (19).
It is assumed that in addition to the J (K − 1) along-track
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Fig. 10 Surface plots of the USDOV2012 deflection components (top) and Parkfield gradient-integrated deflection components (after cross-over
adjustment) (bottom)

and (J − 1)K cross-track connections between points, only
J +K −3 diagonal connections are made so that the number
of equations in (29) and the row dimension of B and H is
2J K − 3 + ndov.

The least-squares solution for the parameters is given by

χ̂ = χ0 −
(
HTM−1H

)−1
HTM−1W, (32)

where, with weight matrix, P, for the observations,

M = BP−1BT, W = f
(
ỹ,χ0

)
, (33)

and ỹ is the vector of actual observations, while χ0 is the
vector of initial parameters (χ0 = 0). It is assumed that
the variances of the gradient observations, Γ� and Γxy,
are the same, σ 2

Γ = (5.5 E)2, agreeing roughly with the

cross-over discrepancies listed in Table 1; that the vari-
ances for the DOV component observations have the same
value, σ 2

dov = (1.4′′)2, agreeing roughly with the values
obtained from the comparison of USDOV2012 and astro-
geodetic DOVs; and, that all observations are uncorrelated.
Hence, the weight matrix is diagonal.

The number of data points on the Parkfield gradiometry
survey tracks, all nominally 10 km in length, varies from
149 to 193. Thus, to satisfy the simplifying assumptions of
the data grid (Fig. 3), all survey tracks are decimated to 149
points. With J = 49 this implies a row dimension for B
greater than 14,599. Although B and H are sparse, and P
is diagonal, neither M nor HTM−1H is block diagonal, and
maximizing efficiency in terms of computer storage and com-
putational speed is a challenge. On the other hand, tests show
that the DOV estimation depends strongly on the chosen
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Fig. 11 Estimates of ξ (left) and η (right) using themodel (29) obtained
from three tracks, L11, L21, and L31. The apparent grouping of esti-
mates, ξL11, ξL21, or ξL21, ξL31, andηL11,ηL21, orηL21,ηL31, in each case
results from the triangulation either of tracks L11 and L21 or of tracks

L21 and L31. The average of ξL21 from these two groups is denoted
ξavg, and the FTG-integrated estimate is denoted ξFTG; likewise, for the
west-east deflection component, η

Fig. 12 Estimates of ξ (left) and η (right) using the model (29) applied
to three tracks, L21, L31, and L41. The alternative estimates of ξL31 and
ηL31 in each case result from the triangulation either of tracks L21 and

L31 or of tracks L31 and L41. The average of ξL31 from these is denoted
ξavg, and the FTG-integrated estimate is denoted ξFTG; likewise, for the
west-east deflection component, η

diagonal connections, leading to the alternative of sequen-
tially processing only a minimal number of survey (or, cross)
tracks.

For example, the estimates of ξ and η from gradients on
three tracks L11, L21, and L31 can be obtained with a tri-
angulation either between tracks L11 and L21 or between
L21 and L31. Figure 11 shows that the estimates differ sig-
nificantly. The average of the two estimates on L21, in this
case, is close to the FTG-integrated value (with the bias and
trend relative to the USDOV2012 endpoint values removed).
The diagonal connections give more weight to the observa-
tions on the triangulated pair of tracks and thereby bias the
estimates on neighboring tracks. On the other hand, the short-
wavelength structure of the DOV signal appears common in
both estimates.

For some other tracks, the estimates from alternative
triangulations are closer, but differ more significantly in
their average from the FTG-integrated values (again, with

the bias and trend relative to the USDOV2012 endpoint
values removed), as shown in Fig. 12. And, again, the short-
wavelength DOV signal is evident and common to both.
Whether from a triplet of adjacent tracks or merely a pair
of tracks, the DOV estimates on the tracks that are triangu-
lated differ only at the level of milliarcseconds. Therefore,
the final estimates from the horizontal gradients, Γ� and Γxy,
are obtained from pair-wise triangulated tracks and averaged
(without weights) on the tracks that have two estimates. This
procedure also uses gradient data more than once without
considering their correlation, but at least from a numerical
perspective it is a viable method to solve for the roughly
18,000 unknown DOV components on the 59 survey and
cross-tracks.

The independently sequential least-squares estimation of
ξ and η for triangulated pairs of tracks, L11&L21, L21&L31,
…, T10&T20, T20&T30, …, requires observed DOV val-
ues in each case at the endpoints of one track, for which
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Table 3 Statistics (mean |
standard deviation) of
differences between
Γ�, Γxy-derived DOVs and the
USDOV2012 model (all points)

Mean | SD of comparison to USDOV2012

ξtriang − ξUSDOV2012 (arcsec) ηtriang − ηUSDOV2012 (arcsec)

Before cross-over adjustment 0.23|1.57 − 0.18|2.61
After cross-over adjustment 0.138|0.950 − 0.112|1.467

Fig. 13 Surface plots of the Parkfield triangulated-gradient-derived deflection components, ξ on the left and η on the right (after cross-over
adjustment)

the USDOV2012 values are used. The resulting averaged
estimates are cross-over adjusted, as in the case of the
FTG-integrated DOV estimates, in an attempt to calibrate
the biases and trend errors in the estimates on individ-
ual tracks. As before, the bias and trend error control is
provided by USDOV2012 values on cross-tracks T10 and
T100 (very similar results are obtained using T20 and T90).
Table 3 summarizes the statistics of their final differences
with respect to the USDOV2012 model. Clearly, there is
some improvement by performing the cross-over adjustment,
but the overall estimation compared to USDOV2012 is sig-
nificantly worse than the FTG-integrated DOV estimation
(see Table 2). Indeed, corresponding spatial visualizations
(Fig. 13) exhibit a highly striped pattern in both along-track
and cross-track directions from which no geologic structure
is discernible. The most apparent reason is the disagreement
between the triangulated-gradient estimates and the FTG-
integrated estimates, illustrated, for example, in Fig. 12. This
should not necessarily be a surprise since data of the type,
(Γyy − Γxx)/2, are not equivalent to individual data, Γxx and
Γyy. Separating the terms of the difference, Γ�, is accom-
plished heuristically by using two parallel tracks, but not
without error; and these errors accumulate and propagate
systematically to the DOV estimates. This error is likely
greater for the more widely spaced cross-tracks than the
survey tracks. Another contributing factor is the possible dis-

tortion in the bias and trend error calibration resulting from
the required end-matching of each pair of triangulated tracks,
as indicated in Figs. 11 and 12. This track-by-track fit to
USDOV2012 endpoint values, in addition to the cross-over
adjustment, creates excessive control that prevents represen-
tation of the short-wavelength features in two-dimensions,
although they appear in the profiles.

5 Conclusion

The otherwise straightforward estimation of deflections of
the vertical from gravity gradients on survey lines is subject
to systematic error due to the numerical integration. This
requires adequate control to calibrate bias and trend errors.
A calibration method is tested for a regular set of intersect-
ing lines of airborne gravity gradient data over a local 10km
square area.Using full-tensor gradient data andminimal error
control, including a cross-over adjustment of the DOV esti-
mates, the agreement between the resulting deflections and
a longer-wavelength model, USDOV2012, is at the level
of 0.6–0.9 arcsec. However, rather than representing esti-
mation error, this level of discrepancy ostensibly embodies
true short-wavelength signal. Processing single-instrument
gradients, Γ� = (Γyy − Γxx)/2 and Γxy, using pair-wise tri-
angulations of parallel data tracks does not yield nearly the
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same level of agreement with USDOV2012. This may be
attributed primarily to a lack of adequate data, as the DOV
estimates from FTG and single-instrument data along a sin-
gle track can differ significantly.
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Appendix

The planar approximation for gravity gradients means that
one neglects the variation in the directional derivatives of
the potential due to Earth’s curvature. The approximation
assumes a constant direction for all derivatives regardless of
location. However, the orientation of a typical gradiometer,
or, more importantly, of its processed data, is maintained in
a local-level, north-slaved coordinate frame (such as north-
east-down). Thus, the difference between the actual and
assumed data involves, in the first place, a rotation of the gra-
dient tensor by the angles of Earth’s curvature. For local areas
less than 60 km in dimension (as in the case studied here),
that angle is less than 30/R, where R = 6371 km, hence,
less than 0.3◦. Let these angles in the north and east direc-
tions be denoted, χ and ζ , respectively. In addition, using the
UTM projection, for example, for the Cartesian coordinates
neglects the convergence of the meridians, which for the area
under study is α ≤ 1.5◦.

If R is a rotation matrix that describes these rotations of
the local Cartesian coordinates from a curvilinear system
then the error in the assumed gradient tensor is

ε ≤ �̂
(xyz) − R�(ned)RT, (A.1)

where �̂
(xyz)

is the gradient tensor assumed in the local
Cartesian system, but taken from the data in the curvilin-
ear true-north, local-level system. The angles, χ , ζ , α, are
sufficiently small so that the error of approximation, itself,
may be approximated with a “small-angle” rotation matrix,

R =
⎛

⎝
1 α −ζ

α 1 χ

ζ −χ 1

⎞

⎠ = I −
⎛

⎝
0 −α ζ

α 0 −χ

−ζ χ 0

⎞

⎠

= I − δR. (A.2)

Setting �̂
(xyz = �(ned) ≡ �, and neglecting second-order

terms, the error is

ε ≤ � − (I − δR) � (I − δR)T = δR� + (�δR)T

=
⎛

⎝
2

(
ζΓzx − αΓyx

)
ζΓzy − α

(
Γyy − Γxx

) − χΓzx χΓyx + ζ (Γzz − Γxx) − αΓyz

ζΓzy − α
(
Γyy − Γxx

) − χΓzx 2
(
αΓxy − χΓzy

)
αΓxz + χ

(
Γyy − Γzz

) − ζΓxy

χΓyx + ζ (Γzz − Γxx) − αΓyz αΓxz + χ
(
Γyy − Γzz

) − ζΓxy 2
(
χΓyz − ζΓxz

)

⎞

⎠ . (A.3)

The gradients here are the disturbance gradients, on the
order of 10–100E (typically). Therefore, since χ, ζ < α ≤
3 × 10−2 rad, the planar approximation error is at or below
the level of the measurement error for present studies. Nev-
ertheless, it is a systematic error that, when integrated, can
cause trend errors in the DOV.

References

Arabelos D, Tziavos IM (1992) Gravity field approximation using air-
borne gravity gradiometer data. J Geophys Res 97(B5):7097–7108

Badekas J,Mueller II (1968) Interpolation of the vertical deflection from
horizontal gravity gradients. J Geophys Res 73(22):6869–6878

Bell Geospace (2004) Final report of acquisition and processing on Air-
FTG survey in Parkfield earthquake experiment area. Technical
Report, Rice University, Houston, Texas

Heiland CA (1940) Geophysical exploration. Prentice-Hall Inc, New
York

Heiskanen WA, Moritz H (1967) Physical geodesy. W.H. Freeman and
Co., San Francisco

Heller WG, MacNichol KB (1983) Multisensor approaches for deter-
mining deflections of the vertical. Report no.ETL-0314, US Army
Corps of Engineers, Engineer Topographic Laboratories, Fort
Belvoir, Virginia, ADA128412

Herring TA (1978) Amethod for determining the deflections of vertical
from horizontal gravity gradients. Unisurv G 28:26-46, School of
Surveying, University of New South Whales

Herring TA (1979) The accuracy of deflections of the vertical deter-
mined from horizontal gravity gradients. Aust J Geod Photogram
Surv 30:41–62

Hirt C, Bürki B (2002) The Digital Zenith Camera—a new high-
precision and economic astrogeodetic observation system for
real-time measurement of deflections of the vertical. In: Tziavos
I (ed) Proceedings of the 3rd meeting of the international gravity
and geoid commission of the international association of geodesy,
Thessaloniki, pp 161–166

123



382 C. Jekeli

Hofmann-Wellenhof B, Moritz H (2005) Physical geodesy. Springer,
Berlin

Jekeli C (1988) The gravity gradiometer survey system. EOS Trans Am
Geophys Union 69(8):105, 116–117

Jekeli C (1993) A review of gravity gradiometer survey system data
analysis. Geophysics 58(4):508–514

Jekeli C (1999) An analysis of vertical deflections derived from high-
degree spherical harmonic models. J Geod 73:10–22

Jekeli C (2006) Precision free-inertial navigation with gravity com-
pensation by an on-board gradiometer. J Guid Control Dyn
29(3):704–713

Jekeli C, Kwon JH (1999) Results of airborne vector (3-D) gravimetry.
Geophys Res Lett 26(23):3533–3536

Mayer-Gürr T et al (2012) The new combined satellite only model
GOCO03s. Presented at the International Symposium on Gravity,
Geoid and Height Systems, Venice, 9–12 October 2012

Pick M, Picha J, Vyskocil V (1973) Theory of the Earth’s gravity field.
Elsevier, Amsterdam

Rose RC, Nash RA (1972) Direct recovery of deflections of the ver-
tical using an inertial navigator. IEEE Trans Geosci Electron GE
10(2):85–92

Sandwell DT, SmithWHF (1997)Marine gravity anomaly fromGeosat
and ERS 1 satellite altimetry. J Geophys Res 102(B5):10039–
10054

Serpas JG (2003) Local and regional geoid determination from vector
airborne gravimetry. Report no.468, Geodetic Science, Ohio State
University, Columbus, Ohio

Sun W, Zhou X (2012) Coseismic deflection change of the vertical
caused by the 2011 Tohoku-Oki earthquake (Mw 9.0). Geophys J
Int 189:937–955

Völgyesi L (1977) Interpolation of deflection of the vertical from hori-
zontal gradients of gravity. Veröffentlichungen des Zentralinstituts
für Physik der Erde 52:561–567

Völgyesi L (2005) Deflections of the vertical and geoid heights from
gravity gradients. Acta Geod Geophys Hung 40(2):147–157

Watts AB (2001) Isostasy and flexure of the lithosphere. Cambridge
University Press, Cambridge

123


	Deflections of the vertical from full-tensor and single-instrument gravity gradiometry
	Abstract
	1 Introduction
	2 Mathematical theory
	3 Parkfield data
	4 DOV estimation
	4.1 Full-tensor gradiometer data
	4.2 Single-instrument gradiometer data

	5 Conclusion
	Acknowledgements
	Appendix
	References




